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Abstract

We study the dynamics of a quantum p-spin glass model starting from initial states de-
fined in microcanonical shells, in a classical regime. We compute different chaos esti-
mators, such as the Lyapunov exponent and the Kolmogorov-Sinai entropy, and find a
marked maximum as a function of the energy of the initial state. By studying the relax-
ation dynamics and the properties of the energy landscape we show that the maximal
chaos emerges in correspondence with the fastest spin relaxation and the maximum
complexity, thus suggesting a qualitative picture where chaos emerges as the trajecto-
ries are scattered over the exponentially many saddles of the underlying landscape. We
also observe hints of ergodicity breaking at low energies, indicated by the correlation
function and a maximum of the fidelity susceptibility.
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1 Introduction

Characterizing the dynamics of a system with multiple equilibrium configurations is a chal-
lenging problem encompassing several branches of natural sciences, from biology [1] to econ-
omy [2] and theoretical ecology [3]. The nontrivial interplay between stable and unstable
configurations makes the dynamical evolution of these systems extremely sensitive to the ini-
tial conditions and thus unpredictable: since the pioneering works of the 19th [4,5] and 20th
centuries [6,7], this phenomenon has been known as chaos.

Among the physical systems displaying multiple equilibria, a prominent role is played
by spin-glasses, a class of models originally introduced to describe magnetic alloys [8, 9]:
at low temperature, the dynamics is trapped into one of the exponentially many possible
metastable states [10–13] for a long-time and explores the phase space through rare, acti-
vated jumps between different states [14–16], leading to ergodicity-breaking phenomena [17–
20]. The inclusion of quantum fluctuations usually opens up a new route for thermaliza-
tion in the equilibrium dynamics due to tunnelling between metastable states [21–24], even
though counter-intuitive effects of quantum fluctuations inducing glassiness has been found
in quantum quench protocols [25] or more recently in presence of more complex energy land-
scapes [26]. Within such a rich variety of phenomena, the recent theoretical [27–31] and
experimental [32] observation of many-body chaos in quantum spin-glasses has drawn partic-
ular attention. Specifically, in Refs. [29,30] chaos was detected in the dynamics of a quantum
spherical p-spin glass model [23], from the exponential growth of an out-of-time-order corre-
lator (OTOC) [33–39]: the corresponding Lyapunov exponent λL exhibits a single broad peak
at a temperature scale where the dynamics is still ergodic, but at the onset of slow relaxation.

The behaviour of the Lyapunov exponent λL extracted from the OTOCs was connected
in Ref. [29] to a dynamical crossover between two step and one step time relaxation in the
spin-spin correlation functions. This behaviour suggests a deeper connection between this dy-
namical feature and the structure of the underlying stationary configurations of the model. In
particular, if such relation exists other features associated to the peak in other chaos indicators
would be observed. Among these chaos indicators, one example is the Kolmogorov-Sinai (KS)
entropy [40–42], that is the sum of all the positive Lyapunov exponents describing growth of
the sub-leading terms appearing either in the OTOC for quantum systems [43, 44] or in the
distance between nearby trajectories for classical chaotic systems [45]. The KS entropy would
indeed provide a deeper insight on the emergence on the strength of chaos and to the entan-
glement production in a wide range of quantum systems [43, 44, 46–48]. A second, example
of indicator focusing on the transition from integrability to chaos in genuine quantum spin
systems is the fidelity susceptibility [49, 50]. Such quantity, despite being closely connected
to the magnetic response obtained in quantum spin-glass experiments [21], has never been
investigated in the context of spin-glasses.
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The purpose of this work is to develop a qualitative understanding of chaotic behavior in
the p-spin model by using phase space methods to compute λL , at fixed energy and in the clas-
sical limit. We find that λL exhibits a broad peak around E = 0, at the onset of slow dynamics,
and vanishes both at low and high energies, compatibly with previous studies. Working at fixed
E we observe that the maximum in λL occurs when the energy landscape has the maximum
possible number of stationary points, as characterized by the complexity (see Ref. [51]). We
find that the profile of the Kolmogorov-Sinai entropy is qualitatively identical to that of λL . To
further investigate the chaotic features of our model, we also introduce a quantity classically
equivalent to the fidelity susceptibility χ in the ergodic phase finding that, as a function of
E, it has a single peak, aligning with the onset of non-ergodic behavior in the dynamics. Our
results can be easily interpreted in terms of the typical behaviour of the underlying trajecto-
ries at different energy scales, which in turn determine the profile of the correlation function:
While the low and high-energy limits respectively correspond to trajectories performing small
oscillations around a local minimum or a uniform circular motion on the N -sphere, for in-
termediate energies the nontrivial interplay between the saddles of the landscape enhance
dynamical chaos. Our method is straightforwardly generalized to other spin-glass models,
for example describing spins 1/2 in a transverse field [28], where a similar behaviour for the
trajectories is expected both for the low and high-energy limit.

2 Classical dynamics of the p-spin glass spherical model

Throughout this work, we will focus on the isolated dynamics of the p-spin glass Spherical
Model (PSM), whose Hamiltonian

ĤJ =
1

2M

N
∑

i=1

Π̂2
i + VJ (σ̂) , (1)

with
VJ (σ̂) = −

∑

1≤i1<···<ip≤N

Ji1,...,ipσ̂i1 · · · σ̂ip , (2)

describes a system of N spins interacting through random, all-to-all couplings Ji1,...,ip , inde-

pendently sampled from a Gaussian distribution with zero mean and variance J2 = 2p!/N p−1.
Here the spins σ̂i are treated as continuous variables, obeying the spherical constraint
∑

i 〈σ̂
2
i 〉 = N [52], and quantum fluctuations are implemented by the canonical quantiza-

tion relations [σ̂i , Π̂ j] = iħhδi j . The term “spin-glass” is attributed to the quantum PSM model,
despite its use of position and momentum operators, due to historical reasons. The introduc-
tion of the quantum PSM can be traced back to Ref. [23], where it was revealed to manifest
a thermodynamic phase transition from a paramagnetic to a spin-glass state, driven by the
temperature T and by a dimensionless parameter Γ = ħh2/MJ , which quantifies the strength of
quantum fluctuations. The transition line Γc(T ) that separates these two phases shares qual-
itative features with the glass transition line experimentally observed in disordered spin 1/2
systems [21,53], coupled to quantum fluctuations through an homogeneous transverse field.
The nomenclature “spin-glass” was then associated to the quantum PSM due to these observed
similarities. The thermodynamic phase transition in the PSM is either of the first or second
order depending on the strength of Γ [23, 24] and its corresponding transition line can be
parametrized also in terms of by a critical temperature Tc(ħh). At temperature Td(ħh) ≳ Tc(ħh),
a dynamical, ergodicity-breaking transition is also observed [22], whose properties are sen-
sitive to quenches in ħh in a non-trivial way [25]. In refs. [29, 30], many-body chaos in the
quantum PSM was studied using an OTOC in the large-N limit and for a unitary evolution of
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the system from a thermal initial state. The OTOC grows exponentially at any temperature T ,
with a quantum Lyapunov exponent λL(T ), which displays qualitatively the same profile for a
wide range of fixed values of ħh and in particular in the classical limit ħh→ 0, having a single
maximum at Tm(ħh)> Td(ħh) and vanishing in the low and high-temperature limits. In contrast
to its fermionic counterpart, the Sachdev-Ye-Kitaev (SYK) model [34, 54, 55], in the PSM the
bound on chaos λL ≤ 2πT/ħh, proven for a general quantum many-body system in Ref. [37],
is never saturated. A similarity between the Lyapunov exponent of the SYK model and that of
the PSM only arises for ħh→ 0, where the bound becomes trivial. In this case, the λL(T ) grows
linearly with temperature T at low T for both cases [29,56].

The aim of this work is to gain physical insight on the behaviour of λL investigating the
dynamics of the PSM in the classical limit ħh→ 0 and at fixed energy-density E, a framework
usually used for classical dynamical systems [42]. This goal can be achieved in the framework
of Truncated Wigner Approximation (TWA) [57, 58], briefly reviewed in the following (see
Refs. [59, 60] for further details). We begin by observing that, for a generic system with N -
dimensional position and momentum-like degrees of freedom, like σ and Π, the Heisenberg
dynamics from an initial state ρ̂ of any operator Ô =O(σ̂, Π̂) can be represented as

〈Ô(t)〉= Tr[ρ̂ Ô] =

∫

dσdΠ
(2πħh)N

Wρ(σ,Π)OW (σ,Π, t) , (3)

where

OW (σ,Π, t) =

∫

dξ
¬

σ −
ξ

2

�

�

�O(σ̂(t), Π̂(t))
�

�

�σ +
ξ

2

¶

exp
�

i
Π · ξ
ħh

�

, (4)

is called Weyl symbol of the operator Ô, while the Wigner function Wρ(σ,Π) is the Weyl sym-
bol of the density matrix ρ̂. The TWA is then a classical approximation for the dynamics of
OW (σ,Π, t), summarized as

OW (σ,Π, t)≃O(σ(t),Π(t)) , (5)

where (σ(t),Π(t)) is the classical trajectory evolving from the initial condition (σ,Π) and
determined by the following Hamilton equations:











∂tσi = Πi/M ,

∂tΠi = −
N
∑

j=1

�

δi j −
σiσ j

N

� ∂ VJ

∂ σ j
−

∑

iΠ
2
i

MN
σi .

