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Abstract—Mimicking biological neurons by focusing on the exci-
tatory/inhibitory decoding performed by dendritic trees offers
an intriguing alternative to the traditional integrate-and-fire
McCullogh-Pitts neuron stylization. Weightless Neural Networks
(WNN), which rely on value lookups from tables, emulate the
integration process in dendrites and have demonstrated notable
advantages in terms of energy efficiency. In this paper, we delve
into the WNN paradigm from the perspective of reliability and
fault tolerance. Through a series of fault injection experiments,
we illustrate that WNNs exhibit remarkable resilience to both
transient (soft) errors and permanent faults. Notably, WNN
models experience minimal deterioration in accuracy even when
subjected to fault rates of up to 5%. This resilience makes them
well-suited for implementation in emerging memory technologies
for binary or multiple bits-per-cell storage with reduced reliance
on memory block-level error resilience features. By offering a
novel perspective on neural network modeling and highlighting
the robustness of WNNSs, this research contributes to the broader
understanding of fault tolerance in neural networks, particularly
in the context of emerging memory technologies.

I. INTRODUCTION

The majority of current machine learning models today are
deep neural networks based on simple weighted-sum-and
threshold artificial neurons, as variants of the pioneering
Threshold Logic Unit by McCullogh and Pitts [1]. The bi-
ological analogy behind this model lies on the mapping of
the synaptic strength between the output produced by one
neuron’s axon and the input of a post-synaptic neuron into
pseudo-continuous numerical weights. An important simplifi-
cation happens in the way inputs to neurons are modeled: all
synaptic connections terminate directly at the neuron’s soma.
Although such specific morphological arrangement is plausible
in biological terms, the vast majority of synapses in the central
nervous system terminate at the neuron’s dendritic tree [2].

By simulating a state of the art detailed biophysical model
of a single cortical neuron (that attempts to capture all
biological details that are currently known about the inner
workings of biological neurons), and trying to find the smallest
deep neural network, Beniaguev et al. [3] showed that a
deep neural network of 5-8 layers is necessary to faithfully
capture a detailed model of a single L5 cortical pyramidal
neuron ( See Figure 1). Seven hidden layers consisting of
128 feature maps per layer and a history of 153 ms is
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necessary for capturing both AMPA (a-Amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid) and NMDA (n-methyl-d-
aspartic acid) responses whereas if only AMPA synapses are
modeled, it is faithfully captured by a DNN with one hidden
layer. The minimal DNN size required to achieve a good fit is
larger for AMPA and NMDA synapses compared to AMPA-
only synapses across all tested hyperparameters. This research
adds evidence to the notion that traditional neuron model may
not be the most appropriate one to describe brain’s computing.

The dendritic tree, a highly noticeable morphological structure
of the neuron cell, is not being taken into account in main-
stream neural network paradigms. As widely understood, a
nerve cell consists of dendrites, soma, axons and synapses.
Each nerve cell has one or more dendrites, which receive
the stimulus and transmit them to soma. It was generally
thought for a long time that dendrites simply passively transmit
electrical impulses received from synapses to soma. However,
recently there has been research to suggest that dendrites are
not just passive channels [3, 5, 6, 7]. According to recent
research, dendritic branches can be conceptualized as a set
of spatio-temporal pattern detectors [3] (Figure 2). Dendrites
process inhibitory and excitatory action which are marked i
and e in the Figure 2 and dendritic integration [4] can be
modeled into hardware tables. There is increased support to
the notion that understanding dendritic activity and utilizing
principles learned from that into computer architecture may be
necessary to improve the energy-efficiency of neural network
hardware.

Mimicking biological neurons by focusing on the excitato-
ry/inhibitory decoding performed by the dendritic trees as
in Figure 2 is an attractive alternative to the integrate-and-
fire McCullogh-Pitts neuron stylisation. In such alternative
analogy, neurons can be seen as a set of memory nodes
addressed by Boolean inputs and producing Boolean outputs.
This is what a class of neural networks called Weightless
Neural Networks (WNNs) do [8, 9, 10]. Their operation
has similarities to the integration of excitatory and inhibitory
signaling performed by the neuron’s dendritic tree.

The objective of this paper is to illustrate the advantage of
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Deep Convolutional Net

Fig. 1: A 7-layer DNN is necessary to
model an L5 cortical pyramidal neuron
with AMPA and NMDA synapses [3]

WNNs from the point of view of reliability and fault tolerance,
and their suitability for implementation in emerging memory
technologies that may be more susceptible to errors (compared
to traditional memories) for various reasons such as technology
maturity or multiple bits-per-cell storage.

II. BACKGROUND AND MOTIVATION

Weightless Neural Networks (WNNs) rely on value lookups
implemented using RAMs or look up tables (LUTSs) instead
of Multiply-Accumulate (MAC) operations [8, 9, 10]. The
weightless neural network architecture has shown success
as pattern detectors. This neuromorphic architecture modeled
after synaptic integration in dendrites has serious potential in
creating energy-efficient machine learning systems. However,
naive implementations of WNNs need tremendous amounts of
memory, and individual RAM nodes can not generalize.

