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ABSTRACT

The host network integrates processor, memory, and peripheral in-

terconnects to enable data transfer within the host. Several recent

studies from production datacenters show that contention within

the host network can have significant impact on end-to-end appli-

cation performance. The goal of this paper is to build an in-depth

understanding of such contention within the host network.

We present domain-by-domain credit-based flow control, a con-

ceptual abstraction to study the host network. We show that the

host network performs flow control over different domains (sub-

networks within the host network). Different applications may tra-

verse different domains, and may thus observe different performance

degradation upon contention within the host network. Exploring the

host network from this lens allows us to (1) near-precisely explain

contention within the host network and its impact on networked

applications observed in previous studies; and (2) discover new, pre-

viously unreported, regimes of contention within the host network.

More broadly, our study establishes that contention within the

host network is not merely due to limited host network resources

but rather due to the poor interplay between processor, memory,

and peripheral interconnects within the host network. Moreover,

contention within the host network has implications that are more

far-reaching than the context of networked applications considered in

previous studies: all our observations hold even when all applications

are contained within a single host.
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1 INTRODUCTION

In conversations on ªnetworksº, our community usually engages in

discussions on the Internet, datacenter networks, mobile networks,

etc. This paper is about a different networkÐthe host networkÐthat

integrates processor, memory, and peripheral interconnects to en-

able data transfer between devices (processors, memory, network

interface cards, storage devices, accelerators, etc.) within a host.

Several studies from large-scale production datacenters [1, 42, 44]

have demonstrated that contention within the host network can re-

sult in significant throughput degradation, tail latency inflation, and

isolation violation for networked applications. As eloquently argued

in [1, 2, 10, 42], the host network is becoming an increasingly promi-

nent bottleneck due to unfavorable technology trends: performance

of peripheral interconnects is improving much more rapidly than

processor and memory interconnects, resulting in increasing imbal-

ance of resources and contention within the host network. Designing

future network protocols, operating systems, and hardware requires

an in-depth understanding of the various regimes and root causes of

such contention within the host network.

Processor, memory, and peripheral interconnects have been stud-

ied for decades in the computer architecture community [16, 23,

31, 36, 37, 47±54, 62±64]; however, these works primarily focus

on the behavior of individual interconnects rather than the inter-

play between these interconnects that leads to contention within the

host network. Recent work from the computer networking commu-

nity [1, 2, 42, 44, 55] studies the impact of contention within the

host network on the behavior of end-to-end network protocols (e.g.,

packet queueing and drops at the host), rather than characterizing

the root causes of contention within the host network. Thus, our

understanding of the host networkÐespecially the interplay between

processor, memory, and peripheral interconnects that leads to con-

tention within the host networkÐis rudimentary at best. The goal of

this paper is to advance this status quo.

The key idea that drives our study is domain-by-domain credit-

based flow control, a conceptual abstraction to study the host net-

work. We demonstrate that the host network can be decomposed

into multiple ªdomainsº (sub-network of the host network)1, each

of which uses an independent credit-based flow control mechanism.

Specifically, the sender of each domain is assigned credits that are

used to limit the amount of data the sender can inject into the domain;

the sender consumes a credit to send one message, and this credit

is replenished when the message receipt is acknowledged by the

receiver of the domain. Different domains within the host network

have different numbers of credits and different unloaded latency.

Each data transfer, depending on the source (compute or peripheral

1The notion of a domain here is different from administrative domains in the Internet

architecture, and in ATM networks [4, 13, 20, 21]. Importantly, unlike administrative

domains, the domains in our study do not need to be non-overlapping.
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device) and on the type (read or write), traverses a different set of do-

mains. The end-to-end performance for each transfer depends on the

number of credits and the per-request latency of domains traversed

by that transfer. Many details of existing host network hardware are

not public; nevertheless, we reverse engineer Intel host architecture

to characterize each domain, its credits, and its unloaded latency.

The lens of domain-by-domain credit-based flow control enables

us to capture the subtle interplay between processor, memory, and

peripheral interconnects that leads to nanosecond-scale latency in-

flation and host resource underutilization in certain domains. This,

along with the knowledge of domains traversed by each data transfer,

allows us to near-precisely explain how nanosecond-scale ineffi-

ciencies within the host network percolate through the host hard-

ware, operating systems, and network protocols to negatively impact

application-level performance. We do this both for applications gen-

erating peripheral-to-memory traffic (referred to as P2M apps, e.g.,

networked and storage applications [11, 14, 61, 70, 72]) and for

applications generating compute-to-memory traffic (referred to as

C2M apps, e.g., in-memory databases [17, 19, 57, 60] and systems

for graph analytics [24, 40, 45]). More concretely:

• We reproduce the phenomenon of contention within the host net-

work and its impact on networked applications observed in pre-

vious studies. We do this for both networked applications using

in-kernel [2] and hardware-offloaded RoCE/PFC [42, 44] trans-

port protocols. We find that networked applications (P2M apps in

our case) can indeed suffer from performance degradation, e.g.,

when both C2M apps and networked applications are doing mem-

ory writes. We provide precise root causes for the phenomenon.

We also extend observations made in all prior studies [1, 2, 42, 44]:

we demonstrate (and provide explanation for) degradation in C2M

app performance along with networked app performance.

• We identify new, previously unreported, regimes of contention

within the host network: we find thatÐin sharp contrast to the

phenomenon observed in previous studies [1, 2, 42, 44]ÐP2M

apps can, in fact, cause severe performance degradation for C2M

apps for most workloads, with minimal or no impact on the P2M

app performance. For instance, we observe that when C2M apps

are colocated with P2M apps performing storage operations, the

C2M app suffers from 1.2 − 2× performance degradation, with

no impact on the P2M app performance. These new regimes are

reproducible across multiple generations of servers with differ-

ent processors, different memory bandwidth to core count ratios,

and different configurations (e.g., with and without direct cache

access [28], with and without prefetching, etc.).

Our study suggests that the impact of contention within the host net-

work has implications that are more far-reaching than the context of

networked applications considered in previous studies [1, 2, 42, 44].

In particular, all our observations hold even when all applications

are contained within a single host (e.g., using storage applications

that generate P2M traffic using locally-attached storage devices).

Thus, our work may be of independent interest to researchers and

practitioners not only in computer networking but also in operating

systems and computer architecture.

The code, along with the documentation necessary to repro-

duce our results, is available at https://github.com/host-architecture/

understanding-the-host-network.

Ice Lake Cascade Lake

CPU Xeon Platinum 8362 Xeon Gold 6234

Cores 32 @ 2.8GHz 8 @ 3.3GHz

LLC 48MB 24MB

DRAM 4×3200MHz DDR4 2×2933MHz DDR4

DRAM BW 102.4GB/s 46.9GB/s

PCIe 8×PM173X NVMe 4×P5800X NVMe

PCIe BW 32GB/s 16GB/s

Table 1: Hardware configuration of our two servers. All of the specifica-

tions are for a single socket in each server. DRAM and PCIe bandwidths

are theoretical maximum values.

2 HOST NETWORK CONTENTION REGIMES

In this section, we broadly characterize the interplay of processor,

memory, and peripheral interconnects within the host network using

four ªquadrantsº (§2.2) that reveal different regimes in terms of

contention within the host network and performance degradation for

C2M and P2M apps. Our key findings are:

• The first regime, referred to as the blue regime, captures a new

phenomenon: C2M apps observe performance degradation, while

P2M apps observe minimal or no performance degradation. Sur-

prisingly, this phenomenon can happen even when memory band-

width is far from saturated.

