
Acta Materialia 259 (2023) 119281

Available online 25 August 2023
1359-6454/© 2023 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Full length article 

Concurrent prediction of metallic glasses’ global energy and internal 
structural heterogeneity by interpretable machine learning 

Chaoyi Liu a,1, Yuchu Wang a,1, Yuchi Wang b, Minhazul Islam b, Jinwoo Hwang b, 
Yunzhi Wang b, Yue Fan a,* 

a Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States 
b Department of Materials Sciences and Engineering, Ohio State University, Columbus, OH, United States   

A R T I C L E  I N F O   

Keywords: 
Metallic glasses 
Machine learning 
Structure-property relationship 
Heterogeneity 

A B S T R A C T   

Predicting glasses’ properties from their structures is a formidable challenge because of the inherently disordered 
atomic configurations. Here we tackle the problem using a new two-stage (encoding/interpreting) machine 
learning pipeline. First, local environments are encoded by the Smooth Overlap of Atomic Positions (SOAP) 
descriptors, which are then fed into extreme gradient boosting tree algorithm to train/predict given samples’ 
configurational energy. 40 important unique local environments (ULEs) most responsible for the global energy of 
ZrCu-based glasses are identified. Markedly, we discover that the same short-range orders of Voronoi cells, when 
embedded in various ULEs, could impact the sample’s global stability in qualitatively different manners. These 
new findings thus reveal a profound connection between short-range orders and medium-range orders. In the 
second stage, a designed interpreting stage is employed to decompose a sample’s 3 N degrees-of-freedom 
configuration into a 40-dimension probability spectrum barcode via frequency mapping of those ULEs. We 
demonstrate that, in addition to the global energy prediction, by analyzing barcode-elements’ occupational 
fractions and fluctuations, one can simultaneously assess samples’ structural heterogeneity, which is known as a 
crucial quantity to dictate metallic glasses’ deformation behaviors. The implications of our findings to a barcode- 
mediated new strategy of inverse engineering design of metallic glasses are also discussed.   

1. Introduction 

Amorphous solids such as metallic glasses exhibit unique perfor
mance in many aspects of physical and mechanical properties, ranging 
from load bearing [1,2] to energy dissipation [3,4], thermal stability 
[5], corrosion, and damage resistance [6,7], and magnetism and elec
tronics [8]. From the cornerstone perspective of the entire materials 
science, namely the “structure-property” relationship, all those proper
ties mentioned above should be ultimately entailed in the configurations 
of constituent particles inside the materials. However, albeit the fact that 
glasses and crystals share many similar mechanical behaviors [9–14], 
building an effective structure-property relationship in glasses has been 
far less successful than that in their crystalline counterparts, mainly due 
to the complex duality nature of atomic packing in amorphous solids – 
globally random and meanwhile internally non-uniform (as manifested 
by the non-affine and heterogeneous local strain partitions upon 
loading). In other words, a robust description of glassy materials has to 

satisfy two stringent requirements: On the one hand, it ought to extract 
key global features (e.g., enthalpy, fictive temperature, or other in
dicators) that are known to dictate macroscopic properties [15–17] (e.g., 
bulk modulus, ductility); On the other hand, it ought to include various 
local structural features (e.g., packings/configurations of atom clusters) 
that account for mechanical and dynamical heterogeneities [18–22] (e. 
g., spatial sensitive energy dissipation and β relaxations). Among a 
plethora of efforts, probably one of the most influential models is the 
Voronoi tessellation-based short-range orders (SROs) analysis [23], 
where distributions of various types of SROs define the materials’ 
properties, e.g., the statistical correlation between the fraction of 
high-symmetry SROs (i.e., icosahedron) in a given system and its overall 
stability [24–26]. Despite its great success, a more quantitative relation 
is still lacking, due to the diversity of SROs and the subtle differences 
between similar Voronoi cells [27]. 

Machine learning (ML) algorithms, as emerging powerful tech
niques, have recently been utilized to probe and predict a variety of 
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properties in amorphous solids, from system-level properties such as 
glass formability [28] and elastic moduli [29], to regional behaviors 
such as the softness [30,31] and responsiveness of local atomic config
urations upon excitation [27], and to the force field development be
tween atom pairs [32]. Despite tremendous progress, the duality 
requirement posed above has not been well addressed. In addition, many 
existing ML models are more or less black boxes in nature, causing a 
compromised interpretability and limited extendibility. In other words, the 
critical questions as to what physical insights one can learn from the 
data-driven techniques, how they are connected to, and how they can 
further advance people’s existing knowledge in the field, remain as 
demanding challenges. 

To resolve the issues identified above, in the present study, we report 
a new ML pipeline, in which two key strategies are adopted. At first, 
instead of using scenario-specific supervisory signals (e.g., hopping rates 
or non-affine displacements under a particular loading condition), we 
use the most fundamental and accessible information – particles’ static 
spatial coordinates – as the baseline input for encoding. With such 
deliberation, we can avoid the model being “trained on one specific 
behavior, tested and meant for recognizing that particular behavior for the 
most part ” [27], so that its extendibility can be improved. Secondly, 
while the model is trained with a local structural basis, we design an 
interpreting stage (Fig. 1) to represent the global structure in terms of 
the spectrum distribution of those learned important local environ
ments. This serves as a bridge to comprehend the data and correlate 
them with existing knowledge (e.g., SROs and medium-range orders as 
discussed below), which enables better interpretability of our model. 
Tested with a widely used ZrCu-based metallic glass model [24], we 
show that the hereby proposed encoding-interpreting pipeline can boil 
down the 3D configuration of a given sample into a spectrum barcode 
spanned by 40 most important unique local environments (ULE) 
extracted from ML algorithm based on their contribution scores in the 
training process. The so-learned 40 indices can be classified into two 
categories according to the symmetries of their ULEs. We further 
demonstrate that, the relative occupational fraction of each category 

determines the sample’s global stability/energy, while the fluctuations 
of the indices inside the low-symmetry-ULEs category dictate the sam
ple’s intrinsic structural heterogeneity. These findings mark a new way 
to decipher disordered materials, which, in further conjunction with 
inverse problem solvers (e.g., reverse Monte Carlo method), may enable 
a strategy to build up an amorphous solid’s configuration with desired 
global and local properties, simultaneously. 

