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Predicting glasses’ properties from their structures is a formidable challenge because of the inherently disordered
atomic configurations. Here we tackle the problem using a new two-stage (encoding/interpreting) machine
learning pipeline. First, local environments are encoded by the Smooth Overlap of Atomic Positions (SOAP)
descriptors, which are then fed into extreme gradient boosting tree algorithm to train/predict given samples’
configurational energy. 40 important unique local environments (ULEs) most responsible for the global energy of
ZrCu-based glasses are identified. Markedly, we discover that the same short-range orders of Voronoi cells, when
embedded in various ULEs, could impact the sample’s global stability in qualitatively different manners. These
new findings thus reveal a profound connection between short-range orders and medium-range orders. In the
second stage, a designed interpreting stage is employed to decompose a sample’s 3 N degrees-of-freedom
configuration into a 40-dimension probability spectrum barcode via frequency mapping of those ULEs. We
demonstrate that, in addition to the global energy prediction, by analyzing barcode-elements’ occupational
fractions and fluctuations, one can simultaneously assess samples’ structural heterogeneity, which is known as a
crucial quantity to dictate metallic glasses’ deformation behaviors. The implications of our findings to a barcode-

mediated new strategy of inverse engineering design of metallic glasses are also discussed.

1. Introduction

Amorphous solids such as metallic glasses exhibit unique perfor-
mance in many aspects of physical and mechanical properties, ranging
from load bearing [1,2] to energy dissipation [3,4], thermal stability
[5], corrosion, and damage resistance [6,7], and magnetism and elec-
tronics [8]. From the cornerstone perspective of the entire materials
science, namely the “structure-property” relationship, all those proper-
ties mentioned above should be ultimately entailed in the configurations
of constituent particles inside the materials. However, albeit the fact that
glasses and crystals share many similar mechanical behaviors [9-14],
building an effective structure-property relationship in glasses has been
far less successful than that in their crystalline counterparts, mainly due
to the complex duality nature of atomic packing in amorphous solids —
globally random and meanwhile internally non-uniform (as manifested
by the non-affine and heterogeneous local strain partitions upon
loading). In other words, a robust description of glassy materials has to
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satisfy two stringent requirements: On the one hand, it ought to extract
key global features (e.g., enthalpy, fictive temperature, or other in-
dicators) that are known to dictate macroscopic properties [15-17] (e.g.,
bulk modulus, ductility); On the other hand, it ought to include various
local structural features (e.g., packings/configurations of atom clusters)
that account for mechanical and dynamical heterogeneities [18-22] (e.
g, spatial sensitive energy dissipation and f relaxations). Among a
plethora of efforts, probably one of the most influential models is the
Voronoi tessellation-based short-range orders (SROs) analysis [23],
where distributions of various types of SROs define the materials’
properties, e.g., the statistical correlation between the fraction of
high-symmetry SROs (i.e., icosahedron) in a given system and its overall
stability [24-26]. Despite its great success, a more quantitative relation
is still lacking, due to the diversity of SROs and the subtle differences
between similar Voronoi cells [27].

Machine learning (ML) algorithms, as emerging powerful tech-
niques, have recently been utilized to probe and predict a variety of
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properties in amorphous solids, from system-level properties such as
glass formability [28] and elastic moduli [29], to regional behaviors
such as the softness [30,31] and responsiveness of local atomic config-
urations upon excitation [27], and to the force field development be-
tween atom pairs [32]. Despite tremendous progress, the duality
requirement posed above has not been well addressed. In addition, many
existing ML models are more or less black boxes in nature, causing a
compromised interpretability and limited extendibility. In other words, the
critical questions as to what physical insights one can learn from the
data-driven techniques, how they are connected to, and how they can
further advance people’s existing knowledge in the field, remain as
demanding challenges.