• The other regime, referred to as the red regime, captures the

phenomenon observed in previous studies [1, 2, 42, 44]: P2M apps

observe severe performance degradation when memory bandwidth

gets saturated. In addition, we find that C2M apps also observe

significant performance degradation.

This section focuses on characterizing the host contention regimes;

we discuss the root causes in §5. We first focus on a setup where all

traffic is contained within the host (P2M traffic generated by locally

attached storage devices)Ðthis allows us to isolate the impact of con-

tention within the host network from the impact of network protocol

behavior (packet drops, queueing delays, and/or PFC pause frames)

on application performance. We then discuss how our observations

generalize to networked applications in §2.3.

We use two testbeds with different processors and different re-

source ratios (Table 1). The first testbed uses Intel Ice Lake proces-

sors and has roughly the same resource ratios (cores, memory band-

width and PCIe bandwidth) as the testbed in the Google study [1].

The second testbed uses Intel Cascade Lake processors and has a

lower core to memory bandwidth ratio. We run our experiments on

a single socket. Each DRAM module is attached through a separate

channel, and a simple sequential read microbenchmark saturates

more than 90% of theoretical maximum memory bandwidth.

2.1 Host network contention with real applications

We first present the new phenomenon: C2M apps observing perfor-

mance degradation, with minimal or no performance degradation for

P2M apps. This phenomenon is reproducible for a variety of con-

figurations: multiple C2M apps with different compute-to-memory

bandwidth demands, multiple server configurations, with and with-

out Intel Data Direct I/O (DDIO) [28] technology, and with and

without prefetching.

C2M and P2M apps used in our experiments. We use two C2M

apps, each with different compute-to-memory bandwidth demands

and with different access patterns. The first C2M app is a popular
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Figure 1: A new phenomenon of contention within the host network: C2M and P2M apps are colocated, C2M app performance degrades while P2M

app performance is unaffected. This happens even though cores are isolated and memory bandwidth is far from saturated. (a-d; left-right) (a, b)

Performance degradation observed by C2M and P2M when they are colocated (ratio of isolated throughput and colocated throughput for each data

point; degradation for GAPBS is the slowdownÐratio of colocated execution time to isolated execution time); (c, d) Memory bandwidth utilization

when C2M and P2M are colocated, broken down by C2M and P2M.
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Figure 2: Enabling DDIO can worsen performance degradation for both C2M and P2M applications when the working set size does not fit in cache

(left-right, a-d) (a, b) Performance degradation for C2M and P2M when they are colocated with DDIO on/off; (c, d) Memory bandwidth utilization

when C2M and P2M are colocated with DDIO on/off.

in-memory database called Redis [57], and the second C2M app is a

standard graph processing framework called the GAP Benchmark

Suite (GAPBS) [8]. GAPBS is more memory bandwidth intensive

and performs lighter-weight computations than Redis.

For Redis, we use the standard sharding-based multi-core deploy-

ment setup [12]Ðmultiple independent Redis server instances (each

with its own keyspace) running on a dedicated set of cores. Clients

run on a different set of dedicated cores (1 client core per server

core) and issue queries to the server instances using Unix domain

sockets (the most efficient inter-process communication mechanism

supported by Redis [58]). We use the standard YCSB-C (100% read)

workload with a uniform random access pattern; as is standard,

clients issue queries with parallelism given by the knee-point of

the latency-throughput curve. Performance is measured in terms of

the throughput (queries/sec). The working set size per server core

is 1 million key-value pairs with a 1KB value size, exceeding the

system Last-Level Cache (LLC) even for a single server core. As

a result, the observed cache miss ratio is >95%, and a large num-

ber of C2M memory reads are generated. For GAPBS, we run the

PageRank workload on a random graph of 225 nodes and degree 16,

using the GAPBS default parameters. Performance is measured in

terms of execution time (lower is better). A single graph instance is

shared across all the cores. The workload has a ∼5GB memory foot-

print, significantly larger than the cache, resulting in a large number

of random C2M memory reads. We focus on non-cache-resident

memory-intensive workloads since the phenomenon was observed

in datacenters for similar workloads [1, 42].

We use a lightweight storage-based P2M app, FIO [7], that per-

forms storage accesses with minimal computational overhead. We

configure it to perform sequential reads with 8MB request sizes. This

is representative of storage workloads that perform large sequential

operations, for example, storage nodes of distributed data stores [61]

for analytics workloads. The performance metric is throughput mea-

sured in IOPS. The reads result in direct memory access (DMA)

writes to host memory from the storage device, leading to a large

volume of P2M write traffic. While DDIO minimizes P2M traffic for

many workloads by servicing DMA requests from the cache instead

of memory, it is well known that it is not effective for all work-

loads [10, 18, 66]. Our P2M workload is in the latter categoryÐdue

to the large sequential requests, the application buffers do not fit into

the small portion of the cache that DDIO is allowed to use [18], thus

leading to cache misses and evictions/writebacks for every DMA in

steady state. Therefore, we observe nearly the same average memory

bandwidth utilization for this workload with/without DDIO.

In the following experiments, we first run each of the C2M and

P2M apps in isolation. We then colocate them and measure the

performance degradation for each app. We start with the Ice Lake

setup (Table 1). We partition cores between the applications by

pinning each to a separate set of coresÐwe dedicate 4 cores to the

P2M app (which is more than sufficient to saturate PCIe bandwidth

without compute being a bottleneck) and run the C2M app on the

remaining cores with a varying number of cores. We enable DDIO

and hardware prefetching on this setup.

C2M app performance degrades even when memory bandwidth

is far from saturated. When Redis (C2M) and FIO (P2M) are

colocated, as shown in Figure 1(a), Redis observes throughput degra-

dation (1.25 − 1.32×) while FIO remains unaffected. The surprising

observation here is that degradation is observed even though cores

and PCIe bandwidth are isolated across the applications and memory

bandwidth utilization is far from saturation as shown in Figure 1(c)

(ranging between 33 − 53% of the theoretical maximum, and the

utilization curve has not flattened out). Although the LLC is shared
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Figure 3: Blue and red regimes across four quadrants (1-4 are shown on top-left, top-right, bottom-left, bottom-right respectively). Quadrants are

shaded with the color of the regime they show. For each quadrant, the left column shows the throughput degradation observed by C2M and P2M (ratio

of throughput when run in isolation to the throughput when colocated) and the right column shows the memory bandwidth utilization when they are

colocated broken down by C2M and P2M traffic.

between the applications, it does not play much of a role in de-

termining performance, since both C2M and P2M traffic observe

nearly 100% cache miss ratio even when they are run in isolation.

We investigate the root cause of this performance degradation in §5.

Using GAPBS rather than Redis results in the same high-level

observationÐC2M performance degrades (1.28− 1.98×) while P2M

is unaffected (Figure 1(b)). This again happens even when memory

bandwidth is far from saturated (as shown in Figure 1(d) for fewer

than 15 GAPBS cores). As one would intuitively expect, the magni-

tude of performance degradation is larger for GAPBS compared to

the Redis since it is more memory intensiveÐRedis spends only a

part of its time stalled on memory accesses, while GABPS is stalled

on memory accesses nearly all of the time.

Impact of prefetching, processor generations, and resource ra-

tios. Given the random access nature of the Redis and GAPBS work-

loads, hardware prefetchers have little to no impact on performance.

