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Abstract—Online federated learning (FL) enables geographi-
cally distributed devices to learn a global shared model from
locally available streaming data. Most online FL literature con-
siders a best case scenario regarding the participating clients
and the communication channels. However, these assumptions are
often not met in real-world applications. Asynchronous settings
can reflect a more realistic environment, such as heterogeneous
client participation due to available computational power and
battery constraints, as well as delays caused by communica-
tion channels or straggler devices. Further, in most applications,
energy efficiency must be taken into consideration. Using the
principles of partial-sharing-based communications, we propose
a communication-efficient asynchronous online FL (PAO-Fed)
strategy. By reducing the communication load of the partici-
pants, the proposed method renders participation more accessible
and efficient. In addition, the proposed aggregation mechanism
accounts for random participation, handles delayed updates, and
mitigates their effect on accuracy. We study the first- and second-
order convergence of the proposed PAO-Fed method and obtain
an expression for its steady-state mean square deviation. Finally,
we conduct comprehensive simulations to study the performance
of the proposed method on both synthetic and real-life data
sets. The simulations reveal that in asynchronous settings, the
proposed PAO-Fed is able to achieve the same convergence prop-
erties as that of the online federated stochastic gradient while
reducing the communication by 98%.

Index Terms—Asynchronous behavior, communication effi-
ciency, nonlinear regression, online federated learning (FL),
partial-sharing-based communications.
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I. INTRODUCTION

MYRIAD of intelligent devices, such as smartphones,

smartwatches, and smart home appliances, are becoming
an integral part of our daily lives, and an enormous amount of
data is available on those devices. Unfortunately, this data is
primarily unused, and we need to develop tools that can pro-
cess this data to extract information that can improve our daily
lives while, at the same time, ensuring our privacy. Federated
learning (FL) [2] provides an adaptive large-scale collaborative
learning framework suitable for this task. In FL, a server aggre-
gates information received from distributed devices referred
to as clients to train a global shared model; the clients do
not share any private data with the server, only their local
model parameters or gradients learned from this data [2], [3].
When data becomes progressively available to clients, it is
possible to perform decentralized learning in real time (imple-
menting, e.g., online FL [4]) for applications that include
environmental monitoring and condition monitoring using sen-
sor networks [5], Internet of Medical Things (IoMT)-based
healthcare applications [6] (e.g., cardio rhythm monitoring),
and autonomous vehicles [7]. In online FL, the server aggre-
gates the local models learned on the streaming data of the
clients [8]. However, in many applications, the participating
clients might have heterogeneous energy supply and limited
communication capacity that can be intermittently unavail-
able or subject to failure. Therefore, such edge devices cannot
participate in typical FL implementations.

In most real-world implementations of FL, it is essential
to consider statistical heterogeneity, system heterogeneity, and
imperfect communication channels between clients and the
server. Statistical heterogeneity implies that data are imbal-
anced and not independent and identically distributed (non-
ii.d.) [9] across devices, while system heterogeneity refers
to their various computational and communication capacities.
Finally, imperfect communication channels cause delays in the
exchanged messages. Although many FL approaches can han-
dle statistical heterogeneity, there is relatively little research
addressing the remaining complications above. In particular,
existing FL methods commonly assume a best case scenario
concerning the client availability and performance as well as
perfect channel conditions [2], [10], [11], [12], [13], [14],
[15], [16], [17], [18]. However, several additional aspects need
attention for efficient FL in a realistic setting. First, clients
cannot be expected to have the same participation frequency,
e.g., due to diverse resource constraints, channel availability,
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or concurrent solicitations [19], [20], [21], [22]. Furthermore,
clients may become unavailable for a certain period during
the learning process, i.e., some clients are malfunctioning or
not reachable by the server [19], [20]. In addition, physical
constraints, such as distance or overload, introduce delays in
the communication between the clients and the server, mak-
ing their contribution arrive later than expected [20], [21],
[22], [23]. These constraints, frequently occurring in practice,
impair the efficiency of FL and complicate the design of meth-
ods tailored for asynchronous settings [19], [20], [21], [22],
[23], [24], [25].

Energy efficiency is an essential aspect of distributed
machine learning algorithms and one of the original motiva-
tions for FL [26]. The communication of high-dimensional
models is energy-onerous for distributed devices. For this
reason, it is crucial to cut the communication cost for
clients [10], [18]. Further, such reduction can facilitate more
frequent participation of resource-constrained devices, or
stragglers, in the learning process. In addition, in asynchronous
settings, where power and communication are restricted, ensur-
ing communication efficiency reduces the risk of bottlenecks
in the communication channels or power-related shutdown of
clients due to excessive resource usage.

We can find a considerable amount of research in the lit-
erature on communication-efficient FL [10], [14], [15], [16],
[17], [18], [27], [28], [29] and asynchronous FL [19], [20],
(211, [22], [23], [24], [25], [301, [31], [32], [33], [34], [35],
[36], [37]; however, only a few works consider both aspects
within the same framework. The classical federated averag-
ing (FedAvg) [18], developed for ideal conditions, reduces the
communication cost by selecting a subset of the clients to par-
ticipate at each iteration. In a perfect setting, this allows clients
to space out their participation while maintaining a consistent
participation rate. In asynchronous settings, however, clients
may already participate sporadically because of their inher-
ent limitations. Hence, subsampling comes with an increased
risk of discarding valuable information. The work of [32] pro-
poses a smart selection system to address this issue, but this
is associated with an additional computational burden on the
server, and only lessens the information loss associated with
client scheduling. The works in [23] and [28] reduce com-
munication in uplink via compressed client updates. Aside
from the accuracy penalty associated with the sparsification
and projection used, the resulting extra computational burden
on the clients of these nontrivial operations is not appealing for
resource-constrained clients. Moreover, the work in [28] did
not consider asynchronous settings. Although the work in [23]
considers various participation frequencies for the clients, it
assumes they are constant throughout the learning process.
The works in [24] and [37] reduce the communication load of
clients in asynchronous settings; however, they are specific to
neural networks and lack mathematical analysis. In addition,
the considered asynchronous settings do not include com-
munication delays. We note that structure and sketch update
methods suffer the same accuracy cost and additional com-
putational burden as compressed updates; and in all three,
the simultaneous unpacking of all the received updates at the
server can form a computational bottleneck. Another option
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explored recently for distributed learning is the partial-sharing
of model parameters [38]. The partial-sharing-based online FL
(PSO-Fed) algorithm [27] features reduced communications in
FL, but only in ideal settings.

This article proposes a partial-sharing-based asynchronous
online FL (PAO-Fed) algorithm for nonlinear regression in
asynchronous settings. The proposed approach reduces com-
munication significantly while retaining fast convergence. In
order to perform nonlinear regression, we use a random
Fourier feature (RFF) space [39], [40], where inner products
in a fixed-dimensional space approximate the nonlinear rela-
tionship between the input and output data. Consequently,
given the constant communication and computational load,
RFF is more suitable for decentralized learning than traditional
dictionary-based solutions whose model order depends on the
sample size. In addition, RFF presents the advantage of being
resilient to model change during the learning process, which is
key in online FL. Further, we implement partial-sharing-based
communications to reduce the communication load of the
algorithm. Compared to the other available methods, partial-
sharing does not incur an additional computational load and
only transfers a fraction of the model parameters between
clients and the server. This allows clients to participate more
frequently while maintaining minimal communication without
additional computational burden. The proposed aggregation
mechanism handles delayed updates and calibrates their con-
tribution to the global shared model. We provide first- and
second-order convergence analyses of the PAO-Fed algorithm
in a setting where client participation is random, and commu-
nication links suffer delays. Finally, we conducted simulation
studies using synthetic and real-life data to examine and
compare the proposed algorithm with existing methods.

This article is organized as follows. Section II introduces FL
for nonlinear regression as well as partial-sharing-based com-
munications. Section III defines the considered asynchronous
settings and introduces the proposed method. Section IV pro-
vides the first- and second-order convergence analysis of the
PAO-Fed algorithm. Section V presents numerical results for
the proposed method and compares it with existing ones.
Finally, Section VI concludes this article.

II. PRELIMINARIES AND PROBLEM FORMULATION

This section presents the nonlinear regression problem in the
context of FL. Further, a brief overview of the most closely
related existing algorithms is proposed. Finally, the behavior
of partial-sharing-based communications is presented.

A. Online Federated Learning for Nonlinear Regression

We consider a federated network where a server is con-
nected to a set K of || = K geographically distributed
devices, referred to as clients. In the online FL setting [4],
used when real-time computation is desirable, the entire data
set of a client is not immediately available. Instead, it is made
available to the client progressively throughout the learning
process. We denote the continuous streaming data appearing
at client k € KC at iteration n by x;, € RE, the corresponding
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output yi , is given by

Yk,n :f(xk,n + Nk,n (1

where f() : RE. — R is a nonlinear model, and Nk.n 18 the
observation noise. The objective is that the server and clients
learn a global shared nonlinear model from the data available
at each client, without this data being shared amongst clients
or with the server. To this aim, the clients periodically share
with the server their local model, learned from local data, and
the server shares its global model with the clients.

