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bstract—This paper presents a personalized graph federated
learning (PGFL) framework in which distributedly connected
servers and their respective edge devices collaboratively learn de-
vice or cluster-specific models while maintaining the privacy of ev-
ery individual device. The proposed approach exploits similarities
among different models to provide a more relevant experience for
each device, even in situations with diverse data distributions and
disproportionate datasets. Furthermore, to ensure a secure and
efficient approach to collaborative personalized learning, we study
a variant of the PGFL implementation that utilizes differential
privacy, specifically zero-concentrated differential privacy, where a
noise sequence perturbs model exchanges. Our mathematical anal-
ysis shows that the proposed privacy-preserving PGFL algorithm
converges to the optimal cluster-specific solution for each cluster
in linear time. It also reveals that exploiting similarities among
clusters could lead to an alternative output whose distance to the
original solution is bounded and that this bound can be adjusted by
modifying the algorithm s hyperparameters. Further, our analysis
shows that the algorithm ensures local differential privacy for all
clients in terms of zero-concentrated differential privacy. Finally,
the effectiveness of the proposed PGFL algorithm is showcased
through numerical experiments conducted in the context of regres-
sion and classification tasks using some of the National Institute of
Standards and Technology s (NIST s) datasets, namely, MNIST,
and MedMNIST.

Index Terms—Differential privacy, federated learning, graph
federated architecture, personalized learning, zero-concentrated
differential privacy.
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1. INTRODUCTION

HE rise of internet-of-things (IoT) and cyber-physical
T systems has led to exponential growth in data collection
from distributed devices. However, transferring this massive
amount of data to a centralized processing point for inference and
decision-making is often impractical due to resource constraints
and privacy concerns. To overcome these challenges, distributed
learning that features on-device processing is an attractive alter-
native. Such distributed learning enables efficient data analysis
without moving the raw data out of the edge devices. Federated
learning (FL) is a distributed learning framework that facilitates
collaborative model training across edge devices or clients with-
out exposing the underlying data [2], [3], [4]. In particular, using
its own local data, each client refines a global model shared by a
server and subsequently transmits the updated model back to the
server, which then aggregates all updated client models before
sending an update back to clients for further refinements.

To date, research on FL mostly uses a single-server archi-
tecture, which is susceptible to communication and computa-
tion bottlenecks and vulnerabilities. It also scales poorly with
the number and with geographical dispersion of participating
clients. To address these concerns, some alternatives to the
single-server architecture have been proposed, see, e.g., [5],
[6], [7], [8]. Examples of those alternatives include client-
edge-server hierarchical learning [6] and the graph federated
architecture [5], [8]. In client-edge-server hierarchical learning,
edge servers perform partial aggregation with their associated
clients and communicate their results to a single cloud server
that performs the global aggregation. However, using a single
cloud server is susceptible to bottlenecks and can only accom-
modate a limited number of edge servers. In contrast, the graph
federated architecture uses a server network in which each server
aggregates the information from its associated clients and shares
its model with its neighbors. Therefore, the graph federated
architecture is highly scalable with the number of clients and
easier to implement, thanks to its distributed nature.

One of the main challenges in FL is data heterogeneity, which
means there can be substantial differences in the underlying
statistical distributions among clients’ data [9], [10], [11]. Con-
sequently, a unique globally shared model can be inadequate
for such settings, and personalized models must be learned
instead [12], [13], [14]. For example, autonomous vehicles need
to maintain vehicle-specific models of their highly dynamic
environment while collaborating with nearby vehicles and/or
smart city IoT devices [10]. This requirement can be met by
personalized FL, where clients, or groups of clients (clusters),
learn client- or cluster-specific models [15], [16], [17]. These
personalized models typically share some similarities [18]. As

2373-776X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: National Science Foundation. Downloaded on September 02,2024 at 00:26:26 UTC from IEEE Xplore. Restrictions apply.



GAUTHIER et al.: PERSONALIZED GRAPH FEDERATED LEARNING WITH DIFFERENTIAL PRIVACY 737

an example, the environment of an autonomous vehicle could be
shared with other connected objects. Leveraging the similarities
between cluster-specific models can, therefore, improve per-
formance [18], [19], a process known as inter-cluster learning,
which is particularly useful when some clients or clusters have
insufficient data [20], [21].

Personalized FL has received considerable attention lately due
to its ability to improve learning performance in settings where
clients are required to observe device-specific behaviors, see,
e.g., [18], [20], [21], [22], [23], [24]. It is used in many applica-
tions such as healthcare, electrical load forecasting, biometrics,
drone swarms, and autonomous vehicles [10], [11], [25], [26],
[27]. However, all those works are limited to single-server cases.
For example, although [8] extends personalized FL to a multi-
server architecture, it assumes that all the clients associated with
a given server learn the same model. Under this assumption, each
server maintains a single model trained via conventional FL and
the model is refined by communicating with other servers about
their models. However, the general case where each distributed
server needs to enable the learning of personalized models and
collaborate with its neighbors to refine those is yet to be studied.

In the context of graph FL, many devices take part in the train-
ing process. Thus ensuring the privacy and security of client data
is crucial. The risk of eavesdropping attacks on the client-server
channels increases with the number of devices in the system,
and not all devices can be trusted. Even if data is not explicitly
shared among clients, repeated message exchanges could reveal
sensitive information to curious devices or external eavesdrop-
pers [28], [29]. In order to reduce this risk, differential privacy
(DP) has been introduced to protect client privacy by ensuring
that the inclusion or exclusion of an individual data sample does
not significantly affect the algorithm output. In other words,
DP limits the ability of attackers to infer information from
individual data samples by adding controlled noise to the data
before sharing it with the server [30], [31], [32], [33], [34]. To
improve the privacy-accuracy trade-off, conventional (¢, ¢)-DP
has been relaxed into concentrated DP (CDP) in [35], which
has been further relaxed to zero-concentrated DP (zCDP) [36].
The zCDP is easier to analyze and offers a tighter equivalence
with (e, §)-DP. Furthermore, dynamic DP is well-suited for
iterative implementations, as it allows the privacy budget to be
adjusted dynamically based on the number of iterations [37]. For
those reasons, this paper considers dynamic zCDP in the graph
FL architecture, where the privacy of client data is of utmost
importance. By employing dynamic zCDP, clients perturb their
local model estimates with a noise sequence of known variance
that decreases progressively during the learning process. This
process ensures privacy without compromising model accuracy.