For both workloads, we found < 5% difference in performance

when comparing prefetch on/off configurations in both isolated and

colocated cases. We repeat the above experiments on the Cascade

Lake setup (Table 1). Here, we dedicate 2 cores to FIO and run

the C2M app on the remaining cores. The corresponding results

are shown in the (DDIO on) curves of Figure 2. We see the same

general observation as in the Ice Lake setupÐC2M app performance

degrades while the P2M app observes no degradation, thus showing

that our observations apply across different processor generations

and resource ratios. Similar observations apply even when using

different read/write ratios for the C2M and P2M applications (results

presented in [68]).

DDIO can worsen performance degradation when app working

size does not fit in cache. As discussed previously, DDIO is not

effective for our P2M workload and does not reduce its memory

bandwidth utilization when run in isolation. To study if DDIO has

any second-order impact when C2M/P2M apps are colocated, we

re-ran the above experiments with DDIO disabled on our Cascade

Lake setup (this was not possible on our Ice Lake setup because

DDIO is permanently enabled there). The corresponding results,

shown in Figure 2, reveal a surprising observation: DDIO results in

worse performance degradation for C2M apps for both Redis and

GAPBS (Figures 2(a), 2(b)). This is surprising because our C2M

workloads already have ∼100% cache miss ratio even when run in

isolation, and thus should ideally not be impacted by cache evictions

caused by DDIO. We do not know how to explain this observation.

2.2 The Blue and Red Regimes

Our experiments in §2.1 use real open-sourced apps that have fixed

memory access patterns. We now switch to using lightweight apps

with easy to control memory access patterns, enabling us to perform

a deeper characterization of performance degradation trends and to

study different combinations of read/write for C2M/P2M apps.

Workloads. To generate C2M traffic, we use a modified version

of the STREAM [46] benchmark that supports different read/write

ratios. We use two C2M workloads: (1) a read-only workload that

sequentially reads data from a 1GB buffer (using 64-byte AVX512

load instructions). This results in 100% memory reads (C2M-Read).

(2) a write workload that sequentially writes data to a 1GB buffer

(using 64-byte AVX512 store instructions). This generates 50% read

and 50% write memory traffic since every cacheline is first read

into the CPU’s cache before the store instruction can be serviced

and is later written back to memory during cache eviction (C2M-

ReadWrite). For P2M, we run FIO with (1) 100% storage reads

which translates to 100% memory writes (P2M-Write) and (2) 100%

storage writes which translates to 100% memory reads (P2M-Read).

Both our C2M and P2M workloads perform sequential accesses.

We run experiments on our Cascade Lake setup while colocating

each of the two C2M workloads with each of the two P2M work-

loads. This results in a total of four scenarios, which we refer to as

the four ªquadrantsº. We disable prefetching and DDIO for better

explicability. We found that while enabling each of these leads to

different absolute degradation numbers, the trends and takeaways

remain the same (when memory bandwidth is not saturated, prefetch-

ing improves C2M throughput in both the isolated and colocated

cases, but their ratio remains roughly the same). The degradation

observed in the quadrants is shown in Figure 3. We classify the

observations into two key regimes:
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Blue regime: C2M throughput degrades while P2M through-

put does not. In quadrant 1 (C2M-Read, P2M-Write), we observe

1.2 − 1.7× degradation in C2M throughput while P2M through-

put remains unaffected. This degradation happens when memory

bandwidth is far from saturated (for example, with a single C2M

core), and increasing load leads to worse C2M throughput. Simi-

larly, in quadrant 2 (C2M-Read, P2M-Read), while C2M throughput

degrades, P2M throughput remains unaffected. C2M throughput

degradation is lower than quadrant 1. Quadrant 4 (C2M-ReadWrite,

P2M-Read) observes the same trend as in quadrant 2.

Red regime: Both C2M and P2M throughput degrade. Quadrant

3 (C2M-ReadWrite, P2M-Write) shows a range of different perfor-

mance degradation trends. With 2 or fewer C2M cores, similar to

quadrants 1 and 2, C2M throughput degrades while P2M throughput

does not. For 3 C2M cores and above, once memory bandwidth is

saturated, we see a completely different trendÐC2M traffic now an-

tagonizes P2M by getting an increasingly larger share of the memory

bandwidth with increasing load, leading to larger throughput degra-

dation for P2M traffic compared to C2M traffic. This captures the

observations reported by recent works [1, 42]. P2M traffic, however,

does not get starved at higher loadÐwith 5 and 6 C2M cores, we

observe a relative stabilization of the memory bandwidth shares of

C2M and P2M traffic.

2.3 Networking Case Studies

Our characterization of host contention regimes in §2.2 generalizes

to cases where P2M traffic is generated by a NIC instead of local

storage devices, and networked transfers use either kernel-based or

hardware-offloaded transport mechanisms. We briefly summarize

these observations below; full details are presented in [68].

RDMA. Using RDMA over Converged Ethernet with Priority Flow

Control (RoCE/PFC), we observe the same blue and red regime

trends from §2.2 for each of the C2M/P2M read/write combinationsÐ

RoCE/PFC throughput degrades in the red regime; on the other hand,

in the blue regime, RoCE/PFC throughput remains unaffected and

causes significant C2M app throughput degradation.

DCTCP. With Linux DataCenter TCP (DCTCP) over lossy fabric,

we again observe the same blue and red regimes, although the ob-

served application-level performance trends are slightly different. In

particular, the networked application observes performance degra-

dation in each regime. This is because, in addition to P2M traffic,

the networked application also generates C2M traffic due to the data

copy between application buffers and kernel socket buffers. In the

blue regime, C2M throughput degradation slows down data copy

processing, resulting in CPU bottleneck; this results in DCTCP flow

control kicking in, reducing the P2M traffic load. In the red regime,

P2M throughput degrades but no congestion signal is sent back to

the sender until packets are dropped at the NIC; this results in further

throughput degradation, latency inflation, and violation of isolation

properties as outlined in [1, 2].

Given that both the setupsÐP2M traffic from within the host,

and P2M traffic from datacenter network transfersÐlead to similar

observations, we focus on the former setup for the rest of the paper. It

makes it easier to describe all our results. We present corresponding

results for the RDMA and DCTCP scenarios in [68].
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Figure 4: Host network architecture, and C2M and P2M datapaths.

Details in §3.

3 BACKGROUND

In this section, we provide a brief primer on the host network archi-

tecture and the datapath for C2M and P2M requests.

Figure 4 shows the host architecture: it consists of cores (with pri-

vate L1/L2 caches), the LLC, the Caching and Home Agent (CHA),

the Integrated IO controller (IIO), and the Memory Controller (MC)

all connected by the on-chip processor interconnect. The CHA ab-

stracts away the LLC and memory from the rest of the system while

maintaining cache coherence2. Peripheral devices are attached to the

IIO through the peripheral interconnect (typically PCIe). DRAM con-

sists of a set of modules (Dual Inline Memory Modules, or DIMMs),

each of which is attached to the MC through a memory channel.

These memory channels constitute the memory interconnect. For

simplicity, in Figure 4, we show a single module attached through a

single memory channel.

C2M datapath. CPU-to-memory reads are generated by cores upon

a cache miss through the following data path:

1 Upon an L1 cache miss, an entry is allocated in the core’s Line

Fill Buffer (LFB), and a request is sent to the L2 cache.

2 Upon reaching the L2 cache, the cacheline is either served from

the L2 cache upon a cache hit (and the LFB entry is freed) or

the request is sent to the CHA upon a cache miss.

