
Seed-Guided Fine-Grained Entity Typing in Science and Engineering Domains

Yu Zhang1*, Yunyi Zhang1∗, Yanzhen Shen1,
Yu Deng2, Lucian Popa3, Larisa Shwartz2, ChengXiang Zhai1, Jiawei Han1

1Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
2IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA

3IBM Almaden Research Center, San Jose, CA, USA
{yuz9, yzhan238, yanzhen4, czhai, hanj}@illinois.edu, {dengy, lpopa, lshwart}@us.ibm.com

Abstract

Accurately typing entity mentions from text segments is
a fundamental task for various natural language process-
ing applications. Many previous approaches rely on massive
human-annotated data to perform entity typing. Neverthe-
less, collecting such data in highly specialized science and
engineering domains (e.g., software engineering and secu-
rity) can be time-consuming and costly, without mention-
ing the domain gaps between training and inference data if
the model needs to be applied to confidential datasets. In
this paper, we study the task of seed-guided fine-grained en-
tity typing in science and engineering domains, which takes
the name and a few seed entities for each entity type as the
only supervision and aims to classify new entity mentions
into both seen and unseen types (i.e., those without seed en-
tities). To solve this problem, we propose SETYPE which
first enriches the weak supervision by finding more entities
for each seen type from an unlabeled corpus using the con-
textualized representations of pre-trained language models.
It then matches the enriched entities to unlabeled text to
get pseudo-labeled samples and trains a textual entailment
model that can make inferences for both seen and unseen
types. Extensive experiments on two datasets covering four
domains demonstrate the effectiveness of SETYPE in com-
parison with various baselines. Code and data are available
at: https://github.com/yuzhimanhua/SEType.

Introduction
Entity typing, i.e., automatically determining the types of
entity mentions given their contexts, is a fundamental step
for various text mining and natural language processing
(NLP) tasks, such as entity linking (Wu et al. 2020) and text
classification (Hu et al. 2019). Entity typing in science and
engineering domains poses substantial new challenges, call-
ing for dedicated research. First, fine-grained entity typing
is critical for domain-specific applications. For example, in
software and security domains (e.g., StackOverflow threads,
GitHub README files, and vulnerability descriptions), en-
tities need to be typed in fine-grained scale (e.g., devices,
operating systems, versions, and functions) in order to drive
downstream applications (e.g., technical question answering

*Equal Contribution.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(Yu et al. 2020, 2021) and knowledge graph construction
(Rukmono and Chaudron 2023)).

Second, massive human annotation is too costly to be
a solution. Although entity typing has been extensively
studied in NLP, most existing approaches rely on massive
human-annotated training data, which are time-consuming
and costly to obtain, especially in specialized technical do-
mains. Moreover, practitioners in these domains often need
to apply the model to their confidential datasets (e.g., in-
ternal software issue reports) which cannot be accessed by
external annotators, incurring domain gaps between train-
ing and inference data. To alleviate annotation efforts, re-
cent studies explore the setting of few-shot entity typing
(Ding et al. 2022; Huang, Meng, and Han 2022; Dai and
Zeng 2023), where a few manually labeled samples are pro-
vided to train the model. However, unless the entity types
are balanced (which is usually not the case – the number
of APPLICATION entities is 24 times more than the number
of ALGORITHM entities in the StackOverflowNER dataset
(Tabassum et al. 2020)), one needs to sample and annotate a
much larger number of entities to cover the minority types.

Third, domain-agnostic zero-shot learning methods do
not provide a good solution either. Previous zero-shot en-
tity typing models (Zhou et al. 2018; Obeidat et al. 2019;
Zhang et al. 2020a) rely on type names only and do not
seek help from any annotated examples. This makes the
model unaware of domain-specific knowledge, which may
lead to suboptimal performance in highly specialized sci-
ence and engineering domains. For example, given the sen-
tence “ListView keep BooleanSparseArray of checked po-
sitions (you can get it with method getCheckedItemPosi-
tions()).”, if we ask GPT-3.5 Turbo (Ouyang et al. 2022)
about the type of “ListView” by providing it with type names
only, GPT-3.5 Turbo will answer “USER INTERFACE ELE-
MENT” instead of the correct answer “LIBRARY CLASS”.

To strike a balance between few-shot and zero-shot set-
tings, in this paper, inspired by the weakly supervised set-
ting in text classification (Meng et al. 2018; Mekala and
Shang 2020), we confine the supervision signals to be type
names and a few (e.g., 5) seed entities per type. In com-
parison with the labeled samples under the few-shot setting,
the given entities under our setting are not associated with
any context information. For example, the supervision only
tells “ListView” is a LIBRARY CLASS in general, but no spe-

 Pre-trained
 Language Model

Application

chrome
git

excel
mysql

Data Type

string
integer
pointer
char

Device

mac
mouse

cpu
disk

Algorithm File Type Version

Seen Types (type names and
a few seed entities are given)

Unseen Types (only type
names are given)

Unlabeled Corpus

Application

chrome
git

excel
mysql

Data Type

string
integer
pointer
char

Device

mac
mouse

cpu
disk

Entity Enrichment

ie11 edge
msword
firefox
safari

…

double
float

qstring
bool
…

laptop
hard drive

server
local disk

…

Enriched Seed Entities

Pseudo-Labeled Training Data

Text Entity Type
How to clear cookies and site
data when you quiet Chrome?
… as the name implies, a double
has 2x the prevision of float …

…

Data Type

Application

…

Hypothesis 1
(H1): In this

context,
Chrome is
referring to
Application.

Premise (P):
How to clear
cookies and

site data when
you quiet
Chrome?

Hypothesis 2
(H2): In this

context,
Chrome is
referring to
Data Type.