This manuscript tackles the general case of personalized
graph federated learning (PGFL) in conventional and privacy-
preserving ways. Specifically, we consider a multi-server archi-
tecture with distributed clients grouped into clusters (of similar
learning tasks), irrespective of their associated servers, for the
decentralized training of cluster-specific personalized models.
The proposed algorithms, within the considered PGFL archi-
tecture, leverage similarities between clusters to mitigate data
scarcity and improve learning performance. The local training
in the proposed framework uses the alternating direction method
of multipliers (ADMM), well-suited for distributed applica-
tions [38], [39], [40] and demonstrating fast, often linear [41],
[42], convergence. The main contributions of this manuscript
are summarized in the following.

A PGFL framework is proposed to improve learning per-
formance in a distributed learning setting. Our approach
employs inter-cluster learning to improve the accuracy of
local models by leveraging information from other clusters.
The graph FL problem is formulated as a constrained
optimization problem and solved in a distributed manner
using ADMM.

We design a privacy-preserving variant of the PGFL algo-
rithm, where clients perturb their local models to achieve
local differential privacy using the zCDP framework. The
privacy loss is quantified per iteration as well as throughout
the computation.

Mathematical analysis is given to show that the privacy-
preserving implementation of the PGFL algorithm con-
verges to the optimal solution for each cluster in linear time.
Additionally, our analysis shows that utilizing inter-cluster
learning leads to an alternative solution whose distance
to the original solution is bounded and that the bound
depends on cluster similarity and can be adjusted with
hyperparameter selection.

The paper is organized as follows: Section II presents the prob-
lem formulation and the PGFL algorithm along with its zCDP
variant. Sections IIT and I'V are dedicated to the convergence and
privacy analyses of the proposed algorithm. In Section V, we
demonstrate the effectiveness of the algorithm through a series
of experiments involving regression and classification tasks.
Section VI concludes the paper. The following table contains
the mathematical symbols used throughout the paper.

I Identity matrix
0 Null vector

(a,b) Inner product between vectors a and b
Ol Transpose operator
E[] Statistical expectation operator
Normal distribution with mean g and co-
N(p,X) . .
variance matrix 3
U(a,b) Uniform distribution on an interval (a, b)
Gradient of a function f(-)

5 Euclidean norm

Sum and product operators

Intersection and union operators
Exclusion of the element a from the set A

II. PROBLEM FORMULATION AND PROPOSED METHOD

The proposed PGFL framework solves a personalized opti-
mization problem in a graph federated architecture and utilizes
the similarities among clusters to enhance learning performance.
For this purpose, we consider a distributed network that consists
of S servers with a total of K clients. The server network is
modeled as an undirected graph G = (S, &), where S is the
set of servers and &£ is the set of edges so that two servers
s and p can communicate if and only if (s,p) € £. The set
of neighbors to a server s is denoted by A, and it contains
s. We denote N; = N\s. Each server s is associated with
a set of clients, denoted Cs, with | J,.4Cs =C and C,(C, =
(),Vs # p. Every client k& € C has access to a local dataset Dy,
of cardinality |Dy| = Dy, which is composed of a data matrix
Xy = [Xk1..-Xpp,| »wWherexy ;.7 € {1,..., Dy} isavector
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of size L, and a response vector y, = [Yk.1,-- -, Yk, D, thatis
subject to white observation noise. Each client k£ € C aims to
learn a personalized, client-specific model wy,.

The learning task for each client is defined by the set { Dy, {1 },
which represents its local data and loss function. All clients
connected to distributed servers, regardless of their associated
servers, are grouped into () clusters. These clusters are formed by
clients with similar learning tasks, such as F-similar tasks [43],
with the aim of collectively learning a shared model. It is
assumed that there is a degree of relationship among the learn-
ing tasks across clusters, which can manifest in various ways.
For example, clusters may share the same loss and regularizer
functions while having different data distributions, or they may
have the same data distribution but distinct objective functions.
For instance, in healthcare, clusters can represent various patient
diagnostics, independent of their respective associated hospitals,
with a hospital functioning akin to a server. We denote the set of
clusters as @ = {1,...,Q}. The clients belonging to a specific
cluster ¢ € Q form the set C(q) aiming to learn the model Wfq).
Additionally, the set of clients associated with server s within
cluster ¢ is denoted as Cy (4), With Cy (o) = Cs [ C(q)-

A. Personalized Graph Federated Learning

To address task variations, personalized (cluster) models are
preferable. However, despite their differences, the underlying
relationship among tasks, or equivalently, clusters, can still
be exploited in decentralized learning. Here, we consider a
modified regularized empirical risk minimization problem to
leverage cluster similarities. For this purpose, we introduce an
additional regularizer function that enforces similarity among
the cluster-specific personalized models. This additional reg-
ularizer function corresponds to inter-cluster learning and is
controlled by the inter-cluster learning parameter 7 € (0, 1). The
resulting optimization problem for a cluster ¢ is formulated as:

mln Z ng Xkuykmw(q))+ R(W(Q))

Q)kEC) i=1

+7 ) Wy — wgll3,
TGQ\q

(D

where /;( ), R( ), and denote the client loss function, the
global regularizer function, and the regularization parameter,
respectively. The larger the 7 value is, the more the similarities
among cluster-specific personalized models are exploited.

The centralized optimization problem above relies on the
global variable w,). In a multi-server architecture, the servers
maintain local cluster-specific models and communicate with
their neighbors to reach a consensus for each cluster. The equiv-
alent distributed optimization problem for cluster ¢, is given by

min Z Z Zék Xk,is Yk,is Ws,(q ))
w. o} qeQ \ keCs q)
+ Ws,(q)) +7 Z Z ||wp,(r) - Ws q)||§
reQ\q peN;
S.t.