(6)

The Eqs. (6) are essentially derived by adding to the Hamiltonian a Lagrange multiplier term
z(t)(σ2 − N), where z(t) is determined in a self-consistent way so that the dynamics satisfies
the spherical constraint at any time t (see Appendix A for more details). The TWA is believed
to be valid at least up to an Ehrenfest time tEhr ∼ logħh−1 [33] diverging for small-ħh.

To investigate the dynamics at fixed energy density E, the ideal setup would be to fix ρ̂ as
a micro-canonical state and compute the corresponding Wigner function, which is in general
a formidable task. Instead, we fix an initial condition

ρ̂ =
1
Ns

Ns
∑

l=1

|α(l)〉 〈α(l)| , (7)

as an ensemble of coherent states |α(l)〉= ⊗N
j=1 |α

(l)
j 〉 [61], defined as eigenstates of the oper-

ators â j = σ̂ j/(
p

2l) + ilΠ̂ j/(
p

2ħh), for j = 1, . . . , N and a free parameter l, with eigenvalues
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α(l) = {α(l)1 , . . . ,α(l)N }, respectively. For each state |α〉, the Wigner function is the Gaussian
wave-packet

Wα(σ,Π) = 2N
∏

j

exp

�

−
(σ j −σα j)2

l2
−

l2(Π j −Πα j)2

ħh2

�

. (8)

In the following, we fix l =
p
ħh, to have the same uncertainty in the variables σ and Π. The

centers (σα,Πα) of the various wave-packets are chosen in a way that 〈α|ĤJ |α〉/N = E. For
the small values of ħh we are interested in, it can be easily shown that such choice is equivalent
to fix the classical energy density

1
N
Hcl(σα,Πα) =

Π2
α

2MN
+

VJ (σα)
N
≃ E , (9)

so that we can determine the centers of the wave-packets in Eq. (8) using the following “clas-
sical annealing” algorithm:

1. First extract a random configuration (σ0,Π0) in phase space, withσ0 uniformly sampled
on the N -sphere and Π0 sampled from the normal distribution with zero mean and unit
variance.

2. To bring the system in a configuration at the desired energy density E, we integrate the
dynamics starting from (σ0,Π0) and defined by the equations











∂tσi = Πi/M ,

∂tΠi = −
N
∑

j=1

�

δi j −
σiσ j

N

�

�

∂ VJ

∂ σ j
+ γΠ j

�

−

∑

iΠ
2
i

MN
σi ,

(10)

where a dissipative term of strength γ > 0 has been added. Notice that γ > 0 if
Hcl(σ0,Π0)> N E and γ < 0 otherwise.

3. Finally stop the integration as soon as the system reaches a configuration (σ1,Π1) such
thatHcl(σ1,Π1) = N E. Afterwards we may set γ= 0 and integrate the Hamilton dynam-
ics (Eq. (6)) from (σ1,Π1) for a time teq, to let the system reach a typical configuration
on the corresponding classical microcanonical manifold, which we finally take as the
center (σα,Πα) of the wave-packet in Eq. (4). Throughout the rest of this work, we fix
γ= 0.5 and teq = 5.

In practice, the Wigner function for the initial state in Eq. (7) is obtained taking the average
over Ns different wave-packets, sampled from the classical annealing algorithm for the same
fixed configuration of the disorder {Ji1,...,ip}, as

Wρ(σ,Π) =
1
Ns

Ns
∑

l=1

Wα(l)(σ,Π) . (11)

We repeat the algorithm for each of the Ns states: the resulting set of points {(σ(l)c ,Π(l)c )}l=1...Ns

is then a non-uniform sampling of the classical microcanonical manifold at energy density E. As
long as ħh is very small, TWA enables us to sample orbits evolving from a neighborhood of each
of each configuration (σα,Πα), a feature which we will use in Section 3 to investigate classical
chaos in the PSM from the average growth of the width of the wave-packets. We compute all
the observables we are interested in by averaging over an ensemble of trajectories, evolving
according to Eq. (6) from an initial condition (σ,Π) sampled from the distribution in Eq. (11).
In the rest of this work, we will denote by 〈 · 〉 the average over the sampled trajectories and
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Figure 1: (Left) Time-evolution of the log-average over the disorder of the distance
dJ (t) in Eq. (12), reported for few paradigmatic energy densities . The average over
the initial condition is performed extracting 25 random configurations from each of
the Ns = 20 wave-packets, defined in Eq. (8) and obtained through the classical
annealing algorithm. The dynamics is integrated up to a time tmax = 80. The log-
average over the disorder is taken over Nd = 30 configurations. (Right) Lyapunov
exponent λL , defined in Eq. (13), obtained through a linear fit of log dJ (t) over a time
window [t I , tF ], defined in such a way that, for each E, t I is beyond the oscillations
at early times displayed by log dJ (t) and tF is smaller than the saturation time-scale.

by ( · ) the one over the disorder configurations {Ji1...ip}. We fix ħh = 10−8, N = 100 and we
focus on the paradigmatic case of p = 3.

We conclude this section with two technical remarks. First, it is worth noting that the
classical annealing algorithm described above allows us to sample energies that are arbitrarily
high, but not arbitrarily low. Specifically, in the PSM, the minima of the potential VJ (σ) are
situated below a characteristic energy scale of Eth = −

p

2(p− 1)/p [10] (also discussed in
Sec. 4 and detailed in Appendix E). Due to this limitation, our classical annealing approach
cannot explore phase space configurations with energies E < Eth, as the dissipative dynamics
of Eq. (10) becomes trapped in the vicinity of the first encountered local minimum. As a
result of this constraint on sampling low-energy configurations, we are unable to investigate
the relationship between λL and E in the vicinity of the ground state. Consequently, we are
also unable to make a comparison against the linear dependence of λL on T , for small T ,
observed in Ref. [29]. The second remark is that our definition of the Wigner function is
not rigorous for the degree of freedom σ lying on a compact configuration space (see also
Ref. [62]). Specifically, the configurations σ sampled from the distribution in Eq. (11) are
not confined to the N -sphere. Although our approximation fails in capturing precise quantum
dynamics at finite ħh, it is expected to be reliable in the limit of ħh → 0. For our investigative
purposes, it serves merely as a tool to examine the classical trajectories evolving from nearby
initial configurations sampled at low ħh (thus testing classical chaos). Furthermore, as ħh tends
to 0, the configurations we extract are expected to asymptotically lie with the N -sphere. This
is true as long as the center σc of each sampled wave-packet Wα(l)(σ,Π) also resides on the
N -sphere, a condition consistently met within the classical annealing algorithm.

3 Results: Chaos estimators

We present here our results for the chaos estimators of the PSM, starting from the Lyapunov
exponent λL . In principle, λL can be obtained as a function of E by computing the Weyl
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symbol, defined in Eq. (4), of the OTOC [28]. However, in the ħh→ 0 limit we are interested
in, λL becomes the exponential rate of divergence of pairs of nearby orbits of the emerging
classical dynamics1 and can be computed from

dJ (t) =
1

2Nħh
1
Ns

Ns
∑

l=1

2N
∑

i=1

〈α(l)|
�

ŷi(t)− 〈α| ŷi(t) |α〉
�2 |α(l)〉 , (12)

where ŷ= (σ̂1, . . . , σ̂n, Π̂1, . . . , Π̂N ) is the set operators corresponding to a classical phase space
configuration. The quantity dJ (t) is easier to compute than the OTOC in the TWA framework
and, in Appendix B, we show explicitly that both dJ (t) and the OTOC grow exponentially with
the same rate in the classical limit. To get rid of the small time scale fluctuations appearing in
the dynamics of log dJ (t), we compute its average log dJ (t) over the disorder, and retrieve a
smooth linear growth

log dJ (t)∼ λL t , (13)

on intermediate time scales, as shown Fig.1 (left). The corresponding Lyapunov exponent λL ,
shown in Fig. 1 (right) against the energy density E, has a clear peak close to E = 0, while
it asymptotically vanishes at low and high energies. In Refs. [29, 30], it was shown that λL
has the same qualitative profile as a function of T , displaying for small ħh a single maximum
around Tm(ħh) ≃ 1: this maximum is consistent with the one we find at E = 0, since in the
paramagnetic phase the classical energy density E and the temperature T are related by the
equation E = T/2− 1/(2T ) (as shown in Ref. [63]). Our computed results are also in close
numerical agreement with those obtained in Refs. [29,30], where the estimated maximum for
the Lyapunov exponent was around λL ≃ 0.6, like in our findings. However, it is important
to note that the order of operations in Eq. (13), involving a logarithm and an average over
disorder, is reversed compared to previous studies (see Ref. [64] for a more general discussion).
Consequently, we do not expect a perfect match between the λL we compute here and results
from Refs. [29,30]. In summary, the exponent λL we calculate is essentially classical, and the
introduction of small fluctuations in the initial conditions is merely a tool we use to sample
nearby trajectories starting from the same wave-packet. It is worth mentioning that, while we
use quantum fluctuations to sample nearby configurations in phase space, classical chaos can
also be probed using different kind of fluctuations (see Ref. [65] for an example).