3 The CHA serves the cacheline from the LLC if there is an LLC

hit (and the LFB entry is freed). Otherwise, the CHA sends

the request to the MC, where it is queued in the Read Pending

Queue (RPQ).

4 The MC fetches the required cacheline from DRAM over the

memory channel and returns the data back to the core while

populating the caches and ultimately freeing the corresponding

LFB entry.

Memory writes are generated upon cache evictions and follow a

similar datapath: a write-back from the L2 cache is sent to the CHA,

which either services it from the LLC or sends a write request to the

MC, where it is queued in the Write Pending Queue (WPQ). The

MC eventually issues the write to DRAM over the memory channel.

Importantly, unlike reads, writes generated by cores are asynchro-

nous: the CPU only has to wait for the request to be admitted to the

2Both the CHA and LLC are physically distributed into multiple slices. Based on the

physical address, memory requests are routed to the correct slice. For simplicity, we

represent the CHA/LLC as a single logical entity.
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CHA, and the CHA only has to wait for the request to be admitted

to the WPQ.

P2M datapath. Each peripheral-to-memory request (read/write)

incurs the following datapath:

1 Peripheral device initiates a DMA request to the IIO, that allo-

cates an entry in the IIO (read/write) buffer per cacheline.

2 IIO forwards the requests (at cacheline granularity) to the CHA.

If DDIO is enabled and there is a cache hit, the CHA serves

the request from the LLC (and the IIO buffer entry is freed).

Otherwise, the CHA sends the request to the MC, where it is

enqueued in the RPQ/WPQ.

3 The MC serves read/write requests in a manner similar to the

C2M datapath. After a read is serviced from DRAM, the data is

returned to the IIO, at which point the IIO buffer entry is cleared

and the data is sent back to the peripheral device. For writes,

the IIO only needs to wait until the request is admitted to the

WPQ before freeing its buffer entry.

The interconnects within the host physically implement hop-by-

hop flow control mechanisms to ensure losslessness [29]. In the

peripheral interconnect, this is implemented through the exchange of

PCIe credits between the peripheral device and the IIO [2, 54]. The

peripheral device needs a PCIe credit to send a request to the IIO; this

credit is replenished once the corresponding IIO buffer entry is freed.

In the memory interconnect, flow control happens implicitly through

DRAM timing constraints [35, 41]. In the processor interconnect,

implementation details of credit exchange are not public.

DRAM operation. MC reads/writes cachelines from/to DRAM

over memory channels. Each memory channel can only transmit

data in one direction (either reads or writes) at any point in time.

The MC, therefore, operates in two separate modes, read mode

and write mode, and maintains separate queues for reads and writes

(RPQ and WPQ, respectively) per memory channel. Due to electrical

constraints, switching between modes takes a certain delay (called

the switching delay) during which the channel is idle [41]. The data

in each DRAM module is organized into multiple banks. Each bank

has multiple rows, each of which stores a fixed number of cachelines,

and a row buffer that can buffer a single row at any time. In order to

access a cacheline, its corresponding row needs to be present in the

corresponding bank’s row buffer. If not, this results in a row miss,

which incurs additional processing delay at the banks: The row needs

to be loaded into the row buffer using an Activate (ACT) operation.

If the row buffer contains a different row (i.e., row conflict), then it

needs to be flushed using a Precharge (PRE) operation before a new

row can be loaded, which incurs additional overhead.

For the remainder of the paper, we focus on the scenario where

C2M/P2M requests result in misses at all levels of the cache hierar-

chy (as is the case in the §2 experiments).

4 UNDERSTANDING THE HOST NETWORK

This section presents domain-by-domain credit-based flow control,

a conceptual abstraction that captures the interplay between the

processor, memory, and peripheral interconnects within the host net-

work. We start by describing the abstraction along with the various

domains and their characteristics in §4.1. We then describe in §4.2
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Figure 5: Domain-by-domain credit-based flow control in the host net-

work: Different shaded regions within each sub-figure depict indepen-

dent domains within the host network for respective C2M and P2M

read/write datapaths. Data is transmitted between the CPU/Peripheral

and the DRAM by traversing each domain using an independent credit-

based flow control mechanism. The specific domain highlighted in color

for each datapath is particularly interesting: these are the domains that

will turn out to be the bottleneck within individual datapaths. Different

domains can span different numbers of hops, leading to different domain

latencies. Further, the number of domain credits (limited by the node

marked as yellow) is also different for P2M vs C2M domains.

how we reverse engineered the Intel host architecture to characterize

each domain, its credits, and its unloaded latency.

4.1 Domain-by-domain credit-based flow control

We begin by defining domain-by-domain credit-based flow control.

The host network is logically decomposed into multiple domains,

each of which is a sub-network of the host network. Each domain

uses an independent credit-based flow control mechanism. Specif-

ically, the sender of each domain is assigned credits that are used

to limit the number of in-flight requests that the sender can inject

into the domain; the sender consumes a credit to send one request,

and this credit is replenished when the request is acknowledged by

the receiver of the domain. Depending on the number of credits, at

any given point of time, there can be multiple concurrent in-flight

requests within each domain.

Intuitively, domain-by-domain credit-based flow control general-

izes the two flow control mechanisms studied in classical computer

networking literature. On the one hand, end-to-end flow control

mechanisms (e.g., used in TCP and in receiver-driven datacenter

transport protocols [9, 22, 25, 26]) are a special case where the

entire path between a sender-receiver pair is a single domain. On

the other hand, hop-by-hop credit-based flow control mechanisms

(e.g., used in ATM networks [32, 38, 39] and PFC-enabled RDMA

networks [43, 73]) are a special case where each hop along the path

between the sender-receiver pair is a domain.

Different domains within the host network have different numbers

of credits and different unloaded latencies. Each request, depending

on the source (compute or peripheral device) and on the type (read

or write), traverses a different set of domains. Figure 5 shows the

domains within the host network for each of the C2M and P2M

read/write datapaths, with cores, peripheral devices, and DRAM

as endpoints and intermediate components (i.e., LFB, IIO, CHA,

and MC) as network nodes. We now discuss the four domains that

turn out to be the most important ones (in that, these will be the

ªbottleneckº domains in individual datapaths):
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• C2M-Read Domain: This domain spans all hops from LFB to

DRAM. For each request, credit is allocated at the LFB and re-

plenished once the request is serviced by DRAM and the data is

returned to the LFB.

• P2M-Read Domain: This domain spans all hops from IIO to

DRAM. For each request, credit is allocated at the IIO and re-

plenished once the request is serviced by DRAM and the data is

returned to the IIO.

• C2M-Write Domain: This domain spans only a single hop from

LFB to CHA. For each request, credit is allocated at the LFB and

replenished once the request reaches the CHA.

• P2M-Write Domain: This domain spans two hops from IIO to

MC. For each request, credit is allocated at the IIO and replenished

once the request reaches the MC.

The maximum throughput (𝑇 ) for any domain is bound by𝑇 ≤ 𝐶×64
𝐿 ,

where 𝐶 is a constant representing the hardware-specific number of

credits available to the sender in the domain (in terms of cachelines),

64 is cacheline size in bytes, and 𝐿 is a variable representing the

latency required to traverse all hops within the domain. Each of these

factors can be different depending on the domain:

Domain Credits (C). The number of credits for the C2M-Read and

C2M-Write domains is limited by the LFB size. The number of

credits for the P2M-Write domain is limited by the IIO write buffer

size. The number of credits for the P2M-Read domain is limited by

the IIO read buffer size. For our servers, these numbers are 10 − 12,

∼92, and >164 cachelines, respectively.