To resolve the issues identified above, in the present study, we report
a new ML pipeline, in which two key strategies are adopted. At first,
instead of using scenario-specific supervisory signals (e.g., hopping rates
or non-affine displacements under a particular loading condition), we
use the most fundamental and accessible information — particles’ static
spatial coordinates — as the baseline input for encoding. With such
deliberation, we can avoid the model being “trained on one specific
behavior, tested and meant for recognizing that particular behavior for the
most part ” [27], so that its extendibility can be improved. Secondly,
while the model is trained with a local structural basis, we design an
interpreting stage (Fig. 1) to represent the global structure in terms of
the spectrum distribution of those learned important local environ-
ments. This serves as a bridge to comprehend the data and correlate
them with existing knowledge (e.g., SROs and medium-range orders as
discussed below), which enables better interpretability of our model.
Tested with a widely used ZrCu-based metallic glass model [24], we
show that the hereby proposed encoding-interpreting pipeline can boil
down the 3D configuration of a given sample into a spectrum barcode
spanned by 40 most important unique local environments (ULE)
extracted from ML algorithm based on their contribution scores in the
training process. The so-learned 40 indices can be classified into two
categories according to the symmetries of their ULEs. We further
demonstrate that, the relative occupational fraction of each category
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determines the sample’s global stability/energy, while the fluctuations
of the indices inside the low-symmetry-ULEs category dictate the sam-
ple’s intrinsic structural heterogeneity. These findings mark a new way
to decipher disordered materials, which, in further conjunction with
inverse problem solvers (e.g., reverse Monte Carlo method), may enable
a strategy to build up an amorphous solid’s configuration with desired
global and local properties, simultaneously.

2. Materials and methods
2.1. Samples preparation

Our first-step goal is to reliably predict a metallic glass sample’s
global stability/energy with arbitrary input configuration. Here we use
inherent structure (IS) energy as an effective measure of the sample’s
global stability because of both its easiness in computing and its proven
robustness in measuring glassy materials’ many important global
properties [33-39]. A cooling—annealing protocol is applied in this study
to prepare sufficient samples at various IS configurations and energy
levels. To be more specific, samples are firstly equilibrated in liquid
states at 2000 K and then quenched down to 0 K with controlled cooling
rates, which vary from 10'® to 10'° K/s. To prepare more stable con-
figurations, some of the above samples are elevated to and held for 10 ns
at a temperature window (500 K ~ 700 K) close to the glass transition
temperature (Tg~700 K for the present model [40]). Because it is known
that the near-T; annealing treatment can significantly stabilize the
glassy systems, leading to equivalently very low cooling rates compa-
rable with real experiments [41,42]. This way, a multiplicity of different
inherent structures is produced spanning over a wide range of energy
levels, and altogether we have collected 10,000 different Zr44Cusg glass
samples (2000 atoms in each sample). These samples’ IS energies are
then served as the training and testing supervisory signals in the present
study. We would like to note that there is room for annealing protocol
optimization [42,43] or even different algorithm [37,44] that can
further stabilize the glass samples. Nevertheless, given that our main
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Fig. 1. Pipeline for the machine learning model to predict MG samples’ IS energy. Unique local environments (ULE) are extracted from 10,000 training samples by
scanning all the local environments and picking the representative cluster by a proper similarity threshold. By further comparing the ULEs’ SHAP contribution scores
in ML, 40 most important ULEs are extracted. Then in the interpreting stage, a given sample’s 3D configuration with 3 N degrees of freedom is boiled down to a 40-
dimensional probability vector, in which each entry represents the fraction of the corresponding ULE in the sample.
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purpose here is not to produce the most stable configuration but instead
to efficiently generate large amount of samples covering broad energy
space (and subsequently a wide variety of ULEs), the hereby adopted
protocol can therefore well serve the purpose.

2.2. ML framework

As discussed earlier, to improve the interpretability and extendibility
of this work, we adopt an encoding-interpreting pipeline illustrated in
Fig. 1. The atomic structures are examined and encoded by the Smooth
Overlap of Atomic Positions (SOAP) descriptor [45,46], which essen-
tially expands the Gaussian density distributions of a local cluster of
particles into spherical harmonics power spectrum (e.g, p vector
illustrated in the encoding panel of Fig. 1). As a compactly supported
function, the SOAP descriptor goes smoothly to zero and can be
expanded to an arbitrary desired accuracy. In addition, with its proven
stability against the operations such as translation, rotation, permuta-
tion, and deformation, the SOAP descriptor has been widely applied in
disordered structural environments [47-50]. More specifically, we take
the cut-off radius of SOAP descriptors ¢, as 5.0 A, the number of radial
basis functions nyq. as 11, the maximum degree of spherical harmonics
Imax as 12, and the standard deviation of the gaussians used to expand
the atomic density ¢ as 0.5. We apply the DScribe package to do the
calculations, where periodic boundary conditions are considered. Since
each individual sample in the present study allows an extraction of 2000
local environments, the total number of local environments across all
the prepared samples would be enormous. As illustrated in the left panel
of Fig. 1, here we compare the similarities of those raw power spectra
and group them into a number of unique local environments (ULEs).
More specifically, the similarity is measured as .7, = 1 —