In the classical limit, the strength of chaos at different energy densities can be also con-
nected to entropy generation by looking at the Kolmogorov-Sinai (KS) entropy [40,41]. This
is defined from the observation that, in general, N exponential terms in the form of exp(λi t)
contribute to the growth of the distance in Eq. (12), with non-negative Lyapunov exponents
hierarchically ordered as λL = λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0 [45, 66, 67]. The KS entropy (den-
sity) is then just the sum ΛKS =

∑N
i=1λi/N : classically, ΛKS quantifies the rate of spreading of

coarse-grained volumes in phase space [68], while its quantum counterpart is believed to de-
scribe the entanglement growth at early times for a wide range of systems [46–48] and to be a
stronger indicator of scrambling dynamics than the single λL [44]. As shown in Refs. [46,48],
the eigenvalues of the symmetric fluctuation matrix

G jl(t) =
1

2ħhNs

Ns
∑

l=1




�

�

ŷ j(t)− 〈 ŷ j(t)〉
��

ŷl(t)− 〈 ŷl(t)〉
�

(14)

+
�

ŷl(t)− 〈 ŷl(t)〉
��

ŷ j(t)− 〈 ŷ j(t)〉
�

�

�

α(l)
.

1It is important to notice that the classical limit of λL we are investigating corresponds to twice the classical
Lyapunov exponent λcl [38], as the classical limit of the OTOC is actually the square of a typical distance between
the underlying trajectories (see also Appendix B.1).
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Figure 2: (Color online) (Left) Time-evolution of the quantity SKS defined in
Eqs. (14) and (15), reported for few paradigmatic energy densities. The average
over the initial condition is performed extracting 30 random configurations from
each of the Ns = 30 wave-packets, defined in Eq. (8) and obtained through the
classical annealing algorithm. The dynamics is integrated up to a time tmax = 80.
The log-average over the disorder is taken over Nd = 96 configurations. (Right)
Kolmogorov-Sinai entropy ΛKS, defined in Eq. (15), obtained through a linear fit of
SKS over a time window [t I , 10], where t I is beyond the scale of oscillations at early
time displayed by SKS, for each E.

diverge as exp(λi t) in the limit ħh → 0. Then, the KS entropy is straightforwardly extracted
from the growth rate of the quantity

SKS(t) =
1
N

logdet[Gi j(t)]1≤i j≤N ∼ ΛKS t , (15)

on intermediate time-scales. We plot SKS(t) inf Fig. 2 (left) and, in Fig. 2 (right), its corre-
sponding slope ΛKS, showing that the maximal chaos located at E = 0 can be detected also by
the KS entropy. Notably, a similar result was recently derived also for a classical spin system
without disorder [69].

4 Chaos, ergodicity and energy landscape

In this section we elaborate further on the results of the previous section and try to provide a
qualitative interpretation for the observed maximal chaos around energy E = 0 in the PSM.
In particular, a natural question is whether this result can be understood from the relaxation
dynamics of the PSM at fixed energy density, as probed for example from the spin correlation
function, or related to properties of the energy landscape. As we are going to show, the max-
imal chaos around E = 0 in the PSM occurs when the spin relaxation is the fastest and when
the complexity of the underlying energy landscape is maximal.

The relaxation dynamics for both classical [17,18] and quantum [22] spin glasses is most
often studied in presence of a finite temperature bath. Relaxation is usually defined in terms
of the (symmetric) correlation function

C(t, t ′) =
1

2N

N
∑

i=1

〈σ̂i(t)σ̂i(t ′) + σ̂i(t ′)σ̂i(t)〉 . (16)
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At high temperatures, the function C(tw, tw + τ) becomes approximately time-translation in-
variant for moderately high values of tw, and decays to zero for large τ, indicating that the
underlying dynamics of the system is ergodic. However, at sufficiently low temperatures, the
system may exhibit the so-called ’weak ergodicity breaking scenario’ [17,22,70] (see Ref. [18]
for a review), meaning that

lim
tw→∞

C(tw, tw +τ) = q1 + Cst(τ) , (17)

with a finite dynamical overlap q1 > 0 and where again Cst(τ) vanishes for τ→∞, determin-
ing a non-ergodic dynamics. In spin glasses, ergodicity breaking is usually accompanied by a
breaking of time-translational invariance in C(tw, tw+τ) a phenomenon usually referred to as
aging [18,71]: C(tw, tw+τ) has a plateau around q1, whose finite length increases as tw grows
(and diverging for tw→∞), before eventually decaying to zero for longer time-scales. Here
we are interested instead in the Hamiltonian relaxation dynamics, starting from fixed energy
initial conditions. We note that the Hamiltonian dynamics of both classical and quantum PSMs
starting from a finite temperature state has been studied recently [25, 63]. To this extent we
compute C(tw, tw+τ) in the TWA formalism at finite energy density E, making use of Eq. (3)
and of the identity

1
2
{σ̂i(t)σ̂i(t

′) + σ̂i(t
′)σ̂i(t)}W = σi(t)σi(t

′) . (18)

The results in Fig. 3-(a) show that the correlation function undergoes a temporal crossover
from high energies, where it displays wide oscillations, to low energies, where the dynamics
slows down. Quite interestingly, at the maximally chaotic point E = 0 we observe the fastest
relaxation of the correlation function, decaying to zero with few oscillations, again compatibly
with Refs. [29,30]. Upon decreasing further the energy below E = 0 the dynamics slows down
and we expect a finite plateau around q1 to to appear. Detecting this intermediate plateau
within the given simulation time-window is challenging. Consequently, we compute q1 as the
value of the correlation function at tw = τ = tmax/2: our results are expected to converge to
the ones predicted by Eq. (17) in the limit of tmax → ∞. In Figure 3-(b) we show that q1
becomes nonzero below a certain energy threshold, estimated to be around Ed ≃ −0.38, and
that it increases as E further decreases below the threshold. At the same time, the profiles
of the correlation function shown in Fig. 3-(c) lose time-translation invariance again below
E ≃ −0.38. Notably, these findings are also compatible with the ones obtained from the same
simulations performed for a larger tmax , which are reported in Appendix C and highlight that
both a finite q1 and a loss of time-traslational invariance are retrieved at the same energy
scale. The results discussed above indicate signs of ergodicity breaking below the energy
Ed ≲ −0.38. However, we recognize that our findings, including our estimated value for Ed ,
might undergo quantitative changes with a more extensive analysis using a significantly larger
tmax than the values considered in this manuscript. Therefore, the ergodicity breaking we
observe here should be interpreted as a regime where the dynamics is sufficiently slow for the
thermalization time to extend beyond tmax .