2. Materials and methods 

2.1. Samples preparation 

Our first-step goal is to reliably predict a metallic glass sample’s 
global stability/energy with arbitrary input configuration. Here we use 
inherent structure (IS) energy as an effective measure of the sample’s 
global stability because of both its easiness in computing and its proven 
robustness in measuring glassy materials’ many important global 
properties [33–39]. A cooling–annealing protocol is applied in this study 
to prepare sufficient samples at various IS configurations and energy 
levels. To be more specific, samples are firstly equilibrated in liquid 
states at 2000 K and then quenched down to 0 K with controlled cooling 
rates, which vary from 1013 to 1010 K/s. To prepare more stable con
figurations, some of the above samples are elevated to and held for 10 ns 
at a temperature window (500 K ~ 700 K) close to the glass transition 
temperature (Tg~700 K for the present model [40]). Because it is known 
that the near-Tg annealing treatment can significantly stabilize the 
glassy systems, leading to equivalently very low cooling rates compa
rable with real experiments [41,42]. This way, a multiplicity of different 
inherent structures is produced spanning over a wide range of energy 
levels, and altogether we have collected 10,000 different Zr44Cu56 glass 
samples (2000 atoms in each sample). These samples’ IS energies are 
then served as the training and testing supervisory signals in the present 
study. We would like to note that there is room for annealing protocol 
optimization [42,43] or even different algorithm [37,44] that can 
further stabilize the glass samples. Nevertheless, given that our main 

Fig. 1. Pipeline for the machine learning model to predict MG samples’ IS energy. Unique local environments (ULE) are extracted from 10,000 training samples by 
scanning all the local environments and picking the representative cluster by a proper similarity threshold. By further comparing the ULEs’ SHAP contribution scores 
in ML, 40 most important ULEs are extracted. Then in the interpreting stage, a given sample’s 3D configuration with 3 N degrees of freedom is boiled down to a 40- 
dimensional probability vector, in which each entry represents the fraction of the corresponding ULE in the sample. 
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purpose here is not to produce the most stable configuration but instead 
to efficiently generate large amount of samples covering broad energy 
space (and subsequently a wide variety of ULEs), the hereby adopted 
protocol can therefore well serve the purpose. 

2.2. ML framework 

As discussed earlier, to improve the interpretability and extendibility 
of this work, we adopt an encoding-interpreting pipeline illustrated in 
Fig. 1. The atomic structures are examined and encoded by the Smooth 
Overlap of Atomic Positions (SOAP) descriptor [45,46], which essen
tially expands the Gaussian density distributions of a local cluster of 
particles into spherical harmonics power spectrum (e.g., p→ vector 
illustrated in the encoding panel of Fig. 1). As a compactly supported 
function, the SOAP descriptor goes smoothly to zero and can be 
expanded to an arbitrary desired accuracy. In addition, with its proven 
stability against the operations such as translation, rotation, permuta
tion, and deformation, the SOAP descriptor has been widely applied in 
disordered structural environments [47–50]. More specifically, we take 
the cut-off radius of SOAP descriptors rcut as 5.0 Å, the number of radial 
basis functions nmax as 11, the maximum degree of spherical harmonics 
lmax as 12, and the standard deviation of the gaussians used to expand 
the atomic density σ as 0.5. We apply the DScribe package to do the 
calculations, where periodic boundary conditions are considered. Since 
each individual sample in the present study allows an extraction of 2000 
local environments, the total number of local environments across all 
the prepared samples would be enormous. As illustrated in the left panel 
of Fig. 1, here we compare the similarities of those raw power spectra 
and group them into a number of unique local environments (ULEs). 
More specifically, the similarity is measured as M s = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

( p→i − p→j)
2
/2

√

, and two local environments are regarded as ULEs only 
if they exhibit a low level of similarity smaller than a threshold Δth. This 
similarity threshold is critical because in disordered systems, no two 
local environments would be entirely identical, and each local envi
ronment after the SOAP encoding would in principle be different from 
others. Therefore, with a threshold screening, one can effectively reduce 
the dimension of the learning space and avoid the issues like overfitting, 
allowing physical and interpretable insights to be better extracted from 
the model. The final dimension of ULEs is of course dependent on the 
selection of threshold value, and in the present study we find that 5223 
ULEs are extracted with Δth = 0.84. Once the 5223 ULEs are identified, 
the glassy structures can be encoded by calculating the corresponding 
ULEs fractions using the same threshold of Δth = 0.84. For each atom in 
a sample, one can find the ULEs having the highest similarities with the 
atom’s SOAP descriptor. Then, the entry at the corresponding position in 
the 5223-dimensional vector would be registered. After scanning all the 
atoms in the given sample, an associated signature vector in the space 
spanned by the ULEs would be generated. In sum, from the 10,000 
samples, we can get a feature matrix with the dimension of 10,000 ×
5223, and the dimension of the label vector would be 10,000 × 1, which 
is the real total energy of the samples. We have also found that using the 
5223 ULEs to establish the datasets can already control the errors of IS 
energy predictions less than 5.0 × 10−4 eV/atom. Note that there is 
plenty of room for further ML parameters optimization and error 
reduction (Fig. A1 in Appendix). While here in the main text, our pri
mary goal is not to pursue the highest numerical precision but instead to 
unveil the physical insights from an interpretable ML framework. 
Therefore, the following discussions are based on the same volume of 
training dataset and the same similarity threshold value. 