 Pre-trained
 Language Model

entail(P, H1)
>

entail(P, H2)

Learning an Entailment Model

Entity Typing for Both Seen
and Unseen Types

Text Entity Type
Visual Studio 17.6.2
for Mac not running
with breakpoints
Visual Studio 17.6.2
for Mac not running
with breakpoints

Device

Application

Visual Studio 17.6.2
for Mac not running
with breakpoints

Version

… …

 Pre-trained
 Language Model

Figure 1: Overview of the SETYPE framework.

cific sentence will be provided. In this case, users just need
to name a few entities for each type as supervision, with-
out scanning the text corpus. We call this task setting seed-
guided entity typing.

Contributions. In this paper, taking software engineering
and security as two running domains, we study seed-guided
fine-grained entity typing in science and technology. As
shown in Figure 1, the task input includes a large unlabeled
corpus and some seen types. For each seen type, its type
name and a small set of seed entities are given. The goal of
our task is to train an entity typing model that can classify
an entity mention into not only seen types but also unseen
types. By “unseen”, we refer to the types without any seed
entities given and never seen during model training. Instead,
only their type names are provided during inference. For
example, in Figure 1, VERSION is an unseen type, but the
model should be able to type “17.6.2” as a VERSION entity
given its context “Visual Studio 17.6.2 for Mac not running
with breakpoints”.

To perform seed-guided fine-grained entity typing, we
propose a framework named SETYPE, which consists of two
phases: (i) entity enrichment and (ii) entailment model train-
ing. The first phase (i.e., entity enrichment) aims to extract
more entities for each seen type from the unlabeled corpus
according to their contextualized semantic similarities with
the provided seed entities. This is to overcome supervision
scarcity. To be specific, if we directly match seed entities
to unlabeled text to get pseudo-labeled training samples, the
semantic coverage of these obtained samples may still be
narrow and cause model overfitting. After finding more en-
tities belonging to each type, the matched training data will
be more diverse. Taking such pseudo-labeled data, the model
training phase then learns an entailment model by viewing
the entity context as a premise and each entity type (filled
into a template) as a hypothesis. Finally, the learned model
can perform entity typing for both seen and unseen types by
predicting to what extent the premise entails the hypothesis
corresponding to each candidate type.

To summarize, this study makes the following contri-
butions: (1) Task: We propose to study seed-guided fine-

grained entity typing. In comparison with the zero-shot
setting, it leverages user-provided seed entities as domain
knowledge, which is badly needed in highly specialized sci-
ence and engineering domains. In comparison with the few-
shot setting, it alleviates annotation efforts and mitigates do-
main gaps between training and inference data. (2) Frame-
work: We design a two-phase framework, SETYPE, that first
conducts entity enrichment to overcome supervision scarcity
and then learns an entailment model to perform entity typing
for both seen and unseen types. (3) Experiments: Extensive
experiments on two public datasets (Tabassum et al. 2020;
Bridges et al. 2013) covering four domains (i.e., StackOver-
flow, GitHub, National Vulnerability Database, and Metas-
ploit) demonstrate the effectiveness of SETYPE given 10 to
15 fine-grained types related to code, software, and security.
Although we focus on software and security domain exam-
ples, our entity typing framework can be applied to other
specialized domains including science (Wang et al. 2021)
and engineering (O’Gorman et al. 2021).

Problem Definition
Assume there are m entity types T = {t1, t2, ..., tm}
(e.g., “DATA STRUCTURE”, “DEVICE”, “PROGRAMMING
LANGUAGE”). For each type ti, a small set of (e.g., 5)
seed entities Ei = {ei,1, ..., ei,n} are given as supervi-
sion (e.g., for ti = “PROGRAMMING LANGUAGE”, Ei =
{c++, java, python, ...}). The seed-guided entity typing task
aims to train a classifier f . Given a text segment d and an en-
tity mention e appears in d, the classifier maps e to its type
f(e|d) based on its context. In this paper, we consider two
different task settings.
Closed-Set Entity Typing. During inference, the possible
type of an entity e always belongs to T . In other words,
when making predictions, the model f only needs to con-
sider the entity types it has seen during training.
Open-Set Entity Typing. Following Yuan and Downey
(2018), we consider a more challenging setting where some
target entity types Tu = {tm+1, tm+2, ..., tm+k} are never
seen during training. For each unseen type ti ∈ Tu, no seed
entity is given as supervision. During inference (i.e., after

the model f is trained), the name of each unseen type (e.g.,
“VERSION”) is given to describe it, and the possible type of
an entity e can be either seen or unseen.

Formally, our task is defined as follows.

Definition 1 (Problem Definition) Given m entity types
T = {t1, t2, ..., tm}, each of which has its name ti and a
small set of seed entities Ei = {ei,1, ..., ei,n} as input, seed-
guided entity typing aims to train a classifier f that maps
an entity e mentioned in a text segment d to its type f(e|d).
Under the closed-set setting, f(e|d) ∈ T ; under the open-
set setting, f(e|d) ∈ T ∪ Tu, where Tu is a set of new types
with no seed entities given and never seen during training.

The SETYPE Framework
Since only a few seed entities are provided for each seen
type, if we directly match them to an unlabeled corpus to
get pseudo-labeled training data, the matched samples may
still be scarce and cause model overfitting. Therefore, we
propose a two-phase framework, SETYPE (shown in Figure
1), which first enriches each type with more entities and then
trains an entailment-based entity typing model with enriched
pseudo-labeled samples.

Entity Enrichment
In the first phase, given the sets of seed entities Ei =
{ei,1, ..., ei,n} (1 ≤ i ≤ m), our goal is to find more en-
tities E+

i = {ei,n+1, ..., ei,n+l} that also belong to type
ti from a large unlabeled corpus D. This subtask bears
similarities with the entity set expansion task (Rong et al.
2016; Shen et al. 2017; Yu et al. 2019; Zhang et al. 2020c).
The difference is that here we need to expand the entity
sets of multiple types simultaneously. To be specific, since
the expanded entities will be used to match unlabeled cor-
pus to derive pseudo-labeled training data, we would like
them to be unambiguous (i.e., always belonging to the same
type given different contexts) so that the obtained pseudo
labels are likely more accurate. Therefore, we keep mu-
tual exclusivity across different types during expansion (i.e.,
(Ei ∪ E+

i) ∩ (Ej ∪ E+
j) = ∅, ∀i ̸= j).