Domain Latency (L). Different domains span a different subset of

network hops; this could result in different domains having different

latencies for two reasons. First, simply due to spanning a differ-

ent subset of network hops, different domains may have different

unloaded latencies. Second, when C2M and P2M traffic contend

for host network resources, queueing at the contention point may

have different impact on different domains (only those domains are

impacted that contain the contention point). As a result, contention

within the host network may result in latency inflation for some

domains but not others.

Given the number of credits and latency for a domain, the maximum

throughput of that domain is given by the expression 𝑇 ≤ 𝐶×64
𝐿 , as

discussed above. The overall end-to-end throughput of a particular

C2M or P2M app is the minimum throughput across all domains

along the datapath for that app.

4.2 Evidence on domains and their characteristics

We now present evidence for domains and their characteristics, in-

cluding a discussion of how we reverse-engineered several of the

details by piecing together information from processor manuals

[29, 30] and conducting careful measurements.

Measurement Methodology. We use the Intel uncore performance

monitoring counters [29] to capture average queue/buffer occupancy

(𝑂) and average request arrival rate (𝑅) metrics at different nodes in

the host network. In particular, we program the counters so that their

values are aggregated in hardware every clock cycle and sample

them at runtime in software every 1 second, which entails very low

overhead. To compute average latency, we apply Little’s law on the

measured 𝑂 and 𝑅 values (𝐿 = 𝑂/𝑅). We use the umask and opcode

filtering capabilities of CHA counters to classify requests based on

their source (CPU/Peripheral) and type (read/write), allowing us to

capture all the above metrics on a per-domain basis.

C2M-Read. The C2M-Read domain spans all hops from LFB to

DRAM because an LFB entry (and corresponding credit), once al-

located, is only freed (and corresponding credit replenished) once

the memory read request is serviced from DRAM and returned to

the core to prevent duplicate memory requests to the same cache-

line [30, 67]. To validate this, we perform latency measurements

while running the C2M-Read workload (§2.2) with varying number

of cores. Figure 6(a) shows the measured LFB latency (time be-

tween allocation and replenishment of an LFB credit) alongside the

CHA→DRAM read latency (time taken for request to traverse from

CHA to DRAM and for response to return to CHA). As is evident

from the figure, the LFB latency is always strictly greater than the

CHA→DRAM read latency. Further, the inflation in LFB latency

from 1 to 6 cores near perfectly matches inflation in CHA→DRAM

read latency. This shows that the LFB latency is inclusive of the

CHA→DRAM read latency, thus providing evidence that the C2M-

Read domain includes all hops until DRAM. In all of our experi-

ments, the maximum measured LFB occupancy is between 10 − 12

providing evidence that this the number of domain credits (also

corroborated in [15]). The unloaded domain latency is ∼70ns, as is

evident from the single-core data point in Figure 6(a).

C2M-Write. It is clear that the C2M-Write domain includes the

LFB, the CHA (since each domain must span at least two nodes),

and that it does not include DRAM (since writes are serviced to

DRAM asynchronously [29]). The key challenge lies in determining

whether the MC is part of the domain. To do so, we perform latency

measurements while running the C2M-ReadWrite workload (§2.2)

with varying number of cores. For this workload, the LFB latency is

equal to the sum of the C2M-Read and C2M-Write domain latencies

(and thus must be strictly greater than each of them). If the C2M-

Write domain included the MC, then the C2M-Write latency (and

consequently LFB latency) would always be strictly greater than the

CHA→MC write latency (time taken for the request to traverse from

CHA to MC). However, as shown in Figure 6(b), the CHA→MC

write latency can exceed the LFB latency (e.g., with 6 C2M cores),

thus implying that the C2M-Write domain does not include the

MC. Subtracting the unloaded C2M-Read domain latency from the

LFB latency at the single core data point in Figure 6(b) gives us an

estimate of ∼10ns unloaded latency for the C2M-Write domain.

P2M-Write. To understand P2M-Write domain, we run a low-load

P2M workload performing 4KB storage read requests with queue

depth of 1, colocated with C2M-ReadWrite workload. Figure 6(c)

shows the IIO latency (time between credit allocation and replen-

ishment at IIO) alongside the CHA→MC write latency. We make

three observations. First, the unloaded domain latency is ∼300ns.

Second, the IIO latency is always larger than the CHA→MC write

latency. Finally, the inflation in IIO latency with increasing load near

perfectly matches the inflation in CHA→MC write latency (Fig-

ure 6(d)), indicating that IIO latency is inclusive of the CHA→MC

write latency. This provides evidence that unlike C2M-Write domain,

P2M-Write domain includes the MC. To determine the P2M-Write
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Figure 6: Evidence for domains, and per-domain characteristics (a-d, left-right). All y-axis values are on average. Discussion in §4.2.

domain credits, we run P2M-Write workload from §2.2 (which satu-

rates PCIe bandwidth), and apply maximum possible C2M load. We

find that IIO write buffer occupancy saturates at ∼92, giving us the

size of the IIO write buffer.

P2M-Read. The P2M-Read domain spans all hops from IIO to

DRAM because PCIe reads are non-posted transactions [54]Ðthe

IIO needs to wait until reads are serviced from DRAM and data

is returned before issuing PCIe completion and replenishing the

credits. We were not able to measure IIO read buffer occupancy

on our server (and consequently IIO read latency), thus precluding

us from determining the precise number of credits and unloaded

latency of the P2M Read domain. However, we obtain a lower bound

on the P2M-Read domain credits using measurements at the CHA

(since the number of in-flight P2M-Read requests at the CHA cannot

exceed the P2M-Read domain credits). By introducing C2M load

colocated with P2M-Read traffic, we found that the number of in-

flight P2M-Read requests at the CHA saturates at ∼164 cachelines,

providing evidence that the P2M-Read domain has a larger number

of credits than the P2M-Write domain.

5 UNDERSTANDING CONTENTION WITHIN

THE HOST NETWORK

We now provide an in-depth explanation for the two regimes ob-

served in §2 using the lens of domain-by-domain credit-based flow

control. We use the same measurement methodology as in §4.2. We

observe no statistically noticeable change in application performance

when counter sampling is enabled. We disable dynamic scaling of

core frequency to avoid variation in measurements (we observe less

than 1.5% variation across all runs for all counters).

5.1 Understanding the blue regime

We first focus on quadrant 1 (C2M-Read, P2M-Write) since it cap-

tures most of the takeaways in terms of explaining the blue regime.

For quadrant 1, we first explain why C2M throughput degrades and

then why P2M throughput does not degrade.

C2M throughput degrades because domain credits are fully uti-

lized and domain latency increases. Even when the C2M workload

is run in isolation, the corresponding domain credits are fully utilized.

This is because each core can issue instructions fast enough to keep

the LFB full (e.g., a core with 3GHz frequency can issue instructions

every 0.3ns, which is more than two orders of magnitude smaller

than the minimum C2M-Read domain latency). As a result, any

non-zero increase in domain latency will result in throughput degra-

dation. Indeed, when the P2M workload is colocated, we observe

1.26 − 1.8× increase in domain latency (Figure 7(a)) due to queue-

ing at the MC (Figure 7(b)) since DRAM is part of the C2M-Read

domain. Interestingly, such queueing happens far before memory

bandwidth is saturated; we now explain this phenomenon.