2.3. Training model and parameters 

With the hereby obtained ULEs, the next important step is to pick a 
proper ML model to learn from them and eventually predict a given 
sample’s IS energy. There are a wide variety of ML algorithms that have 

been applied to study amorphous materials, including logistic regression 
[51], support vector machine (SVM) [52,53], neural network [54], 
gradient boosted trees [55], etc. Here we employ extreme gradient 
boosting tree (XGBoost) [56] – an algorithm under the gradient boosted 
trees family – as our ML model because it is computationally efficient 
and meanwhile also offers a high level of transparency compared with 
other models such as neural network. The parameters of XGBoost are 
determined by the Bayesian optimization process. We use the 5-fold 
validation procedure, and the explored parameter space is set as: (20, 
40) for max_depth, (0.01, 0.05) for eta, (0.001, 10.0) for gamma, (0, 
2000) for min_child_weight, (0.4, 1.0) for subsample, (0.4, 1.0) for col
sample_bytree. The parameter of the early stopping rounds is set to 100. 
With the help of Bayesian optimization, the best machine learning model 
is trained from {max_depth, eta, gamma, min_child_weight, subsample, 
colsample_bytre} = {20, 0.0271589, 0.01878, 82.011109, 0.767066, 
0.623959}. Python xgb library is used for training, feature selection and 
model iteration. 

To further improve the interpretability of our present study, the ULEs 
used in the encoding stage are ranked according to their SHapley Ad
ditive exPlanations (SHAP) [57,58] values, which give quantitative 
measures on their relative feature importance. It is found that, according 
to the SHAP scores distributions for all 5223 ULEs (Fig. A2 in Appendix), 
there are about 40 ULEs showing relatively higher significance than 
others. We hence regard them as the most important ULEs as our final 
representation bases for the metallic glasses considered in this work. 
Then it comes to the interpreting stage illustrated in the right panel of 
Fig. 1, where a given sample is decomposed into a 40-dimension prob
ability vector via frequency mapping of its local environments, denoted 
as (s1, s2, ⋯, s40). 

3. Results 

3.1. Global energy prediction 

Fig. 2 exemplifies a few cases of probability spectrum barcode rep
resentation for different samples, and the overall energy prediction 
performance of our ML model on the independent testing datasets is also 
shown on the left. More specifically, after the training with the 2000- 
atoms samples dataset discussed above, we generate another 10,000 
testing samples for the 2000-atoms system, which have been prepared 
independently and not involved in any stage of the training process. It 
can be seen that even within such largely reduced 40-dimension space 
the accuracy of energy prediction retains at a high level, with the root 
mean square error (RMSE) of 2.3624 eV per system (i.e., error around 
10−3 eV/atom). It is also worth marking that since through the designed 
interpreting stage any input sample is boiled down to a probability 
representation, there is therefore no size limitation in our model. To 
demonstrate this, in the inset of Fig. 2 we present the direct testing re
sults on 2000 new testing samples for a larger 4000-atoms system 
without any new training, and the predictions are aligned well with the 
diagonal line. The error distributions follow a typical Gaussian profile 
and are found independent of the sizes of testing samples (Fig. A3 in 
Appendix). In other words, the hereby learned ULEs already capture 
almost all the crucial structural information in metallic glasses, at least 
in the Zr44Cu56 model considered in the present study. As discussed in 
Supplemental Materials, although our present study was only trained in 
the Zr44Cu56 system, it still offers certain flexibility in predicting other 
compositions without new training. Such flexibility comes from the 
variety of ULEs extracted by our ML model because each ULE has its own 
local composition (as seen in Fig. 3). For materials with very different 
chemistries or compositions, the specific ULEs in Fig. 3 could be 
different. But the methodology developed in Fig. 1 is general, and the so- 
derived probability spectrum barcode interpretation would be broadly 
applicable. 
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3.2. ULEs structures and their connections to short/medium range orders 

To dive deeper into the physical meaning of those ULEs and to tie 
them to people’s existing knowledge in the field, we conduct short-range 
orders (SROs) analyses via 1st-nearest-neighbor (1NN) Voronoi tessel
lation with respect to the center atoms of interested ULEs. We would like 
to note, though, that the ULEs are spatially more extended than 1NN 

shell. The first observation, as illustrated in Fig. 3, is that they can be 
divided into 2 groups. More specifically, 25 ULEs possess relatively high 
symmetries of their kernel SROs (i.e., indices satisfying 2n4 + n5 = 12), 
while in the rest 15 ULEs their kernel SROs are non-Kasper clusters. 
Given the comparable sizes of the two groups (25 vs. 15), it indicates 
that both symmetric and asymmetric SROs are important in determining 
the properties of metallic glasses. This corroborates well with the picture 

Fig. 2. Main plot on the left: ML prediction on the IS energy of 2000-atoms samples. A few representative ULE probability barcodes are listed in the right panel. The 
inset plot shows the prediction results of 4000-atoms samples purely based on the training in 2000-atoms samples, demonstrating the extendibility of the present 
ML model. 

Fig. 3. The 40 most important ULEs. Yellow cells represent their kernel (1NN shell) Voronoi tessellations, which can be divided into two groups based on their 
Voronoi cells symmetries – the Kasper kernel (s1-s25) and non-Kasper kernel (s26-s40), respectively. The SHAP value of various ULEs is shown in Appendix, Fig. A2. 
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established in previous studies [18,25,59], namely the mutual impor
tance of icosahedra and geometrically unfavorable motifs. It is worth 
emphasizing that we have not provided any SROs information a priori, 
and these important ULEs are automatically extracted purely based on 
the static configurations of input training samples. In other words, the 
consistencies with earlier studies manifest the effectiveness of our ML 
model. 