We now argue that both maximal chaoticity and fastest spin relaxation emerge alongside
maximal complexity in the topology of the potential VJ (σ), from Eq. (2), at the E = 0 level
surface. To understand this connection, we first observe that the profile of the correlation func-
tion in Fig. 3-(a) can be associated to the typical behaviour of the underlying trajectories, as
sketched in Fig. 3-(d). While the regular oscillations at high energies are due to an underlying
uniform circular motion on the N -sphere, in the limit of low energies the trajectories oscillate
in a well around a local minimum of VJ (σ), whose amplitude can be roughly estimated as the
typical distance between two configurations of the same trajectory, observed at large times
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Figure 3: (a) Time-dependence of the correlation function, at fixed tw = 40. (b)
Asymptotic value q1 of the correlation functions C(tw, tw +τ) reported in panel (a),
obtained through the time-average of the latter over τ ∈ [39, 40]. (c) Comparison
between the profiles of C(tw, tw = τ) obtained fixing different values of tw. Each
panel correspond to a different energy density E. (d) Time-evolution of three typ-
ical orbits, whose initial condition are obtained extracting one configuration from
the distribution in Eq. (11), at different energy densities E and for the same config-
uration of the disorder. The orbits evolve in a 200-dimensional phase space and are
projected over the two axes defined by the initial spin configuration σ(0) and the
initial momentum Π(0).

separation τ:

N
∑

i=1

[σi(tw +τ)−σi(tw)]
2 = 2N − 2

N
∑

i=1

σi(tw +τ)σi(tw)≃ 2N(1− q1) . (19)

Chaos and relaxation emerge in between these two trivial limits, where the trajectories are
scattered in neighbors of the stationary configurations of the dynamics in Eq. (6) and explore
the whole configuration space. The stationary configurations can be defined as solutions of
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the equations (see also Ref. [72])






















−
∂ VJ

∂ σi
+ p

VJ (σ)
N

σi = 0 ,
∑

i

σ2
i = N ,

Πi = 0 ,

(20)

where in the first equation we used the identity
∑

j σ j∂ VJ/∂ σ j = pVJ (σ), holding for the po-
tential VJ (σ) defined in Eq. (2). As discussed in Appendix E the average number of solutions of
Eq. (20), lying on the microcanonical manifold at energy density E =

∑

iΠ
2
i /2MN+VJ (σ)/N ,

is in a one-to-one correspondence with the stationary points of the potential VJ (σ) on the N -
sphere. The average number of such stationary points can then be expressed as (see again
Appendix E):

N (E) =
∫

Dσ
∏

i

δ

�

−
p
p!

∑

kl

Jiklσkσl − pEσi

�

�

�

�

�

�

det

�

−
p(p− 1)

p!

∑

k

Ji jkσk − pEδi j

�

�

�

�

�

�

. (21)

For the classical potential V (σ) in Eq. (2) and in the large-N limit, the number of stationary
points scales exponentially as N (E) ≃ exp{NΣ(E)} [10, 51], where Σ(E) is usually referred
to as complexity. At the same time, the stability of such stationary points is characterized
by the index k(E), where Nk(E) is the average number of unstable directions around every
stationary points. In Appendix E, we also derive the analytical expressions for both Σ(E) and
k(E) as functions of E, finding that:

Σ(E) =
Re[z(E)]2 − Im[z(E)]2

p(p− 1)
+

1
2

log
�

(Re[z(E)]2 − pE)2 + Im[z(E)]2
	

− E2 −
1
2

log
p
2
+

1
2

,

(22)
where

z(E) =

¨

p
�

E +
p

E2 − 2(p− 1)/p
�

/2 , if |E|< |Eth| ≡
p

2(p− 1)/p ,

p
�

E −
p

E2 − 2(p− 1)/p
�

/2 , if |E|> |Eth| ,
(23)

and

k(E) =















0 , if E < Eth ,
p

2π(p−1) E
q

E2
th − E2 + 1

π arctan
�
q

E2
th−E2

E

�

, if |E|< |Eth| ,

1 , if E > |Eth| .

(24)

Intuitively, the value Eth = −
p

2(p− 1)/p appearing in the previous formulas represents the
threshold energy density below which the stationary points are typically local minima of V (σ),
so that k(E) = 0 (similarly,−Eth is the energy density above which all stationary points of V (σ)
are typically local maxima). BothΣ(E) and k(E) are plotted in Fig. 4. The first observation that
we make is that the complexity Σ(E) has a maximum on the E = 0 surface, where stationary
points are predominantly saddles of VJ (σ), surrounded on average by half stable and half
unstable directions, as k(E = 0) = 1/2. Second, we notice that the complexity Σ(E) vanishes
at two points E = ±E0, with E0 > |Eth|. Beyond E0, we have Σ(E) < 0, which implies a
vanishing number of stationary configurations, so we interrupt the plot at E0. Intuitively,
−E0 (E0) can be interpreted as the typical value of the absolute minimum (maximum) of
VJ (σ)/N [72], which is always finite for σ lying on the N -sphere. We observe that our results
for the complexity at fixed energy are compatible with the ones in the literature obtained using
different methods [51,73]. The maximum of Σ(E) at E = 0 unveils a correlation between the
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Figure 4: Plots of the complexity function Σ(E) (left) and of the average stability
index k(E) (right), defined respectively in Eqs.(E.28) and (E.29), for p = 3.

number of saddles in the energy landscape and the maximal chaos, detected by λL . This
observation suggests that the scattering of trajectories against a maximal number of saddles
could offer a potential explanation for the emergence of maximal chaos at E = 0.

We conclude our analysis by discussing the connection between chaos and ergodicity in
the classical PSM. In the TWA framework we employed, chaos is probed by the Lyapunov
exponents while ergodicity is determined by the long-time behavior of the correlation function.
However, recent works [50,74] have shown a possibly universal connection between ergodicity
in quantum systems, defined there as the emergence of a random matrix behaviour [75],
and the fidelity susceptibility [49], which characterizes the sensitivity of the eigenstates to an
external perturbation. Specifically they shown that an ergodic Hamiltonian exhibits a scaling
behavior of χ ∼ω−1

L against the mean level spacing ωL , a behaviour which is consistent with
random matrix theory predictions, while for an integrable [76–80] or disorder-localized [80–
83] system has a value of order one. Then, a stronger divergence of the fidelity as χ ∼ ω−αL ,
with α > 1, indicates the approach to a non-ergodic (either integrable or disorder-localized)
point. Such scaling is expected to be retrieved in a region around the non-ergodic point which
become exponentially small in the system size, when taking the thermodynamic limit. Despite
such a complete picture, the fidelity susceptibility has never been tested in classical systems.
Here we use it as a tool to identify ergodicity in our p-spin model, where ergodicity and its
breaking are controlled by the energy density E. In particular, here we perturb the Hamiltonian
in Eq.(1) with local magnetic fields Bi , summarized in the extra term

Ĥ1 = −
∑

i

Biσ̂i . (25)

Then, by perturbation theory, the sensitivity χ(i)n of the n-th eigenstate to the magnetic field Bi
(posing B j = 0 on every other site j), is defined by

〈n(0)|n(Bi)〉= 1−
1
2
χ(i)n B2

i +O(B3
i ) , (26)

and we define the fidelity susceptibility as its average χ over the initial condition in Eq. (7)
and the disorder configurations:

χ =
1
N

N
∑

i=1

∞
∑

n=0

〈n|ρ̂|n〉χ(i)n . (27)

In principle, the fidelity defined in Eq.(27) can be computed classical framework because, as
already observed in Ref. [50], χ can be expressed in terms of the spectral function C̃av(ω),
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that is the Fourier transform of the time-averaged correlation function

Cav(τ) = lim
T→∞

1
T

∫ T

0

d twC(tw, tw +τ) . (28)

The two are related by the equation (proven in detail in Appendix D):

χ =

∫

|ω|>ωL

dω
2π

C̃av(ω)
ω2

, (29)

where ωL is again the average quantum level spacing.
In practice, two obstacles prevent us to use directly the Eq.(29). The first one is that we

do not have directly access to the spacing ωL . We then study regularized fidelity (used also in
Ref. [74])

χµ =

∫

dω
2π

ω2

(ω2 +µ2)2
C̃av(ω) , (30)

where we introduced the cutoff µ to suppress the contribution to the integral from frequencies
|ω|≲ µ and plays a role equivalent to the one played byωL in genuinely quantum systems. We
determine the asymptotic profile of χµ by analyzing its behaviour as µ→ 0. The second, more
practical obstacle is that in our simulations we do not have access to infinite-time average, so
that the integral in Eq. (28) is performed over a finite time-window [0,T ]. While in the ergodic
phase this is a good approximation of the long-time average, due to time-translation invari-
ance, in the non-ergodic one χ always depends on choice of the time-window and converges
to the definition in Eq. (27) only in the limit T → ∞. However, as shown in Appendix D,
the qualitative profile we retrieve for χµ is the same for a wide range of T between 0 and the
maximum integration time tmax , so that here we can focus on the specific case of T = tmax/2.