/(D - ?j)z /2, and two local environments are regarded as ULEs only

if they exhibit a low level of similarity smaller than a threshold Ag,. This
similarity threshold is critical because in disordered systems, no two
local environments would be entirely identical, and each local envi-
ronment after the SOAP encoding would in principle be different from
others. Therefore, with a threshold screening, one can effectively reduce
the dimension of the learning space and avoid the issues like overfitting,
allowing physical and interpretable insights to be better extracted from
the model. The final dimension of ULEs is of course dependent on the
selection of threshold value, and in the present study we find that 5223
ULEs are extracted with Ay = 0.84. Once the 5223 ULEs are identified,
the glassy structures can be encoded by calculating the corresponding
ULE:s fractions using the same threshold of Ay = 0.84. For each atom in
a sample, one can find the ULEs having the highest similarities with the
atom’s SOAP descriptor. Then, the entry at the corresponding position in
the 5223-dimensional vector would be registered. After scanning all the
atoms in the given sample, an associated signature vector in the space
spanned by the ULEs would be generated. In sum, from the 10,000
samples, we can get a feature matrix with the dimension of 10,000 x
5223, and the dimension of the label vector would be 10,000 x 1, which
is the real total energy of the samples. We have also found that using the
5223 ULEs to establish the datasets can already control the errors of IS
energy predictions less than 5.0 x 10™* eV/atom. Note that there is
plenty of room for further ML parameters optimization and error
reduction (Fig. Al in Appendix). While here in the main text, our pri-
mary goal is not to pursue the highest numerical precision but instead to
unveil the physical insights from an interpretable ML framework.
Therefore, the following discussions are based on the same volume of
training dataset and the same similarity threshold value.

2.3. Training model and parameters

With the hereby obtained ULEs, the next important step is to pick a
proper ML model to learn from them and eventually predict a given
sample’s IS energy. There are a wide variety of ML algorithms that have
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been applied to study amorphous materials, including logistic regression
[51], support vector machine (SVM) [52,53], neural network [54],
gradient boosted trees [55], etc. Here we employ extreme gradient
boosting tree (XGBoost) [56] — an algorithm under the gradient boosted
trees family — as our ML model because it is computationally efficient
and meanwhile also offers a high level of transparency compared with
other models such as neural network. The parameters of XGBoost are
determined by the Bayesian optimization process. We use the 5-fold
validation procedure, and the explored parameter space is set as: (20,
40) for max depth, (0.01, 0.05) for eta, (0.001, 10.0) for gamma, (O,
2000) for min_child weight, (0.4, 1.0) for subsample, (0.4, 1.0) for col-
sample_bytree. The parameter of the early stopping rounds is set to 100.
With the help of Bayesian optimization, the best machine learning model
is trained from {max depth, eta, gamma, min_child weight, subsample,
colsample bytre} = {20, 0.0271589, 0.01878, 82.011109, 0.767066,
0.623959}. Python xgb library is used for training, feature selection and
model iteration.

To further improve the interpretability of our present study, the ULEs
used in the encoding stage are ranked according to their SHapley Ad-
ditive exPlanations (SHAP) [57,58] values, which give quantitative
measures on their relative feature importance. It is found that, according
to the SHAP scores distributions for all 5223 ULEs (Fig. A2 in Appendix),
there are about 40 ULEs showing relatively higher significance than
others. We hence regard them as the most important ULEs as our final
representation bases for the metallic glasses considered in this work.
Then it comes to the interpreting stage illustrated in the right panel of
Fig. 1, where a given sample is decomposed into a 40-dimension prob-
ability vector via frequency mapping of its local environments, denoted
as (s1,52,*,540)-