Another critical observation is that SROs information alone cannot 
sufficiently well describe metallic glasses. More specifically, as shown in 
Fig. 3, there are multiple different ULEs sharing the same index of their 
kernel SROs. This equivalently means that the same SROs do not 
necessarily yield the same properties, and they may lead to different 
impacts on the samples’ global energy when being embedded in various 
ULEs. For example, it has been widely believed that icosahedra (i.e., 
〈0,0,12,0〉 Voronoi index) in metallic glasses have a propensity for sta
bility [25], a scrutiny of the Pearson correlation coefficients between 
each individual ULEs and the samples’ global energy shown in Fig. 4, 
however, suggests a diverse result. More specifically, while some 
icosahedra-containing ULEs (e.g., s2, s8, s15, etc.) exhibit an as-expected 
negative correlation with system’s global energy, some other 
icosahedra-containing ULEs (e.g., s1, s3, s5, etc.) actually show an inverse 
correlation. This indicates that a higher fraction of icosahedra does not 
necessarily always lead to a more stable metallic glass sample. Such new 
knowledge is beyond what the conventional Voronoi cells-based SROs 
statistics can provide, and it, therefore, sheds more in-depth insights into 
the understanding of metallic glasses. Note that there is an increasing 
consensus among the community that medium-range orders (MROs) 
must play an indispensable role in amorphous materials [59–63], and 
our present study lends credence to such a notion. Furthermore, while it 
is beyond the scope the present study, it is worth marking that the 
combined XGBoost and SHAP ranking algorithms allow one to quanti
tatively measure and compare the relative importance of various ULEs, 
which may thus enable a quantitative analysis on the SROs-MROs con
nections that warrant future studies. 

3.3. Structural heterogeneity entailed in the spectrum barcode 

In addition to the global stability, a glass sample’s intrinsic structural 
heterogeneity – e.g., non-uniform partitions of strains across the sample 
upon loading – plays a decisive role in its deformation behavior [19–22, 
64,65]. We demonstrate in this section that such heterogeneity infor
mation is to some extent entailed in the 40-dimensional probability 
spectrum barcode generated by our ML model. To begin with, we pre
pare and contrast the samples with different levels of structural het
erogeneities. The relatively less heterogeneous samples are prepared via 
thermal processing, during which a controlled cooling treatment is 
uniformly introduced into a high-temperature equilibrated supercooled 
liquid. As discussed in Section 2.1 and illustrated in the left panel of 
Fig. 5, by tuning the annealing time a multiplicity of samples across a 
broad IS energy range can be generated. The structurally more hetero
geneous samples are prepared via various thermo-mechanical loadings 
shown in the right panel of Fig. 5. More specifically, Lees-Edwards 
boundary conditions are used to impose the global shear deformation 
at a controlled strain rate of 107 s−1. The operational temperatures vary 
from 300 K to 700 K, and lower temperature leads to more heterogenous 
structures. The sample can thus be driven to various steady-state flow 
states with distinct energies and heterogeneities, as illustrated in the 
right panel of Fig. 5. We would like to emphasize that the mechanical 
loading condition applied here is a typical MD strain rate that is much 
higher than normal mechanical testing in experiments. However, it is 
worth noting that the purpose of the MD simulations here in the right 
panel of Fig. 5 is not to retrieve the mechanical properties such as yield 
strength at various thermo-mechanical conditions. Instead, the purpose 
is to utilize mechanical loading as a knob to drive the samples to het
erogeneous structures (e.g., with shear banding inside), so that one can 
compare with those more homogenous thermally processed samples and 
examine whether or not our ML model can capture the structural het
erogeneity information. 

We show a few examples in the figure on the atomic-level von Mises 
strain distributions in differently prepared samples, and one can confirm 
that the mechanically driven structures are in general more heteroge
neous, while the level of heterogeneity increases as temperature de
creases. In other words, as illustrated in Fig. 5, by comparing the 
thermally processed and mechanically driven samples at the same en
ergy levels one can then probe how the structural heterogeneity infor
mation would be reflected in the spectrum barcode. 

A systematic comparison is shown in Fig. 6, where two remarkable 
features are revealed. At first, as long as the energy levels are consistent, 
the thermally processed samples and the mechanically driven samples 
always present similar values of 

∑25
1 si (or 

∑40
26si), although a clear 

quantitative correlation remains unclear (see Fig. 7 in Discussion section 
below for more discussion). Secondly, by scrutinizing the differences 
between the spectrum barcodes, denoted as δ s→ ≡ s→th − s→mech, it is 
discovered that the standard deviation of δsi in Group-2 exhibits a strong 
correlation with the heterogeneity level. In particular, the more het
erogeneous the samples are (e.g., M300), the larger the standard de
viations of the data entries [δs26,⋯,δs40] one can expect. By contrast, the 
standard deviation of δsi in Group-1 is almost flat and not sensitive to a 
sample’s heterogeneity level. It is worth noting that, all the training and 
learning in the present study are based on thermally processed samples 
only. And the fact this model can grasp information on the structural 
heterogeneity level of a deformed sample is unexpected and profound. It 
demonstrates the hereby obtained important ULEs, as well as their 
probability spectrum representations, are effective ways to decipher 
amorphous solids in general thermo-mechanical environments. 

4. Discussion 

In the present work a new ML pipeline is developed to study the 
structures and properties of amorphous solids. We employ the SOAP 

Fig. 4. The Pearson correlation coefficients between the samples’ global energy 
and each of the 40 most important ULEs. The ULEs containing 〈0,0,12,0〉 SRO 
kernels are marked with red circles, while others are represented by 
gray squares. 
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descriptor to encode the local environments, which are then fed into the 
extreme gradient boosting tree algorithm to train, learn, and eventually 
predict the global configurational energy of metallic glasses. By 
comparing the SHAP scores of various local environments, we identify 
40 important ULEs that are most responsible for the IS energy of a given 
glass sample. A designed interpreting stage is then employed to 
decompose a given sample’s 3 N degrees of freedom configuration into a 
40-dimension probability vector via frequency mapping of those ULEs. 
The obtained probability spectrum barcode is thus regarded as a 
signature representation of an interested sample. We demonstrate that 
the so-constructed encoding-interpreting pipeline can reliably predict 
metallic glasses samples’ energy within the error of 10−3 eV/atom. It is 
worth noting that, with the hereby constructed probability spectrum 
representation there is no size constraint to this model. We demonstrate 
that the important ULEs learned/extracted from smaller samples can be 
readily used to predict the energy of larger samples without the neces
sity of any new trainings, which marks an enhanced extendibility of the 
present study. Note that if a new configuration has none of those 40 
ULEs then technically its probability vector would be zero. This would 
mean the input sample is completely out of the scope of our present 
study (e.g., at non-glassy state or fundamentally different chemistry/ 
composition). But such a scenario is not likely to occur for the ZrCu 
metallic glasses concerned in our present study. Because as discussed 
above, the simulation samples we used to train the model actually cover 
a broad range of effective cooling rates, including conditions compara
ble with real experiments. Therefore, it is likely that all the important 
ULEs in the ZrCu system are already captured by our ML model. This is 
also supported by the fact that our model can reasonably well predict 