Ws,(q) = Zs,p.(0)> Wp,(q) = Zs,p,(q)’

7
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V(s,p) € €,Vq € Q, @)

where w, ;) denotes the model for the cluster ¢ connected
to server s and consensus is enforced by the cluster-specific
auxiliary variables {z, ; 4);V(s,p) € £,Yq € Q}. From (2),
the augmented Lagrangian with penalty parameter p can be
derived as

‘CP#](VQ’M)Z)
ka YEiWs ( ))
- Z Z D — R(Ws,(q))
k
s€S LkeCy )
+7 30 D Wi~ Wagall
reQ\q pEN;
+ Z (Ks.p(Ws (@) = Zspi(@) T Vs p(Wp (@) = Zspi(a)
peENS
p
+ 5 Z (||W31(Q) - zSaPa(q)Hg + ||WP1(Q) - zs,p,(q)”% )
peNS
(3)

with the set of primal variables V, = {w, (4);s € S}, Lagrange
multipliers M = ({5, }, {15, }), and auxiliary variables Z =
{2sp,(q)}- Given that the Lagrange multipliers are initialized
to zero, using the Karush-Kuhn-Tucker conditions of optimal-
ity and setting 1, = 2 Zpe/\/; s p» it can be shown that the
Lagrange multipliers g, and the auxiliary variables Z are
eliminated [44]. From (3), itis possible to derive the local update
steps of the ADMM for clients and servers. For client k& € C s.(q)>
the primal and dual updates are given by
Client primal update:

W,(c") = argmin Dikék(xk’yk;w) + mR(w)
2
~ (e =)+ =i
4)
Client dual update:
o = el o (Wi W) ®

where the superscript n denotes the iteration number. Fur-
ther, the primal and dual updates for a server s € S are
given by:

Server primal update:

S wp

(n) 1 1
W =
S 14700 4+ pINT || [Cs (o)

keCy q)
1 (n-1)
Y. ¥
p|Cs,(q)| ke;q) 4§
(n 1) (n— 1) (nfl)
+3 Z ( Ws.() Wp.(a) )
peN’
(n) (n—1)
g XS] o
5| reQ\q peN;
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Server dual update:

(n) — (n 1) () ()
Yg.s +p Z ( Wp.a) g(cz))’ 7
peNs

where 7", the inter-cluster learning parameter, is iteration-
dependent. Since inter-cluster learning may degrade perfor-
mance toward the end of the computation, it may be necessary
for 7(") to follow a decreasing sequence.

The computation in (6) performs local aggregation (first two
lines), inter-server aggregation (third line), and inter-cluster
learning (fourth line) in a single step. This presents the major
drawback of using the models of the previous iteration for

. . . (n—l) . .
nter-server aggregatlon, 1.€., Wp (q) and inter-cluster learnlng,

ie., w(” 1) [18], [45]. A multi-step mechanism addresses this
issue by replacmg the primal and dual updates of the server as
follows:

Server aggregation:

~(n) 1 (n) 1 (n-1)
ws, = Wi — Pk :
@ |Cs,(q>|,€g_;q) P|Cs,<q)|,€g;q>
®)
Inter-server aggregation:
W w™
Waa) = \NIZ p(a)" ©)
PEN;
Inter-cluster learning:
(n)
() _ (1 ) ™ T ~(n)
W= (=7 Wi+ 5 > Wiy (10)
reQ\q

The above multi-step mechanism has two main advantages.
First, performing server aggregation prior to inter-server aggre-
gation enables the servers to maintain models composed of the
last available client estimates. Second, the fact that inter-cluster
learning is performed at the end of the multi-step mechanism
ensures that model similarities are leveraged evenly; that is, the
same weight is given to any two clients’ estimates within the
server neighborhood. The resulting PGFL algorithm is summa-
rized in Algorithm 1.

B. Privacy Preservation in PGFL

This section presents a privacy-preserving variant of the PGFL
algorithm that uses dynamic zero-concentrated differential pri-
vacy to protect the participants’ data.

Zero-concentrated differential privacy is defined as follows.

Definition: A randomized mechanism M satisfies ¢-zCDP
if, for any two neighboring datasets D, D’ differing in only one
data sample, we have

D (M(D)[|M(D))<¢ ¥V €(1l,400), (1D

where D () denotes the -Rényi divergence between the dis-
tributions M (D) and M (D').

The motivation for choosing zCDP over conventional (e, d)-
DP is that, like CDP, it offers improved accuracy for identical
privacy loss in the worst-case scenario, where an eavesdropper
aggregates all the exchanged messages [35], [36]. We have the
option to use either CDP or zCDP to preserve privacy in the
proposed algorithm, but for simplicity, we choose to use zCDP.

Algorithm 1: PGFL.

Initialization: w,(co) = and w (

— Procedure at client k € Cy —
For iterationn = 1,2, ...

=0,Yk,q,s

Update w,(cn) as in (4)

Share w'" (n=1)
(n

Receive w,

and ¢, with server s

) from server s
(q)

Update cp,(c") as in (5)
EndFor
— Procedure at server s —
For iterationn =1, 2,.

Receive {Vv,(gn), cp,(: y, ;Vk € Cs}

Update v~v£") as in (8)

+(9)
Share VNVE"()q) , Vq with each server p in N

(n)

Receive w po(a ),Vq from each server p in N/

Aggregate w( () as in (9)
Compute w( () ) as in (10)

Share Wi ()q) with clients in Cg

EndFor

Since the proposed PGFL algorithm is iterative in nature, it
is crucial to control privacy protection at every iteration and
consider the privacy leakage for the entire learning process. For
this purpose, we adjust the privacy protection dynamically per
iteration, as developed in [37], to control the total privacy leakage

of the algorithm throughout the computation. In practice, instead

(n) , a client k& shares with

o (n)

of sharing the exact local estimate w,

its server at iteration n the perturbed estimate w, ", given by

where the perturbation noise follows a Gaussian mechanism,

;:) ~N(, 62(”)1), with 5,3(") being the variance of the per-
turbation noise at iteration 7.

In the context of dynamic zCDP, privacy protection is gov-

erned by ¢§€O) and (. The parameter gbko) represents the initial
privacy leakage, indicating the desired level of privacy at the
start of the algorithm. On the other hand, ¢ € (0,1) denotes
the exponential decay factor of the noise variance, dynamically
adjusting the iteration-specific privacy budget as the compu-
tation takes place. As shown later in Section IV, the privacy

parameter at iteration n, ¢§€"), is inversely proportional to the

variance of the perturbation noise, 5,3("). Here, for each client,

k € C, the initial variance 5,3(0) is fixed, and subsequently, the
variance at iteration n is updated according to the relationship
52(") C(SQ(" Y This recursive update ensures a decreasing
privacy budget as the algorithm progresses.