Given a large corpus D in a science or engineering do-
main, we first extract a candidate entity pool P from D
that will be considered during entity enrichment. Following
Zhang et al. (2022b), we adopt AutoPhrase (Shang et al.
2018) to implement this step. Then, we leverage a pre-
trained language model PLM (e.g., BERTOverflow (Tabas-
sum et al. 2020), which is a BERT model pre-trained on
software-related text corpora) to get a representation vec-
tor he for each seed entity e ∈

⋃m
i=1 Ei or candidate entity

e ∈ P . To achieve this, we find all sentences from D that
contain the entity e. For each such sentence d, following
Zhang et al. (2022a), we consider two ways to obtain the
contextualized embedding of e: (1) We directly feed d into
PLM. Note that the entity e may be segmented into mul-
tiple tokens by PLM. After encoding, each token in d will
have an embedding vector, and the embedding of e is the
average embedding of tokens in e. (2) We replace e with a
[MASK] token in d and feed the masked sentence into PLM.
After encoding, we view the embedding of [MASK] as the

embedding of e. One can observe that the former approach
mentioned above focuses more on the content of e, while the
latter emphasizes the context of e. We concatenate these two
embeddings as the sentence-level representation of e in d.
Finally, the corpus-level representation of e is the average of
all its sentence-level representations in D. Formally,

he =
1

sf(e,D)

∑
d

[
hcontent
e|d || hcontext

e|d

]
. (1)

Here, sf(e,D) is the number of sentences containing e in
D (i.e., “sentence frequency”); hcontent

e|d and hcontext
e|d are the

sentence-level representations of e in d calculated in the two
aforementioned ways.

After obtaining he, we conduct an iterative entity enrich-
ment process for each type. In each iteration, whether a can-
didate entity e should be added to E+

i is according to the
average cosine similarity between e and all entities already
belonging to type ti. Formally,

score(e, ti) =
1

|Ei ∪ E+
i |

∑
e′∈Ei∪E+

i

cos(he,he′). (2)

At the very beginning of the iterative process, we have
E+
i = ∅ (1 ≤ i ≤ m). After each iteration, for each type ti,

we sort all candidate entities according to score(e, ti), and
the top-ranked entities will be added to E+

i . To ensure mu-
tual exclusivity, each entity can only be added to its most
similar type. For example, if score(e, LIBRARY) = 0.8 and
score(e, APPLICATION) = 0.7, then e will not be added to
the APPLICATION type, even if it is top-ranked according to
score(e, APPLICATION). Equivalently, we define the follow-
ing score.

score′(e, ti) =
{

score(e, ti), if ti = argmaxt score(e, t)
0, otherwise.

(3)
For each type ti, the ranking criterion is

max
e

score′(e, ti), where e ∈ P\
(m⋃
j=1

(Ej ∪ E+
j)

)
. (4)

Entailment Model Training
After I iterations of entity enrichment, we have a set of en-
tities Ei ∪ E+

i belonging to each type ti. We use these en-
tities to match an unlabeled corpus. If there is a sentence d
in the corpus containing any entity e ∈ Ei ∪ E+

i , we cre-
ate a pseudo-labeled training sample denoted by the triplet
(e, d, ti), which means that an entity e is mentioned in its
context d and should be labeled as type ti. Observing that
some sentences in software-related text corpora (e.g., Stack-
Overflow QA threads) are succinct and do not contain suf-
ficient context information, we propose to include the ±c
context sentences of d also as the input to the entity typing
model. For the sake of brevity, we use d to denote the text
segment consisting of both the sentence mentioning e and its
context sentences.

Following Li, Yin, and Chen (2022), we propose to train
a natural language inference (NLI) model (Yin, Hay, and

Roth 2019) for entity typing. To be specific, given a pseudo-
labeled training sample (e, d, ti), we treat d as a premise,
fill e and ti into a template “In this context, e is referring to
ti.” to construct a hypothesis, and train the model to rec-
ognize that the premise entails the hypothesis. Similar to
existing NLI models such as RoBERTa-large-MNLI (Liu
et al. 2019) and BART-large-MNLI (Lewis et al. 2020), our
model adopts a Cross-Encoder architecture, which concate-
nates the premise and the hypothesis into one input sequence
and feeds it into PLM.

h[CLS] = PLM([CLS] d [SEP] η(e, ti) [SEP]). (5)

Here, η(e, ti) denotes the hypothesis; h[CLS] is the output
representation vector of [CLS]. We then stack a linear layer
upon PLM to predict to what extent the hypothesis is correct
given the premise.

entail(d, η(e, ti)) = w⊤h[CLS], (6)

where w is a trainable vector.
According to the pseudo label, e belongs to type ti rather

than any other type tj ∈ T \{ti}. Therefore, the premise
d should entail the hypothesis η(e, ti) and should not en-
tail η(e, tj). To encourage this, we utilize a contrastive loss
(Smith and Eisner 2005) during training:

J = −
∑
ti∈T

∑
(e,d,ti)

∑
tj∈T \{ti}

log
(

exp(entail(d, η(e, ti)))
exp(entail(d, η(e, ti))) + exp(entail(d, η(e, tj)))

)
.

(7)

The model parameters, including PLM and w, are trained
on all pseudo-labeled samples derived by Ei ∪ E+

i (1 ≤ i ≤
m) to minimize J .