We plot χµ, as a function of E and for several values of µ, in Fig. 5-(a): its profile has a
peak close to the estimated ergodicity breaking energy scale E ≃ −0.38 and the maximum
point has a little drifting to the left approaching small values of µ. We also observe that, in
general, a natural low-frequency cutoff∆ω ∼ 2π/tmax emerges when discretizing the integral
in Eq. (30) in our finite-time simulations, so that the asymptotic behaviour of χµ can be studied
only up to µ≳∆ω. Thus, to refine our analysis, we compute χµ for a dynamics integrated for
a larger tmax so that µ > 3∆ω for all the values of µ we investigate: the new results, shown
in Fig. 5-(b), are qualitatively the same of the one shown in Fig. 5-(a), further validating our
analysis. To complete the comparison between our classical analysis and the one performed
in Ref. [50], we also analyze the scaling behavior of χµ against µ and find that the fidelity
susceptibility scales as χµ ∼ 1/µα in the range of values of µ explored, as shown in Fig. 5-(c).
We compute the corresponding exponent α as a function of the energy density E and plot
it in Fig. 5-(d): in the ergodic phase, we find that α is slightly greater than 1 (see inset in
Fig. 5-(d)), resulting in a scaling approximately consistent with random matrix theory,2 while
α exhibits a maximum of α ≃ 1.8 at E ≃ −0.4, close to the point where the thermalization
time exceeds the simulation time window. Further insight is gained when investigating the
profiles of the rescaled fidelities µχµ against E, as done in the inset Fig. 5-(d): at high energy
densities, the profiles collapse in a region which expands toward lower energies as we decrease
µ. This collapse will in general break down at low energies, in particular where the maximum
of χµ is expected to occur. It is also worth mentioning that, from a deeper inspection collapse
of the various profiles, we could in principle extract the Thouless time [84],defined as the
typical relaxation time-scale τth(E) of the correlation function at fixed energy density E, using

2As our analysis is limited by the finite simulation times, we do not exclude that an even better agreement with
random matrix predictions may be reached considering a larger tmax and consequently a larger set of values for
tw.
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the following prescription: first we define the cut-off µE as the largest number such that the
profiles of χµ collapse for all energy densities greater than E and for all µ < µE; then the
Thouless time can be easily obtained as τth(E)∼ µ−1

E [74]. We expect that τth(E) diverges as
we the dynamics approaches the ergodicity breaking point from above.

As the cutoff µ plays the same role of the lowest level spacing for our analysis, these
findings are consistent with those in Refs. [50, 74], which show that the fidelity exhibits the
strongest divergence with µ when the corresponding spin relaxation dynamics slows down.
We therefore conclude that the fidelity susceptibility could be a good indicator of ergodicity
even in classical systems, which warrants further investigation.
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Figure 5: (Color online) Fidelity susceptibility χµ from Eq. (30). (a) χµ is shown as
a function of E and fixing several values of the cut-off µ. The data are obtained from
a dynamics up to time tmax = 80, with the same parameters described in Fig. 3. The
average time window for the correlation function in Eq. (28) is set to [0,T ], with
T = tmax = 40. (b) Same plot of panel (a), for a dynamics integrated up to time
tmax = 320. Here the average over the initial condition is performed over 5 random
configurations extracted from each the Ns = 10 wave-packets constructed by the
classical annealing algorithm. We average over Nd = 42 disorder configurations. (c)
Same data of panel (b). χµ is shown as a function of the cutoff µ, on a log-log scale,
for some fixed values of the energy density E. (d) Exponent α(E) obtained by a linear
fit of logχµ against − logµ, at several fixed values of the energy density E. For each
E, the data used for the fit are the ones from panel (b).
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5 Conclusions

In this work we have investigated the unitary dynamics of the quantum p-spin glass spher-
ical model in the limit of small ħh, where the dynamics is effectively classical, and for the
paradigmatic case of p = 3. Fixing the initial condition as an ensemble of narrow wave-
packets centered on a fixed classical energy shell, at energy density E, we have investigated
the chaotic dynamics of the model by the exponential divergence of the classical trajectories
evolving from the same wave-packets. We have found that the corresponding exponent λL
is maximised when E is close to 0. We have found a similar behavior in a different chaos
estimator, the Kolmogorov-Sinai entropy which also shows a pronounced maximum around
E = 0.

To gain further insights into this result we have investigated the relaxation dynamics of
the classical PSM at fixed energy density. We have shown that the spin correlation function
displays a crossover in energy, from wide oscillations at high energies to aging low energies,
consistently with the known results obtained at finite temperature. Interestingly we have
found that around E = 0, where the chaos is maximized, the spin relaxation dynamics is the
fastest. We give a physical interpretation of all our results in terms of the typical behaviour of
the underlying trajectories, which either perform a uniform circular motion at asymptotically
high energies or oscillate, at low energies, around a local minimum of the energy landscape.
In between these two limits, we suggest that chaos emerges as the trajectories are scattered
over the exponentially many saddles of the underlying landscape. Indeed a calculation of the
number of stationary configurations shows that the complexity is also maximal at the same
energy. Finally, we also gave a classical definition of the fidelity susceptibility. We found that
the fidelity has a single maximum, as function of E, corresponding to the observed slowing
down of the dynamics, a result reminiscent of the ones found in Refs. [50,74].

The results presented in this study hold true in the ħh→ 0 limit, where the TWA faithfully
reproduces the dynamics for the initial condition defined in Eq. (11). Our findings can be
potentially extended beyond the realm of small ħh, by utilizing a Wigner state that reproduces
the same fluctuations of a realistic quantum micro-canonical or canonical state. In this con-
text, the quantum Lyapunov exponent λL can be computed even at finite ħh, derived from the
exponential growth of a classical analog of the OTOC [28, 33]. A similar rationale applies to
the correlation function and subsequently to the fidelity susceptibility, where the latter can be
computed using Eq. (30) for both classical and quantum dynamics. Our analysis can also be
extended to the transverse-field counterpart of the p-spin glass model, where chaos has been
recently observed experimentally [32] and where the energy minima exhibit a more compli-
cate structure [85].
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A The truncated Wigner approximation for the p-spin spherical
model

In this Appendix we show that, for the quantum spin glass defined in Eq. (1) of the main text
in the Truncated Wigner Approximation (TWA) the dynamics is ruled by Eqs.(6) and that such
approximation becomes exact in the classical limit. We begin by rewriting the Weyl symbol

OW (σ,Π, t) =

∫

dξ
¬

σ −
ξ

2

�

�

�O(σ̂(t), Π̂(t))
�

�

�σ +
ξ

2

¶

· exp
�

i
Π · ξ
ħh

�

, (A.1)

for a generic operator
O(σ̂(t), Π̂(t)) = eiĤ tO(σ̂, Π̂)e−iĤ t , (A.2)

evolving in the Heisenberg picture. As shown in Ref. [60], the Eq. (A.1) can be represented in
a path integral form, suitable to study both the ħh→ 0 and the thermodynamic limit. Without
reproducing the details of the calculation, here we just quote the final result:

OW (σ,Π, t) =

∫

Dσ

∫

DΠ

∫

Dξ

∫

Dη OW (σ(t),Π(t))

×exp
¦ i
ħh

∫ t

0

dτ
�

η(τ) ·
∂σ(τ)
∂ τ
− ξ(τ) ·

∂Π(τ)
∂ τ
−HW

�

σ(τ) +
ξ(τ)

2
,Π(τ) +

η(τ)
2

�

+HW

�

σ(τ)−
ξ(τ)

2
,Π(τ)−

η(τ)
2

�

+ z(τ)ξ ·σ
�©

,

(A.3)

with initial conditionsσ(0) = σ, ξ(0) = ξ andΠ(0) = Π. The Weyl symbol of the Hamiltonian
is defined asHW

�

σ,Π
�

= Π2/2M+VJ (σ), and we inserted a term proportional to the Lagrange
multiplier z(τ) in the action, to enforce the spherical constraint (see also Ref. [22]).

It is straightforward to see that TWA is equivalent to a (classical) expansion of the action
in the integrand of Eq. (A.3): indeed we obtain, at leading order, that

−HW

�

σ(τ) +
ξ(τ)

2
,Π(τ) +

η(τ)
2

�

+HW

�

σ(τ)−
ξ(τ)

2
,Π(τ)−

η(τ)
2

�

∼ −ξ(τ) ·
∂HW (σ(τ),Π(τ))

∂σ
+η(τ) ·

∂HW (σ(τ),Π(τ))
∂Π

+O(η2,ξ2) .
(A.4)

Integrating out the variables η(τ) and ξ(τ), we obtain a δ-function constraint on the trajec-
tories σ(τ) and Π(τ):











∂σ

∂ τ
=
Π

M
,

∂Π

∂ τ
= −

∂ VJ (σ,Π)
∂σ

− z(t)σ .
(A.5)

The Lagrange multiplier is obtained by imposing the constraint σ2 = N , that by imposing that
the total radial force appearing in the second of Eqs. (A.5) is the correct centripetal one:

−
1
N
∂ VJ (σ,Π)
∂σ

·σ − z(t) = −
Π2

MN
. (A.6)

Replacing the expression of z(t) obtained in this way into Eqs. (A.5), we obtain exactly the
Eqs. (6) of the main text. Such expansion at leading order is exact in the limit ħh→ 0 where
the dynamics is determined by the saddle point of the action appearing in the path-integral.
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B Comparison with exponential growth of the OTOC

In this appendix, we show that, in the classical limit of ħh → 0, the distance dJ (t) defined in
Eq. (12) of the main text diverges with the same Lyapunov exponent λL of the corresponding
out-of-time-order correlator (OTOC).