3. Results
3.1. Global energy prediction

Fig. 2 exemplifies a few cases of probability spectrum barcode rep-
resentation for different samples, and the overall energy prediction
performance of our ML model on the independent testing datasets is also
shown on the left. More specifically, after the training with the 2000-
atoms samples dataset discussed above, we generate another 10,000
testing samples for the 2000-atoms system, which have been prepared
independently and not involved in any stage of the training process. It
can be seen that even within such largely reduced 40-dimension space
the accuracy of energy prediction retains at a high level, with the root
mean square error (RMSE) of 2.3624 eV per system (i.e., error around
1073 eV/atom). 1t is also worth marking that since through the designed
interpreting stage any input sample is boiled down to a probability
representation, there is therefore no size limitation in our model. To
demonstrate this, in the inset of Fig. 2 we present the direct testing re-
sults on 2000 new testing samples for a larger 4000-atoms system
without any new training, and the predictions are aligned well with the
diagonal line. The error distributions follow a typical Gaussian profile
and are found independent of the sizes of testing samples (Fig. A3 in
Appendix). In other words, the hereby learned ULEs already capture
almost all the crucial structural information in metallic glasses, at least
in the Zr44Cuse model considered in the present study. As discussed in
Supplemental Materials, although our present study was only trained in
the Zrs4Cuse system, it still offers certain flexibility in predicting other
compositions without new training. Such flexibility comes from the
variety of ULEs extracted by our ML model because each ULE has its own
local composition (as seen in Fig. 3). For materials with very different
chemistries or compositions, the specific ULEs in Fig. 3 could be
different. But the methodology developed in Fig. 1 is general, and the so-
derived probability spectrum barcode interpretation would be broadly
applicable.
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Fig. 2. Main plot on the left: ML prediction on the IS energy of 2000-atoms samples. A few representative ULE probability barcodes are listed in the right panel. The
inset plot shows the prediction results of 4000-atoms samples purely based on the training in 2000-atoms samples, demonstrating the extendibility of the present
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Fig. 3. The 40 most important ULEs. Yellow cells represent their kernel (1NN shell) Voronoi tessellations, which can be divided into two groups based on their
Voronoi cells symmetries — the Kasper kernel (s;-sp5) and non-Kasper kernel (so6-540), respectively. The SHAP value of various ULEs is shown in Appendix, Fig. A2.

3.2. ULEs structures and their connections to short/medium range orders

To dive deeper into the physical meaning of those ULEs and to tie
them to people’s existing knowledge in the field, we conduct short-range
orders (SROs) analyses via 1st-nearest-neighbor (1NN) Voronoi tessel-
lation with respect to the center atoms of interested ULEs. We would like
to note, though, that the ULEs are spatially more extended than 1NN

shell. The first observation, as illustrated in Fig. 3, is that they can be
divided into 2 groups. More specifically, 25 ULEs possess relatively high
symmetries of their kernel SROs (i.e., indices satisfying 2n4 + ns = 12),
while in the rest 15 ULEs their kernel SROs are non-Kasper clusters.
Given the comparable sizes of the two groups (25 vs. 15), it indicates
that both symmetric and asymmetric SROs are important in determining
the properties of metallic glasses. This corroborates well with the picture
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established in previous studies [18,25,59], namely the mutual impor-
tance of icosahedra and geometrically unfavorable motifs. It is worth
emphasizing that we have not provided any SROs information a priori,
and these important ULEs are automatically extracted purely based on
the static configurations of input training samples. In other words, the
consistencies with earlier studies manifest the effectiveness of our ML
model.

Another critical observation is that SROs information alone cannot
sufficiently well describe metallic glasses. More specifically, as shown in
Fig. 3, there are multiple different ULEs sharing the same index of their
kernel SROs. This equivalently means that the same SROs do not
necessarily yield the same properties, and they may lead to different
impacts on the samples’ global energy when being embedded in various
ULEs. For example, it has been widely believed that icosahedra (i.e.,
(0,0,12,0) Voronoi index) in metallic glasses have a propensity for sta-
bility [25], a scrutiny of the Pearson correlation coefficients between
each individual ULEs and the samples’ global energy shown in Fig. 4,
however, suggests a diverse result. More specifically, while some
icosahedra-containing ULEs (e.g., s2, Ss, S15, etc.) exhibit an as-expected
negative correlation with system’s global energy, some other
icosahedra-containing ULEs (e.g., s1, S3, Ss, etc.) actually show an inverse
correlation. This indicates that a higher fraction of icosahedra does not
necessarily always lead to a more stable metallic glass sample. Such new
knowledge is beyond what the conventional Voronoi cells-based SROs
statistics can provide, and it, therefore, sheds more in-depth insights into
the understanding of metallic glasses. Note that there is an increasing
consensus among the community that medium-range orders (MROs)
must play an indispensable role in amorphous materials [59-63], and
our present study lends credence to such a notion. Furthermore, while it
is beyond the scope the present study, it is worth marking that the
combined XGBoost and SHAP ranking algorithms allow one to quanti-
tatively measure and compare the relative importance of various ULEs,
which may thus enable a quantitative analysis on the SROs-MROs con-
nections that warrant future studies.
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3.3. Structural heterogeneity entailed in the spectrum barcode