Queueing at the MC before memory bandwidth saturation hap-

pens due to a combination of two DRAM-level factors: (1) row

misses and (2) load imbalance across banks. Row misses result

in processing delays at the banks (due to precharge/activate oper-

ations), which must be completed before the data can be accessed

and transmitted over the memory channel. Even for a workload

with 100% row miss ratio, the bank-level processing delays can still

be hidden behind data transmission over the memory channel, if

requests are load balanced perfectly across the banks. If requests

are perfectly distributed across 𝑁𝑏 banks, then the bank processing

delay can be hidden/overlapped behind transmission on the channel

if 𝑡Proc/𝑁𝑏 < 𝑡Trans, where 𝑡Proc is the per-request bank processing

delay and 𝑡Trans is the per-request transmission delay over the mem-

ory channel. This condition holds for the DRAM modules in our

setup, where 𝑡𝑃𝑟𝑜𝑐 ≈ 45𝑛𝑠, 𝑁𝑏 = 32, and 𝑡𝑇𝑟𝑎𝑛𝑠 = 2.73𝑛𝑠. In reality,

however, load balancing is far from perfect since memory addresses

are mapped to banks through a static hash function [56], which does

not guarantee perfect load balancing [71]. As a result, requests can

be blocked on bank processing even when the memory channel is

idle, thus causing queueing even when channel capacity (i.e., mem-

ory bandwidth) is not saturated. We quantify row misses and load

imbalance, focusing on the single core C2M case in quadrant 1 next.

In the absence of P2M traffic, the row miss ratio for C2M-Read

requests is very low (< 4%, shown in Figure 7(c)). This is because

of the sequential access pattern resulting in a good row locality.

Colocating the P2M workload causes a significant increase in row

miss ratio (up to 4×). This is because the C2M and P2M workloads

access different address spaces Ð intermixing them reduces row

locality, leading to a higher row miss ratio. While row miss ratio

also increases for C2M-only traffic from multiple cores since each

core accesses a different address space, colocating P2M traffic leads

to a larger increase in row miss ratio as is evident in Figure 7(c).

To measure load distribution, we sample the number of read

requests mapped to each individual bank every 1000 requests3. Let

the bank deviation of a given sample be the ratio of the load of the

maximally loaded bank to the average load across banks. Figure 7(d)

shows the CDF of bank deviation across 10000 samples. We see

significant load imbalance, both with and without P2M traffic Ð the

bank deviation is ≥ 1.5× in 50 − 70% of samples and ≥ 2× in as

many as 13− 22% of samples (although there is load imbalance even

when C2M is run in isolation, it is not a problem since the row miss

ratio is very low causing bank processing delays to be negligible).

3For these measurements, we use a dedicated core that busy polls on MC hardware

counters [29]. Given constraints on the number of available hardware counters, we focus

on 4 banks within a single DRAM module.
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Figure 7: Results for understanding quadrant 1 (a-d, top/left-right and e-g, bottom/left-right). All y-axis values are on average. Discussion in §5.1.

Returning to our main discussion, P2M traffic observes different

behavior compared to C2M traffic in quadrant 1 due to differences

in: (1) domain latency and (2) domain credits.

Write domain does not include execution latency of DRAM,

leading to smaller latency inflation relative to reads. Unlike the

C2M-Read domain, where queueing at the MC leads to domain

latency inflation, since the P2M-Write domain does not include

traversing DRAM, its domain latency only increases when the MC

write queue becomes full. As shown in Figure 7(f), the fraction of

time the WPQ is filled is near zero when P2M-Write is colocated

with a single C2M-Read core. Thus, there is no domain latency

inflation for P2M-Write (Figure 7(e)). With increasing C2M cores,

while we see a small increase (< 25ns) in domain latency for P2M-

Write (Figure 7(e)), it is smaller than what is seen for C2M-Read.

This is because the WPQ starts to get filled up occasionally (< 30%

of the time), as shown in Figure 7(f).

P2M domain can tolerate latency inflation due to availability

of spare domain credits. Increased P2M-Write domain latency,

however, does not lead to a reduction in P2M throughput. This

is because, unlike C2M-Read, when the P2M workload is run in

isolation, domain credits are not fully utilized (as described in §4,

unloaded P2M-Write domain latency is ∼300ns; therefore, to saturate

PCIe bandwidth of ∼14GB/s,∼65 credits are needed which is smaller

than the ∼92 available credits). P2M throughput degrades only after

domain credits are exhausted. Indeed, we see a slight increase in

domain credit utilization with increasing C2M cores, but it is well

below the maximum limit (Figure 7(g)). Therefore, the P2M-Write

domain is able to maintain enough in-flight write requests to mask

the latency inflation and thus avoid throughput degradation.

Our explanation of quadrant 1 generalizes to quadrants 2 and 4

(the corresponding measurements are presented in [68]).

5.2 Understanding the red regime

We now turn our attention to quadrant 3, where both C2M and P2M

observe throughput degradation. Before diving deep, we first briefly

revisit the observations in quadrant 3 bearing similarities to §5.1.

With 2 or fewer C2M cores, similar to quadrant 1, C2M through-

put degrades even before memory bandwidth is saturated (Figure 3).

We see a similar trend of increase in row miss ratio when P2M is

colocated with C2M (Figure 8(c)); this, in combination with load

imbalance across banks, results in queueing at MC before mem-

ory bandwidth is saturated (Figure 8(b)). While there is a small

(∼20 − 30ns) inflation in P2M-Write domain latency (Figure 8(d)),

akin to quadrant 1, there is no P2M throughput degradation due to

spare domain credits (Figure 8(f)).

With 3 or more C2M cores, when memory bandwidth becomes

saturated, we observe two new trends in this quadrant (§2.2). First,

from 3 to 4 C2M cores, we observe C2M antagonize P2M (i.e., reduc-

tion in C2M throughput degradation coupled with a large increase

in P2M throughput degradation). Second, beyond 4 C2M cores, the

rate of degradation of P2M throughput reduces with increasing C2M

cores. We now discuss the underlying reasons for both observations.

Backpressure from MC impacts P2M-Write domain but not

C2M-Write domain, leading to throughput degradation for the

former. When memory bandwidth is saturated, unlike in quadrant 1

(Figure 7(f)), the MC write queue gets filled up persistently (75% of

the time with 3 C2M cores, and nearly all the time with 4 or more

C2M cores; Figure 8(e)), thus leading to backpressure and causing

a backlog of writes at the CHA. Interestingly, this only impacts the

P2M workload, but not the C2M workload, even though both are per-

forming writes. This is because the P2M-Write domain spans the MC

while the C2M-Write domain does not (§4); therefore, backpressure

from the MC results in domain latency inflation of the P2M-Write

domain but not C2M-Write domain. From 3 to 4 C2M cores, due to

backlogging of writes, P2M-Write domain latency increases by 1.5×

(Figure 8(d)) and results in significant P2M throughput degradation

since the domain credits are fully utilized (Figure 8(f)). The C2M

workload (C2M-ReadWrite), however, is only bound by C2M-Read

domain latency (as C2M-Write domain latency does not increase)

which only increases by ∼12% (Figure 8(a)) since reads are not im-

pacted by write backlogging as they can be processed concurrently

at the CHA even when writes are blocked. As a result, C2M’s share

of memory bandwidth increases while P2M’s share reduces.