B.1 Classical chaos in dynamical systems

For a classical dynamical system, chaos is defined as the exponential divergence in time of the
distance between orbits starting at nearby initial conditions. For example, we consider the
system of Eqs. (6) of the main text and consider two solutions of such equations, a reference
trajectory ỹ(y, t) evolving respectively form a generic initial condition y = (σ,Π), and a per-
turbed one ỹ(y + δy, t), evolving from y + δy for |δy| ≪ 1. Then the reference trajectory is
said to be chaotic if the square distance ∆(t) = |ỹ(y+δy, t)− ỹ(y, t)|2 grows exponentially in
time or, in a more mathematical language, if the corresponding Lyapunov exponent [42]

λL = lim
t→∞

lim
∆(0)→0

1
t

log
∆(t)
∆(0)

, (B.1)

is positive. In practice, for ∆(0)→ 0 we have that

ỹ(y+δy, t)− ỹ(y, t)≃
∂ ỹ(y, t)
∂ y

·δy , (B.2)

so that λL is also detected by the exponential growth at long times of the matrix elements of
the derivative matrix M(y, t) = ∂ ỹ(y, t)/∂ y.
We remark that, for classical systems, the Lyapunov exponent λcl is defined from the expo-
nential growth of the distance

p

∆(t), instead of ∆(t), so that we have λL = 2λcl . However,
as explained in the next section, the definition in Eq. (B.1) is the classical limit of the quan-
tum Lyapunov exponent detected by the out-of-time-order correlator (OTOC) and thus more
suitable to make a comparison with the chaotic dynamics in a quantum system.

B.2 The exponential growth of the OTOC

For quantum systems, a generalization of the Lyapunov exponent can be defined from the
exponential growth of the average square commutators [33]

F(t) = − 1

N2ħh2

∑

i j

〈[σ̂i(t), Π̂ j(0)]
2〉 , (B.3)

retrieved also in the corresponding OTOC [37]

C(t) = 1

N2ħh2

∑

i j

〈σ̂i(t)Π̂ j(0)σ̂i(t)Π̂ j(0)〉 . (B.4)

Such a generalization comes from the observation that, in the limit of small ħh, the commutator
[σ̂i(t), Π̂ j(0)]/iħh can be replaced by the corresponding Poisson parenthesis:

F(t)≃ 1
N2

∑

i j

〈{σi(t),Π j(0)}2〉=
1

N2

∑

i j

〈
�

�

�

∂ σi(t)
∂ σ j(0)

�

�

�

2
〉 , (B.5)

where the quantum average 〈·〉 is replaced by a suitable average over the classical trajectories.
Then, for ħh→ 0, F(t) is expected to grow with the same Lyapunov exponent λL characterizing
the underlying classical dynamical system.
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B.3 The exponential growth of the distance

In this subsection we show that, for ħh→ 0, the distance dJ (t) defined in Eq. (12) of the main
text also grows exponentially in time, with exponent given by λL . We begin by rewriting each
of the average over a single wave-packet |α〉, appearing on the right-hand side of Eq. (12) as

1
2Nħh

∑

i

〈α|
�

ŷi(t)− 〈α| ŷi(t) |α〉
�2 |α〉=

1
Nħh

∑

i

∫

d2N y
(2πħh)N

Wα(y)
�

ỹi(y, t)− 〈 ỹi(y, t)〉α
�2

, (B.6)

where we remind that ỹ(y, t) is a trajectory evolving from y= (σ,Π). The average 〈·〉α on the
right-hand side of Eq. (B.6) is performed over the coherent wave-packet

Wα(y)
(2πħh)N

=
1

(πħh)N
exp

�

−
(y− yα)2

ħh

�

. (B.7)

For ħh→ 0, Wα(y) becomes a δ-function of 0 width. To investigate the behaviour of Eq. (B.6)
in this limit, it is useful to perform the change of variable y= yα +

p
ħhx. Then we have:

ỹ(yα +
p

ħhx, t)∼ ỹ(yα, t) +
p

ħh
∂ ỹ(yα, t)
∂ y

· x+O(ħh) ,

〈ỹ(yα +
p

ħhx, t)〉α ∼ ỹ(yα, t) +O(ħh) .
(B.8)

Then, plugging Eqs. (B.8) into Eq. (B.6) and performing a little algebra, we obtain

1
Nħh

2N
∑

i=1

〈α|
�

ŷi(t)− 〈α| ŷi(t) |α〉
�2 |α〉 ∼

1
2N

2N
∑

i=1

�

�

�

∂ ỹi(yα, t)
∂ y j

�

�

�

2
+O(ħh) . (B.9)

As explained in the first subsection of this Appendix, terms in the sum on the right-hand side
of Eq. (B.9) growth exponentially in time, for a chaotic system. Equation (B.9) reproduces
the dynamics of the derivative matrix only for a finite time-window: the noise produced by
the fluctuations of order ħh eventually lead to a saturation of the typical distance between
trajectories evolving from a neighbourhood of yα. To obtain the Lyapunov exponent within
such finite time-scale, we also average over the possible configurations of yα on the same
energy shell, as explained in the main text and obtain

dJ (t) =
1

2Nħh
1
Ns

Ns
∑

α=1

2N
∑

i=1

〈α|
�

ŷi(t)− 〈α| ŷi(t) |α〉
�2 |α〉 , (B.10)

which for small ħh is expected to grow exponentially with exponent λL , as confirmed also by
Fig. 1 of the main text.

C Correlation function on a longer time-scale

In this Appendix, we discuss some results obtained from the dynamics of the p-spin model on
larger time-scales. In particular, we integrate the dynamics according to the protocol described
in Section 2 of the main text, and compute the corresponding correlation function C(t, t ′) in
Eq. (16). Here the averages are performed on fewer realizations, with respect to the results
presented in the main text. The results in Fig. 6 show that the correlation function seems to
break time-translation invariance on energy scales between−0.25 and−0.42, even though the
profiles of C(tw+τ, tw), for various tw, are less smooth due to the noise induced by the fewer
realization we took. The results shown here are anyway compatible with the ones presented
in the main text. The results shown in Fig. 6 are anyway compatible with the ones presented
in the main text and are also qualitatively similar with the plots describing the correlation
function of a classical spin-glass in the non-ergodic phase and in the large-N limit, see for
example Fig. (10) of Ref. [18].
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Figure 6: Several plots of the correlation function C(tw + τ, tw), for different fixed
values of the energy density E. For all the panels, the data are obtained from a
dynamics up to time tmax = 320, with the same simulation parameters described in
Fig. 5-(b) of the main text. The data are presented on a log-log scale.

D Details on the fidelity susceptibility

In this appendix, we prove the expression in Eq. (27) of the main text for the average fi-
delity susceptibility χ . We also discuss how the qualitative profile of the fidelity χµ, defined
in Eq. (30) and shown in Figg. 5-(a) and (b) of the main text, is independent both of the time
window [0,T ], over which we average the average correlation function in Eq. (28), and of the
value of the cut-off µ, provided that the latter is sufficiently small.

We begin by recalling our definition for the fidelity susceptibility: We perturb the Hamil-
tonian ĤJ =

1
2M

∑N
i=1 Π̂

2
i + VJ (σ̂) of the PSM with local magnetic fields, as

Ĥ(B) = ĤJ −
N
∑

i=1

Biσ̂i , (D.1)

and define the local susceptibilities of the as

χ(i)n =

�

−
∂ 2

∂ B2
i

〈n|n(B)〉
�

B=0

, (D.2)
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where |n(B)〉 is the n-th eigenstate of the perturbed Hamiltonian Ĥ(B) and |n〉 = |n(0)〉. By
standard calculations of non-degenerate perturbation theory [86], we have

χ(i)n =
∑

m ̸=n

| 〈n|σ̂i |m〉 |2

(En − Em)2
, (D.3)

where En is the n-th unperturbed energy level of the Hamiltonian ĤJ . For the initial state
ρ̂ defined in Eq. (7) of the main text, we define the fidelity susceptibility χ as the weighted
average

χ =
1
N

N
∑

i=1

∑

n

〈n|ρ̂|n〉χ(i)n =
1
N

N
∑

i=1

∑

n,m ̸=n

| 〈n|ψ〉 |2
| 〈n|σ̂i |m〉 |2

(En − Em)2
, (D.4)

performed over the sites, the eigenstates and the disorder configurations. Then, we observe
that χ is connected to the Fourier transform of the time-averaged correlation function

Cav(τ) = lim
T→∞

1
T

∫ T

0

d twC(tw, tw +τ) . (D.5)

In particular, C(tw, tw +τ) and Cav(τ) can be represented as follows:

C(tw, tw +τ) =
1
N

N
∑

i=1

∑

lmn

ei(El−En)tw ei(El−Em)τ 〈l|σ̂i |m〉 〈m|σ̂i |n〉 〈ψ|l〉 〈n|ψ〉 ,

Cav(τ) =
1
N

N
∑

i=1

∑

n

∑

m

| 〈n|ψ〉 |2ei(En−Em)τ| 〈n|σ̂i |m〉 |2 .