Inference
After PLM and w are trained, given a testing sample (e, d),
we are able to predict the type of e. In brief, we enumerate
all possible hypotheses to see which one is the most likely
to be entailed by d. Under the closed-set setting, the hypoth-
esis space is H = {η(e, tj)|tj ∈ T }; under the open-set
setting, the hypothesis space becomes H = {η(e, tj)|tj ∈
T ∪ Tu}. Formally, for each η(e, tj) ∈ H, we calculate
entail(d, η(e, tj)) according to Eqs. (5) and (6). Then, we
pick the type with the highest entailment score as the pre-
dicted type of e.

f(e|d) = arg max
tj :η(e,tj)∈H

entail(d, η(e, tj)). (8)

Experiments
Datasets
We use two publicly available datasets from software engi-
neering and security domains – StackOverflowNER (Tabas-
sum et al. 2020) and Cybersecurity (Bridges et al. 2013).
StackOverflowNER (Tabassum et al. 2020)1 contain text
from two sources – StackOverflow question-answer threads

1https://github.com/jeniyat/StackOverflowNER

Table 1: Dataset statistics. †: The GitHub dataset does not
have any entity annotated as VALUE.

Dataset
StackOverflowNER Cybersecurity

StackOv-
erflow GitHub NVD Meta-

sploit

#Seen types 10 10 5 5

#Unseen types 5 4† 5 5

Average #seeds
per seen type 5.4 5.4 5.2 5.2

#Testing samples
(Closed-Set) 2,084 3,224 20,798 2,087

#Testing samples
(Open-Set) 2,610 3,762 27,646 2,612

and GitHub issue reports. We select 10 types as seen
types defined in our seed-guided setting, including APPLI-
CATION, DATA STRUCTURE, DATA TYPE, DEVICE, LI-
BRARY, LIBRARY CLASS, OPERATING SYSTEM, PRO-
GRAMMING LANGUAGE, USER INTERFACE ELEMENT,
and WEBSITE, and we pick 5 types as unseen types, in-
cluding ALGORITHM, FILE TYPE, HTML XML TAG,
VALUE, and VERSION. In the original dataset, StackOver-
flow question-answer threads are split into training, valida-
tion, and testing sets, while GitHub issue reports form a test-
ing set only. We take the two testing sets as our testing sets,
which are named StackOverflow and GitHub, respectively.
We take the training and validation corpora of StackOver-
flow, remove their annotations, and treat them as unlabeled
corpora to create pseudo-labeled training and validation sets,
respectively.
Cybersecurity (Bridges et al. 2013)2 contains text related
to the Common Vulnerability Enumeration (CVE) from the
National Vulnerability Database (NVD) and the Metasploit
Framework. We select 5 types as seen types – APPLICA-
TION, EDITION, OPERATING SYSTEM, RELEVANT TERM,
and VENDOR; 5 other types are treated as unseen types –
FILE, FUNCTION, METHOD, PARAMETER, and VERSION.
For the larger NVD corpus, we take 20% as the annotated
testing data, and the remaining 80% are treated as unlabeled
text to create pseudo-labeled training and validation data.
For the smaller Metasploit corpus, we take all annotated
samples for testing.

For each seen type, 4-7 seed entities are given. Statistics
of the datasets are summarized in Table 1.

The large unlabeled corpus D for entity enrichment is
sampled from the Stack Exchange data dump3. D consists
of 1.26 million questions and answers.

Compared Methods
We compare SETYPE with the following baselines.

2https://github.com/stucco/auto-labeled-corpus
3https://archive.org/download/stackexchange/stackoverflow.

com-Posts.7z

Table 2: Performance of compared methods on StackOverflow and GitHub from the StackOverflowNER dataset (Tabassum
et al. 2020) as well as NVD and Metasploit from the Cybersecurity dataset (Bridges et al. 2013). Bold: the highest score. *:
SETYPE is significantly better than this method with p-value < 0.05. **: SETYPE is significantly better than this method with
p-value < 0.01.

StackOverflow GitHub
Closed-Set Open-Set Closed-Set Open-Set

Micro Macro Micro Macro Micro Macro Micro Macro

RoBERTa-large-MNLI (Liu et al. 2019) 34.74∗∗ 31.30∗∗ 27.85∗∗ 24.57∗∗ 34.62∗∗ 29.87∗∗ 31.55∗∗ 25.65∗∗

BART-large-MNLI (Lewis et al. 2020) 30.95∗∗ 24.31∗∗ 27.20∗∗ 21.08∗∗ 23.39∗∗ 22.09∗∗ 24.46∗∗ 21.75∗∗

BERTOverflow (Tabassum et al. 2020) 27.59∗∗ 25.34∗∗ – – 20.47∗∗ 17.73∗∗ – –
SetExpan+Entailment (Shen et al. 2017) 48.99∗∗ 48.06∗∗ 40.96∗∗ 35.00∗∗ 39.14∗∗ 47.16∗∗ 35.73∗∗ 36.72∗∗

CGExpan+Entailment (Zhang et al. 2020c) 61.37∗∗ 59.97∗ 56.02∗∗ 49.43∗∗ 45.97∗∗ 52.13 47.45∗ 46.85∗

GPT-3.5 Turbo (Ouyang et al. 2022) 50.79∗∗ 48.07∗∗ 51.86∗∗ 49.23∗∗ 45.49∗∗ 46.37∗∗ 49.85 48.42

SETYPE 66.15 64.16 60.05 52.83 52.30 55.20 52.45 49.83

Fully Supervised 82.77 82.85 73.52 65.62 74.63 77.51 71.66 65.24

NVD Metasploit
Closed-Set Open-Set Closed-Set Open-Set

Micro Macro Micro Macro Micro Macro Micro Macro

RoBERTa-large-MNLI (Liu et al. 2019) 64.00∗∗ 29.34∗∗ 52.55∗∗ 29.53∗∗ 56.06∗∗ 26.92∗∗ 51.34∗∗ 24.93∗∗

BART-large-MNLI (Lewis et al. 2020) 65.43∗∗ 20.66∗∗ 51.26∗∗ 18.12∗∗ 59.61∗∗ 23.55∗∗ 54.42∗∗ 21.67∗∗