Several adaptive methods can be used to handle nonlinear
model estimation problems, e.g., [39], [40], [41], and [42].
The conventional kernel least-mean-square (KLMS) algo-
rithm [41] is one of the most popular choices but suffers
from a growing dimensionality problem, leading to prohibitive
computation and communication requirements. Coherence-
check-based methods [42] sparsify the original dictionary by
selecting the regressors using a coherence measure. Although
feasible, this method is not attractive for online FL, especially
in asynchronous settings, since it requires that each new dictio-
nary element be made available throughout the network, induc-
ing a significant communication overhead, especially if the
underlying model changes. The RFF space method [39], [40]
approximates the kernel function evaluation by projecting the
model into a preselected fixed-dimensional space. The selected
RFF space does not change throughout the computation, and,
given that the chosen dimension is large enough, the obtained
linearizations can be as precise as desired. Therefore, we use
RFF-based KLMS for the nonlinear regression task, as it is
data-independent, resilient to model change, and does not
require extra communication overhead, unlike conventional or
coherence-check-based KLMS.

In the following, we approximate the nonlinear model by
projecting it on a D-dimensional RFF-space, in which the
function f( ) is approximated by the linear model w*. To esti-
mate the global shared model using the local streaming data,
we solve the following problem:

min (W) 2
where (W) is given by
1
W) =2 kW
ke
(o = [Ivkn = Wzl 3)

and z;, is the mapping of X;, into the D-dimensional
RFF-space.

B. Existing Algorithms

The Online-Fed algorithm, an online FL version of the con-
ventional FedAvg algorithm [18], solves the above estimation
problem as follows. At each iteration, n, the server selects a
subset of the clients /C,, € K to participate in the learning task
and shares the global shared model w, with them. Then, the
selected clients in K, perform the local learning process on
their local estimates wy , as

Win+l = Wp + UZg p€k 4)
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Fig. 1. Partial sharing in a simple scenario.

where p is the learning rate, and e , is the a priori error of
the global model on the local data given by

T
€kn = Ykon — Wy Zkp. 5)

The clients then share their updated models with the server,
which aggregates them as

1
Wit = Y Wit (6)
IKal £

where |/C,| denotes the cardinality of C,,. In the particular
case where Vn, IC,, = K, i.e., all the clients participate at each
iteration, we denote the algorithm Online-FedSGD.

The PSO-Fed algorithm proposed in [27] uses partial-
sharing-based communications to reduce further the com-
munication load of the Online-Fed algorithm. Additionally,
PSO-Fed allows clients who are not participating in the current
iteration to perform local learning on their new data. By doing
so, this algorithm drastically reduces communication without
compromising the convergence speed.

C. Partial-Sharing-Based Communications

In partial-sharing-based communications, as defined in [38],
the server and the clients exchange only a portion of their
respective models instead of the entire model. The portion
is extracted prior to communication by multiplication with a
diagonal selection matrix with main diagonal elements being
either 0 or 1, where the locations of the latter specify the model
parameters to share. This operation is computationally trivial
and, therefore, does not induce delay on the communication,
unlike compressed update methods, e.g., [23] and [28]. Here,
m denotes the number of nonzero elements in the selection
matrices; this is the number of model parameters shared at
each iteration. The selection matrix My , is used for server-
to-client communication at time n and the selection matrix
Sk for client k’s response, as can be seen in Fig. 1 where the
simple case where m = D/3 is illustrated.

The usual aggregation step in (6) cannot be used
with partial-sharing-based communications and needs to be
adapted. The expression of w,;; in Fig. 1 is the aggrega-
tion step for coordinated partial-sharing in perfect settings.
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Coordinated partial-sharing is the special case where all clients
send the same portion of the model at a given iteration.

For the clients to participate in the learning of the whole
model, and to ensure consistency across models, it is necessary
that the selection matrices evolve. To this aim, we set

diag(My 541 = circshift(diag(My,, , m (7)
Skn = Mgyt 3

where circshift denotes a circular shift operator. Sy, is set to
be equal to My, rather than My , in order to share a portion
of the client’s model further refined by the local learning pro-
cess. As can be seen in Fig. 1, wy ,41(0) contains information
from a single local learning step of client k, while Wi ,41(1)
contains information from three (since it is equal to w,_»(1)
refined thrice by the local learning process). The smaller the
value of m, the more information is aggregated within each
portion of the model, but the more time passes between two
updates of the same portion.

D. Motivation

The above-mentioned algorithms offer significant com-
munication savings but do not consider practical network
environments and client resources. When performing FL in
real-world applications, clients may be unavailable for vari-
ous reasons, message exchanges may be delayed or blocked,
and straggler clients may be present. For this reason, it is
essential to tailor the developed algorithms to asynchronous
settings. Those environments impact the algorithm design and
optimization. For instance, we will see that many choices made
for the PSO-Fed algorithm in an ideal setting are unsuitable
for asynchronous settings.

III. PROPOSED METHOD

This section presents the proposed communication-efficient
PAO-Fed algorithm and the asynchronous settings for which
it is developed.

A. Asynchronous Settings

The following features are necessary for an online FL

method to operate successfully in realistic environments.

1) The capability to handle non-IID and unevenly dis-
tributed data.

2) The capability to handle heterogeneous, time-varying,
and unpredictable client participation, including possible
downtimes. In most real-world applications, the compu-
tation and communication capacity of a specific task are
heterogeneous and time varying. In addition, clients are
unreliable as they may experience many issues (low bat-
tery, software failure, physical threat, etc.). Moreover,
when dealing with many clients, an infrequently occur-
ring failure is likely experienced at least once. Finally,
it is unlikely for the server to know in advance when a
client will be unavailable or suffer a failure, so even the
most reliable clients may suffer downtimes.

3) The capability to weigh the importance of delayed mes-
sages. Model parameters with the same timestamp may
arrive at different instants at the server. In practice,
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communication channels are unreliable, and although
most messages arrive within a short window, some may
take longer, especially when the communication channels
are strained. In addition, straggler clients may not be able
to complete the learning task in the given time frame, and
although their update may not be delayed, it will arrive
late at the server. Therefore, the developed method must
be robust to a delay spread in the received parameters.

4) The capability to reduce the likelihood of straggler-

like behavior. Resource-constrained devices may induce
latency or run out of power, resulting in reduced
information sharing. It is, therefore, not sufficient to
consider stragglers-like behavior [21]; it is preferable
to improve their operational environments, e.g., by
reducing their computation and communication load.

The first step to address those challenges is to model the
presented behaviors properly. To this aim, the clients’ par-
ticipation is modeled by participation probabilities. At an
iteration n, the Bernoulli trial on the probability py , dictates
if client k is able to participate. The use of probabilities for
participation allows the model to address all the behaviors
presented in the second point, unlike the commonly used tier-
based model for participation (e.g., [23]), where each tier is
expected to behave optimally given a tailored frequency. In
fact, heterogeneity and time dependency are handled by giving
clients various evolving probabilities px ,, and unpredictabil-
ity and downtimes are naturally present when ensuring that all
probabilities are lower than one. In addition, any communica-
tion sent by a client to the server may be delayed by one or
several iterations.

With the proposed model, the limitations of real-world
applications and the heterogeneity of the computational power
and communication capacity of the available devices are taken
into consideration. Those asynchronous settings diminish the
potential performance of an FL method, especially in the
online setting, where data not shared in time is lost. The
proposed method ensures communication efficiency and, in
turn, some extend energy efficiency in order, notably, to avoid
downward cycles in the asynchronous behavior of the par-
ticipating clients. For instance, a weaker device may take
longer to perform the learning process, struggle to send a long
message, and need time to save enough power to participate
again. Therefore, performing less computation and exchang-
ing shorter messages will reduce the burden on the clients and
the communication channels, making further complications or
delays less likely. For this reason, a communication-efficient
method tailored for the asynchronous settings can perform
above its expectations in a real-life scenario.

B. Delayed Updates

The consequence of the introduced delays is that not all
updates sent by clients participating at a given iteration will
arrive at the server simultaneously. Precisely, we denote /C,
the set of all the clients who sent an update that arrived at the
server at iteration n. This set can be decomposed as

00
]Cn = U ’Cn,l (9)
=0
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where KC,,; denotes the set of the clients who sent an update
at iteration n — [ which reached the server at iteration n,
the subscript [ corresponds to the number of iterations dur-
ing which the update was delayed. A delayed update will
naturally lose value the longer it is delayed, as it becomes
outdated. To improve the learning accuracy of the proposed
algorithm, we propose a weight-decreasing mechanism that
weights down delayed updates. By doing so, we diminish the
negative impact of outdated data on the convergence. This
mechanism is different from the age of update mechanisms
found in [43], [44], and [45] where weights are dictated by the
amount of data, independently from communication delays.
We denote ; € [0, 1] the weight given to the updates sent by
the clients in K, ;. This work only considers potential delays
in client-to-server communications. Although delays in server-
to-client communications also affect performance, they do not
require further modification of the aggregation mechanism.
Additionally, such delays are less likely to occur in IoT/CPS
applications, where the server is typically a powerful device
that broadcasts messages to resource-constrained clients.