larger samples’ global energy without any new training. 
Further topological analyses to the kernel structures (e.g., within 

1NN shell) of ULEs reveal two notable findings. At first, both symmetric 
SROs (Group-1) and geometrically unfavored motifs (Group-2) are 
important. This is markable not only because they are consistent with 
people’s knowledge in the field through a number of earlier studies, but 
also because we have not provided any SROs information a priori, and 
the important ULEs are automatically extracted solely based on parti
cles’ static spatial coordinates. Secondly, it is discovered that different 
ULEs may share the same kernels of SROs. This suggests the insufficiency 
of SROs in quantitatively describing amorphous solids and thus lends 
further credence to the increasing appreciation of MROs by the com
munity in recent years. More specifically, the ULEs-based probability 
spectrum barcode constructed in the present study may offer a viable 
pathway moving forward to help people better connect SROs and MROs. 
For example, as discussed earlier, by using XGBoost and SHAP algo
rithms the relative importance of each entry in the ULEs spectrum bar
code can be quantitatively measured. This eventually will allow one to 
answer critical questions such as, how a specific SRO, when embedded 
into various MROs, would differently impact the sample’s property. This 
will be discussed in a separate study in the future. 

It is noteworthy that, in addition to the high-fidelity prediction of 
global energy, a sample’s signature probability spectrum barcode also 
entails important information on its intrinsic structural heterogeneity. 
To better understand this, one can first set the thermally prepared 
samples and their corresponding barcodes (e.g., the ones with “Thermal” 
label in Fig. 6) as the references for the following considerations: (a) 
Thermal processing is arguably the most widely used simple protocol in 

Fig. 5. (Left) Preparing samples with relatively uniform structures at various energy levels by controlling annealing protocols. (Right) Preparing samples with 
heterogeneous strain distributions by mechanically driving at different temperatures. By comparing the barcodes of the samples at the same energy levels between 
the left and right panels, one can then probe how the structural heterogeneities are entailed in the barcodes. Note that there were no new trainings for the shear- 
loaded samples. In other words, their barcodes are generated using the same ML model based on the trainings only on thermally processed samples, as explained 
above in Fig. 1. It is also worth noting that, the mechanical loading condition applied here is a typical MD strain rate that is much higher than normal mechanical 
testing in experiments. However, the purpose of the simulations in the right panel is not to retrieve the mechanical properties such as yield strength at various 
thermo-mechanical conditions. Instead, the purpose is to utilize mechanical loading as a knob to drive the samples to heterogeneous structures (e.g., with shear 
banding inside), so that one can then compare with those more homogenous thermally processed samples and examine whether the present ML model can capture the 
structural heterogeneity information. 
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both experiments and atomistic modeling to prepare metallic glasses 
with good reproducibility, making them a natural choice for reference 
states; (b) In a statistical sense, thermally processed metallic glasses 
samples are known isotropic or do not exhibit system-level heteroge
neities, making them a good choice to better contrast the structural 
heterogeneity in mechanically driven samples. Now with these clearly 
defined reference states, one can then better interpret the heterogeneity 
levels of mechanically driven samples from their barcodes. As shown in 
Fig. 6, through systematic comparisons between the thermally processed 

references and the mechanically driven samples, it is found that the 
probability distributions and fluctuations of those ULEs in Group-2 
exhibit a strong correlation with the level of structural heterogeneity. 
More specifically, a structurally more heterogeneous sample is expected 
to show a larger standard deviation over the probability difference en
tries [δs26, ⋯, δs40]. 

In a nutshell, for an arbitrary given sample with unknown processing 
history, one can predict its energy and assess its heterogeneity level in 
two steps: (i) Analyze its ULEs and construct its barcode, from which one 

Fig. 6. (Left) Barcodes comparisons for the thermally prepared samples and mechanically driven samples at the same energy levels. (Middle) The corresponding 
ratios of Group-1 entries 

∑25
1 si (blue bars) and Group-2 entries 

∑40
26si (orange bars) between the thermally prepared samples and mechanically driven samples are 

always close to 1. (Right) The standard deviations of the barcodes contrast vectors δ s→, as well as the associated error bars, in particular, the data entries in Group-2 
[δs26, ⋯, δs40], exhibit a strong correlation with samples’ strain heterogeneities (red dashed curve). 