The server aggregation (8) and client dual update (5) are

affected by the noise perturbation (12). The server aggregation

becomes
~(n 1 ~(n 1 n—1
W= X W e el
q)

|CS,(<1)| keC, @ p|Csv(Q)| keC,

(13)
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Algorithm 2: Privacy-Preserving PGFL.

Initialization: w,(co) = and wio()q) = ,Vk,q,s

— Procedure at client k € Cg —

For iterationn = 1,2, ...
(n

Update w,, ) asin 4)
(n)

Perturb w;" into v~v,(€") as in (12)
Share vA(/,(C") and go,(cn_l) with server s

Receive wgn()q) from server s

Update go,(cn)

EndFor
— Procedure at server s —
For iterationn = 1,2,...

Receive {w\" 0" V. vk € C.}
Update Vvin()q) as in (13)

(n)
s,(q

o (n)

as in (5) using w ) and w, .

Share vTrgl()q),Vq with each server p in N/~
(n)

p,(q)’

ifb()q) as in (9)

Receive w Vq from each server p in N/

Aggregate w

Compute win()q) as in (10)

Share wi"()q) with clients in Cj
EndFor

and in the client dual update, we substitute wi"()q) with &)

s,(q)
and w,(cn) with v"\'/,(cn).

The resulting privacy-preserving algorithm is summarized in
Algorithm 2. In the following sections, we provide a detailed
study of the privacy protection and convergence properties of
the proposed privacy-preserving PGFL algorithm.

III. CONVERGENCE ANALYSIS

This section studies the convergence behavior of the proposed
privacy-preserving PGFL algorithm. Sections III-A and III-B
study the algorithm without inter-cluster learning and show
that it converges to the optimal solution of (2) with 7 =0 in
linear time. Section III-C then shows the impact of inter-cluster
learning. In particular, we show that although inter-cluster learn-
ing leads to a different convergence point than intra-cluster
learning, the distance between these two points is bounded by a
function of the task dissimilarity and the inter-cluster learning
parameter sequence. Moreover, we show that this bound can
be used to design the inter-cluster learning parameter sequence
to achieve a desired convergence point under mild assumptions
on cluster similarity, allowing for greater accuracy control in
personalized learning while leveraging the task similarity for
faster convergence and improved performance.

A. Problem Reformulation

We consider the server update steps with 7("™) = 0. Then, the
minimization problem for the client k € C; ;) becomes

1
min D—Kk(Xk, Vi Wk) +

Wik k

mR(Wk)

S.t. wg = {’\Vsy(q), (14)

where W (,) is the result of inter-server aggregation (9), defined
as the average model for cluster g in V5. To simplify the analysis,
we reformulate (14) as

rgikn (W)

S.L.W = e, W, = ek,l,Vl S Z Cp,(q): (15)
peNs
where fj(wy) is given by
1
Te(Wi) = — (X, yiu; Wi) + == R(w),  (16)
Dy, |CS‘

and the auxiliary variables {ey,; },Vk,l € >\, C, () enforce
consensus. To reformulate (15) further, we introduce the follow-
ing:

w=[wp, Wy W

W=[W, W W =w g

e=[p1 PP

F(w) =Y fu(w), (17)
keC

where £ is the concatenation of the noise added to the lo-
cal models to ensure privacy. In addition, we introduce the
vector e € R2Md concatenating the vectors ey ;, e 1, V(k, 1) €
{1,..., K} : k # [, where d is the dimension of the models and
M is the number of constraints in (15). We can then reformulate
(15) as

min F'(w)
s.t. Aw + Be = (18)
where A = [A1, As] and B = [~Iop4, —Ioasg]. The matri-

ces Ai, Ay € R2Mdx[Cld are composed of d x d-sized blocks.
Given a couple of connected clients (k,[), their associated
auxiliary variable ey, ;, and its corresponding index in e, g; the
blocks (A1 ok and (Ag g 1€ equal to the identity matrix I,
all other blocks are null.

From the above definitions, one can express >, . [[wi —
er1|l? + |lwi —exy||?> = ||[Aw + Be||? and, for € R*Md

kee 2iens, ((Wk = €k g) + (Wi —€kt, 2e4q)) =
(Aw + Be, ).

Therefore, the Lagrangian can be rewritten as

l

L,(Vy, M) = F(w) + (Aw + Be, )+ g |Aw + Be|?.
(19)

B. Convergence Proof

We make the following assumptions to continue the analysis.

Assumption 1: The functions f( ),k € {1,..., K}, arecon-
vex and smooth.

Using (19), and under Assumption 1, the steps of the PGFL
algorithm without inter-cluster learning can be expressed as
follows:

VE(w™ )+ A ™ 4 pA (AwHD 4 Be™ =0,
B ™ +pB (Aw"™) 4 Bel™) =0,

(n+1) _  (n) +p(Av'§,(n+1) +Be(n+1) —0.
(20)
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Similarly to [41], we introduce the following to simplify (20):

H,=A, +A,, H- =A A,

1 1
L= HH, =i

1
:H7W7 M: §(L++L,)

Then, as derived in [41, Section II.B], (20) becomes
VE(wm Dy 4 (4 2pr(”+1) — pLyaw(™ =0,
(D) ) _pL w ) = 0. (21)

As in [46, Lemma 1], the equations in (21) can be combined
to obtain

miy  M'VE(w D) MLy w(™)
w = +
2p 2
ML .
_ Z W) (22)
s=0
Similarly to [46], by introducing the following:
Q- Vi -y aw
(n) (r(") ) o
a”=1(_ pI 0
(n) G =
" 5 sl
(22) can be reformulated using [46, Lemma 2] as
n+1
+ Ly (wth - w) = oMgtHD), (23)

Theorem 1: Under Assumption 1, if ) =1 = 0, Vn, the
proposed PGFL algorithm converges to the optimal solution of
(2) in linear time for each cluster.

Proof: Under Assumption 1, F'(w) is convex and smooth by
composition and, therefore, differentiable. Using [47, Lemma
6] and [47, Theorem V] with a convex and smooth function
F(w) demonstrates that the proposed PGFL algorithm, without
inter-cluster learning (7 = 0), converges to the optimal solution
of (2) in linear time for any given cluster.