In addition to the global stability, a glass sample’s intrinsic structural
heterogeneity - e.g,, non-uniform partitions of strains across the sample
upon loading - plays a decisive role in its deformation behavior [19-22,
64,65]. We demonstrate in this section that such heterogeneity infor-
mation is to some extent entailed in the 40-dimensional probability
spectrum barcode generated by our ML model. To begin with, we pre-
pare and contrast the samples with different levels of structural het-
erogeneities. The relatively less heterogeneous samples are prepared via
thermal processing, during which a controlled cooling treatment is
uniformly introduced into a high-temperature equilibrated supercooled
liquid. As discussed in Section 2.1 and illustrated in the left panel of
Fig. 5, by tuning the annealing time a multiplicity of samples across a
broad IS energy range can be generated. The structurally more hetero-
geneous samples are prepared via various thermo-mechanical loadings
shown in the right panel of Fig. 5. More specifically, Lees-Edwards
boundary conditions are used to impose the global shear deformation
at a controlled strain rate of 107 s~1. The operational temperatures vary
from 300 K to 700 K, and lower temperature leads to more heterogenous
structures. The sample can thus be driven to various steady-state flow
states with distinct energies and heterogeneities, as illustrated in the
right panel of Fig. 5. We would like to emphasize that the mechanical
loading condition applied here is a typical MD strain rate that is much
higher than normal mechanical testing in experiments. However, it is
worth noting that the purpose of the MD simulations here in the right
panel of Fig. 5 is not to retrieve the mechanical properties such as yield
strength at various thermo-mechanical conditions. Instead, the purpose
is to utilize mechanical loading as a knob to drive the samples to het-
erogeneous structures (e.g., with shear banding inside), so that one can
compare with those more homogenous thermally processed samples and
examine whether or not our ML model can capture the structural het-
erogeneity information.

We show a few examples in the figure on the atomic-level von Mises
strain distributions in differently prepared samples, and one can confirm
that the mechanically driven structures are in general more heteroge-
neous, while the level of heterogeneity increases as temperature de-
creases. In other words, as illustrated in Fig. 5, by comparing the
thermally processed and mechanically driven samples at the same en-
ergy levels one can then probe how the structural heterogeneity infor-
mation would be reflected in the spectrum barcode.

A systematic comparison is shown in Fig. 6, where two remarkable
features are revealed. At first, as long as the energy levels are consistent,
the thermally processed samples and the mechanically driven samples
always present similar values of Zf‘r’si (or Zggsi), although a clear
quantitative correlation remains unclear (see Fig. 7 in Discussion section
below for more discussion). Secondly, by scrutinizing the differences
between the spectrum barcodes, denoted as 65 = S — S mechs it is
discovered that the standard deviation of 8s; in Group-2 exhibits a strong
correlation with the heterogeneity level. In particular, the more het-
erogeneous the samples are (e.g., M300), the larger the standard de-
viations of the data entries [8s26,--,0540] one can expect. By contrast, the
standard deviation of &s; in Group-1 is almost flat and not sensitive to a
sample’s heterogeneity level. It is worth noting that, all the training and
learning in the present study are based on thermally processed samples
only. And the fact this model can grasp information on the structural
heterogeneity level of a deformed sample is unexpected and profound. It
demonstrates the hereby obtained important ULEs, as well as their
probability spectrum representations, are effective ways to decipher
amorphous solids in general thermo-mechanical environments.

4. Discussion

In the present work a new ML pipeline is developed to study the
structures and properties of amorphous solids. We employ the SOAP
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banding inside), so that one can then compare with those more homogenous thermally processed samples and examine whether the present ML model can capture the

structural heterogeneity information.

descriptor to encode the local environments, which are then fed into the
extreme gradient boosting tree algorithm to train, learn, and eventually
predict the global configurational energy of metallic glasses. By
comparing the SHAP scores of various local environments, we identify
40 important ULEs that are most responsible for the IS energy of a given
glass sample. A designed interpreting stage is then employed to
decompose a given sample’s 3 N degrees of freedom configuration into a
40-dimension probability vector via frequency mapping of those ULEs.
The obtained probability spectrum barcode is thus regarded as a
signature representation of an interested sample. We demonstrate that
the so-constructed encoding-interpreting pipeline can reliably predict
metallic glasses samples’ energy within the error of 1072 eV/atom. It is
worth noting that, with the hereby constructed probability spectrum
representation there is no size constraint to this model. We demonstrate
that the important ULEs learned/extracted from smaller samples can be
readily used to predict the energy of larger samples without the neces-
sity of any new trainings, which marks an enhanced extendibility of the
present study. Note that if a new configuration has none of those 40
ULEs then technically its probability vector would be zero. This would
mean the input sample is completely out of the scope of our present
study (e.g, at non-glassy state or fundamentally different chemistry/
composition). But such a scenario is not likely to occur for the ZrCu
metallic glasses concerned in our present study. Because as discussed
above, the simulation samples we used to train the model actually cover
a broad range of effective cooling rates, including conditions compara-
ble with real experiments. Therefore, it is likely that all the important
ULEs in the ZrCu system are already captured by our ML model. This is
also supported by the fact that our model can reasonably well predict