Fig. 7. (a) Relation between 
∑25

1 si and 
∑40

26si with the system’s global energy. (b) Relation between the summation of those <0,0,12,0>-containing ULEs and the 
system’s global energy. 
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can predict its global energy with the present ML model; (ii) Contrast its 
barcode to the reference barcode at the same global energy level, and 
particularly focus on the standard deviation of δsi in Group-2. The larger 
the standard deviations of the data entries [δs26, ⋯, δs40], one should 
then expect the more heterogeneous the sample would be. The hereby- 
established capability of simultaneously predicting a glassy sample’s 
global energy and internal structural heterogeneity is markable, because 
it may endow promising implications in terms of deformation control. 
For example, it is known that the ductility of metallic glasses is largely 
affected by both the global energy of the samples [66] and their intrinsic 
structural heterogeneities [21,67]. In particular, the higher energy state 
(i.e., more rejuvenated) a sample is located at, the more likelihood it will 
yield a ductile behavior; meanwhile, the higher level of structural het
erogeneity a sample possesses, the larger chance it will experience a 
small shear bands proliferation while avoiding the formation of a major 
catastrophic shear band, which is also beneficial for an overall ductile 
deformation. Therefore, in light of the present study, one may envisage a 
new barcode-oriented strategy to design amorphous solids. More spe
cifically, one can start from a targeted 40-dimension probability spec
trum barcode that possesses certain desired global energy and internal 
structural heterogeneity. Then the sample’s structure can be built up 
from the bottom by adjusting the particles’ spatial coordinates – this 
could be done via inverse engineering algorithms such as reverse Monte 
Carlo – until the barcode of the actual sample converges to the targeted 
barcode. Such a barcode-mediated simultaneous tuning on both global 
energy and internal structural heterogeneity would allow for more 
effective control over metallic glasses’ deformation behavior. 

Admittedly, there are questions that remain unanswered. For 
example, through the present study we demonstrate – assisted with ML 
models – one can reduce the 3 N degrees-of-freedom information (N 
represents the number of atoms) to 40-dimensional vector while 
retaining rather high prediction precisions. A natural following question 
would hence be, can one further reduce such 40-dimensional informa
tion into even lower dimensions in a more comprehensible manner? In 
Fig. 7-a below we show the correlation between the global energy of the 
samples considered in Fig. 6 and their corresponding 

∑25
1 si and 

∑40
26si, 

namely the fractional summations of Group-1 ULEs and Group-2 ULEs, 
respectively. Note that the two groups of data are actually equivalent to 
each other (i.e., in mirror symmetry), because as a frequency barcode 
there is 

∑25
1 si +

∑40
26si = 1 by definition. There may exist a weak 

descending (ascending) trend for the blue (orange) data points, but 
given the relatively large standard deviations we do not believe a 
quantitative and meaningful correlation can be drawn. This is not too 
much of a surprise from our eyes, because what was essentially done in 
Fig. 7-a is to reduce the information entailed in a 40-dimension vector to 
a simple scalar number and then examine its correlation with the sys
tem’s global energy. And for a completely disordered material system 
such as metallic glass, it is highly doubtful whether or not there could 
exist such a simple reduction. In Fig. 7-b we made a similar plot, but only 
examining the summation of all the <0,0,12,0>-containing ULEs. Now a 
much stronger correlation appears, and the higher summation of those 
<0,0,12,0>-containing ULEs the lower energy level (i.e., more stable) 
the system shall stay at. Such a correlation well aligns with the 
consensus in the community, namely higher fraction of icosahedra SROs 
will increase metallic glasses’ stability. But again, the standard de
viations are still considerable, meaning that one cannot make high- 
precision predictions to given samples’ energy purely based on such 
quantity. In contrast, by utilizing all the 40-dimensional information the 
ML model prediction can reach much higher precision with errors only 
around 10−3 eV/atom. Therefore, to what extent one can further reduce 
the dimensions needed to decipher amorphous solids and meanwhile 
improve its comprehensibility remain as challenges to be tackle in the 
next step. 

In addition, we employed an embedded atom method (EAM)-type 
interatomic potential for the present computational studies. Such an 

EAM potential [24] – although has been calibrated with first-principle 
calculations and widely adopted by the community – is after all an 
empirical force field. It is noticed neural network (NN) based ML tech
niques have been applied in developing high-precision interatomic po
tentials in recent years [68]. For example, Andolina et al. recently 
optimized [32] the interatomic force field in the ZrCu system using a 
deep learning neural network algorithm, which resembles well with the 
density functional theory (DFT) results. Therefore, in the outlook for 
higher precision calculations on the structures and properties of metallic 
glasses in the future, it will be worth implementing such a force field into 
our hereby-developed interpretable and extendible two-stage (enco
ding/interpreting) ML pipeline in Fig. 1. It is also worth noting that, the 
ML-obtained probability spectrum barcode in the present study is 
essentially a frequency mapping of ULEs, and we have not directly 
provided the ULEs’ spatial distribution information into the ML model. 
Therefore, from our perspective, the fact that our ML model can capture 
important non-local information, such as the structural heterogeneity 
level, is somewhat beyond expectation. This may imply a profound 
connection between the occurrence probabilities of various types of 
local atomic packings and their spatial correlations, which is probably 
mediated by some global invariants/constraints such as the fixed density 
or imposed boundary conditions. Note that some important concepts in 
the crystalline materials community, such as geometrically necessary 
dislocations (GNDs) [69], may share a similar spirit in terms of that they 
could also induce non-local effects and structural gradients. However, a 
thorough investigation into this problem would warrant future studies. 

5. Conclusion 

The main conclusions of the present study are summarized below:  

• With the designed encoding-interpreting strategy and extreme 
gradient boosting tree XGBoost ranking algorithm, 40 most impor
tant ULEs are extracted, which allows one to characterize an arbi
trary given sample’s 3 N degrees-of-freedom configuration with a 40- 
dimension probability spectrum barcode that can make high- 
precision energy prediction of the entire sample (error less than 1 
meV/atom).  

• Without any provided SROs information a priori, the SHAP scores 
ranking and the analyses on the kernel topologies (e.g., within 1NN 
shell) of ML-extracted ULEs naturally reveal the significance of both 
symmetric SROs (Group-1) and geometrically unfavored motifs 
(Group-2).  

• Same SROs, when embedded into various MROs, may impact the 
samples’ global energy in qualitatively different manners. For 
example, a higher fraction of icosahedra does not necessarily always 
lead to a more stable metallic glass sample, in contrast to conven
tional wisdom.  