C. PAO-Fed

The proposed PAO-Fed algorithm is tailored to the asyn-
chronous settings; notably, its novel aggregation step is
designed to handle delayed updates. PAO-Fed makes use of
all the available clients at a given iteration. To reduce the
amount of communication associated with the learning, it uses
partial-sharing-based communications, which is well adapted
to the asynchronous settings as it does not lay any additional
computational burden on the participating clients. Further, the
aggregation step is refined with a weight-decreasing mecha-
nism to diminish the negative impact of delayed updates on
convergence. The algorithm is as follows.

During iteration n, the server shares a portion of the global
shared model, i.e., My ,w,, to all the available clients. The
selection matrix My , dictates which portion of the model is
sent to client k. The available client k receives its portion of
the global shared model and uses it to update its local model,
the new local model is given by My ,w, + (I — My )Wk p.
Afterward, the available client k refines its local model by
performing the process of local learning on its newly available
data as follows:

Wint1 = Mg W, + (I — Mg, Win + UZg n€kn (10)
where ey , is the a priori error of the local model on the local
data given by
1D

T
€k,n = Ykn — (Mk,nwn + (I - Mk,n Win  Zk,n-

When a client is unavailable at a given iteration but receives
new data and is not malfunctioning, it refines its local model
autonomously. For example, this can be a case where a client
is well functioning but does not have communication capacity
at the time. This local update step, identical to the one used
in [27], is performed as

Wint1 = Wi + WZE n€k,n (12)

20765

where ¢ , in that case is given by

T
€k,n = Yk,n — Wi nZk,n- (13)

This update is computationally trivial for most devices and
does not involve communication. Its purpose is for the client
to share better refined model parameters during the next par-
ticipation. Naturally, this additional information only reaches
the server if the model parameters are not overwritten before
being communicated, further motivating the choice of selection
matrices made in (8).

After this local update step, all available clients communi-
cate a portion of their updated local models to the server. A
client k communicates the portion of the model dictated by
the selection matrix Sg ., that is, Sg Wk »+1. Those updates
may arrive at the present iteration or at a later one if they are
delayed.

At the server, we consider the previously introduced set /C,,
consisting of the clients whose updates arrive at the current
iteration. This set comprises the sets K, ;,0 < [ < oo that
consist of the clients whose update was sent at iteration n — /
and arrives at the current iteration. The set /C,, ¢ consists of the
available clients at the current iteration whose updates have not
been delayed. Note that a client may appear twice in the set
IC,y if two of its updates arrive at the same iteration. The devia-
tion from the current global model engendered by the updates
received from a nonempty set /Cp, ; is given by

A 1
A=
" I’Cn,l|

Z Skn—1 (Wi 11 — Wn

ke 1

(14)

If a set IC,y; is empty, we set by convention A, ; =0

The aggregation step of the proposed algorithm uses a
weight-decreasing mechanism for delayed updates. A client’s
participation that has been delayed for [ iterations will be given

the weight ; € [0, 1]. By convention, we set the weight of

the updates that are not delayed to ¢ = 1. The resulting
aggregation mechanism is given by
o

Wnt1 :wn+2 lAn,l' (15)
=0

When ! > Iy, the maximum effective delay, the aggrega-
tion mechanism discards the corresponding updates by setting

1 =0, I > lhax. It is possible to replace oo by Inax in (15)
without changing the aggregation mechanism. Note that in the
eventuality where several updates from clients in K, update
the same model parameter, only the most recent updates are
considered, and the selection matrices of the remaining updates
are adjusted accordingly prior to computing (15). The resulting
algorithm is presented in Algorithm 1.

D. Partial-Sharing in Asynchronous Settings

In coordinated partial sharing, all participating clients share
the same portion of the model so that the server’s model
is aggregated from a large number of clients, thus improv-
ing accuracy. For this reason, coordinated partial-sharing is
used in most algorithms assuming perfect settings. In practice,
however, delayed updates partially overwrite the previously
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Algorithm 1 PAO-Fed
1: Initialization: wo and wy o, k € K set to 0
2: Procedure at Local client k&
3: for iterationn=1,2,...,N do
4:  if Client k receives new data at time n then

5 if k is available then

6 Receive My ,w, from the server.
7: Compute wy ,4+1 as in (10).

8 Share Si Wk 41 With the server.
9 else

10: Update wy as in (12).

11: end if

12: end if

13: end for

14: Procedure at Central Server

15: for iterationn=1,2,...,N do

16:  Receive client updates from subset K, C .
17:  Compute w,41 as in (15).

18:  Share My ,+1 W41 with the available clients.
19: end for

aggregated portion, as can be seen in (15), thus negating the
added value of coordination.

To tackle this issue, one can either use a weight-decreasing
mechanism such as the one presented above or use uncoordi-
nated partial sharing. Besides, uncoordinated partial-sharing
is ideal when dealing with underlying model changes, as
the server’s model uniformly steers toward its new steady-
state value, instead of doing so portion by portion as with
coordinated partial-sharing.

IV. CONVERGENCE ANALYSIS

In this section, we examine the convergence behavior of the
proposed PAO-Fed algorithm that uses partial-sharing-based
communications and evolves in asynchronous settings such as
the ones presented in Section III. We prove mathematically
that the proposed PAO-Fed algorithm converges to the exact
model in the RFF space and exhibits stable extended mean-
square displacement under certain general assumptions.

Before proceeding to the analysis, we introduce auxiliary
matrices to express an entire iteration of the algorithm in the
matrix form. Similar to [46], we define the extended model
vector W, ,, local update matrix A, ,, and mapping of the data
into the RFF-space Z, , as

We,n = COl{wl’h w],n’ LR ) wK,}’h W],n ] WK,n, Wl,nfl I
ey WK,n—l» ey wl,n—lmaxs RN wK,n—lmaX}
Ae,n = blockdiag{An, IDK7 ey IDK}
Z,, = blockdiag{Z,, Opg <k, - . ., Opk xk} (16)
with
| 0p 0p
al,an,n I- al,an,n
n = . .
0p K 0p

aK,nMK,n I- aK,nMK,n
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Z, = blockdiag{0p, z\ . . ..., 2k »} (17)

where ay, = 1 if the client k is available at iteration n and
0 otherwise, col{ } and blockdiag{ } represent column-wise
stacking and block diagonalization operators, respectively. We
can now express the extended observation vector y,, =
col{0, ¥1,n, ¥2,n - -+ » YKon» Ot - -, Ok 1} @S

T
Ye,n = Ze,nwz< + e,n (18)
where W5 = 1(k4+1),+1 @ W* and the extended observation

noise ,, = col{0, N1, M2» - -+ MKy Ok x1s - -5 Ok x1). We
then can express the extended estimation error vector as
= Yo, — 21 A 19

€en —ye,n e,n e.nWe,n- ( )

Therefore, the recursion of the extended model vector w, ,
is given by

Went+l = Be,n (Ae,nwe,n + MZe,nee,n (20)
with
B, Bo, Opxpx Bi, B |
Opx1  Ipx Opx Opx
B Ipk Opx Opx
en —
Opk Ipk Opx Opk
- .. 0DK
Opx1  Opxk Opx  Ipk Opg |
lmaX
B —1 bin,1
n —1— Z ) Z |K l| k,n—I
=0 ke "
1b1,n,1 bk 1 }
Ln = =St -ty oo, =Sk n-I 2D
! [ |ICn,l| " |K:n,l| 8

where by, =1 if k € K and O otherwise.

In the following, we present a detailed convergence analy-
sis of the PAO-Fed algorithm both in mean and mean-square
senses. To this end, we make the following assumptions.

Assumption 1: The mapped data vectors z; , are drawn at
each time step from a WSS multivariate random sequence with
correlation matrix Ry = [zk,nzz’n].

Assumption 2: The observation noise 1y , is assumed to be
zero mean white Gaussian, and independent of all input and
output data.

Assumption 3: At each client, the model parameter vector
is assumed to be independent of the input data.

Assumption 4: The selection matrices are assumed indepen-
dent from each other, and of any other data.

Assumption 5: The learning rate p is small enough for
terms involving higher order powers of u to be neglected.

It is important to note that no assumption is taken on the

; variables because [nax is a fixed value in our analysis.

A. First-Order Analysis

This section examines the mean convergence of the
proposed PAO-Fed algorithm.
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Theorem 1: Let Assumptions 1-4 hold true. Then, the
proposed PAO-Fed converges in mean if and only if

2

_ (22)
max A;(Rg)
Vk,i

O<u<

Proof: Denoting the model error vector W, = Wi — W, ,
and using the fact that w} = B, ,A, ,w} (by construction, all
rows in B, , and A, ;, sum to 1), from (20), we can recursively
express W, , as
*
e

‘TVe,rH—l =W, — Wepntl

*
=W, — Be,nAe,nwe,n - Be,nMZe,nee,n
- Be,nMZe,n e.n

T *
- Be,nlLZe,nZg)n(Wg —AcnWen

= Be,n(l - MZe,nZIn)Ae,nﬁ’e,n
- MBe,nZe,n e.n

= Be,nAe,nWe,n

(23)

Taking the statistical expectation [ ] on both sides of (23)
and using Assumptions 1-4, we obtain

[WE,I’Z—FI] = [Be,n] I:I_MZE,VLZZJL:I [Ae,n] [We,n]
= [Be,n](I_MRc)) [Ae,n] [We,n] (24)
where R, = blockdiag{0p, Ry, Ry, ..., Rk, Opky,...}. The
quantities [A, ] and [B,,] are evaluated in Appendix A.