C. Impact of Inter-Cluster Learning

In situations with limited data, as demonstrated in Section
V, employing inter-cluster learning (7 # 0) can enhance perfor-
mance compared to 7 = 0. This section establishes an upper
bound on the disparity between the resulting cluster-specific
personalized models obtained in scenarios with and without
inter-cluster learning. It is worth noting that this bound can be
controlled by properly choosing the sequence 7(n).

To do so, itis necessary to reformulate the client primal update
using Assumption 1. The primal update for client k € C; (4) is
expressed as follows:

w1 = argmin fi(w) — (9" w - w )

P n
+ 5llw = w1,

(24)

which, under Assumption 1, is equivalent to

Vhewi ) = p(wi ) = wi ) =0 @)
Further reformulation leads to the following:
wi = wli) + pcp(") - —Vf (W), (26
By replacing w(”+ ) with (26) in (8), we obtain
&™) 1 1 ( (-1 _ 1 (n)
LS (e Lop)
Walo = |NS| PN Cp.()] ke%:q) »(9) P
(27

Next, we investigate the effect of inter-cluster learning by
comparing the performance of models obtained using the PGFL
algorithm with and without inter-cluster learning. We shall prove
that the difference between the resulting models is bounded and
depends on both the inter-cluster learning parameter and the
similarity of models between clusters.

Theorem 2: Given a sufficiently large penalty parameter p,
for all iterations, server s € S and cluster ¢ € Q, the impact of
inter-cluster learning after n iterations is bounded by

(n) (n)

2 n n
H“’s @~ Wsi(a) ‘

} <SS I a-+9 |+,
2

i=1

j=i+1
(28)

where the expectation is taken with respect to the privacy-related

noise added in (12) and the data observation noise, Wgn()q) de-

notes the model obtained by the algorithm without inter-cluster
learning, and 7 is the maximum cluster model distance, defined
as:

2
n = max |wi, —wi,,

29
max (29)

with the models W?q) ,q € Q being the cluster-specific solutions

of (2) with 7 = 0.
Proof: We prove this theorem by induction. With initial val-
(0) 0 _

ues w = andw = , one can write.
s,(q) s,(q)

w(1) (1 _m WM () Z (1)

s,(q) Ws,(a) Q-1 Ws,(r)

reQ\q

(1) 1 1 (7(0) 1 (41)))
w = - _v.fk w )

$(@) N p%\:/s [ i Z O k

(30)

where, given that w'l ()q) = WZ(,O()q) and W(O) = w,(C ), and using

(27), we have wil()q) = v‘vsl(q). Hence,

1)
-ty = g 5 (58 ~520).

W
s Wsla) T O _
Q 1 reQ\q

€29

Taking the expectation with respect to the privacy-related and
observation noises, we can express this difference as a function
of the inter-cluster learning parameter and the maximum cluster
model distance.

— (1) (1) || ]

W50~ W (32)
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Further, we assume that (28) is satisfied for all iterations up
to iteration n — 1. For iteration n, we have

(n)
w™ _ s ™ T w™
Wi = (-7 <q)+Q_1Z\ 5,()
reQ\q
w™ (v_v(nq) - EVf (W™ )
k(W ) )
W) = |J\/’| ZS p’(q)| Zq) p:(9) P k
(33)
where v?zin()q) # \Tvin()) since
~(n n— 1 n
W = N Z Z (Wé W — V(W ))>
Wil 53 1Coal p(q)l
(34)
The difference is given by
—(n) _ _(n) _ ) (w™ _ &
Wole) = Waip = (-7 (Ws,<q> Ws (q))
(n)
T —(n) =(n)
T o1 Z( s<q>_we<r>) 35)
TEQ\q
with
() _ () L 1 (-(m)
W —w = w
s,(a) s,(a) Z ()
! VN Gl o N
(n-1) 1 _(n)y, 1 (n)
_wp7(q) —;ka(wk )+;ka(wk ))
(36)
We note that the expectation of ||Wp (q)l ) wpn(q)1 ) |3 with re-

spect to the privacy-related and observation noises is identical for
all servers. Therefore, since (28) is satisfied for iteration n — 1
for all servers, given a sufficiently large penalty parameter p,
and taking the expectation with respect to the privacy-related
and observation noises, we have

A(") (n-1) _ o (n=1)2

_(n) _
W) = Wil < 11wl —wig Il 3D
Combining (35) and (37), we will have
n _ (n—1 n—1
1w, (@) - w <q>||2 (1=7") [|w] (q>) W§,<q>)||§
(n)
g (n) A(n)
toor X IS IE
red\q
(38)
which, using the maximum cluster model distance, yields
n—1) (n—1)
190 = w3 < (1=t e = w3
+ 7™y, (39)
Given (28) for iteration n — 1, we have
||"7Vs7,1( - Ws (q)||2
n—1 n—1
< (1 ) Z H (1- T(J)) T(Z)n + T(n)n,
i=1 \j=i+1

n

H (1— 7Dy | 700y,

j=i+1

n
<2

=1

(40)

That is, (28) is satisfied for iteration n.

By the principle of induction, (28) is satisfied for all iterations,
server s € S and cluster ¢ € Q.

Corollary: 1) =0,Vi < nand 7(") # 0, the impact of a
single iteration of inter-cluster learning is bounded by

= (n)

1w, — ", (41)

w) I <

where Win()q) denotes a model obtained without inter-cluster

learning, 7 is as defined in Theorem 2, and the expectation is
taken with respect to the privacy-related and observation noises.

Theorem 2 bounds the difference in the resulting models
with and without inter-cluster learning. Combining Theorems
1 and 2, the resulting models obtained by the algorithms are
guaranteed to reside within a neighborhood of the optimal
solution of (2) with 7 = 0. The size of this neighborhood can
be adjusted by selecting the sequence (). When ample data
is available, the algorithm converges to a satisfactory solution
within this neighborhood. However, in cases of limited data, the
solution of (2) with 7 = 0 may be inadequate. In such situations,
inter-cluster learning becomes crucial, allowing the proposed
algorithm to achieve higher accuracy, as demonstrated in Section
V. By exploiting inter-cluster learning, the algorithm effectively
overcomes the limitations imposed by scarce data, leading to
improved performance.