larger samples’ global energy without any new training.

Further topological analyses to the kernel structures (e.g., within
1NN shell) of ULEs reveal two notable findings. At first, both symmetric
SROs (Group-1) and geometrically unfavored motifs (Group-2) are
important. This is markable not only because they are consistent with
people’s knowledge in the field through a number of earlier studies, but
also because we have not provided any SROs information a priori, and
the important ULEs are automatically extracted solely based on parti-
cles’ static spatial coordinates. Secondly, it is discovered that different
ULEs may share the same kernels of SROs. This suggests the insufficiency
of SROs in quantitatively describing amorphous solids and thus lends
further credence to the increasing appreciation of MROs by the com-
munity in recent years. More specifically, the ULEs-based probability
spectrum barcode constructed in the present study may offer a viable
pathway moving forward to help people better connect SROs and MROs.
For example, as discussed earlier, by using XGBoost and SHAP algo-
rithms the relative importance of each entry in the ULEs spectrum bar-
code can be quantitatively measured. This eventually will allow one to
answer critical questions such as, how a specific SRO, when embedded
into various MROs, would differently impact the sample’s property. This
will be discussed in a separate study in the future.

It is noteworthy that, in addition to the high-fidelity prediction of
global energy, a sample’s signature probability spectrum barcode also
entails important information on its intrinsic structural heterogeneity.
To better understand this, one can first set the thermally prepared
samples and their corresponding barcodes (e.g., the ones with “Thermal”
label in Fig. 6) as the references for the following considerations: (a)
Thermal processing is arguably the most widely used simple protocol in
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both experiments and atomistic modeling to prepare metallic glasses
with good reproducibility, making them a natural choice for reference
states; (b) In a statistical sense, thermally processed metallic glasses
samples are known isotropic or do not exhibit system-level heteroge-
neities, making them a good choice to better contrast the structural
heterogeneity in mechanically driven samples. Now with these clearly
defined reference states, one can then better interpret the heterogeneity
levels of mechanically driven samples from their barcodes. As shown in
Fig. 6, through systematic comparisons between the thermally processed

references and the mechanically driven samples, it is found that the
probability distributions and fluctuations of those ULEs in Group-2
exhibit a strong correlation with the level of structural heterogeneity.
More specifically, a structurally more heterogeneous sample is expected
to show a larger standard deviation over the probability difference en-
tries [5325, -'-7(5340].

In a nutshell, for an arbitrary given sample with unknown processing
history, one can predict its energy and assess its heterogeneity level in
two steps: (i) Analyze its ULEs and construct its barcode, from which one
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can predict its global energy with the present ML model; (ii) Contrast its
barcode to the reference barcode at the same global energy level, and
particularly focus on the standard deviation of 8s; in Group-2. The larger
the standard deviations of the data entries [Jsyg, -+, 5549], one should
then expect the more heterogeneous the sample would be. The hereby-
established capability of simultaneously predicting a glassy sample’s
global energy and internal structural heterogeneity is markable, because
it may endow promising implications in terms of deformation control.
For example, it is known that the ductility of metallic glasses is largely
affected by both the global energy of the samples [66] and their intrinsic
structural heterogeneities [21,67]. In particular, the higher energy state
(i.e., more rejuvenated) a sample is located at, the more likelihood it will
yield a ductile behavior; meanwhile, the higher level of structural het-
erogeneity a sample possesses, the larger chance it will experience a
small shear bands proliferation while avoiding the formation of a major
catastrophic shear band, which is also beneficial for an overall ductile
deformation. Therefore, in light of the present study, one may envisage a
new barcode-oriented strategy to design amorphous solids. More spe-
cifically, one can start from a targeted 40-dimension probability spec-
trum barcode that possesses certain desired global energy and internal
structural heterogeneity. Then the sample’s structure can be built up
from the bottom by adjusting the particles’ spatial coordinates — this
could be done via inverse engineering algorithms such as reverse Monte
Carlo — until the barcode of the actual sample converges to the targeted
barcode. Such a barcode-mediated simultaneous tuning on both global
energy and internal structural heterogeneity would allow for more
effective control over metallic glasses’ deformation behavior.
Admittedly, there are questions that remain unanswered. For
example, through the present study we demonstrate — assisted with ML
models — one can reduce the 3 N degrees-of-freedom information (N
represents the number of atoms) to 40-dimensional vector while
retaining rather high prediction precisions. A natural following question
would hence be, can one further reduce such 40-dimensional informa-
tion into even lower dimensions in a more comprehensible manner? In