Further, we consider the vectors and matrices reduced to the
subspace between the index D 4 1 and D(K + 1). We denote
the reduction of x by x|se]. Using the reduced definitions, (24)
becomes:  [We nyilsel]l = (I — uRelsel) [Acnlsel]l [We,nlsell,
where the block W, _,|sel is defined as a linear sequence of order
1 in a normed algebra. To prove the convergence of [We /sl
we use the properties of the block maximum norm [47]. From
Appendix A, we have || [A, nlselllln.0o = 1. Then, the conver-
gence condition reduces to ||[I—uR,|sel||p,00 < 1, equivalently,
[1 — uri(Rp)| < 1 Vk, i, where A;() is the ith eigenvalue of
the argument matrix. This leads to the convergence condition
given by (22). |

B. Second-Order Analysis

In this section, we present the second-order analysis of the
proposed PAO-Fed algorithm. For the given arbitrary positive
semidefinite matrix X, the weighted norm-square of W, , is
given by ||We,n||22 = WZnE\Tve,n. From (23), we can obtain

[IWenril] = [I9eal]+0® [ TYF 0] @9

where the cross terms are null under Assumption 2 and the
matrices ¥’ and Y* are given by

TYE

en-n

s = [Aln(l - uZe,nZln)BZ,l b (26)
Be,n(l - MZe,nZZn)Ae,nd
Yi)z: = ZZnBZnEBe,nZe,n- 27

Using Assumption 3 and the properties of the block
Kronecker product, and the block vectorization operator
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bvec{ } [48], we can establish a relationship between ¢ =
bvec{X} and ¢’ = bvec{Z'} as

(28)
where

= QoA — 12U, R)DA — uQBR, @, DA

where the higher order powers of p are neglected under
Assumption 5. In the above

Oa =
Qp =

[Ae,n b Ae,n]

[Be,n ®p Be,n] . (29)

In Appendix B, we evaluate the matrices Qo and Qp,
and prove that all their entries are real, nonnegative, and
add up to unity on each row. This implies that both matri-
ces are right-stochastic, and thus, their spectral radius is equal
to one.

We will now evaluate the term

[ T y= m]

entn

[TYZ

enYn enl as follows:

T T pT
[ e,nZe,nBe,nEBe,nZe,n g’n]

= [trace(
=trace( [BMZM [ ln e,n]ZeT’nBeT’n]Z)
:trace( [Be,n¢nBZn]2) (30)

T T T
e,nZe,nBe,n EBEJIZEJI e,n):l

with &, = Ze,nAnZeT,n, where Ay = [ Zn e.n] 18 a diagonal
matrix having the noise variances of all clients on its main
diagonal. Note that we used Assumption 2 in the last line
of (30). Finally, using the properties of the block Kronecker

product, we have

trace( [Be‘nCDnBln]E> =h'o a3n
with
h= bveci [Bf,nd>nBln]]
= Qgbvec{ [P,]}. (32)

Combining (25), (28), and (30), we can write the recursion
for the weighted extended mean-square displacement of the
PAO-Fed algorithm as

[l 10y ] = [nm,nniml { TGJ +1’h'o

(33)

where bvec™'{} represents the reverse operation of block
vectorization.

Theorem 2: Let Assumptions1-5 hold true. Then, the PAO-
Fed algorithm exhibits stable mean-square displacement if and
only if

1

_ 34
max A;(Rg) 34
Vk, i

O<u<
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Proof: Iterating (33) backwards to n = 0, we get

~ 2
We,oll

bvec’l{( T)Hla}

+ u2nT I+Xn:( T)j o. (35)

& 2
(eI )] =

bvec™! {o}

j=1
To prove the convergence of [||\7Ve,n||22] =
[||v~ve,n+1||12)Vec,l {a}], we need to prove that the spectral
radius of is less than one, i.e., p( ) < 1. Using the

properties of the block maximum norm [47], we have

p( ) =1L — 1 & Re) — n(Re @y 1) Qallp, o0
=< 1128llp,00l1LAllb,00

[T — X ®p Re) — (Re ®p D)1, 00- (36)

Since the matrices Q4 and Qp are right stochastic, we
have [|QAllb.co = |19Bllp,oc = 1. Therefore, the condi-
tion ||[I— ud®p R,) — u(Re ®p D)|lp.00 < 1, equivalently,
[T — n(Ai(Re) + Aj(R))| < 1 Vi, ], is sufficient to guarantee
the convergence of ||v~ve,n||22. This simplification leads to the
convergence condition in (34). [ |

C. Transient and Steady-State Mean-Square Deviation

From (33), we can express the relation between
& 2 & 2
UWent 11l 1)) a0d - DHWenll 1,1 88
~ 2 _ ~ 2
(el ] = [l

n [Hv“ve,ollivecl{( T1)( T)""J

+ ;ﬂhT( T)"o. 37)

If we set 0 = bvec{blockdiag{Ip,O,...,0}}, we obtain
the transient expression for the mean square deviation
(MSD) of the global model at iteration n: [||W,|*] =
[1Wenl 3o 1))
Under (34), by letting n — oo in (33), we obtain the
expression of the steady-state MSD for the PAO-Fed algorithm

: ~ — 2hT
lim [Hwe,nniml[(l_ T)a}}—uzh o. (3%

By setting 0 = (I — T)’]bvec{blockdiag{ID,O,...,0}},
the steady-state MSD expression of the global model can be
obtained.

V. NUMERICAL SIMULATIONS

This section demonstrates the performance of the proposed
PAO-Fed algorithm through a series of numerical experi-
ments. In these experiments, we compare the performance
of the PAO-Fed algorithm with existing methods, specifically,
Online-FedSGD, Online-Fed [18], and PSO-Fed [27].

IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 23, 1 DECEMBER 2023

A. Simulation Setup

We considered a federated network comprising K = 256
clients connected to a server. Synthetic data is progressively
made available to the clients in an imbalanced and non-IID
manner. For this purpose, the clients are separated into four
data groups for which training sets are composed of 500, 1000,
1500, and 2000 samples, respectively. A single data sample is
of the form {X ., yx.»}, and related by the following nonlinear
relation R* — R:

Viw = \/x/%’n[l] + sin? (X ,[4]
n (0.8 ~05 exp(—xi,n[z])xk,,,w]) T (39)

where X ,[i] denotes the ith element of vector x;, =
[Xk.n> Xk.n—1, Xk.n—4» Xk,n—3]. A first-order autoregressive model
is used to produce the non-IID input signal x; , = Okxk n—1 +

1= nguk,n, with ug , € N (ux, ouzk), and, for a given client k,
O € U(0.2,0.9), jux € U(—0.2,0.2), and o € U(0.2,1.2).
The observation noise vy, is assumed to be white Gaussian
with variance ovzk € U(0.005, 0.03). Further, the cosine feature
function is used to map Xk, from dimension L = 4 into the
RFF space of dimension D = 200.

As discussed in Section III-A, client participation is mod-
eled using the probabilities py ,, k € K. Note that a client can
only participate in an iteration if it receives new data; oth-
erwise, the probability is set to 0. The clients of each data
group are further separated into four availability groups, dic-
tating their probability pi , of participating at each iteration.
The Bernoulli trial on py , dictates if a client is available or
not at a given iteration. Unless stated otherwise, the partici-
pation probabilities given to the four availability groups are
0.25, 0.1, 0.025, and 0.005. Finally, each communication to
the server will be delayed by more than / iterations with prob-
ability 81,0 < I < Iax, with, unless stated otherwise, § = 0.2
and [ax = 10. This probability is assumed to be the same for
all clients.

The performance of the algorithms is evaluated on a test
data set with the mean-squared error (MSE) given at iteration
n by

T o2
1 Mc Hyfest - (Zfest wfl 2
MSE-test = . (40)

e=1

where MC is the number of Monte Carlo iterations, 7 is the
size of the test data set, yi, and Zy, are the realization of the
data for a given Monte Carlo iteration, and wy, is the server’s
model vector for the considered method. When comparing
the PAO-Fed algorithm with other methods, the learning rates
were set to yield identical initial convergence rates so that
steady-state values may be compared. Some algorithms were
not able to reach this common convergence rate, but since their
steady-state accuracy is lower, comparison is still possible. All
the learning rates satisfy the convergence conditions obtained
in Section IV for PAO-Fed and are available in [18] and [27]
for Online-Fed, Online-FedSGD, and PSO-Fed. For instance,
in Figs. 24, the step size for the PAO-Fed algorithm is set to
n = 0.4 with maxvg ; A;(Rg) = 1.02.
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Fig. 2.
(c) Utilizing a weight-decreasing mechanism for delayed updates.

In the simulations, we implement uncoordinated partial-
sharing-based communications from the server to the
clients with diag(My ,) circshift(diag(My ,), mk) and
diag(M; ,) = circshift(diag(M;j o), mn). This, in turn, dic-
tates the portion of the model sent by the clients to the server
(see Section II-C) so that, on average, all portions are equally
represented in the aggregation. We recall that m is the num-
ber of model parameters shared at each iteration by both the
server and the clients and dictates the communication savings
in partial-sharing-based communications.