Backpressure from CHA impacts both C2M and P2M domains,

leading to increased degradation for both. As the write backlog at

the CHA continues to increase with increasing C2M load, we observe

a new phenomenon that is evident beyond 4 C2M cores: CHA begins

to apply backpressure due to limited buffering resources. The trend in
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Figure 8: Results for understanding quadrant 3 (a-d, top/left-right and e-f, bottom/left-right). All y-axis values are on average. Discussion in §5.2.

Figure 8(b) provides evidence of thisÐthe average RPQ occupancy

saturates beyond 4 C2M cores (and is lower than the corresponding

without P2M values), showing that the number of in-flight read

requests from the CHA to the MC has been capped despite the total

number of in-flight read requests increasing with more C2M cores.

This indicates that some requests are getting blocked at the cores

even before being admitted into the CHAÐa result of backpressure

from the CHA. Under CHA backpressure, write backlogging no

longer has a one-sided impact on the P2M domain. Latency inflation

is now primarily determined by delay in admitting requests into the

CHA itself, which impacts both C2M and P2M domains. We see a

roughly equitable increase in domain latency (∼50ns) when going

from 5−6 cores for both the C2M and P2M domains, thus leading to

a relative stabilization of their memory bandwidth shares (Figure 3).

6 QUANTITATIVE VALIDATION

In §5, we identified the root causes for performance degradation

due to interplay between processor, memory, and peripheral inter-

connects, based on correlations with measurements from nodes in

the host network. This, however, does not imply that these are the

only factors impacting performance degradation. To close this gap

and further validate our understanding, we now connect these mea-

surements to the observed end-to-end throughput degradation. To

this end, we develop an analytical formula that captures the average

memory access latency observed by C2M/P2M traffic (which then

directly connects to throughput using Little’s law). Our analytical

formula focuses on queueing delay at the MC (for reads) and at the

CHA (for writes). While, in theory, there can be queueing delay at

other points in the host network (e.g. in cache controllers, within the

processor interconnect, etc.), we demonstrate that queueing delay at

these other points contributes minimally to end-to-end latency (our

analytical analysis captures end-to-end performance to a high degree

of accuracy across all evaluated workloads). We first describe our

analytical formula (§6.1), following which, we present results of

applying it to the four quadrants (§6.2).

6.1 Analytical Formula

In designing our analytical formula, we exploit the insight that since

we are analyzing latency for the purpose of understanding average

throughput, we can focus on average-case behavior across a large

number of memory requests rather than on individual request dynam-

ics, which are difficult to capture. Before describing the analytical

formula, we highlight that it is not designed to be perfectÐit does

not capture all the intricacies of DRAM operation, including out-of-

order request scheduling, resource contention at some levels of the

DRAM hierarchy (e.g., ranks and bank groups), low-level hardware

optimizations (e.g., opportunistic processing of memory writes by

Intel memory controllers while in read mode [59]), and a subset of

DRAM timing constraints (e.g., write recovery delays, rank-level

timing constraints, etc.). Despite its relative simplicity, as we will

demonstrate, it still captures latency inflation to a reasonable degree

of accuracy (within ∼ 10% error) in most evaluated scenarios.

We first build the analytical expression for read domain latency

following which we discuss write domain latency.

Read Domain Latency. Our formula for read domain latency (Fig-

ure 9) is applicable to both the C2M-Read and P2M-Read domains.

As motivated at the start of the section, we focus only on the average

queueing delay for reads (𝑄𝐷read) at the MC. We, therefore, abstract

away all latency in the end-to-end datapath other than 𝑄𝐷read into a

constant (Constantread). Naturally, Constantread is different for the

C2M-Read and P2M-Read domains since they have non-shared hops

in their datapaths (§4). 𝑄𝐷read is expressed as a sum of four additive

components. The first three components capture the average delay

for a given read request to reach the top of the RPQ (thus, they are

all a function of the average RPQ occupancy 𝑂RPQ), and the last

component captures the additional delay that a request incurs after

reaching the top of the queue before it is issued to DRAM. We now

describe each of the individual formula components:

• Switching Delay: This component captures the average time a

given read is blocked due to write-to-read switching delay (𝑡WTR).

Since we focus on average case behavior, we can compute the

total switching cost over a large number of switches (#switches)

and average it over a large number of reads (linesread).

• Write Head-of-Line Blocking: This component captures the av-

erage time for which a read is blocked because the channel is

currently in write mode and cannot issue reads. Average case anal-

ysis allows us to compute the total time spent in write mode over

a long time window (lineswritten × 𝑡Trans) and average it across a

large number of reads (linesread).
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Analytical Formula Inputs

𝑃
WPQ

fill
Probability that WPQ is full

𝑁waiting # write requests awaiting WPQ admission

#switches # switches between read and write mode

linesread/write # cachelines read / written

𝑂RPQ Average RPQ occupancy

PREconflict
read/write

# precharges due to row conflicts for reads / writes

ACTread/write # activations for reads / writes

Table 2: Inputs to the formula for computing latencies for C2M and P2M

read/write domains (discussion in §6.1).

𝐿read
𝑚

= Constantread +𝑄𝐷read (Average read latency)

𝑄𝐷read = 𝑂RPQ ·
#switches

linesread
· 𝑡WTR (Switching Delay)

+𝑂RPQ ·
lineswritten

linesread
· 𝑡Trans (Write HoL blocking)

+ (𝑂RPQ − 1) · 𝑡Trans (Read HoL blocking)

+
#ACTread

linesread
· 𝑡ACT +

#PREconflict
read

linesread
· 𝑡PRE (Top-of-queue delay)

Figure 9: Read domain latency components (inputs defined in Table 2;

𝑡WTR, 𝑡Trans (transmission delay: time taken to transmit a single cache-

line over the memory channel in either direction), 𝑡ACT (𝑡RCD) and 𝑡PRE

(𝑡RP) are standard DRAM timing constraints).

𝐿write
𝑚

= Constantwrite +𝐴𝐷write (Average write latency)

𝐴𝐷write = 𝑃
WPQ

fill
· 𝑋write

𝑋write = 𝑁waiting ·
#switches

lineswritten
· 𝑡RTW (Switching Delay)

+ 𝑁waiting ·
linesread

lineswritten
· 𝑡Trans (Read HoL blocking)

+ (𝑁waiting − 1) · 𝑡Trans (Write HoL blocking)

+
#ACTwrite

lineswritten
· 𝑡ACT +

#PREconflict
write

lineswritten
· 𝑡PRE (Top-of-queue delay)

Figure 10: Write domain latency components (inputs defined in Table 2;

𝑡WTR, 𝑡Trans (transmission delay: time taken to transmit a single cache-

line over the memory channel in either direction), 𝑡ACT (𝑡RCD) and 𝑡PRE

(𝑡RP) are standard DRAM timing constraints).

• Read Head-of-Line Blocking: A given read request has to wait

for the requests before it (𝑂RPQ − 1 on average) in the RPQ to

get transmitted on the memory channel. In reality, while the MC

may schedule requests out-of-order to maximize utilization, our

evaluation of the formula indicates that this has very little impact,

if any, on the end-to-end latency for the workloads we focus on.

• Top-of-queue delay: Even after reaching the top of the RPQ,

a request might still have to wait for activate/precharge opera-

tions to complete before it is issued to DRAM. To capture this,

we compute the total cost of activate and precharge operations

(#ACTread×𝑡ACT and #PREconflict
read

×𝑡PRE) and average them across

a large window of requests (linesread).