BERTOverflow (Tabassum et al. 2020) 26.07∗∗ 15.46∗∗ – – 31.77∗∗ 20.56∗∗ – –
SetExpan+Entailment (Shen et al. 2017) 66.86∗∗ 57.07 51.01∗∗ 29.27∗∗ 71.70 60.15 57.40∗∗ 31.52

CGExpan+Entailment (Zhang et al. 2020c) 58.63∗∗ 53.10 49.64∗∗ 32.35 67.86∗∗ 59.48 57.09∗∗ 34.61
GPT-3.5 Turbo (Ouyang et al. 2022) 54.71∗∗ 46.41∗∗ 50.45∗∗ 45.25 60.04∗∗ 50.43∗∗ 50.19∗∗ 42.78

SETYPE 75.93 55.34 61.69 36.62 74.77 57.26 62.50 34.72

Fully Supervised 97.67 90.50 74.17 39.47 98.28 82.09 78.87 40.58

RoBERTa-large-MNLI (Liu et al. 2019) is a natural lan-
guage inference model which is obtained by fine-tuning
RoBERTa-large on the MNLI dataset (Williams, Nangia,
and Bowman 2018). Li, Yin, and Chen (2022) propose to
utilize it as a zero-shot entity typing model by viewing the
mention text as a premise and the candidate entity type as a
hypothesis.

BART-large-MNLI (Lewis et al. 2020) is obtained by fine-
tuning BART-large on MNLI. It can be used as a zero-shot
entity typing model in the same way as RoBERTa-large-
MNLI.

BERTOverflow (Tabassum et al. 2020) is a base-size BERT
model pre-trained on StackOverflow data. We adopt it for
few-shot entity typing. To be specific, for each entity men-
tion e appearing in text d, we feed d into BERTOverflow and
get the contextualized embedding of e (i.e., hcontent

e|d in Eq.
(1)). Then, for each seen type ti, we obtain its embedding
by feeding its seed entities Ei into BERTOverflow (without
any context) and taking the average of their embeddings. Fi-
nally, we select the type that is the most similar to e in the
BERTOverflow embedding space (measured by the cosine
similarity) as the prediction. Note that this method can only
be used for closed-set entity typing because unseen types do
not have seed entities.

SetExpan+Entailment first uses SetExpan (Shen et al.
2017) for entity enrichment and then uses enriched entities
to create pseudo-labeled training data to train an entailment

model. The entailment model is initialized with BERTOver-
flow. It can be viewed as an ablation version of SETYPE by
replacing our entity enrichment step with SetExpan.

CGExpan+Entailment is similar to SetExpan+Entail-
ment, but it replaces our entity enrichment step with CG-
Expan (Zhang et al. 2020c).

GPT-3.5 Turbo (Ouyang et al. 2022) is a large language
model pre-trained on massive corpora with instructions and
human feedback. We use it for zero-shot entity typing by
inputting the entity e and the context d and asking the model
to select an entity type from the candidate type space.

Implementation and Hyperparameters

SETYPE uses BERTOverflow as the PLM. During entity
enrichment, the number of enriched entities |E+

i | is 50 and
100 on StackOverflowNER and Cybersecurity, respectively.
In practice, this hyperparameter can be set based on users’
knowledge about the rough number of concepts belonging to
the types. During model training, the window size of context
sentences c = 1; the maximum premise length is 462 tokens;
the maximum hypothesis length is 50 tokens; the training
batch size is 4; we use the AdamW optimizer (Loshchilov
and Hutter 2019), warm up the learning rate for the first 100
steps and then linearly decay it, where the learning rate is
5e-5; the weight decay is 0.01, and ϵ = 1e-8. The model is
trained on one NVIDIA RTX A6000 GPU.

Evaluation Metrics
We use Micro-F1 and Macro-F1 scores as evaluation metrics
for both closed-set and open-set settings.

Performance Comparison
Table 2 shows the performance of compared methods on
StackOverflowNER and Cybersecurity, respectively. We run
SETYPE five times with the average performance reported.
To show statistical significance, we conduct a two-tailed Z-
test to compare SETYPE with each baseline, and the signifi-
cance level is also shown in Table 2. We also present the per-
formance of a fully supervised entity typing model, where
the ground-truth training and validation sets from Stack-
Overflow and NVD are used to train an entailment model.
Note that the term “fully supervised” here corresponds to
the closed-set setting rather than the open-set one. In other
words, the training and validation sets contain annotations
for seen types only, while for unseen types, the model still
only has their names during inference.

From Table 2, we can observe that: (1) SETYPE outper-
forms all baselines significantly in most cases. On Stack-
Overflow and GitHub, SETYPE is consistently the best. On
NVD and Metasploit, SETYPE achieves the highest Micro-
F1 scores and the second highest Macro-F1 scores. (2) If
we do not perform any entity enrichment and directly uti-
lize BERTOverflow for few-shot entity typing, the perfor-
mance is even lower than the zero-shot RoBERTa-large-
MNLI and BART-large-MNLI models in most cases. This
is possibly because RoBERTa-large-MNLI and BART-large-
MNLI are fine-tuned on general-domain NLI data and enjoy
a larger PLM backbone. By contrast, SetExpan+Entailment,
CGExpan+Entailment, and SETYPE add an entity enrich-
ment step before using BERTOverflow, and they can out-
perform RoBERTa-large-MNLI and BART-large-MNLI in
many cases. This observation underscores the importance of
our proposed entity enrichment phase. (3) SETYPE beats
SetExpan+Entailment and CGExpan+Entailment in most
cases. Since the entailment model training modules of all
these three models are identical, this finding implies that
our proposed entity enrichment method is better than SetEx-
pan and CGExpan. The possible reason is that our method
is specifically designed for expanding multiple entity sets
simultaneously and explicitly models mutual exclusivity
across all types.