• The internal structural heterogeneity level of a given sample can be 
assessed by contrasting its barcode with the reference barcode and 
scrutinizing the standard deviation of δsi in Group-2. The larger the 
standard deviations of the data entries [δs26, ⋯, δs40], the more het
erogeneous the sample is expected to be. 
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Appendix 

1. Improvement of the accuracy of the current model: 
In this study, our goal is to efficiently predict the global energy and structural heterogeneity of Zr44Cu56 systems in a physically interpretable 

manner within acceptable numerical errors. The accuracy of our ML model could be enhanced and is ultimately determined by two main factors: the 
size and diversity of the training set and the number of features (i.e., numbers of ULEs).

Fig. A1. The testing error under different ML inputs: The green, blue, and red curves have various amounts of data generated from 10, 20, and 30 independent 
cooling processes. The black delta point is (5223, 0.9763 eV), corresponding to the ML model in the manuscript of 10k samples and 5223 ULEs. Not surprisingly the 
training error and prediction accuracy are related to dataset volume and training algorithm [70,71]. 

Fig. A1 shows the prediction error of the global energy using ML models trained under different settings. From top to bottom, the three curves are 
models trained using different amounts of data. And each data point is an average of at least five cases. Worth noticing, for these ML practices, to 
explore the effect of model complexity, all the ULEs gotten from the samples are used as training features, which is different from the selection of the 
40 most important ULEs in the manuscript. The black triangle and the short-dashed line depict the averaged best accuracy of the model in the 
manuscript, which is about 0.9763 eV for a 2000-atoms system. 

The dataset is established according to the same cooling–annealing protocol depicted in the main text. The 2000-atoms samples are first equili
brated at 2000 K and then cooled to 0 K with the cooling rate range from 1010 K/s to 1013 K/s. Then, the energy-minimized samples are lifted to the 
near-Tg temperature window of 500 K ~ 700 K and kept for 10 ns. Each cooling process would produce 1000 samples. In Fig. A1, the green, blue, and 
red curves have 10, 20, and 30 cooling processes, accordingly. From the curves, we can find that with a similar number of ULEs, expansion of the 
dataset can considerably reduce the prediction errors. In addition, for the data points on the same curve, with a fixed volume of samples, by increasing 
the number of ULEs (larger similarity threshold), one could also reduce the overall errors. 

For the ML practices shown in Fig. A1, the smallest error we got is about 0.8159 eV for a 2000-atoms system. Technically, there is still plenty of 
room for improvement. However, as mentioned previously, the primary focus of this research is to build interpretable physical picture rather than 
pursuing the numerical precision, and such an error is acceptable. 

2. SHAP scores distribution: 
Fig. A2 below shows the SHAP values of all the 5223 ULEs retrieved in the main text under the similarity threshold of Δth = 0.84. In the inset of 

Fig. A2 we show the histogram of the SHAP value distribution, and it can be seen that there is a long tail for those ULEs with SHAP value larger than 
0.05, indicating their relative importance compared with others. The total number of ULEs in the long tail is around 40, and we therefore select 40 as 
the effective dimension to construct the probability spectrum barcode in the main body of the present study

Fig. A2. The SHAP values of all ULEs. Inset plot shows the histogram of SHAP value distribution.  

3. The distribution of testing errors: 
Fig. A3 shows the probability density function (PDF) of the error distributions for both the 2000-atoms system and the larger 4000-atoms system. 

The blue distribution shows the error from 10,000 2000-atoms samples. The dataset of 4000-atoms samples is also prepared according to the protocol 
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in the main text. Here, 2000 samples are included in the red histogram. One can find that the two PDFs are very similar to each other, and 
approximately follow the Gaussian distribution.

Fig. A3. The PDF of testing error for 2000-atoms samples and 4000-atoms samples. The blue histogram includes 10,000 samples while the red one includes 2000.  
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[47] C.W. Rosenbrock, E.R. Homer, G. Csányi, G.L.W. Hart, Discovering the building 
blocks of atomic systems using machine learning: application to grain boundaries, 
npj Comput. Mater. 3 (1) (2017) 29. 

[48] A.R. Ferreira, Chemical bonding in metallic glasses from machine learning and 
crystal orbital Hamilton population, Phys. Rev. Mater. 4 (11) (2020), 113603. 

[49] Q. Wang, J. Ding, L. Zhang, E. Podryabinkin, A. Shapeev, E. Ma, Predicting the 
propensity for thermally activated β events in metallic glasses via interpretable 
machine learning, npj Comput. Mater. 6 (1) (2020) 194. 

[50] E.R. Homer, High-throughput simulations for insight into grain boundary 
structure-property relationships and other complex microstructural phenomena, 
Comput. Mater. Sci. 161 (2019) 244–254. 

[51] X. Liu, X. Li, Q. He, D. Liang, Z. Zhou, J. Ma, Y. Yang, J. Shen, Machine learning- 
based glass formation prediction in multicomponent alloys, Acta Mater. 201 (2020) 
182–190. 

[52] Y. Wu, W.H. Wang, P. Guan, H. Bai, Identifying packing features of atoms with 
distinct dynamic behaviors in metallic glass by machine-learning method, Sci. 
China Mater. 64 (7) (2021) 1820–1826. 

[53] S. Patala, Understanding grain boundaries – the role of crystallography, structural 
descriptors and machine learning, Comput. Mater. Sci. 162 (2019) 281–294. 

[54] K. Xie, C. Qiao, H. Shen, R. Yang, M. Xu, C. Zhang, Y. Zheng, R. Zhang, L. Chen, K. 
M. Ho, Neural network potential for Zr–Rh system by machine learning, J. Phys. 
Condens. Matter 34 (7) (2021), 075402. 

[55] A. Dasgupta, S.R. Broderick, C. Mack, B.U. Kota, R. Subramanian, S. Setlur, 
V. Govindaraju, K. Rajan, Probabilistic assessment of glass forming ability rules for 
metallic glasses aided by automated analysis of phase diagrams, Sci. Rep. 9 (1) 
(2019) 357. 