IV. PRIVACY ANALYSIS

This section focuses on quantifying the local privacy protec-
tion provided by the proposed PGFL algorithm. To achieve this,
we begin by calculating the [;-norm sensitivity, which quantifies
the variation in output resulting from a change in an individual
data sample. Once we have established the /s-norm sensitivity,
we proceed to adjust the noise variance added to the primal
variables, ensuring satisfactory protection.

Definition: The ly-norm sensitivity is defined by

(n) (n) (n)
k2 — ZI)H Hwk D~ Wi, (42)
where W,Z%k and w,(;’%l denote the local primal variables ob-

tained from two neighboring data sets Dy, and D;, which differ
in only one data sample.

Assumption 3: The functions (( ), k € C, have bounded
gradients. That is, for k € C there exists a constant C}, such
that || V£, (]| < Ck

Lemma 1: Under Assumption 3, the [;-norm sensitivity for a
client k is given by

(n)

k,2:g1 X||Wka_ leH (43)

Proof: We consider two neighboring data sets for a client k,

Dy, and Dy, both of cardinality Dj. For simplicity, we assume

that they differ on the last data sample. We denote w,(c%k the

model obtained using the initial data set, and w,(;% the model

obtained using the alternative data set. Those are obtained,
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according to (4), by:

Dy,

n 1
Wl(c,)k _argmln_;gk Xkyis Yk,is )"‘mR(W)
n-1 n—1 n—1
<‘P§f oW - Wi,(q>)> ‘||W w7,
WI(J,LZ)% = arg mln R(w)

ICsl
Dy—1
( Z O (X5 Yhoyis W )+£k(XIk,Dkvy;g,Dk;w)>

n—1 n—1 P n—1
_<‘Pl(c ),W—Wg’(q))>—|—§||w W( )||2
Using (26), that we recall:

(n) _ -1 1

s(a) T ;‘Pk (@4

1 n

— ~Vi(wi"),
p

we can derive:

||Wka leH—

vgk(xlk,Dk ) y;c,Dk W)

(45)

(Ve (Xk, Dy » Yk, Dy W) —

H pDk

which, under Assumption 3, provides a value for the /5-norm
sensitivity:

(”) | = 2Ck

Wi D, (46)

max | |w(")
Dy, Dy k. Dk

With the [5-norm sensitivity, we can establish the relation be-
tween the noise variance added in (12) and the privacy parameter
qﬁfcn) as well as prove the privacy guarantee of the algorithm in
terms of zCDP.

Theorem 3: Under Assumption 3, PGFL satisfies dynamic
qﬁé") -zCDP with the relation between the privacy parameter and
the perturbation noise variance given by

2(n)
5 — k2 (47)
2¢(n)

Proof: For any client k and iteration n, the perturbed primal

update is obtained with (12). That is, it is equivalent to W(")

N(w ,(C"), 5,3(")1). The result in [36, Proposition 6], states that a
sensitivity- query ¢ releasing an output N'(g(z), §%) from an
input x satisfies ( 2/262) — zC'D P. Thus, the PGFL algorithm

2 n)

)_zCDP with qﬁ;cn) = #
k

Theorem 3 gives the relationship between the noise pertur-
bation variance and the privacy protection at a given iteration.
Since the proposed algorithm is iterative in nature and models are
exchanged several times with the servers, one should consider
the total privacy loss throughout the learning process. To this
aim, we establish the following theorem.

Theorem 4: Under Assumption 3 and for a final iteration IV,
the PGFL algorithm satisfies ¢!°*-zCDP throughout the entire

satisfies the dynamic ¢\

computation for each client k, with ¢ given by

Z¢

Proof: This theorem results from the use of [36, Lemma 7]
N times over.

lotal

(48)

V. NUMERICAL SIMULATIONS

This section illustrates the performance of the proposed PGFL
algorithm for solving regression and classification tasks.

A. Experiments for Regression

We consider a graph federated network consisting of |S| = 10
servers, each having access to |Cs| = 15 clients, for a total of
|C| = 150 clients. The set of servers and their communication
channels form a random connected graph where the average
node degree is three. Each client has access to a random num-
ber of noisy data samples between Dy, = 2 and D = 9, each
composed of a vector x;, ; of dimension d = 60 and a response
scalar yy, ;. Doing so, each cluster is globally observable but not
locally at any given client or set Cs, s € S. The servers imple-
ment random scheduling of clients to reduce the communication
load [48]. In particular, at every global iteration, each server
randomly selects a subset of three clients to participate in the
learning process.

The clients of the network are randomly split between () = 3
clusters. Clients of a given cluster solve the ridge regression
problem with data generated from an original model w ob-
tained with w(, = w( + yw( withy ~ ¢4(—0.15, 0.15) where
w, is a base model. In doing so, the learning tasks of different
clusters share the same objective functions but have different,
albeit related, data distributions. The loss and regularizer func-
tions are given by

0 Xk yis W) = |lyr — Xewy |,
R(wg) = [[wg|[>. (49)

Performance is evaluated by computing the normalized mean
squared deviation (NMSD) of the local models with respect
to the corresponding cluster-specific original model used to
generate the data, W?q) for k € C(y). It is given by:

o] Hw(n) W*

DD

q=1keC q)

‘ 2

2, (50)

(a)

ol
2
where the result is averaged over several Monte Carlo iterations.
The proposed algorithm is compared with various existing algo-
rithms. The ClusterFL algorithm, defined in [49], implements
conventional personalized FL. with inter-cluster learning. For
a fair comparison, the ClusterFL algorithm has been modified
to leverage similarity among tasks in the same manner as the
PGFL algorithm. The GFL algorithm, defined in [ 5], implements
single-task graph FL in a privacy-preserving manner. To ensure
a fair comparison, the ClusterFL and GFL algorithms have
been modified to ensure privacy in the same manner as the
PGFL algorithm. Furthermore, the algorithms are set to observe
the same initial convergence rate whenever possible. For most
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Fig. 1. Learning curves of the PGFL algorithm with a fixed inter-cluster
learning parameter and the FedAvg algorithm, without client scheduling or
privacy.

experiments, the learning curves are displayed as plots of the
NMSD versus the iteration index.