We consider different versions of the PAO-Fed algorithm.

1) PAO-Fed-CO and PAO-Fed-U(Q utilize coordinated
and uncoordinated partial-sharing, respectively, without
employing the weight-decreasing mechanism in (15),
thatis, ;= 1,0 <[ < lhax. Further, the clients share
the last received server model portion, refined once by
the local update process.

PAO-Fed-C1 and PAO-Fed-Ul utilize coordinated
and uncoordinated partial-sharing, respectively, without
employing the weight-decreasing mechanism in (15).
Their selection matrices evolve as described in
Section II-C.

PAO-Fed-C2 and PAO-Fed-U2 utilize coordinated and
uncoordinated partial-sharing, respectively, and employ
the weight-decreasing mechanism in (15) with ; =
0.2!,0 < I < lpna. Their selection matrices evolve as
described in Section II-C.

Unless explicitly specified, each PAO-Fed implementation
shares m = 4 model parameters per communication round,
resulting in a 98% reduction in communication.

2)

3)

B. Hyperparameters Selection

In the first experiments, we study the impact of the hyper-
parameters on the convergence properties of the PAO-Fed
algorithm. Specifically, we investigate the impact of the choice
of the selection matrices, the number of model parame-
ters shared, and the scale of the weight-decreasing mecha-
nism for delayed updates. The corresponding learning curves
in Fig. 2 display the MSE-test in dB versus the iteration
index.

Iteration index

1000 1500

Tteration index

[c)

1000 1500 2000 " 500 2000

b)

Optimization of the PAO-Fed method. (a) Utilizing local updates and coordinated/uncoordinated partial-sharing. (b) Communication savings.

First, we examined how the choice of the selection matri-
ces My, and Sg, impact the convergence properties of the
PAO-Fed algorithm. These matrices select the model portion
to be shared between the server and clients (see Section II-C).
The versions PAO-Fed-CO and PAO-Fed-UO are set with
Si.n = My ,; that is, the last received portion from the server is
updated once by the local learning process at the clients before
being sent back to the server. On the contrary, the versions
PAO-Fed-C1 and PAO-Fed-U1 are set as in (7) and (8); that
is, the received portions from the server will be updated several
times by the local learning process to accumulate information,
in a manner similar to batch learning, before being sent back
to the server. We observe in Fig. 2(a) that the versions PAO-
Fed-(C/U)1 outperform the versions PAO-Fed-(C/U)O0. For this
reason, we will only consider the versions of the PAO-Fed
algorithm making full use of the local updates in the fol-
lowing. We also notice in this experiment that it is best to
use uncoordinated partial-sharing in asynchronous settings,
this contradicts the behavior of partial-sharing-based commu-
nications in ideal settings, where coordinated partial-sharing
performs slightly better than uncoordinated, as explained
in [27].

Second, we studied the impact of the number of model
parameters m shared by participating clients and the server
during the learning process. Fig. 2(b) shows the performance
of the PAO-Fed-U1 algorithm (uncoordinated, making use of
local updates) for different values of m, namely, m = 1,
m = 4, and m = 32. Although sharing more model param-
eters increases the initial convergence speed, we observed
that it decreases the final accuracy for larger m values. This
contradicts previous results in the literature about the behav-
ior of partial-sharing in ideal settings [27]. In fact, sharing
more model parameters increases the potential negative impact
of one single delayed update carrying outdated information,
decreasing the overall accuracy. Sharing a small number of
model parameters limits the impact of a given update, provid-
ing some level of protection against outdated information, and
ensuring better model fitting [49]. We chose to set m = 4 as
a baseline, as it presents a good compromise between initial
convergence speed, steady-state accuracy, and communication
reduction.
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Fig. 3. Comparison of PAO-Fed with existing methods. (a) Learning curves. (b) Steady-state MSE versus communication load. (c¢) Impact of straggler clients.

Finally, to reduce the harmful effect of delayed updates
on the convergence properties of the algorithm, we intro-
duce the weight-decreasing mechanism for delayed updates
proposed in (15) in the versions PAO-Fed-C2 and PAO-Fed-
U2. Weset ;=020 <1< lpa In Fig. 2(c), we display
the performance of these methods alongside PAO-Fed-C1 and
PAO-Fed-Ul. We observe that decreasing the weight of the
delayed updates significantly improves the performance of
the PAO-Fed algorithm on the considered asynchronous set-
tings. The proposed mechanism considers the relevance of
delayed and potentially outdated updates by effectively reduc-
ing their impact on the server model, especially for substantial
delays. By doing so, the negative effect of delayed updates
is mitigated; in particular, when using the aforementioned
weight-decreasing mechanism, PAO-Fed-C2 using coordinated
partial sharing and PAO-Fed-U2 using uncoordinated partial
sharing exhibit the same performance.

C. Comparison of PAO-Fed With Existing Algorithms

In the following experiments, we compare the performance
of the PAO-Fed algorithm with existing online FL. methods
in the literature. Fig. 3(a) and (c) displays the MSE-test in
dB versus the iteration index, and Fig. 3(b) displays accuracy
variation versus communication savings.

First, we compared PAO-Fed-Ul and PAO-Fed-U2 with
Online-Fed [18] and Online-FedSGD. Fig. 3(a) displays the
corresponding learning curves. First, we observe that Online-
Fed performs poorly; subsampling the already reduced pool
of available clients is not a viable solution to reduce commu-
nication in asynchronous settings. Then, we observe that both
PAO-Fed-Ul and PAO-Fed-U2 outperform Online-FedSGD
while using 98% less communication. The reason for this
very good performance is twofold. First, using the local and
autonomous local updates in the PAO-Fed algorithm allows
it to extract more information from the sparsely participating
clients. Second, partial-sharing-based communication provides
the PAO-Fed algorithm with an innate resilience to the negative
impact of delayed updates; this resilience is further increased
in the PAO-Fed-U2 algorithm with the weight-decreasing
mechanism, hence its better performance.

Second, we study the relationship between communication
load and accuracy. Fig. 3(b) shows the steady-state MSE on
the test data set versus the average communication load per
iteration when the clients employ either PAO-Fed-U1, PAO-
Fed-C2, or Online-Fed algorithms. The communication load is
obtained by multiplying the average number of model param-
eters shared by a client during a given iteration, corresponding
to m for the PAO-Fed algorithms, by 32, which is the num-
ber of bits on which a model parameter is stored. We find
the MSE reached after 2000 iterations in the previous figure
by the three algorithms in this figure for a communication
load of 128 bits. Similarly, we find the MSE reached after
2000 iterations in the previous figure by Online-FedSGD in
this figure for the Online-Fed algorithm with a communica-
tion load of 6400 bits. Further, we observe that the higher the
communication load is, the better the performance of Online-
Fed is. However, the performances of the algorithms using
partial-sharing-based communication vary very little with the
communication load, as the lower amount of communication
is compensated by the use of local updates and the resilience
to delayed communications.

Finally, to observe the impact of the straggler clients on
the convergence properties of the algorithms, we compare the
performance of the algorithms in the proposed settings (100%
of clients are potential stragglers) to their performance in an
ideal setting where clients are always available when they
receive new data and their communication channels do not
suffer from delays (0% of clients are potential stragglers). The
learning curves are shown in Fig. 3(c). We observe that, in the
absence of straggler clients, the methods using coordinated
partial-sharing achieve greater accuracy, almost identical to
methods with no communication reduction, while the meth-
ods using uncoordinated partial-sharing have slightly worse
performance, this corresponds to the results obtained in [27].
Furthermore, we see that the PAO-Fed-C2 algorithm used on
straggler clients has convergence properties almost similar to
the ones of algorithms in a perfect setting.

D. Performance on Real-World Data Set

Fig. 4 shows the performance of the proposed PAO-Fed
algorithm on the real-world California Cooperative Oceanic
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Fig. 4. Learning curves on the CalCOFI data set.

Fisheries Investigations (CalCOFI) data set [50]. This data set
comprises oceanographic data from seawater samples collected
at various stations and contains more than 800000 samples.
Each sample contains parameters, such as temperature, salin-
ity, O, saturation, etc. The salinity of the water is linked in
a nonlinear manner to the other available parameters, and we
employed the proposed method to learn this nonlinear model
relating the salinity level in a decentralized manner. For the
purpose of the experiment, we consider only 80000 samples
that we distribute progressively and unevenly to the 256 clients
throughout the learning process (to ensure non-IID and imbal-
anced data settings). Further, we simulated the straggler-like
behavior of the clients as mentioned above (availability groups
are 0.25, 0.1, 0.025, and 0.005; each communication to the
server will be delayed by more than [ iterations with prob-
ability 8/,0 < I < Imax, with 8 = 0.2 and [ya = 10). We
observe similar performance for the PAO-Fed, Online-Fed, and
Online-FedSGD algorithms to the experiments on synthetic
data sets. The PAO-Fed-Ul algorithm is able to achieve the
same accuracy as Online-FedSGD while using 98% less com-
munications, and the PAO-Fed-C2 algorithm, also using 98%
less communications, is able to outperform all other methods.