WiSARD [8] is one of the most popular and successful WNNSs.
It is intended for classification tasks and avoids the state
explosion problem. Lookup tables can capture a variety of
non-linear functions, and neural networks built with them
have a great ability to learn patterns with few parameters.
WiSARD has also been shown to have a large VC dimension
[11]. WiSARD is best suited to classifier tasks, where inputs
are partitioned into different categories. WiSARD uses a sub-
model called discriminator for each class. A discriminator is
created for each output category; these discriminators in turn
are composed of many small RAM nodes, as illustrated in
Figure 3. During inference, outputs of the RAM nodes in each
discriminator are summed, and index of the discriminator with
the strongest response is the prediction. WiSARD avoids the
state explosion problem for simple WNNSs, but it is impractical
for large models.

The energy consumed by modern deep neural networks
(DNNs) is orders of magnitude higher than equivalent bi-
ological neural activity. Recent research [13, 14, 12] has
demonstrated that WNNs and their variations are effective for
energy-critical edge applications.

There are also technology trends that may be opportunistic
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Fig. 2: The dendritic tree (Left). Dendrite inhibitory and excitatory action
marked i and e in the figure on the Right and dendritic integration [4] can
be modeled into hardware tables

Address Discriminator
~

—

response

irO

g i el

Input image

Input image

Random

mapping

Fig. 3: A popular weightless model, the WiSARD, doing digit recog-
nition. The input image has a 1 and the discriminator corresponding
to digit 1 has the highest response here [12].

for WNNs now. We are finding some emerging memory
technologies which can support high densities. However, cer-
tain features of such technologies, e.g., multiple bits-per-cell
storage, might exhibit reliability challenges that may have to
be coped architecturally. Such scenarios trade off capacity for
reliability - an increasing number of bits can be stored in a
cell in exchange for a higher error rate. Applications need very
high fault tolerance in order to use these technologies at the
maximum level of density.

III. FAULT-TOLERANT WNNS FOR THE EDGE

Consider the Resistive RAM (RRAM) technology used in the
Chimera work [15, 16]. RRAM arrays are high-density thanks
to the 1-transistor structure (vs. 6-transistor SRAM cells).
Even though RRAM controller and peripheral circuits are
complex, RRAM arrays provide a > 2x density increase over
SRAM arrays (at the same technology node). Bit density can
be further improved (2-4x) by leveraging the wide resistance
range of RRAM (5kOhm to 100kOhm) for multiple bits-per-
cell storage [17, 18]. Moreover, RRAM is compatible with
high-density 3D structures due to its back-end-of-line (BEOL)
compatible fabrication temperature, leading to further density
improvement via vertical integration [17, 19]. RRAM read
energy (8 pJ/byte, measured) is several times lower compared
to DRAM. RRAM is thus non-volatile, ultra-dense, and read-
energy efficient. However, RRAM writes require high voltages
resulting in a high write energy (40.3 nJ/byte, measured) and
repeated pulses leading to extra write latency (421 ns/byte,
measured). The limited write endurance (10k cycles [20]) is a
major challenge for DNN training, however WNN accelerators
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will contain very few writes due to the inherent one-shot
or few-shot nature of WNN training. When used for edge
inference, the write-endurance challenge can be easily handled
since lookup tables are only read and not written into. In
addition, prior work demonstrates that RRAM achieves fine-
grained temporal power gating with up to 5,878X quicker
transition from active to shutdown mode (measured) vs. on-
chip Flash [21], leading to further suitability for energy-
constrained edge devices which can save energy by going off,
but can come to action for fast response times. The features
of RRAMs are suitable for on-chip non-volatile memory with
low-energy, and we expect these attributes to be ideal for
WNNs as well.
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RRAM arrays where each cell can store 3 bits [16] have also
been demonstrated. Such full array-level demonstration was
possible through special techniques (e.g., that exploit RRAM-
specific characteristics of variations in cell resistances), which
efficiently allocated resistance range corresponding to each
bit combination (required for proper write operation) while
maintaining appropriate sensing margin (required for proper
read operation). These techniques are not restricted to 3 bits-
per-cell only (and, in the paper [16], but 2 bits-per-cell at the
array level was demonstrated as well). The measured results
are based on multiple 4 Kbit arrays of 1TIR HfOx-based
RRAM integrated in the back end of the line of 130-nm silicon
CMOS technology and yield 3 bits-per-cell (2 bits-per-cell)
RRAM with 11 (3) programming iterations on average.