Hyperparameter Analyses
Effect of the Window Size of Context Sentences. As men-
tioned in our model design, we include the ±c context sen-
tences of the mention sentence as model input to comple-
ment the information in the mention sentence. In SETYPE,
we set c = 1. Figure 2 depicts the performance of SETYPE
with different values of c. We can find that: (1) The F1 scores
of SETYPE with c = 1 are consistently better than those
with c = 0. This trend validates our motivation for includ-
ing context sentences. (2) If we further increase the value of
c, the performance starts to fluctuate or even drop. This ob-
servation is intuitive because when we stretch too far away,
the sentence may be irrelevant to the mentioned entity and
bring more noises than hints.

40

50

60

70

0 1 2 3 4

F1
 sc

or
e

c

Closed-Set, Micro
Open-Set, Micro

(a) StackOverflow

42

47

52

57

0 1 2 3 4

F1
 sc

or
e

c

Closed-Set, Macro
Open-Set, Macro

(b) GitHub

Figure 2: Performance of SETYPE with different window
sizes of context sentences (the sentence containing the entity
mention and its ±c sentences are fed into PLM) on Stack-
Overflow and GitHub. Considering ±1 sentences is always
better than focusing on the mention sentence alone.

40

50

60

70

0 50 100 150 200
F1

 sc
or

e
enriched entities

Closed-Set, Micro
Open-Set, Micro

(a) StackOverflow

30
40
50
60
70
80

0 50 100 150 200

F1
 sc

or
e

enriched entities

Closed-Set, Macro
Open-Set, Macro

(b) NVD

Figure 3: Performance of SETYPE with different numbers
of enriched entities per type (i.e., |E+

i |) on StackOverflow
and NVD.

Effect of the Number of Enriched Entities. On StackOver-
flowNER and Cybersecurity, we extract 50 and 100 entities,
respectively, for each seen type to form the enriched entity
set E+

i . We now examine the effect of |E+
i | on model per-

formance, which is plotted in Figure 3. We can see that: (1)
When we increase |E+

i | from 20 to 50, SETYPE consistently
performs better. This again implies the positive contribution
of finding more entities to tackle supervision scarcity. (2) If
we further increase |E+

i | from 100 to 200, the performance
often drops. This is because lower-ranked entities may not
belong to the corresponding type, inducing errors and noises
in pseudo-labeled training data. Moreover, extracting more
entities will produce more training samples and make train-
ing time longer. Overall, we believe setting |E+

i | to be 50 or
100 strikes a good balance.
Effect of the Hypothesis Template. In SETYPE, we use
the template “In this context, entity is referring to type.” to
create hypotheses. This template is introduced in Li, Yin,
and Chen (2022), where two other templates are also pro-
posed. We show the three templates in Table 3 together with
an example premise. Following the terminologies in Li, Yin,
and Chen (2022), we name the three templates “Contex-
tual”, “Taxonomic”, and “Substitution”, respectively. The
Micro-F1 scores of SETYPE with different templates are
also shown in Table 3. We observe that the Substitution tem-
plate is significantly inferior to the Contextual template; the
Taxonomic template performs slightly worse than the Con-

Table 3: Micro-F1 scores of SETYPE with different hypothesis templates used in Li, Yin, and Chen (2022). Bold, *, and **:
the same meaning as in Table 2.

Premise: Visual Studio 17.6.2 for Mac not
running with breakpoints

StackOverflow GitHub NVD Metasploit
Closed Open Closed Open Closed Open Closed Open

Contextual Template: In this context, Mac
is referring to DEVICE. 66.15 60.05 52.30 52.45 75.93 61.69 74.77 62.50

Taxonomic Template: Mac is a DEVICE. 65.29 58.85 51.59 50.63 75.42 63.64 73.27 63.44

Substitution Template: Visual Studio 17.6.2
for DEVICE not running with breakpoints 57.50∗∗ 41.67∗∗ 48.36 36.80∗∗ 63.57∗∗ 47.14∗∗ 47.24∗∗ 37.23∗∗

textual template in general, but the gap is not significant.

Related Work
Zero-shot and Few-shot Entity Typing
Zero-shot and few-shot entity typing aim to classify a given
entity mention to a set of types with limited or no train-
ing data. For example, ZOE (Zhou et al. 2018) and DZET
(Obeidat et al. 2019) propose to utilize pre-trained word
embeddings (i.e., ELMo (Peters et al. 2018) and GLoVe
(Pennington, Socher, and Manning 2014), respectively) and
Wikipedia’s entry descriptions to map entity mentions and
types into a shared latent space; MZET (Zhang et al. 2020a)
captures semantic meanings and hierarchical information to
transfer knowledge from seen to unseen types; PLET (Ding
et al. 2022) uses prompt-learning with self-supervision to
utilize a PLM’s prior knowledge; Huang, Meng, and Han
(2022) exploit a PLM’s generative power to synthesize new
instances for each entity type by feeding a prompt into a
PLM and predicting the [MASK] tokens; Cui et al. (2022)
and Yuan et al. (2022) continue to exploit the power of
prompt tuning, while introducing a prototypical verbalizer
or adding on prompt and curriculum instructions; Ouyang
et al. (2023) exploit ontology structures of entity types and
present an ontology enrichment framework for zero-shot en-
tity typing. In addition, the power of transfer learning with
PLMs has also been explored. For example, Dai and Zeng
(2023) propose to train a general ultra-fine entity typing
model and fine-tune it on fine entity typing data. However, in
previous studies, context-aware annotated samples (i.e., la-
beled mentions with the sentence/document they appear in)
are given under the few-shot setting. In comparison, in our
setting, only a few seed entities are given, without their con-
text, which are weaker supervision signals. In addition to the
difference in the level of supervision, the previous studies
aim to perform entity typing in the general domain, whereas
ours works for specialized technical domains.