We first consider an ideal setting wherein all algorithms are
evaluated without privacy considerations (& (n) — , Vn)) and
client scheduling. In this scenario, the inter-cluster parameter
7(") of the PGFL algorithm was kept fixed throughout the
learning, specifically, 7("™) = 0 and 7(") = 0.4. Fig. 1 shows the
learning curves for the GFL, ClusterFL, and PGFL algorithms.
The results illustrate the superiority of the proposed PGFL
algorithm over GFL, as cluster-specific learning tasks benefit
significantly from personalized models tailored to each cluster.
We also see that incorporating inter-cluster learning results in
improved convergence speed and steady-state accuracy. Further-
more, the performance of the ClusterFL algorithm is notably
poor in this setting, emphasizing the importance of using the
graph federated architecture when data is scarce. Leveraging
the model similarities improves learning speed and accuracy
by compensating for data scarcity. In addition, isolated servers
whose clients lack sufficient data to achieve satisfactory accu-
racy independently reinforce the necessity of the graph federated
architecture.

Next, we modify the setting to incorporate client schedul-
ing and evaluate the aforementioned algorithms with reduced
communication load. Fig. 2 shows the learning curves for the
GFL, ClusterFL, and PGFL algorithms with client scheduling.
In this figure and the ones below, 3 clients out of 15 are randomly
selected to participate by each server at every iteration, reduc-
ing the communication load by 80% for every algorithm. We
observe that the PGFL algorithm exhibits slower convergence
and higher steady-state NMSD when utilizing client scheduling.
And we note that GFL performs better with client scheduling.
The performance degradation for the PGFL algorithm is due to
the lower client participation resulting in a smaller quantity of
data being utilized. The better performance of GFL in this setting
is due to the imbalance of cluster representation in the universal
model, which benefits the participating clients on average.

Finally, we evaluate the aforementioned algorithms in a set-
ting with client scheduling and privacy protection. All of the
algorithms utilize zCDP with the noise perturbation presented

in (12) and the parameters ¢,(€0) = 0.001,Vk and ¢ = 0.99.

-20 :
GFL
ClusterFL
-25¢1 PGFL -7 =0
PGFL - 7 = 0.4
-30f
o
=
Q -35¢
2
P
Z.
-40
451
50 i i i i i
0 50 100 150 200 250 300

Iteration index (n)

Fig. 2. Learning curves of the PGFL algorithm with a fixed inter-cluster
learning parameter and the FedAvg algorithm, considering client scheduling
and without privacy.
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PGFL - 7" = 0.4
30
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g
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Z
40t
45}
-50 - - - - -
0 50 100 150 200 250 300

Iteration index (n)

Fig. 3. Learning curves of the PGFL algorithm with a fixed inter-cluster
learning parameter and the FedAvg algorithm, considering client scheduling
and privacy.

Hence, all the algorithms satisfy ¢i"!-zCDP throughout the
computation with ¢! = 0.095, Vk. Fig. 3 shows the learning
curves for the GFL, ClusterFL, and PGFL algorithms with client
scheduling and privacy. We observe that the noise perturbation
associated with differential privacy significantly reduces the
convergence speed of all the simulated algorithms. However,
we note that the NMSD after 300 iterations is nearly identical to
the one in Fig. 2. This behavior is explained by the use of zCDP,
in which the variance of the noise perturbation starts high and
decreases linearly throughout the learning process.

Further, we illustrate the importance of carefully choosing
the value of the inter-cluster learning parameter. In Fig. 4,
we simulated the proposed PGFL algorithm for various fixed
7(") values and displayed the NMSD after 200 iterations. For
instance, the NMSD for 7(") = (.4 corresponds to the result
obtained in Fig. 3. This figure confirms that inter-cluster learning
has the potential to increase learning performance by alleviating
data scarcity, as the PGFL algorithm achieves lower NMSD
with 7(") € (0.1,0.5) than with 7(") = 0. It also shows that the
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Fig. 5. Learning curves of the PGFL algorithm with fixed and time-varying

inter-cluster learning parameter 7 ) in a setting with low cluster similarity,
considering client scheduling and privacy.

inter-cluster learning parameter must be carefully selected, as a
value too large for the setting leads to performance degradation.
We then illustrate an alternative use of inter-cluster learning.
For this experiment, the difference between the data distribu-
tion of the different clusters has been increased. Precisely, the
datasets were simulated with the models obtained by w,) =
wo +ywo with v ~ U (—0.5,0.5). The learning curves are
presented in Fig. 5. We observed that, because of the higher
cluster dissimilarity, inter-cluster learning degrades steady-state
NMSD; this is observed in the learning curves for PGFL
with 7(") =0 and 7(") = 0.4. However, by mitigating data
scarcity within a cluster, inter-cluster learning improves the
initial convergence rate. To benefit from an improved initial
convergence rate and avoid steady-state performance degrada-
tion, it is possible to reduce the inter-cluster learning parameter
progressively. Doing so, the PGFL algorithm with time-varying
7(") = 0.4 x 0.98" has the same initial convergence rate as the
PGFL algorithm with fixed 7 = 0.4 and attains near-identical
steady-state NMSD as the PGFL algorithm with fixed 7 = 0.

41+

PGFL- 7" =04

NMSD after 200 iterations (dB)

-49
0.98

0.99 0.995 1

0.985

Variance decrease rate value

Fig. 7. Privacy-accuracy trade-off of the PGFL algorithm for ~ with a fixed

inter-cluster learning parameter, considering client scheduling.

Finally, we study the impact of privacy protection on the
steady-state NMSD of the PGFL algorithm. Fig. 6 shows the
NMSD after 200 iterations versus the initial value of the privacy
parameter ¢q for a decaying rate of ( = 0.99. Note that, as seen
in Theorem 3, a lower value of ¢ ensures more privacy. We
observe that for smaller values of ¢, the steady-state NMSE of
the PGFL algorithm is higher. In fact, a lower total privacy loss
bound leads to higher perturbation noise variance and diminishes
the learning performance of the algorithm. Similarly, Fig. 7
shows the NMSD after 200 iterations versus the variance de-
crease rate ¢ for an initial privacy value of ¢y = 0.001. The lower
the decrease rate, the faster the privacy protection weakens,
and the lower the steady-state NMSE of the algorithm as more
information is exchanged among clients. On the other hand, a
decrease rate close to 1 ensures better privacy protection but
comes at the cost of lower accuracy.