Write Domain Latency. Writes require slightly different analysis

than reads: since writes do not have to wait until they are actually

issued and processed in DRAM. For the P2M-Write domain, they

are completed as soon as they are admitted into the MC WPQ. Thus,

P2M-Write domain latency only inflates when the WPQ is filled, at

which point requests will have to wait for some time until they are

admitted (admission delay (𝐴𝐷write)).
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Figure 11: Accuracy of the analytical formulae: (top) Error in the for-

mula’s estimate of C2M throughput for quadrants 1, 2, 4. (bottom) Error

in the formula’s estimate of C2M and P2M throughput for quadrant 3

(both with/without adding CHA admission delay). Positive values indi-

cate overestimation, and negative values indicate underestimation.

Our write domain latency formula (Figure 10) captures 𝐴𝐷write

via (1) the probability that a request is blocked due to the WPQ being

full (𝑃fill
WPQ

) and (2) the average waiting time for a request when the

WPQ is full (𝑋write). For 𝑋write, we use an expression analogous to

read queueing delay, with the parameters for reads/writes swapped

(since the corresponding components for write processing are exactly

the duals of those for reads), and using 𝑁waiting, the average number

of writes (both C2M and P2M) waiting to be admitted into the

queue, instead of 𝑂RPQ (since admitting 𝑁waiting requests requires

processing an equal number of writes to make space in the queue).

Unlike P2M writes, C2M writes do not have to wait until they are

admitted to the MC. We do not capture inflation of C2M-Write

domain latency and assume it to be a constant. We later discuss the

implications of doing so.

6.2 Applying the Formula

All formula inputs can be captured or derived using programmable

uncore performance counters available on Intel servers [29] using

the same measurement methodology as §5. We use MC counters to

capture all the inputs except 𝑁𝑤𝑎𝑖𝑡𝑖𝑛𝑔. For 𝑁𝑤𝑎𝑖𝑡𝑖𝑛𝑔, we use counters

from the CHA, since this is where requests are backlogged when the

MC write queues are full [29].

Applying the formula. We set 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑟𝑒𝑎𝑑/𝑤𝑟𝑖𝑡𝑒 based on un-

loaded latencies of domains (§4.2). For any given experiment, we

then apply the formula using the measured inputs to obtain the av-

erage domain latency. Depending on the workload, we use either

the read or the write domain latency expression. For C2M-Read and

P2M-Read, we use the read domain latency expression. For P2M-

Write, we use the write latency expression. For C2M-ReadWrite,

we use the C2M-Read domain latency plus a constant (to account

for C2M-Write). After obtaining average domain latency (𝐿), we

compute estimated throughput using the expression in §4.

Formula accurately captures end-to-end throughput. Figure 11

shows the error in the formula’s estimate of throughput in all of

the quadrants from §2.2. The formula captures throughput for the
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Figure 12: Breakdown of analytical formula components (a-e, left-right) (a, b, c) Breakdown of formula components for C2M in quadrants 1, 2, and 4

respectively; (d, e) Breakdown of formula components for C2M and P2M along with CHA admission delay in quadrant 3.

C2M workload (which is what degrades) within 10% error for all

data points in quadrants 1, 2, and 4. For quadrant 3, with 4 or fewer

cores, the error for both C2M/P2M is within 10%. However, beyond

4 C2M cores, the error increases (especially for C2M throughput).

This is because our formula currently does not account for admission

delay to the CHA, which manifests when CHA buffers get filled up

as is the case for quadrant 3 with 4 or more C2M cores and causes

latency inflation for both C2M and P2M domains (§5.2)Ðas a result,

the formula underestimates latency leading to overestimation of

throughput. When we add the measured CHA admission delay from

the testbed to the output of the formula, the error reduces to < 10%

for all data points, thus validating our understanding.

Breakdown of formula components. Figure 12 presents the break-

down of queueing delay into each of the individual formula compo-

nents for all of the quadrants. For quadrant 1, with a single C2M core,

WriteHoL is the dominant contributor. With increasing C2M cores,

both WriteHoL and ReadHoL increase. Quadrant 2 has a larger Read

HoL component due to higher average read queue occupancy, but it

has no Write HoL component because there are no writes. In quad-

rant 4, ReadHoL is the dominant contributor for all data points. In

quadrant 3, for C2M, WriteHoL is the dominant contributor up to 4

C2M cores, beyond which CHA admission delay starts to dominate.

For P2M, WriteHoL is the dominant factor until 3 C2M cores, after

which ReadHoL becomes dominant.

7 DISCUSSION AND FUTURE DIRECTIONS

Technology trends for the host hardware suggest that performance

of peripheral interconnects is improving much more rapidly than

processor and memory interconnects. This has led to an increas-

ing imbalance of resources and contention within the host network,

which in turn, negatively impacts application-level performance.

We have presented a conceptual abstraction of domain-by-domain

credit-based flow control that precisely captures the interplay be-

tween processor, memory, and peripheral interconnects within the

host network. Using this abstraction, we have built an in-depth un-

derstanding of contention within the host network and its impact

on application performance reported by previous studies, as well as

identified new, previously unreported, regimes of contention within

the host network. Our study opens up several interesting avenues of

future research at the intersection of computer networking, operating

systems and computer architecture. We outline some of these below.

Building an even deeper understanding of the host network.

For instance, we focus on a simple setup: two generations of Intel

processors with C2M and P2M apps contending on host network

resources within the same socket, peripheral devices connected to a

single IIO, and all peripheral transfers executed with DDIO disabled.

A natural next step is to extend our study to hosts with multiple

sockets, multiple IIOs, modern direct cache access mechanisms, and

with a wider variety of Intel and AMD processors. Looking forward,

the host network in modern datacenter hosts is becoming increas-

ingly complex with new interconnects such as CXL and NVLink,

deeper topologies with PCIe switches, different kinds of memory

such as High-Bandwidth Memory, and new kinds of hardware accel-

erators and data movement engines. More work needs to be done to

understand the behavior of the host network for such hosts.

Our analytical formula in §6 quantitatively validates our analysis.

There are several possible extensions. First, our analytical formula

requires inputs that are measured; it would be interesting to build an

analytical model that can predict performance given a particular host

network hardware configuration (e.g., by extending [5]). Second,

while we precisely capture the impact of contention within the host

network on application performance for our storage and RoCE/PFC

experiments, such is not the case for the lossy network setupÐhere,

packet drops and resulting congestion response lead to complex

modeling issues. Incorporating the behavior of end-to-end datacenter-

level transport protocols within the analytical model is an important

extension of our work. Finally, it would be interesting to build host

network simulators that enable a deeper exploration of domain-by-

domain credit-based flow and the host network in general.

Rearchitecting protocols, operating systems and host hardware.

The host network has implications that are more far-reaching than

the context of networked applications and datacenter congestion

controlÐit impacts application-level performance even when all

applications are contained within a single host. Our study thus opens

up many interesting avenues of future research in the design of

protocols, operating systems and even host hardware along several

directions. For instance, it would be interesting to explore new mech-

anisms for host network resource allocation (e.g., extending ideas in

hostCC [2] to the case of all traffic contained within a single host),

new memory controller scheduling mechanisms to better isolate

C2M/P2M traffic (e.g., extending ideas in heterogeneous memory

scheduling architectures [6, 33, 34]), and new datapaths for periph-

eral traffic (e.g., using dynamic direct cache access [3, 69], or even

bypassing memory read/writes altogether [27, 65]).
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