Text Mining in Technical Domains
Information extraction and text mining in technical domains
such as software engineering and security have been ex-
plored to benefit domain-specific applications such as tech-
nical question answering (Yu et al. 2020, 2021), knowl-
edge graph construction (Rukmono and Chaudron 2023),
and code recommendation (Jin et al. 2023). For named en-
tity recognition (NER) in technical domains, Ye et al. (2016)

show that conditional random fields can outperform tradi-
tional rule-based models; Tabassum et al. (2020) further
leverage the power of PLMs and achieve better performance
on StackOverflow and GitHub; Lopez et al. (2021) find that
the layout information from raw PDFs can help capture doc-
ument structure for better NER performance. However, un-
like SETYPE, these methods are all limited by their fully su-
pervised settings requiring massive annotated data. In cases
where annotations are insufficient or unavailable, Bridges
et al. (2013) manage to automatically generate labeled data
through matching entries in a security database; Yang et al.
(2021) show that high-quality NER labels can be produced
by PLMs based on security vulnerability reports. In compar-
ison with the settings of these studies, SETYPE uses only
a few seed words as supervision, which alleviates the bur-
den of modeling knowledge bases or annotating training
samples. For text classification in technical domains, Zhang
et al. (2019, 2020b, 2021) devise weakly supervised ap-
proaches that use metadata and/or label hierarchy to classify
GitHub repositories. While classification and entity expan-
sion mainly require document or corpus-level understanding
of text, the more challenging task of seed-guided entity typ-
ing, as described by SETYPE, relies on more fine-grained
understanding of the context.

Conclusions and Future Work
In this paper, we study seed-guided fine-grained entity typ-
ing in science and engineering domains, which aims to per-
form entity typing given only type names and a small set of
seed entities. We present SETYPE, a two-phase entity typ-
ing framework that first conducts entity enrichment and then
employs the enriched entities to obtain pseudo-labeled data
for subsequent entailment model training. SETYPE is able
to classify new entity mentions into both seen and unseen
types. With extensive experiments on two public datasets
encompassing multiple domains, we demonstrate the signif-
icant advantage of SETYPE over zero-shot and seed-guided
baselines given 10 to 15 fine-grained types related to code,
software, and security. Ablation studies and hyperparame-
ter analyses further validate some key design choices in SE-
TYPE. Interesting future studies include: (1) leveraging large
language models to synthesize pseudo-labeled training sam-
ples with the help of prompts and (2) exploiting domain-
specific knowledge bases to create distant supervision to
help fine-grained entity typing.

Acknowledgments
We thank anonymous reviewers for their valuable and in-
sightful feedback. This work was supported by the IBM-
Illinois Discovery Accelerator Institute, National Science
Foundation IIS-19-56151, and US DARPA INCAS Program
No. HR001121C0165.

References
Bridges, R. A.; Jones, C. L.; Iannacone, M. D.; Testa, K. M.;
and Goodall, J. R. 2013. Automatic labeling for entity ex-
traction in cyber security. arXiv preprint arXiv:1308.4941.
Cui, G.; Hu, S.; Ding, N.; Huang, L.; and Liu, Z. 2022. Pro-
totypical Verbalizer for Prompt-based Few-shot Tuning. In
ACL’22, 7014–7024.
Dai, H.; and Zeng, Z. 2023. From Ultra-Fine to Fine: Fine-
tuning Ultra-Fine Entity Typing Models to Fine-grained. In
ACL’23, 2259–2270.
Ding, N.; Chen, Y.; Han, X.; Xu, G.; Wang, X.; Xie, P.;
Zheng, H.; Liu, Z.; Li, J.; and Kim, H.-G. 2022. Prompt-
learning for Fine-grained Entity Typing. In ACL’22, 6888–
6901.
Hu, L.; Yang, T.; Shi, C.; Ji, H.; and Li, X. 2019. Hetero-
geneous graph attention networks for semi-supervised short
text classification. In EMNLP’19, 4821–4830.
Huang, J.; Meng, Y.; and Han, J. 2022. Few-shot fine-
grained entity typing with automatic label interpretation and
instance generation. In KDD’22, 605–614.
Jin, Y.; Bai, Y.; Zhu, Y.; Sun, Y.; and Wang, W. 2023. Code
Recommendation for Open Source Software Developers. In
WWW’23, 1324–1333.
Lewis, M.; Liu, Y.; Goyal, N.; Ghazvininejad, M.; Mo-
hamed, A.; Levy, O.; Stoyanov, V.; and Zettlemoyer, L.
2020. BART: Denoising Sequence-to-Sequence Pre-training
for Natural Language Generation, Translation, and Compre-
hension. In ACL’20, 7871–7880.
Li, B.; Yin, W.; and Chen, M. 2022. Ultra-fine entity typing
with indirect supervision from natural language inference.
TACL, 10: 607–622.
Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.;
Levy, O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V.
2019. Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.
Lopez, P.; Du, C.; Cohoon, J.; Ram, K.; and Howison,
J. 2021. Mining software entities in scientific literature:
document-level ner for an extremely imbalance and large-
scale task. In CIKM’21, 3986–3995.
Loshchilov, I.; and Hutter, F. 2019. Decoupled Weight De-
cay Regularization. In ICLR’19.
Mekala, D.; and Shang, J. 2020. Contextualized Weak Su-
pervision for Text Classification. In ACL’20, 323–333.
Meng, Y.; Shen, J.; Zhang, C.; and Han, J. 2018. Weakly-
supervised neural text classification. In CIKM’18, 983–992.
Obeidat, R.; Fern, X.; Shahbazi, H.; and Tadepalli, P. 2019.
Description-based zero-shot fine-grained entity typing. In
NAACL’19, 807–814.

Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright, C.;
Mishkin, P.; Zhang, C.; Agarwal, S.; Slama, K.; Ray, A.;
et al. 2022. Training language models to follow instructions
with human feedback. In NeurIPS’22, 27730–27744.
Ouyang, S.; Huang, J.; Pillai, P.; Zhang, Y.; Zhang, Y.; and
Han, J. 2023. Ontology Enrichment for Effective Fine-
grained Entity Typing. arXiv preprint arXiv:2310.07795.
O’Gorman, T.; Jensen, Z.; Mysore, S.; Huang, K.; Mahbub,
R.; Olivetti, E.; and McCallum, A. 2021. MS-Mentions:
consistently annotating entity mentions in materials science
procedural text. In EMNLP’21, 1337–1352.
Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global vectors for word representation. In EMNLP’14,
1532–1543.
Peters, M. E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark,
C.; Lee, K.; and Zettlemoyer, L. 2018. Deep Contextualized
Word Representations. In NAACL’18, 2227–2237.
Rong, X.; Chen, Z.; Mei, Q.; and Adar, E. 2016. Egoset:
Exploiting word ego-networks and user-generated ontology
for multifaceted set expansion. In WSDM’16, 645–654.
Rukmono, S. A.; and Chaudron, M. R. 2023. Enabling Anal-
ysis and Reasoning on Software Systems through Knowl-
edge Graph Representation. In MSR’23, 120–124.
Shang, J.; Liu, J.; Jiang, M.; Ren, X.; Voss, C. R.; and Han, J.
2018. Automated phrase mining from massive text corpora.
IEEE TKDE, 30(10): 1825–1837.
Shen, J.; Wu, Z.; Lei, D.; Shang, J.; Ren, X.; and Han, J.
2017. Setexpan: Corpus-based set expansion via context
feature selection and rank ensemble. In ECML-PKDD’17,
288–304.
Smith, N. A.; and Eisner, J. 2005. Contrastive estimation:
Training log-linear models on unlabeled data. In ACL’05,
354–362.
Tabassum, J.; Maddela, M.; Xu, W.; and Ritter, A. 2020.
Code and Named Entity Recognition in StackOverflow. In
ACL’20, 4913–4926.
Wang, X.; Hu, V.; Song, X.; Garg, S.; Xiao, J.; and Han,
J. 2021. ChemNER: fine-grained chemistry named entity
recognition with ontology-guided distant supervision. In
EMNLP’21, 5227–5240.
Williams, A.; Nangia, N.; and Bowman, S. R. 2018. A
Broad-Coverage Challenge Corpus for Sentence Under-
standing through Inference. In NAACL’18, 1112–1122.
Wu, L.; Petroni, F.; Josifoski, M.; Riedel, S.; and Zettle-
moyer, L. 2020. Scalable Zero-shot Entity Linking with
Dense Entity Retrieval. In EMNLP’20, 6397–6407.
Yang, G.; Dineen, S.; Lin, Z.; and Liu, X. 2021. Few-Sample
Named Entity Recognition for Security Vulnerability Re-
ports by Fine-Tuning Pre-Trained Language Models. arXiv
preprint arXiv:2108.06590.
Ye, D.; Xing, Z.; Foo, C. Y.; Ang, Z. Q.; Li, J.; and Kapre,
N. 2016. Software-specific named entity recognition in soft-
ware engineering social content. In SANER’16, 90–101.
Yin, W.; Hay, J.; and Roth, D. 2019. Benchmarking zero-
shot text classification: Datasets, evaluation and entailment
approach. In EMNLP’19, 3914–3923.

Yu, P.; Huang, Z.; Rahimi, R.; and Allan, J. 2019. Corpus-
based set expansion with lexical features and distributed rep-
resentations. In SIGIR’19, 1153–1156.
Yu, W.; Wu, L.; Deng, Y.; Mahindru, R.; Zeng, Q.; Guven,
S.; and Jiang, M. 2020. A technical question answering sys-
tem with transfer learning. In EMNLP’20, System Demon-
strations, 92–99.
Yu, W.; Wu, L.; Deng, Y.; Zeng, Q.; Mahindru, R.; Gu-
ven, S.; and Jiang, M. 2021. Technical Question Answering
across Tasks and Domains. In NAACL’21, Industry Papers,
178–186.
Yuan, S.; Yang, D.; Liang, J.; Li, Z.; Liu, J.; Huang, J.; and
Xiao, Y. 2022. Generative Entity Typing with Curriculum
Learning. In EMNLP’22, 3061–3073.
Yuan, Z.; and Downey, D. 2018. Otyper: A neural architec-
ture for open named entity typing. In AAAI’18, 6038–6044.
Zhang, T.; Xia, C.; Lu, C.-T.; and Philip, S. Y.
2020a. MZET: Memory Augmented Zero-Shot Fine-grained
Named Entity Typing. In COLING’20, 77–87.
Zhang, Y.; Chen, X.; Meng, Y.; and Han, J. 2021. Hierar-
chical metadata-aware document categorization under weak
supervision. In WSDM’21, 770–778.
Zhang, Y.; Guo, F.; Shen, J.; and Han, J. 2022a. Unsuper-
vised key event detection from massive text corpora. In
KDD’22, 2535–2544.
Zhang, Y.; Meng, Y.; Huang, J.; Xu, F. F.; Wang, X.; and
Han, J. 2020b. Minimally supervised categorization of text
with metadata. In SIGIR’20, 1231–1240.
Zhang, Y.; Shen, J.; Shang, J.; and Han, J. 2020c. Em-
power Entity Set Expansion via Language Model Probing.
In ACL’20, 8151–8160.
Zhang, Y.; Xu, F. F.; Li, S.; Meng, Y.; Wang, X.; Li, Q.;
and Han, J. 2019. Higitclass: Keyword-driven hierarchical
classification of github repositories. In ICDM’19, 876–885.
Zhang, Y.; Zhang, Y.; Jiang, Y.; Michalski, M.; Deng, Y.;
Popa, L.; Zhai, C.; and Han, J. 2022b. Entity Set Co-
Expansion in StackOverflow. In IEEE BigData’22, 4792–
4795.
Zhou, B.; Khashabi, D.; Tsai, C.-T.; and Roth, D. 2018.
Zero-Shot Open Entity Typing as Type-Compatible Ground-
ing. In EMNLP’18, 2065–2076.