[56] T. Chen, C. Guestrin, XGBoost: a scalable tree boosting system, in: Proceedings of 
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and 
Data Mining, San Francisco, California, USA, Association for Computing 
Machinery, 2016, pp. 785–794. 

[57] S.M. Lundberg, G. Erion, H. Chen, A. DeGrave, J.M. Prutkin, B. Nair, R. Katz, 
J. Himmelfarb, N. Bansal, S.I. Lee, From local explanations to global understanding 
with explainable AI for trees, Nat. Mach. Intell. 2 (1) (2020) 56–67. 

[58] S.M. Lundberg, S.I. Lee, A unified approach to interpreting model predictions, in: 
I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, 
R. Garnett (Eds.), Advances in Neural Information Processing Systems, Curran 
Associates, Inc., 2017. 

[59] B. Wang, L. Luo, E. Guo, Y. Su, M. Wang, R.O. Ritchie, F. Dong, L. Wang, J. Guo, 
H. Fu, Nanometer-scale gradient atomic packing structure surrounding soft spots in 
metallic glasses, npj Comput. Mater. 4 (1) (2018) 41. 

[60] P. Zhao, J. Li, J. Hwang, Y. Wang, Influence of nanoscale structural heterogeneity 
on shear banding in metallic glasses, Acta Mater. 134 (2017) 104–115. 

[61] K. Nomoto, A.V. Ceguerra, C. Gammer, B. Li, H. Bilal, A. Hohenwarter, 
B. Gludovatz, J. Eckert, S.P. Ringer, J.J. Kruzic, Medium-range order dictates local 
hardness in bulk metallic glasses, Mater. Today 44 (2021) 48–57. 

[62] S. Im, Y. Wang, P. Zhao, G.H. Yoo, Z. Chen, G. Calderon, M. Abbasi Gharacheh, 
M. Zhu, O. Licata, B. Mazumder, D.A. Muller, E.S. Park, Y. Wang, J. Hwang, 
Medium-range ordering, structural heterogeneity, and their influence on properties 
of Zr-Cu-Co-Al metallic glasses, Phys. Rev. Mater. 5 (11) (2021), 115604. 

[63] S. Im, Z. Chen, J.M. Johnson, P. Zhao, G.H. Yoo, E.S. Park, Y. Wang, D.A. Muller, 
J. Hwang, Direct determination of structural heterogeneity in metallic glasses using 
four-dimensional scanning transmission electron microscopy, Ultramicroscopy 195 
(2018) 189–193. 

[64] Y. Fan, T. Iwashita, T. Egami, Evolution of elastic heterogeneity during aging in 
metallic glasses, Phys. Rev. E 89 (06) (2014), 062313. 

[65] J.C. Qiao, Q. Wang, J.M. Pelletier, H. Kato, R. Casalini, D. Crespo, E. Pineda, 
Y. Yao, Y. Yang, Structural heterogeneities and mechanical behavior of amorphous 
alloys, Prog. Mater. Sci. 104 (2019) 250–329. 

[66] Y. Sun, A. Concustell, A.L. Greer, Thermomechanical processing of metallic glasses: 
extending the range of the glassy state, Nat. Rev. Mater. 1 (9) (2016) 1–14. 

[67] C. Zheng, K. Mathew, C. Chen, Y. Chen, H. Tang, A. Dozier, J.J. Kas, F.D. Vila, J. 
J. Rehr, L.F. Piper, Automated generation and ensemble-learned matching of X-ray 
absorption spectra, npj Comput. Mater. 4 (1) (2018) 12. 

[68] J. Behler, M. Parrinello, Generalized neural-network representation of high- 
dimensional potential-energy surfaces, Phys. Rev. Lett. 98 (14) (2007), 146401. 

[69] H. Gao, Y. Huang, Geometrically necessary dislocation and size-dependent 
plasticity, Scr. Mater. 48 (2) (2003) 113–118. 

[70] L. Tian, Y. Fan, L. Li, N. Mousseau, Identifying flow defects in amorphous alloys 
using machine learning outlier detection methods, Scr. Mater. 186 (2020) 
185–189. 

[71] Y. Wang, B. Ghaffari, C. Taylor, S. Lekakh, M. Li, Y. Fan, Predicting the energetics 
and kinetics of Cr atoms in Fe-Ni-Cr alloys via physics-based machine learning, Scr. 
Mater. 205 (2021), 114177. 

C. Liu et al.                                                                                                                                                                                                                                      

http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0039
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0039
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0040
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0040
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0040
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0041
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0041
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0041
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0042
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0042
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0042
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0043
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0043
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0043
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0044
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0044
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0045
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0045
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0046
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0046
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0046
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0047
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0047
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0047
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0048
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0048
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0049
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0049
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0049
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0050
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0050
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0050
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0051
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0051
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0051
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0052
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0052
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0052
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0053
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0053
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0054
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0054
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0054
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0055
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0055
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0055
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0055
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0056
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0056
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0056
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0056
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0057
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0057
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0057
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0058
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0058
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0058
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0058
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0059
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0059
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0059
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0060
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0060
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0061
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0061
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0061
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0062
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0062
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0062
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0062
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0063
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0063
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0063
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0063
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0064
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0064
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0065
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0065
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0065
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0066
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0066
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0067
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0067
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0067
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0068
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0068
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0069
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0069
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0070
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0070
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0070
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0071
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0071
http://refhub.elsevier.com/S1359-6454(23)00611-0/sbref0071

	Concurrent prediction of metallic glasses’ global energy and internal structural heterogeneity by interpretable machine lea ...
	1 Introduction
	2 Materials and methods
	2.1 Samples preparation
	2.2 ML framework
	2.3 Training model and parameters

	3 Results
	3.1 Global energy prediction
	3.2 ULEs structures and their connections to short/medium range orders
	3.3 Structural heterogeneity entailed in the spectrum barcode

	4 Discussion
	5 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	Supplementary materials
	Appendix
	References