E. Comparison of Various Communication Reduction
Methods in Asynchronous Settings

In this simulation, we compare the performance of the
proposed method with the PSO-Fed [27], Online-Fed [18], and
SignSGD [51] algorithms. The PSO-Fed algorithm combines
client scheduling and partial-sharing-based communications.
For a fair comparison, it has been tailored to reduce the
overall communication load by 98%, similar to the proposed
PAO-Fed-C2 algorithms. By design, the SignSGD drastically
reduces the communication load from clients to servers but
does not reduce the communication load from server to clients.
Its communication load reduction is, therefore, less than 50%.
For this reason, the Online-Fed algorithm has been tailored
to reduce the communication load by only 50%. The learning
curves are displayed in Fig. 5. We observe that reducing the
communication load via a combination of client scheduling
and partial-sharing-based communication, as in PSO-Fed, is
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Fig. 5. Learning curves of PAO-Fed, PSO-Fed, Online-Fed, and SignSGD.

not desirable in asynchronous settings. Furthermore, we see
that the SignSGD achieves significantly better performance
than Online-Fed for a similar communication load reduction,
making it a viable alternative to partial-sharing-based com-
munication in asynchronous settings. However, it would need
to be complemented by server-to-client communication reduc-
tion and a weight-decreasing mechanism to achieve the same
accuracy and communication load reduction as the proposed
PAO-Fed-C2.

F. Impact of the Environment on Convergence Properties

In these last experiments, we study the impact that a change
in the external environment can have on the convergence prop-
erties of the proposed algorithms and existing methods. The
corresponding learning curves are shown in Fig. 6.

First, we studied in Fig. 6(a) the importance of using partial-
sharing-based communications both at the server and at the
clients. The algorithms using partial-sharing-based commu-
nications have been altered in this simulation with My, =
I Vk, n; that is, the server sends its entire model to the par-
ticipating clients at each iteration. This modification can be
appealing if the server is not subject to power constraints. The
clients behave normally and only send a portion of their local
model; however, unlike in the other simulations, the received
global model replaces the local model at each participant
[see (10)]. In such a case, we observe that the performance
of the partial-sharing-based methods is drastically reduced. It
is the information kept by the clients in the not-yet-shared
portions of their local models that allow partial-sharing-based
methods to outperform Online-FedSGD. We note that clients
may choose to ignore part of the received model to avoid this
downfall.

Second, we studied the algorithm behaviors in an envi-
ronment where most communications are delayed, but delays
cannot be too lengthy. To this aim, the delay probability has
been significantly increased, and the maximum possible delay
reduced (§ = 0.8 and /nax = 5). We observe in Fig. 6(b) that
the limited maximum delay allows Online-FedSGD to out-
perform PAO-Fed-Ul, as the benefit of partial-sharing against
data of poor quality does not out-weight the smaller amount
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Fig. 6. Learning curves in different environments. (a) Full server communication. (b) Common delays. (c) Increased straggler behavior.

of communication available to PAO-Fed-Ul. To compensate
for the fact that most incoming information is weighted
down by the weight-decreasing mechanism of PAO-Fed-C2, its
learning rate has been increased to near its maximum value
obtained in Theorem 2. Despite this, the PAO-Fed-C2 algo-
rithm reaches very low steady-state error and significantly
outperforms Online-FedSGD.

Finally, we modeled an environment where availability
groups are given the probabilities 0.025, 0.01, 0.0025, and
0.0005; communications to the server have a probability
§ = 0.4 to be delayed. Further, delays last for more than /
iterations, [ taking the values 10i,0 < i < 6, with probability
§U/10); 7.« is set to 60. This notably implies that, in this envi-
ronment, delayed updates have a greater probability of arriving
after a nondelayed update coming from the same client. Such
an environment where clients are less likely to be available to
participate, communications are more likely to be delayed, and
delays last for more iterations, is less favorable to learning. An
application relying on edge devices that are poorly available
and unreliable would evolve in an environment similar to this.
Fig. 6(c) presents the learning curves of Online-Fed, Online-
FedSGD, and PAO-Fed algorithms in this new environment
to see how it may impact the convergence properties of the
algorithms. We observe that, in this environment, reducing the
weight given to the delayed updates gains importance as the
accuracy difference between PAO-Fed-C2 and PAO-Fed-Ul
increases. In fact, delayed updates may carry information that
is significantly outdated and, therefore, prevent the algorithms
not using a weight-decreasing mechanism for delayed updates
to reach satisfactory steady-state error. For this reason, the
PAO-Fed-C2 algorithm achieves significantly better accuracy
than Online-FedSGD in this environment.

VI. CONCLUSION

This article proposed a communication-efficient FL algo-
rithm adapted to a realistic environment. The proposed FL
algorithm operates with significantly reduced communication
requirements and can cope with an unevenly distributed system
with poor client availability, potential failures, and communi-
cation delays. The proposed partial sharing mechanism reduces

the communication overhead and diminishes the negative
impact of delayed updates on accuracy. We further proposed
a weight-decreasing aggregation mechanism that emphasizes
more recent updates to improve performance in environ-
ments suffering from substantial delays, poor participation,
and straggler devices. Our numerical results showed that the
proposed algorithm outperforms standard FL methods in an
asynchronous environment while reducing the communica-
tion overhead by 98%. The proposed approach is ideal for
extracting information in real time from diverse geographically
dispersed devices without overloading the system, making it
highly desirable in 10T applications in particular. Future works
include expanding the proposed algorithm to a multiserver
or networked architecture to alleviate the strain on the single
server in applications with many clients.

APPENDIX A

EVALUATION OF [A.,] AND [B.,]
The matrix A, , is composed of D x D-sized blocks A; ; ,.

given by

Ip, ifi=ja(i=1vi=K+1)
A = g nMg n, ifiell2,....K+1]Ianj=1
YTV Ip — @ aMg, ifie[2,.. K+ 11Ai=]
0p, otherwise

where k=i — 1.

We note that [ug Mk ] = pr.apmlp. With pi, being the
probability that client k participates at iteration n, and p,, being
the probability that a given model parameter is selected by
the selection matrix (i.e., the density of the selection: [m/D]).
Since 0 < pg.pm < 1, and given the above decomposition,
matrix [A, ,] is right stochastic.

Further, we note that by construction, (ak,,,Mk,,,)2 =
ay ,My n; therefore, under Assumption 3, we have

[ﬂk‘ ﬂle‘ nQk n ler‘ n(]
| Prnpmlb. kK An—=n
= | prnpe wpiIo. otherwise.
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Similarly, we decompose the matrix B, , in D x D-sized
blocks B;;, as follows:

B, ifi=j=1
B(’ b, ifi=1Aje[2,K+1]
B(’*} m°dK), ifi=1Aje
B . — [*]-773,n
A [3K+2,..., (Imax +3)K + 1]]
Ip, ifie[l,2]]Aj=2
Ip, ifi>3Aj>2ni=j+1
0p, otherwise.
The blocks are given by
lleX b
bint ¢
B, =1- Z Z =Skt
ke
B") = By, [k]
1b1,n,1 bk 1
B, = [;Sl, e, ——Sk, —1}
LK " Kl "

We note that by construction

lmax

B+ 33 B 1

=1 k=1

hence, the matrix [B, ,] is right stochastic as well.

APPENDIX B
EVALUATION OF QA AND Qp

We decompose matrix Q4 into D x D-sized blocks and
prove the property by computing the Kronecker product
A, ®p A.,, before taking the expectation. In particular, we
have

Or = [Aijn ® Acn] () € [11, ., Kllmax + D) + 11F]

and we note that QA can be proven to be right stochastic one
block-row at a time, considering sets of D rows indexed by i
in the above equation.

The property is easy to prove on the block-rows i = 1 and
i > K+ 1. On those block-rows, we have

A — Ip, ifi=j
W) 0p, otherwise

therefore, since
those block-rows.

We now consider the remaining block-rows. For this pur-
pose, leti € [|2,..., K+ 1|]. According to the decomposition
of the left-hand side A, ,, the block-row i of Qa reduces to
only two nonzero elements, [A; 1, ®pA.nl and [A;i, Qp
A..»]. Hence, we can compute

[Ai1n @b Acn] + [Aiin @b Acn]
= [ai1.:Mi—1,n ®p Ac.n]
+ [(Ip —ai1.aMi—1n Qb Acn]
= [Ip ®p Ac.n]

and conclude that the block-row i satisfies the property.

[A. »] satisfies the property, it is satisfied on
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Similarly, we decompose the matrix Qp into D x D-sized
blocks and prove that it is right stochastic by computing the
Kronecker product B, , ®p B, , before taking the expectation

Qp = [Bijn @ Ben] () € 1. Kllmar + 1) + 11

The evaluation is trivial for the block-rows i €
[2,....,K(Imax + 1) + 1], where the decomposition of the
left-hand side B, , reduces to only one nonzero element: I.
Therefore, since B, , satisfies the property, it is satisfied on
those block-rows.