Fig. 7-a below we show the correlation between the global energy of the

samples considered in Fig. 6 and their corresponding Zfssi and Zggsi,

namely the fractional summations of Group-1 ULEs and Group-2 ULEs,
respectively. Note that the two groups of data are actually equivalent to
each other (i.e., in mirror symmetry), because as a frequency barcode
there is 3°2°s; + Y acsi = 1 by definition. There may exist a weak
descending (ascending) trend for the blue (orange) data points, but
given the relatively large standard deviations we do not believe a
quantitative and meaningful correlation can be drawn. This is not too
much of a surprise from our eyes, because what was essentially done in
Fig. 7-ais to reduce the information entailed in a 40-dimension vector to
a simple scalar number and then examine its correlation with the sys-
tem’s global energy. And for a completely disordered material system
such as metallic glass, it is highly doubtful whether or not there could
exist such a simple reduction. In Fig. 7-b we made a similar plot, but only
examining the summation of all the <0,0,12,0>-containing ULEs. Now a
much stronger correlation appears, and the higher summation of those
<0,0,12,0>-containing ULEs the lower energy level (i.e., more stable)
the system shall stay at. Such a correlation well aligns with the
consensus in the community, namely higher fraction of icosahedra SROs
will increase metallic glasses’ stability. But again, the standard de-
viations are still considerable, meaning that one cannot make high-
precision predictions to given samples’ energy purely based on such
quantity. In contrast, by utilizing all the 40-dimensional information the
ML model prediction can reach much higher precision with errors only
around 1073 eV/atom. Therefore, to what extent one can further reduce
the dimensions needed to decipher amorphous solids and meanwhile
improve its comprehensibility remain as challenges to be tackle in the
next step.

In addition, we employed an embedded atom method (EAM)-type
interatomic potential for the present computational studies. Such an
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EAM potential [24] - although has been calibrated with first-principle
calculations and widely adopted by the community - is after all an
empirical force field. It is noticed neural network (NN) based ML tech-
niques have been applied in developing high-precision interatomic po-
tentials in recent years [68]. For example, Andolina et al. recently
optimized [32] the interatomic force field in the ZrCu system using a
deep learning neural network algorithm, which resembles well with the
density functional theory (DFT) results. Therefore, in the outlook for
higher precision calculations on the structures and properties of metallic
glasses in the future, it will be worth implementing such a force field into
our hereby-developed interpretable and extendible two-stage (enco-
ding/interpreting) ML pipeline in Fig. 1. It is also worth noting that, the
ML-obtained probability spectrum barcode in the present study is
essentially a frequency mapping of ULEs, and we have not directly
provided the ULEs’ spatial distribution information into the ML model.
Therefore, from our perspective, the fact that our ML model can capture
important non-local information, such as the structural heterogeneity
level, is somewhat beyond expectation. This may imply a profound
connection between the occurrence probabilities of various types of
local atomic packings and their spatial correlations, which is probably
mediated by some global invariants/constraints such as the fixed density
or imposed boundary conditions. Note that some important concepts in
the crystalline materials community, such as geometrically necessary
dislocations (GNDs) [69], may share a similar spirit in terms of that they
could also induce non-local effects and structural gradients. However, a
thorough investigation into this problem would warrant future studies.