(D.6)

The second line leads immediately to the Lehmann representation of the average correlation
function, which reads as3

C̃av(ω) =

∫ ∞

−∞
dτe−iωτCav(τ) =

2π
N

N
∑

i=1

∑

nm

〈n|ρ̂|n〉 | 〈n|σ̂i |m〉 |2δ(ω− En + Em) . (D.7)

The latter is immediately related to the typical susceptibility χ in Eq.(D.4) via the expression

χ =

∫

|ω|>ωL

dω
2π

C̃av(ω)
ω2

, (D.8)

where ωL is the average spacing of the unperturbed energy levels [50].
As stated in the main text, within the TWA framework we can not compute the fidelity

directly from Eq. (D.8) for two reasons: first, our simulations are performed up to a finite
maximum time tmax , so that we can perform the average in Eq. (28) only on a finite time
window [0,T ], with T < tmax ; second, in the limit ħh → 0 we do not have access to the
spacing ωL and have a frequency cut-off set by ∆ω = 2π/tmax . The second issue was already
solved by using the regularized fidelity χµ, from Eq. (30) of the main text, in place of χ . In
Fig. 7 we also show that the profile of χµ is qualitatively the same for a wide range of T
between 0 and tmax , so that the first issue is actually irrelevant for our results.

3In our framework, C(twτ, tw) is actually defined only for τ > tw. To compute the Fourier transform, we first
symmetrized Cav(τ) with respect to τ.
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Figure 7: Fidelity susceptibility χµ from Eq. (30) of the main text, shown as a function
of E for a fixed cutoff µ= 0.07. The average time window for the correlation function
in Eq. (28) is set to [0,T ], for several values of T . The data are obtained from a
dynamics up to time tmax = 320, with the same parameters described in Fig. 5-(b)
of the main text.

E Calculation of the complexity

In this appendix, we compute in detail the average number of stationary configurations of the
dynamics induced by Eq. (6) of the main text. We start by rewriting the Eqs. (20), defining
such stationary points:























−
∂ VJ

∂ σi
+ p

VJ (σ)
N

σi = 0 ,
∑

i

σ2
i = N ,

Πi = 0 .

(E.1)

More precisely, we look for a solution of Eq. (E.1) lying on a microcanonical manifold defined
by the equation

E =

∑

iΠ
2
i

2MN
+

VJ (σ)
N

. (E.2)

Thus, as the kinetic energy vanishes (as Πi = 0 for every i), we can rewrite the equations for
the stationary configurations in the following equivalent form:







































−
∂ VJ

∂ σi
+ p

VJ (σ)
N

σi = 0 ,

VJ (σ)
N

= E ,
∑

i

σ2
i = N ,

Πi = 0 .

(E.3)

The system of Eqs. (E.3) can be further simplified by the following two observations. The
first one is that, as we are interested in counting the number of the solutions of Eqs. (E.3), we
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can just focus on the number of solutions of the equations involving σ, as the trivial equations
Πi = 0 do not bring any degeneracy. The second one is that the equations involving σ, written
in the first three lines of Eqs. (E.3), are equivalent to the following reduced system of equations











−
∂ VJ

∂ σi
+ p

E
N
σi = 0 ,

∑

i

σ2
i = N .

(E.4)

The equivalence can be seen by multiplying the first line of the system of Eqs. (E.4) by σi
and summing over i: by making use of the spherical constraint, one recovers the equation
E = VJ (σ)/N ; then, by substituting back E = VJ (σ)/N in the first line of Eqs. (E.4), we obtain
the first line of Eqs. (E.3).

To summarize, the number of stationary points of Eqs. (20) lying on a manifold at energy
density E coincides with the number of solution of the equations

−
∂ VJ

∂ σi
+ p

E
N
σi = 0 , (E.5)

for i = 1, . . . , N , lying on the N -sphere. In the spirit of Ref. [72], in what follows we will often
write the indices for the p = 3 case, such that Ji1...ip becomes Ji jk. However, to give formulas
that are valid even in the general case, we will write all the factors containing a term p for the
generic p. Then, the average number of solutions of Eq. (E.5) on the N -sphere then reads:

N (E) =
∫

Dσ
∏

i

δ

�

−
p
p!

∑

kl

Jiklσkσl − pEσi

�

�

�

�

�

�

det

�

−
p(p− 1)

p!

∑

k

Ji jkσk − pEδi j

�

�

�

�

�

�

, (E.6)

the overbar denoting the average over the disorder and the spherical constraint will be from
now on hidden in the integration measure Dσ = δ(

∑

i σ
2
i −N)

∏N
i=1 dσi . The absolute value

of the determinant appearing on the right-hand side is just a Jacobian factor appearing because
the Eqs. (E.5) are written in an implicit form.

To compute N (E) in the large-N limit, we need two approximations. The first one consists
in assuming that there is no correlation between the last two terms in the right-hand side of
Eq. (E.6) [11,72], that is

δ

�

−
p
p!

∑

kl

Jiklσkσl − pEσi

�

�

�

�

�

�

det

�

−
p(p− 1)

p!

∑

k

Ji jkσk − pEδi j

�

�

�

�

�

�

≃ δ

�

−
p
p!

∑

kl

Jiklσkσl − pEσi

�

�

�

�

�

�

det

�

−
p(p− 1)

p!

∑

k

Ji jkσk − pEδi j

�

�

�

�

�

�

,

(E.7)

so that each the average of the δ-function and the one of the determinant can be computed
independently from each other. We compute the average δ-function by using the exponential
representation

δ

�

−
p
p!

∑

kl

Jiklσkσl − pEσi

�

=

∫

∏

i

dµi

2π
e−ip/p!

∑

ikl Jiklµiσkσl eipE
∑

j µ jσ j , (E.8)

and averaging out the disorder after a proper symmetrization of the exponent. Taking into
account the spherical constraint

∑

i σ
2
i = N and posing J = 1 for simplicity, we get

δ

�

−
p
p!

∑

kl

Jiklσkσl − pEσi

�

=

∫

∏

i

dµi

2π
exp

(

−
p
4

∑

j

µ2
j −

p(p− 1)
4N

(
∑

j

µ jσ j)
2 + ipE

∑

j

µ jσ j

)

.

(E.9)
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To get rid of the term (
∑

j µ jσ j)2, we perform and extra Hubbard-Stratonovich transformation
and perform straightforwardly all the remaining Gaussian integrals, posing again

∑

i σ
2
i = N

in all our expressions. The final result is:

δ

�

−
p
p!

∑

kl

Jiklσkσl − pEσi

�

≃
1

(2π)N/2
exp

§

−N
�

E2 +
1
2

log
p
2

�ª

, (E.10)

up to a multiplicative constant which becomes irrelevant in the thermodynamic limit. The
integration of the Jacobian factor is a bit more tricky. To perform it, we make our second
approximation by assuming that the sign of the determinant, for any fixed configuration of the
disorder, is given by the average number of negative eigenvalues of the corresponding Hessian
matrix at energy density E, that we write as Nk(E). In formulas, this is equivalent to:

�

�

�

�

�

det

�

−
p(p− 1)

p!

∑

k

Ji jkσk − pEδi j

�

�

�

�

�

�

≃ det

�

−
p(p− 1)

p!

∑

k

Ji jkσk − pEδi j

�

· (−1)−Nk(E) ,

(E.11)
k(E) being the average fraction of negative eigenvalues. Once we got rid of the modulus, we
rewrite the average of the determinant using a fermionic representation [87]:

det

�

−
p(p− 1)

p!

∑

k

Ji jkσk − pEδi j

�

=

∫

∏

j

dψ jdψ je
−p(p−1)/p!

∑

ikl Jiklσiψkψl e−pE
∑

iψiψi .

(E.12)
Integrating out the disorder and using again an Hubbard-Stratonovich transformation to get
rid of quartic fermionic terms (see Ref. [72] for more details about this step), we arrive at

det

�

−
p(p− 1)

p!