While binary storage in RRAM is well-established (through
hardware prototypes, RRAM macros from foundries such
as TSMC, and announcements about the use of RRAM for
automotive applications) [22], there are several challenges
in integrating multiple bits-per-cell capabilities to systems.
RRAM cell-to-cell variations mean that cell programming can
yield resistances which are not reliably within the desired
range for multiple bits-per-cell storage. Bit error rates can thus
vary greatly with the number of programming attempts made
on the cell (see Figure 4a). Bit retention can also become
increasingly difficult as more bits are programmed into the
cell. Accelerated retention studies such as those shown in
Figure 4b are encouraging for system performance and pro-
gramming robustness in face of these potential errors. WNNs
have features that can potentially mask these challenges.
Since WNN’s output is chosen by looking at the different
discriminators and choosing the one with the highest output,
some bit errors may not catastrophically affect the inference.
IV. PRELIMINARY RESULTS

We explored the resilience of WNNs by injecting soft and per-
manent bit flips into the RAM nodes of pretrained WNNs. Our
preliminary investigation shows that WiSARD-based WNNs
exhibit a high degree of resilience to both transient (soft) errors
and permanent errors. Figure 5 demonstrates that WNNs can
retain useful accuracy with error rates as high as 20%. With
error rates such as 5%, the accuracy deterioration is negligible.
By contrast, recent studies show that a single bit error can
cause substantial (>4%) loss of accuracy in 5.9% of cases
in DNN training [23]. The source of this robustness can be
traced back to the behavior of the WiSARD model itself. To
restate from earlier, in WiSARD, each discriminator, or single-
class predictor, produces an “activation” score by summing
the outputs of its component RAMs, and the prediction of the
model is the class corresponding to the discriminator with the
strongest activation. Thus, the actual values of the activations
do not impact the prediction, only their relative values. If the
output of one discriminator a is larger than that of another
discriminator b, then a > b will still usually remain true so
long as the error rate of the RAMs is less than 0.5. The
potential for fault-tolerant WNNs considering the reliability
attributes of RRAM needs to be further studied.
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Fig. 5: A demonstration of the robustness of WiSARD models to faults in memories. Three models were trained using the WiSARD dataset
(Small: 70 KiB model size; Medium: 210 KiB; Large: 960 KiB); then, soft and persistent errors were artificially injected during inference at
rates up to 20%. All models showed excellent resistance to faults up to a 5% fault rate. The larger models, which had greater redundancy,

were less affected by higher fault rates.

The source of this robustness can be traced back to the
behavior of the WiSARD model itself. To restate from earlier,
in WiSARD, each discriminator, or single-class predictor,
produces an “activation” score by summing the outputs of its
component RAMs, and the prediction of the model is the class
corresponding to the discriminator with the strongest activa-
tion. Thus, the actual values of the activations do not impact
the prediction, only their relative values. If the output of one
discriminator a is larger than that of another discriminator b,
then a > b will still usually remain true so long as the error
rate of the RAMS is not very high.

V. FUTURE OUTLOOK

There are additional reasons why WNNs can be even more
resilient. They can use Ensembles, like the one shown in Fig-
ure 6, combining multiple weak classifiers into a single strong
classifier to improve the accuracy of WNNs [12]. Ensembles
have been extensively studied in other areas of machine
learning, and are the driving concept behind techniques such
as Bayesian averaging, boosting, and bagging [24]. In recent
work [12] ensembles are trained by independently training
several WNN submodels on the same training data. The
response scores for each discriminator across the submodels
are then summed up before performing the final prediction.
In other words, if a submodel ¢ produces response score R; ;
for class j, then the final response score for this class will
be >, R; ;. This ensemble technique is similar to but distinct
from bagging. In bagging, submodels are trained using random
subsets of the training data, with the objective of influencing
them to learn different patterns and behaviors. On the other
hand, in ensemble WNNs [12], all submodels see the same
training data, but the connections from model inputs to RAM
nodes are different. This sparse connectivity forces RAM
nodes in different submodels to capture information distinctly.

One might reasonably expect that using ensembles of submod-
els would increase the size of a model, since there are more
RAM nodes in total. However, prior work [12] found that in
practice this is frequently not the case. The individual submod-
els of an ensemble can be made much smaller (and therefore
individually less accurate) than a monolithic model without
significantly degrading ensemble accuracy. It was seen that
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Fig. 6: Simplified view of an ensemble model. Summing the response
scores of independently-trained submodels (Model 1, Model 2, etc.)
is more accurate than any of the individual submodels. From [12].

ensembles can increase MNIST accuracy to 98.5%. Ensem-
bles have the potential to further improve the fault-tolerance
of WNNs due to inherent redundancies. Fault-tolerance of
ensemble-based WNNs will be studied in the future utilizing
insights from prior works on DNN reliability [25].

VI. CONCLUSION

In this paper, we conducted an analysis of the fault tolerance of
weightless neural networks through a series of fault injection
experiments. Additionally, we examined the advantages and
limitations of emerging memory technologies. Our findings
reveal a compelling story: WNN models exhibit exceptional
resilience, experiencing minimal accuracy degradation even
when exposed to fault rates of up to 5% in the RAM that holds
the lookup tables. A detailed comparison of WNN resilience
to the resilience of DNNSs is interesting future work.

The inherent fault-tolerant nature of WINNs positions them
as an ideal architecture to harness the benefits of emerging
memory technologies. This work underscores the profound
significance of fault tolerance in the context of neural net-
works and emerging memory technologies. Looking ahead, the
synergy between WNNs and emerging memory technologies
opens up exciting possibilities for more robust and efficient
computing systems. Future research may explore the practical
implementations and applications of this symbiotic relation-
ship, pushing the boundaries of both neural network design
and memory technology advancement.
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