5. Conclusion
The main conclusions of the present study are summarized below:

e With the designed encoding-interpreting strategy and extreme
gradient boosting tree XGBoost ranking algorithm, 40 most impor-
tant ULEs are extracted, which allows one to characterize an arbi-
trary given sample’s 3 N degrees-of-freedom configuration with a 40-
dimension probability spectrum barcode that can make high-
precision energy prediction of the entire sample (error less than 1
meV/atom).

e Without any provided SROs information a priori, the SHAP scores
ranking and the analyses on the kernel topologies (e.g., within 1NN
shell) of ML-extracted ULEs naturally reveal the significance of both
symmetric SROs (Group-1) and geometrically unfavored motifs
(Group-2).

e Same SROs, when embedded into various MROs, may impact the
samples’ global energy in qualitatively different manners. For
example, a higher fraction of icosahedra does not necessarily always
lead to a more stable metallic glass sample, in contrast to conven-
tional wisdom.

e The internal structural heterogeneity level of a given sample can be
assessed by contrasting its barcode with the reference barcode and
scrutinizing the standard deviation of &s; in Group-2. The larger the
standard deviations of the data entries [8sq6, ++, 55491, the more het-
erogeneous the sample is expected to be.
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Appendix
1. Improvement of the accuracy of the current model:
In this study, our goal is to efficiently predict the global energy and structural heterogeneity of Zrs4Cusg systems in a physically interpretable

manner within acceptable numerical errors. The accuracy of our ML model could be enhanced and is ultimately determined by two main factors: the
size and diversity of the training set and the number of features (i.e., numbers of ULEs).

—@— 10K samples
—Q@— 20K samples
—@— 30K samples

Error (eV)

I 1 1
0 5000 10000 15000

Number of ULEs
Fig. Al. The testing error under different ML inputs: The green, blue, and red curves have various amounts of data generated from 10, 20, and 30 independent
cooling processes. The black delta point is (5223, 0.9763 eV), corresponding to the ML model in the manuscript of 10k samples and 5223 ULEs. Not surprisingly the
training error and prediction accuracy are related to dataset volume and training algorithm [70,71].

Fig. A1l shows the prediction error of the global energy using ML models trained under different settings. From top to bottom, the three curves are
models trained using different amounts of data. And each data point is an average of at least five cases. Worth noticing, for these ML practices, to
explore the effect of model complexity, all the ULEs gotten from the samples are used as training features, which is different from the selection of the
40 most important ULEs in the manuscript. The black triangle and the short-dashed line depict the averaged best accuracy of the model in the
manuscript, which is about 0.9763 eV for a 2000-atoms system.

The dataset is established according to the same cooling-annealing protocol depicted in the main text. The 2000-atoms samples are first equili-
brated at 2000 K and then cooled to 0 K with the cooling rate range from 10'° K/s to 10'% K/s. Then, the energy-minimized samples are lifted to the
near-T, temperature window of 500 K ~ 700 K and kept for 10 ns. Each cooling process would produce 1000 samples. In Fig. Al, the green, blue, and
red curves have 10, 20, and 30 cooling processes, accordingly. From the curves, we can find that with a similar number of ULEs, expansion of the
dataset can considerably reduce the prediction errors. In addition, for the data points on the same curve, with a fixed volume of samples, by increasing
the number of ULEs (larger similarity threshold), one could also reduce the overall errors.

For the ML practices shown in Fig. Al, the smallest error we got is about 0.8159 eV for a 2000-atoms system. Technically, there is still plenty of
room for improvement. However, as mentioned previously, the primary focus of this research is to build interpretable physical picture rather than
pursuing the numerical precision, and such an error is acceptable.

2. SHAP scores distribution:

Fig. A2 below shows the SHAP values of all the 5223 ULEs retrieved in the main text under the similarity threshold of Ay = 0.84. In the inset of
Fig. A2 we show the histogram of the SHAP value distribution, and it can be seen that there is a long tail for those ULEs with SHAP value larger than
0.05, indicating their relative importance compared with others. The total number of ULEs in the long tail is around 40, and we therefore select 40 as
the effective dimension to construct the probability spectrum barcode in the main body of the present study
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Fig. A2. The SHAP values of all ULEs. Inset plot shows the histogram of SHAP value distribution.

3. The distribution of testing errors:
Fig. A3 shows the probability density function (PDF) of the error distributions for both the 2000-atoms system and the larger 4000-atoms system.
The blue distribution shows the error from 10,000 2000-atoms samples. The dataset of 4000-atoms samples is also prepared according to the protocol
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in the main text. Here, 2000 samples are included in the red histogram. One can find that the two PDFs are very similar to each other, and
approximately follow the Gaussian distribution.
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Fig. A3. The PDF of testing error for 2000-atoms samples and 4000-atoms samples. The blue histogram includes 10,000 samples while the red one includes 2000.
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