∑

k

Ji jkσk − pEδi j

�

∝
∫ i∞

−i∞
dzeNG(z) , (E.13)

where G(z) = z2

p(p−1) + log(z − pE). Plugging everything together, we have that (up to an
irrelevant prefactor)

N (E) = (−1)Nk(E) exp
§

−N
�

E2 +
1
2

log
p
2

�ª

∫ i∞

−i∞
dzeNG(z) . (E.14)

Thus, we are left with the computation of the integral

IΓ =

∫

Γ

dzeNG(z) , (E.15)

along the imaginary axis Γ in the complex plane. In the thermodynamic limit N →∞, this
goal can be achieved by using the saddle-point method [88], which we briefly review in the
following. First, we observe that, for generic z = x + i y (for x , y real numbers), the function
G(z) = u(x , y) + iv(x , y) can be decomposed in its real and imaginary parts as















u(x , y) =
1
2

log[(x − pE)2 + y2] +
x2 − y2

p(p− 1)
,

v(x , y) =
2

p(p− 1)
x y + arctan

y
x − pE

+πΘ(pE − x)sign(y) .
(E.16)
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In summary, the saddle point method states that if we find a deformation γ of Γ in the context
plane such that:

1. v(x , y) is constant over γ,

2. u(x , y) has a global maximum along γ at some point z = z0,

3. G(z) is analytic in the closed domain encompassed by the curves Γ and γ,

we have that

IΓ = Iγ ≡
∫

γ

dzeNG(z) ≃ exp
�

NG(z0) + o(N)
�

, (E.17)

where the last asymptotic relation holds in the N →∞ limit and is known as Laplace method
[88]. It is easy to see that the first condition is equivalent to state that γ is parallel to∇u(x , y),
as the relation∇u·∇v = 0 holds for the holomorphic function G(z). Then if∇u(x , y) vanishes
along γ, it vanishes in the whole R2 plane, so that any maximum of u(x , y) along γ is a
stationary point of u(x , y) in R2.

However, the choice of a suitable γ depends on the value of the energy density E, be-
cause G(z) has a branch-cut on the half-line {z = x |x < pE} (see the expression of v(x , y) in
eq (E.16)) and the position in the complex plane of the stationary points of u(x , y), given by

z±(E) =
p
2

�

E ±
√

√

E2 −
2(p− 1)

p

�

, (E.18)

also depends on E. In particular, we can identify four relevant energy windows, which we
treat separately:

E < Eth ≡ −
Æ

2(p− 1)/p , Eth < E < 0 ,

0< E < |Eth| , E > |Eth| .
(E.19)

For E < Eth, we can take the curve γ as the level curve v(x , y) = v(z+(E)) = 04 (shown in
Fig. 8-(a)). It is straightforward to show that γ is the only deformation of Γ along which u(x , y)
displays a maximum, located at z = z+(E). Thus for N →∞ we have IΓ ≃ exp{NG(z+(E))}
and N (E)≃ exp{NΣ(E)}, where

Σ(E) =
z+(E)2

p(p− 1)
+ log(z+(E)− pE)− E2 −

1
2

log
p
2
+

1
2

, (E.20)

where we posed the phase k(E) = 0 in Eq. (E.14),as N (E) has to be a positive real number.
The physical meaning of having k(E) = 0 is that, in this energy range, the integral in Eq. (E.6)
is dominated by local minima of the potential VJ (σ), where the Hessian is positive definite.

For Eth < E < 0, the only suitable deformation of Γ is γ = γ+ ∪ γ−, where γ+ and γ−
are respectively the two level curves v(z) = v(z+(E)) and v(z) = v(z−(E)) of v(z). The two
curves intersect respectively the points z+(E) and z−(E) in the complex plane (see Fig. 8-(b)),
which in turn are maxima of u(x , y) along each of the two curves. Then, as u(z+) = u(z−) and
v(z+) = −v(z−), the N →∞ asymptotic value of IΓ is the sum of two contributions:

IΓ ≃
eiN v(z+) + e−iN v(z+)

2
eNu(z+) . (E.21)

To give a physical interpretation to our result, let us first note that the function Nk(E), defined
in Eq. (E.11), is a non-negative integer. This is because Nk(E) is the average number of

4To simplify notation, we will abuse notation by writing v(z) to represent v(Re(z), Im(z)), and similarly for
u(x , y). This allows us to write equations more compactly and avoid cluttering them with repetitive expressions.
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Figure 8: (Color online) Color map in the complex plane representing the values
assumed by the function v(x , y) defined in the appendix. Each panel corresponds
to a different, fixed value of the energy density E, each representative of one of the
four, qualitatively different cases studied in the appendix. Here we plot the results
for p = 3. The white thick line correponds to the branch-cut of v(z) = v(x , y) in
the complex plane, where z = x + i y , while the black lines represent the integration
contour Γ or its deformation Γ+ ∪ Γ−. The blue and the red lines correspond to the
level curve of v(z), passing respectively through z−(E) and z+(E). (a) E < Eth.(b)
Eth < E < 0.(c) 0< E < |Eth|.(d) E > |Eth|.

negative eigenvalues of the Hessian matrix associated with VJ (σ). Thus, even though the
values of k(E) become dense in the interval [0, 1] as N approaches infinity, at any finite N we
must always have

(−1)Nk(E) = (−1)−Nk(E) . (E.22)

Since N (E) is a positive real number, any phase obtained from the integral IΓ must compensate
for the one coming from k(E). Therefore, with a bit of lack of rigor, we can conclude that for
all physically meaningful values of k(E), the following equalities hold:

eiN v(z+) = (−1)Nk(E) = (−1)−Nk(E) = e−iN v(z+) , (E.23)

and we write
IΓ ≃ (−1)Nk(E) exp{NΣ(E)} , (E.24)

with

k(E) =
p

2π(p− 1)
E
Ç

E2
th − E2 +

1
π

arctan

 q

E2
th − E2

E

!

, (E.25)
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andΣ(E) = Re[G(z+(E))]. Physically, having k(E)> 0 means that for E > Eth the contribution
to the integral in Eq. (E.6) is dominated by saddles having an extensive number of unstable
direction: this is why in literature Eth is referred to as the energy threshold where the local
minima cease to dominate [10,72].

For 0 < E < |Eth|, the branch-cut crosses the integration path Γ and we can not use the
saddle-point method straightforwardly. Instead, we first notice that it exist two curve in the
complex plane, γ+ and γ−, passing respectively through the saddle points z+(E) and z−(E)
(both being maxima of u(z) along such curves) and ending up in a point z = x1(E) on the
branch-cut.
However, we observe that if we split Γ in two curves, Γ+ and Γ−, defined in such a way that

IΓ+ =

∫

Γ+
dzeNG(z) ≡

∫ i∞

0

dzeNG(z) −
∫ x1(E)

0

d xeNG(x) ,

IΓ− =

∫

Γ−
dzeNG(z) ≡

∫ 0

−i∞
dzeNG(z) +

∫ x1(E)

0

d xeNG(x) ,

(E.26)

then we have that IΓ = IΓ+ + IΓ− and that Γ+ and Γ− can be respectively deformed on γ+ and
γ−, as shown in Fig. 8-(c). In this way, we can use the saddle-point method to evaluate IΓ+ and
IΓ− separately. As the equalities u(z+) = u(z−) and v(z+) = −v(z−) hold like in the previous
case, we find once again that IΓ ≃ (−1)Nk(E) exp{NΣ(E)]}, with k(E) given by Eq. (E.25),
Σ(E) = Re[G(z+(E))] and for E in the range [0, |Eth|].

Finally, for E > |Eth| both the z+(E) and z−(E) lie on the branch-cut, like in Fig. 8-(d).
By some algebraic manipulations, one can show that u(x , y) has an absolute maximum at the
point z−(E) along the level curves γ+ and γ− of v(x , y) that intersect z−(E), while u(x , y) has
a minimum at the point z+(E) along the level curves of v(x , y) that intersect z+(E). As done
for the case 0 < E < |Eth| we divide once again Γ in the curves Γ+ and Γ−, both ending in
z−(E) and deform each of them respectively along γ+ and γ− (see Fig. 8-(d)). By observing
that v(z) = ±π respectively along γ+ and γ−, we conclude that k(E) = 1 in the energy range
taken into exam, meaning that for E > |Eth| the majority of stationary points of VJ (σ) are local
maxima. At the same time, the application of the Laplace method gives us:

Σ(E) =
z+(E)2

p(p− 1)
+ log(z+(E)− pE)− E2 −

1
2

log
p
2
+

1
2

. (E.27)

In summary, in the whole energy range studied we have

Σ(E) =
z(E)2

p(p− 1)
+ log(z(E)− pE)− E2 −

1
2

log
p
2
+

1
2

, (E.28)

where z(E) = z+(E) if E < |Eth| and z(E) = z−(E) if E > |Eth|, while the average stability index
is given by

k(E) =















0 , if E < Eth ,
p

2π(p−1) E
q

E2
th − E2 + 1

π arctan
�
q

E2
th−E2

E

�

, if |E|< |Eth| ,

1 , if E > |Eth| ,

(E.29)

which is the result plotted in Figure 4 of the main text.
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