We now consider the block-row i = 1 and compute the sum
of the elements as

lmax
k
B ®bBen+ZZB( ) ®bBen
=1 k=1
= [ID ®p Be,n]
by construction of the Bl(k,z matrices. We conclude that the

block-row i = 1 satisfies the property as well.
We have proven that both QA and Qp are right stochastic
matrices.

REFERENCES

[1] F. Gauthier, V. C. Gogineni, S. Werner, Y.-F. Huang, and A. Kuh,
“Resource-aware asynchronous online federated learning for nonlinear
regression,” in Proc. IEEE Int. Conf. Commun., 2022, pp. 2828-2833.
[Online]. Available: https://ieeexplore.ieee.org/document/9839079

[2] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50-60, May 2020.

[3] J. Kone¢ny, H. B. McMahan, D. Ramage, and P. Richtérik, “Federated
optimization: Distributed machine learning for on-device intelli-
gence,” Oct. 2016, arXiv:1610.02527.

[4] O. Dekel, P. M. Long, and Y. Singer, “Online multitask learning,” in
Proc. Int. Conf. Comput. Learn. Theory, 2006, pp. 453—-467.

[5] L.Li, Y. Fan, M. Tse, and K.-Y. Lin, “A review of applications in feder-
ated learning,” Comput. Ind. Eng., vol. 149, Nov. 2020, Art. no. 106854.

[6] S.Boll and J. Meyer, “Health-X dataLOFT: A sovereign federated cloud
for personalized health care services,” IEEE MultiMedia, vol. 29, no. 1,
pp. 136-140, Jan.—Mar. 2022.

[7]1 B. Yang et al., “Edge intelligence for autonomous driving in 6G wire-
less system: Design challenges and solutions,” IEEE Wireless Commun.,
vol. 28, no. 2, pp. 4047, Apr. 2021.

[81 T. Zhang, L. Gao, C. He, M. Zhang, B. Krishnamachari, and
A. S. Avestimehr, “Federated learning for the Internet of Things:
Applications, challenges, and opportunities,” IEEE Internet Things Mag.,
vol. 5, no. 1, pp. 24-29, Mar. 2022.

[9] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated

learning with non-iid data,” 2018, arXiv:1806.00582.

Z. Yang, M. Chen, W. Saad, C. S. Hong, and M. Shikh-

Bahaei, “Energy efficient federated learning over wireless commu-

nication networks,” IEEE Trans. Wireless Commun., vol. 20, no. 3,

pp- 1935-1949, Mar. 2021.

[11] Z. Zhao et al., “Federated learning with non-IID data in wire-
less networks,” IEEE Trans. Wireless Commun., vol. 21, no. 3,
pp- 1927-1942, Mar. 2022.

[12] E. Ozfatura, K. Ozfatura, and D. Gunduz, “FedADC: Accelerated fed-

erated learning with drift control,” in Proc. IEEE Int. Symp. Inf. Theory,

Jul. 2021, pp. 467-472.

X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence

of FedAvg on non-iid data,” Jul. 2019, arXiv:1907.02189.

[14] J. Kone¢ny, H. B. McMahan, F. X. Yu, P. Richtérik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” 2016, arXiv:1610.05492.

[15] Z. Lian, W. Wang, and C. Su, “COFEL: Communication-efficient and
optimized federated learning with local differential privacy,” in Proc.
IEEE Int. Conf. Commun., Jun. 2021, pp. 1-6.

[10]

[13]

Authorized licensed use limited to: National Science Foundation. Downloaded on September 02,2024 at 02:41:30 UTC from IEEE Xplore. Restrictions apply.



20774

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

Y. Lu, Z. Liu, and Y. Huang, “Parameters compressed mechanism in
federated learning for edge computing,” in Proc. IEEE Int. Conf. Cyber
Security Cloud Comput., Jun. 2021, pp. 161-166.

X. Fan, Y. Wang, Y. Huo, and Z. Tian, “Communication-efficient
federated learning through 1-bit compressive sensing and analog aggre-
gation,” in Proc. IEEE Int. Conf. Commun. Workshops, 2021, pp. 1-6.
B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Artif. Intell. Stat., Apr. 2017, pp. 1273-1282.

Y. Chen, Z. Chai, Y. Cheng, and H. Rangwala, “Asynchronous
federated learning for sensor data with concept drift,” Sep. 2021,
arXiv:2109.00151.

C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated
optimization,” Mar. 2019, arXiv:1903.03934.

Y. Chen, Y. Ning, M. Slawski, and H. Rangwala, “Asynchronous online
federated learning for edge devices with non-iid data,” in Proc. IEEE
Int. Conf. Big Data, Dec. 2020, pp. 15-24.

Z. Wang et al., “Asynchronous federated learning over wireless com-
munication networks,” IEEE Trans. Wireless Commun., vol. 21, no. 9,
pp. 6961-6978, Sep. 2022.

Z. Chai, Y. Chen, L. Zhao, Y. Cheng, and H. Rangwala, “Fedat: A
communication-efficient federated learning method with asynchronous
tiers under non-iid data,” Oct. 2020, arXiv:2010.05958.

Y. Chen, X. Sun, and Y. Jin, “Communication-efficient federated deep
learning with layerwise asynchronous model update and temporally
weighted aggregation,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31,
no. 10, pp. 4229-4238, Oct. 2020.

Z. Wang, Z. Zhang, and J. Wang, “Asynchronous federated learning over
wireless communication networks,” in Proc. IEEE Int. Conf. Commun.,
Jun. 2021, pp. 1-7.

X. Qiu, T. Parcollet, D. J. Beutel, T. Topal, A. Mathur, and N. D. Lane,
“Can federated learning save the planet?” Oct. 2020, arXiv:2010.06537.
V. C. Gogineni, S. Werner, Y.-F. Huang, and A. Kuh, “Communication-
efficient online federated learning framework for nonlinear regres-
sion,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
May 2022, pp. 5228-5232.

F. Sattler, S. Wiedemann, K.-R. Miiller, and W. Samek, ‘“Robust and
communication-efficient federated learning from non-i.i.d. data,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 31, no. 9, pp. 3400-3413,
Sep. 2020.

M. Chen, N. Shlezinger, H. V. Poor, Y. C. Eldar, and S. Cui,
“Communication-efficient federated learning,” Proc. Nat. Acad. Sci.,
vol. 118, no. 17, Apr. 2021, Art. no. €2024789118.

J. Nguyen et al., “Federated learning with buffered asynchronous aggre-
gation,” in Proc. Int. Conf. Artif. Intel. Stat., May 2022, pp. 3581-3607.
R. Wang and W.-T. Tsai, “Asynchronous federated learning system
based on permissioned blockchains,” Sensors, vol. 22, no. 4, p. 1672,
Feb. 2022.

H. Zhu, Y. Zhou, H. Qian, Y. Shi, X. Chen, and Y. Yang, “Online client
selection for asynchronous federated learning with fairness considera-
tion,” IEEE Trans. Wireless Commun., vol. 22, no. 4, pp. 2493-2506,
Apr. 2023.

Z. Chai et al, “TiFL: A tier-based federated learning system,” in
Proc. Int. Symp. High-Perform. Parallel Distrib. Comput., Jun. 2020,
pp. 125-136.

X. Zhang, Y. Liu, J. Liu, A. Argyriou, and Y. Han, “D2D-assisted fed-
erated learning in mobile edge computing networks,” in Proc. IEEE
Wireless Commun. Netw. Conf., Mar. 2021, pp. 1-7.

W. Wu, L. He, W. Lin, R. Mao, C. Maple, and S. Jarvis, “SAFA:
A semi-asynchronous protocol for fast federated learning with low
overhead,” IEEE Trans. Comput., vol. 70, no. 5, pp. 655-668, May 2021.
S. Ko, K. Lee, H. Cho, Y. Hwang, and H. Jang, “Asynchronous federated
learning with directed acyclic graph-based blockchain in edge comput-
ing: Overview, design, and challenges,” Expert Syst. Appl., vol. 223,
Aug. 2023, Art. no. 119896.

L. You, S. Liu, Y. Chang, and C. Yuen, “A triple-step asynchronous fed-
erated learning mechanism for client activation, interaction optimization,
and aggregation enhancement,” IEEE Internet Things J., vol. 9, no. 23,
pp. 24199-24211, Dec. 2022.

R. Arablouei, K. Doganay, S. Werner, and Y.-F. Huang, “Adaptive
distributed estimation based on recursive least-squares and partial dif-
fusion,” IEEE Trans. Signal Process., vol. 62, no. 14, pp. 3510-3522,
Jul. 2014.

P. Bouboulis, S. Pougkakiotis, and S. Theodoridis, “Efficient KLMS and
KRLS algorithms: A random Fourier feature perspective,” in Proc. IEEE
Stat. Signal Process. Workshop, Jun. 2016, pp. 1-5.

IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 23, 1 DECEMBER 2023

[40] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” in Proc. Conf. Neural Inf. Proc. Syst., vol. 3, Dec. 2007,
pp. 1-8.

[41] W. Liu, P. P. Pokharel, and J. C. Principe, “The kernel least-mean-square
algorithm,” IEEE Trans. Signal Process., vol. 56, no. 2, pp. 543-554,
Feb. 2008.