B. Experiments for Classification on the MNIST Dataset

The following experiments were conducted on the MNIST
handwritten digits dataset [50]. In those experiments, the learn-
ing tasks of the clients associated with different clusters share
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Fig. 8. Test accuracy curve of the PGFL algorithm with a fixed inter-cluster
learning parameter on MNIST, considering client scheduling and privacy, with
low cluster similarity.

the same data but have different, related, objective functions.
The structure of the server network, as well as the number of
clients per server, are identical to the experiments for regression.
In the following experiments, the clients of a given cluster use
the ADMM for logistic regression to differentiate between two
classes. The loss function for the logistic regression is given by

Dy,

-1
log[k (X, yk; wi)] = D Z(ykz log[y} ;]
i=1

+ (1 — yk,i) log[1 — yk,i]), (51)

with

1
/
Ui =17 exp(—w, X,i) (52)

We simulated the PGFL algorithm in the context of clas-
sification with client scheduling, privacy, a fixed inter-cluster
learning parameter 7™ = 7 = 0.4, and without inter-cluster
learning 7(™ = 0. Fig. 8 shows the test accuracy versus iteration
index in a setting where the clients of a given cluster must
differentiate between two classes composed of a single digit.
Each client receives between Dy, = 2 and D), = 4 data samples
composed of two MNIST images. The clients of cluster 1 have
access to images of the digits {1} and {8}. The clients of
clusters 2 and 3 have access to images of the digits {1} and
{9}, and {7} and {8}, respectively. Given that the clients of
different clusters must differentiate between different digits, the
similarity between the learning task is limited. Nevertheless, we
observe that inter-cluster learning does improve the accuracy of
the PGFL algorithm in this setting.

Further, we modified the setting so that the clusters exhibit
more similarity. Fig. 9 shows the test accuracy versus iteration
index in a setting where the clients of a given cluster must differ-
entiate between two classes composed of triplets of digits. Each
client receives between Dy = 6 and Dj = 12 data samples,
each composed of two triplets of MNIST images. The clients
of cluster 1 must differentiate between the classes {1, 2,3} and
{6, 7,8}, the clients of cluster 2 between {1, 2,3} and {7,8, 9},

Test Accuracy
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Fig. 9. Test accuracy curve of the PGFL algorithm with a fixed inter-cluster

learning parameter on MNIST, considering client scheduling and privacy, with
high cluster similarity.
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Fig. 10.  Test accuracy of the PGFL algorithm on MNIST after 100 iterations
vs. fixed inter-cluster learning parameter 7 ), considering client scheduling
and privacy.

and the clients of cluster 3 between {1, 2,3} and {6,8,9}. We
observe that, in this setting, inter-cluster learning significantly
improves the accuracy of the PGFL algorithm.

Finally, we utilize the previous setting and evaluate the impact
of the value of the inter-cluster learning parameter 7(™) on the
accuracy achieved by the PGFL algorithm in the context of clas-
sification. Fig. 10 displays the accuracy achieved by the PGFL
algorithm after 100 iterations versus the value of the inter-cluster
learning parameter in the context of the classification task of
Fig. 9. We observe that, in this setting where the similarity among
the learning tasks is high, medium and large fixed values for 7(™)
lead to significant accuracy improvement. However, very large
values lead to performance degradation, similar to Fig. 4.

C. Experiments for Classification on the MedMNIST Dataset

To demonstrate the proposed method of utilizing inter-
cluster learning to palliate data scarcity and improve learn-
ing performance in real-life applications, two experiments are
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Fig. 11.  Test accuracy curve of the PGFL algorithm with a fixed inter-cluster
learning parameter on MedMNIST, considering privacy, with high cluster sim-
ilarity.
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Fig. 12.  Test accuracy curve of the PGFL algorithm with a varying inter-
cluster learning parameter on MedMNIST, considering privacy, with low cluster
similarity.

conducted on the Organ AMNIST dataset, part of the biomedical
MedMNIST dataset [S1]. The OrganAMNIST dataset contains
lightweight images of 11 different organs labeled by type. It
comprises more than 58000 data samples split into training,
validation, and testing data. We use the proposed method to
improve classification accuracy in the following setting. The
server network and the loss function are identical to previous
experiments; however, only three clients are associated with
each server, each client having access to two data samples.
In both experiments, clients of a given cluster are tasked with
differentiating between two types of organs. Different clusters
are associated with different pairs of organs, and inter-cluster
learning is utilized to improve classification accuracy by lever-
aging the similarity between some of the organs.

In the first experiment, the three clusters are given similar
learning tasks. In particular, one of the elements of each pair of
organs is identical. Cluster 1 differentiates between the right lung
and the left lung, cluster 2 between the liver and the left lung,
and cluster 3 between the right kidney and the left lung. Fig. 11
shows the test accuracy versus iteration index. We observe that
a large amount of inter-cluster learning leads to significantly

improved performances, increasing classification accuracy by
about 5

In the next experiment, the learning tasks associated with each
cluster are less similar than in the previous experiment. They
share only the vague shape of the classified organs. Cluster
1 differentiates between the spleen and the left lung, cluster
2 between the left kidney and the bladder, and cluster 3 be-
tween the right kidney and the right lung. Due to the lower
cluster similarity, we utilize a decaying inter-cluster learning
parameter to preserve steady-state accuracy. Fig. 12 shows
the test accuracy versus iteration index. We observe that a
medium decay rate of the inter-cluster learning parameter can
improve the learning speed, boosting classification accuracy by
about 2

VI. CONCLUSION

This paper proposed a framework for personalized graph
federated learning in which distributed servers collaborate with
each other and their respective clients to learn cluster-specific
personalized models. The proposed framework leverages the
similarities among clusters to improve learning speed and al-
leviate data scarcity. Further, this framework is implemented
with the ADMM as a local learning process and with local
zero-concentrated differential privacy to protect the participants’
data from eavesdroppers. Our mathematical analysis showed
that this algorithm converges to the exact optimal solution for
each cluster in linear time and that utilizing inter-cluster learning
leads to an alternative output whose distance to the original
solution is bounded by a value that can be adjusted with the
inter-cluster learning parameter sequence. Finally, numerical
simulations showed that the proposed method is capable of
leveraging the graph federated architecture and the similar-
ity between the clusters’ learning tasks to improve learning
performance.
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