[42] V. C. Gogineni, V. R. Elias, W. A. Martins, and S. Werner, “Graph
diffusion kernel LMS using random Fourier features,” in Proc. 54th
Asilomar Conf. Signals, Syst., Comput., Nov. 2020, pp. 1528-1532.

[43] R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and
S. Ulukus, “Age of information: An introduction and survey,” IEEE
J. Sel. Areas Commun., vol. 39, no. 5, pp. 1183-1210, May 2021.

[44] H. H. Yang, A. Arafa, T. Q. Quek, and H. V. Poor, “Age-based
scheduling policy for federated learning in mobile edge networks,” in
Proc. IEEE Int. Conf. Acoust., Speech Signal Process., May 2020,
pp. 8743-8747.

[45] C.-H. Hu, Z. Chen, and E. G. Larsson, “Scheduling and aggre-
gation design for asynchronous federated learning over wireless
networks,” IEEE J. Sel. Areas Commun., vol. 41, no. 4, pp. 874-886,
Apr. 2023.

[46] V. C. Gogineni, S. P. Talebi, and S. Werner, “Performance of clus-
tered multitask diffusion LMS suffering from inter-node communication
delays,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 68, no. 7,
pp- 2695-2699, Jul. 2021.

[47] G. H. Golub and C. F. Van Loan, Matrix Computations. Baltimore, MD,
USA: Johns Hopkins Univ. Press, 2013.

[48] R. H. Koning, H. Neudecker, and T. Wansbeek, “Block Kronecker
products and the vecb operator,” Linear Algebra Appl., vol. 149,
pp. 165-184, Apr. 1991.

[49] V. C. Gogineni, S. Werner, Y.-F. Huang, and A. Kuh, “Communication-
efficient online federated learning strategies for kernel regression,” IEEE
Internet Things J., vol. 10, no. 5, pp. 4531-4544, Mar. 2023.

[50] S. Dane. “CalCOFI, Over 60 years of oceanographic data.” Accessed:
May 2022. [Online]. Available: https://www.kaggle.com/sohier/calcofi?
select=bottle.csv

[51] R. Jin, Y. Huang, X. He, H. Dai, and T. Wu, “Stochastic-sign
SGD for federated learning with theoretical guarantees,” Feb. 2020,
arXiv:2002.10940.

Francois Gauthier (Member, IEEE) received the
B.Sc. and M.Sc. degrees in mathematics and com-
puter science from the Ecole Nationale Supérieure
d’Informatiques et de Mathématiques Appliquées
de Grenoble, Saint-Martin-d’Heéres, France, in 2015
and 2018, respectively. He is currently pursuing
the Ph.D. degree with the Department of Electronic
Systems, Norwegian University of Science and
Technology, Trondheim, Norway.

His research focuses on federated learning, dif-
ferential privacy, communication efficiency, person-
alized learning, and reinforcement learning.

Vinay Chakravarthi Gogineni (Senior Member,
IEEE) received the bachelor’s degree in electron-
ics and communication engineering from Jawaharlal
Nehru Technological University, Hyderabad, India,
in 2005, the master’s degree in communication engi-
neering from VIT University, Vellore, India, in 2008,
and the Ph.D. degree in electronics and electrical
communication engineering from the Indian Institute
of Technology Kharagpur, Kharagpur, India, in
2019.

He is currently an Assistant Professor with the
SDU Applied Al and Data Science, The Maersk Mc-Kinney Moller Institute,
University of Southern Denmark, Odense, Denmark. Prior to this, he worked
as a Postdoctoral Research Fellow with Norwegian University of Science
and Technology, Trondheim, Norway, and Simula, Oslo, Norway. From 2008
to 2011, he was with a couple of MNCs in India. His research interests
include statistical signal processing, distributed machine learning, geometric
deep learning, and their application in healthcare.

Dr. Gogineni was a recipient of the ERCIM Alain Bensoussan Fellowship
in 2019 and the Best Paper Award at APSIPA ASC-2021, Tokyo, Japan. He
is a member of the editorial board for the IEEE SENSORS JOURNAL.

Authorized licensed use limited to: National Science Foundation. Downloaded on September 02,2024 at 02:41:30 UTC from IEEE Xplore. Restrictions apply.



GAUTHIER et al.: ASYNCHRONOUS ONLINE FEDERATED LEARNING

Stefan Werner (Fellow, IEEE) received the M.Sc.
degree in electrical engineering from the Royal
Institute of Technology, Stockholm, Sweden, in
1998, and the D.Sc. degree (Hons.) in electrical
engineering from the Signal Processing Laboratory,
Helsinki University of Technology, Espoo, Finland,
in 2002.

He is a Professor with the Department of
Electronic Systems, Norwegian University of
Science and Technology (NTNU), Trondheim,
Norway, the Director of IoT@NTNU, and an
Adjunct Professor with Aalto University, Espoo. He was a Visiting Melchor
Professor with the University of Notre Dame, Notre Dame, IN, USA, in
Summer 2019 and an Adjunct Senior Research Fellow with the Institute for
Telecommunications Research, University of South Australia, Adelaide, SA,
Australia, from 2014 to 2020. He held an Academy Research Fellowship,
funded by the Academy of Finland, from 2009 to 2014. His research interests
include adaptive and statistical signal processing, wireless communications,
and security and privacy in cyber—physical systems.

Prof. Werner is a member of the editorial board for the EURASIP Journal
on Advances in Signal Processing and the IEEE TRANSACTIONS ON
SIGNAL AND INFORMATION PROCESSING OVER NETWORKS.

Yih-Fang Huang (Life Fellow, IEEE) received the
B.S.E.E. degree from National Taiwan University,
New Taipei City, Taiwan, in 1976, the M.S.E.E.
degree from the University of Notre Dame, Notre
Dame, IN, USA, in 1980, and the M.A. and Ph.D.
degrees from Princeton University, Princeton, NIJ,
USA, in 1981 and 1982, respectively.

He is a Professor of Electrical Engineering and
a Special Advisor to the Dean of the College
of Engineering, University of Notre Dame, where
he was the Chair of the Electrical Engineering
Department from 1998 to 2006 and a Senior Associate Dean for Education and
Undergraduate Programs with the College of Engineering from 2013 to 2023.
In Spring 1993, he received the Toshiba Fellowship and was a Toshiba Visiting
Professor with Waseda University, Tokyo, Japan. From April to July 2007,
he was a Visiting Professor with Munich University of Technology, Munich,
Germany. In Fall 2007, he was awarded the Fulbright-Nokia Scholarship for
lectures/research with Helsinki University of Technology, Espoo, Finland.
He was appointed as an Honorary Professor with the College of Electrical
Engineering and Computer Science, National Chiao Tung University, Hsinchu,
Taiwan, in 2014. His research lies in the area of statistical and adaptive signal
processing and employs principles in mathematical statistics to solve signal
detection and estimation problems that arise in various applications, includ-
ing wireless communications, distributed sensor networks, and smart electric
power grid.

Dr. Huang received the Golden Jubilee Medal of the IEEE Circuits and
Systems Society in 1999. At the University of Notre Dame, he received
the Presidential Award in 2003, the Electrical Engineering Department’s
Outstanding Teacher Award in 1994 and in 2011, the Rev. Edmund P. Joyce,
CSC Award for Excellence in Undergraduate Teaching in 2011, and the
Engineering College’s Outstanding Teacher of the Year Award in 2013. He
also served as the Vice President from 1997 to 1998 and was a Distinguished
Lecturer for the same society from 2000 to 2001. He served as the Lead Guest
Editor for a Special Issue on Signal Processing in Smart Electric Power Grid
of the IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING in
December 2014. He is a Fellow of AAAS.

20775

Anthony Kuh (Life Fellow, IEEE) received the
B.S. degree in electrical engineering and computer
science from the University of California at
Berkeley, Berkeley, CA, USA, in 1979, the M.S.
degree in electrical engineering from Stanford
University, Stanford, CA, USA, in 1980, and
the Ph.D. degree in electrical engineering from
Princeton University, Princeton, NJ, USA, in 1987.

He previously worked with AT&T Bell
Laboratories, Murray Hill, NJ, USA, and has been
on the faculty with the Department of Electrical
and Computer Engineering, University of Hawaii at Manoa, Honolulu, HI,
USA, since 1986, where he is currently a Professor and previously served as
the Department Chair. He is currently serving as a Program Director for NSF
in the Electrical, Communications, and Cyber Systems Division working in
the Energy, Power, Control, and Network Group. His research is in the area
of neural networks and machine learning, adaptive signal processing, sensor
networks, and renewable energy and smart grid applications.

Prof. Kuh won a National Science Foundation (NSF) Presidential Young
Investigator Award. He previously served for the IEEE Signal Processing
Society on the Board of Governors as a Regional Director-at-Large Regions
1-6, as a Senior Editor for the IEEE JOURNAL OF SELECTED TOPICS IN
SIGNAL PROCESSING, and as a member of the Awards Board. He previously
also served as the President of the Asia—Pacific Signal and Information
Processing Association.

Authorized licensed use limited to: National Science Foundation. Downloaded on September 02,2024 at 02:41:30 UTC from IEEE Xplore. Restrictions apply.



