
Ants: Attacking Spatial Temporal Graph Learning Networks

Structurally
Ran Ran*, Qi Liu†, Nuo Xu‡, Ning Sui*, and Wujie Wen*

*North Carolina State University, †Amazon, ‡Lehigh University
*{rran, nsui, wwen2}@ncsu.edu, †liuqim@amazon.com, ‡nux219@lehigh.edu

Abstract—Spatial-temporal graph data widely appear in real-
world applications like traffic flow forecasting and skeleton-based
action recognition. To effectively handle such data, spatial-temporal
graph learning neural networks (STGNNs) have emerged as a
promising solution and outperform traditional deep learning in these
tasks. However, existing studies mainly focus on the performance
aspect but lack a systematic study on their robustness when spatial-
temporal graph structure varies. In this paper, we aim to fill this
gap by systematically investigating the structure vulnerabilities of a
variety of popular STGNNs in practical tasks. To this end, a spatial-
temporal graph attack framework, namely Ants, which consists
of gradient-sign guided sensitive time-slice selection followed by
quantization-based adversarial edge searching, is proposed to craft
minimized adversarial perturbations on discrete spatial-temporal
graph data in both spatial and temporal dimensions. Extensive
experiments on traffic flow forecasting and human action recognition
tasks with six STGNNs and four datasets well demonstrate the
effectiveness and stealthiness of our Ants. While prior works do
not consider attacks on spatial-temporal graphs, we compare our
attack with state-of-the-art attacks on graphical models extended to
the STGNN setup, and the performance of Ants demonstrates that,
for STGNNs, the structure vulnerability in the context of spatial
and temporal dynamics needs to be considered carefully.

Index Terms—Adversarial Attack, Spatial-Temporal, Graph Neural
Network

I. INTRODUCTION

Spatial-temporal graph, as a special graph data with spatial-

temporal semantics, plays an increasingly important role in many

practical applications, including human action recognition and traffic

flow forecasting. Unsurprisingly, deep learning on spatial-temporal

graph data has seen increased research exploration recently. In par-

ticular, a growing number of spatial-temporal graph neural networks

(STGNNs) have demonstrated competitive performance in a range

of spatial-temporal graph applications [1], [2].

However, the robustness study of STGNNs, which is of paramount

importance to practical tasks in addition to performance, is still in

its infancy. While there exist some attempts [3], [4] , e.g., graph

adversarial examples, they mainly focus on adding perturbations on

the properties or features of graph node (e.g., the joint position of the

skeleton in human action recognition), leaving the important graph

structure-based attacks against STGNNs, largely unexplored. Indeed,

it is essential to understand how changing graph structure impacts

the performance of STGNNs in the context of spatial and temporal

dynamics. As we shall show in Sec. V, for graph classification tasks

like human action recognition, by just altering a very small amount

of edges without touching node features of spatial-temporal graph

data, STGNN would precisely mispredict the action that may impact

the critical real-time response of self-driving cars.

In response to this, this work aims to explore a graph-structure

adversarial attack dedicated to spatial-temporal graph data. Crafting

new adversarial graph attacks under the context of spatial and tem-

poral dynamics faces the following challenges: 1) Two-dimensional
optimization complexity over space and time. Unlike continuous

data such as image and video, the spatial-temporal graph structure

is discrete. Therefore, we need to design efficient optimization

algorithms to find adversarial examples across space and time in

the discrete domain. There exist prior works which [5], [6] focus on

adding adversarial perturbation on the discrete “spatial-only” graph

for graph neural networks in graph-based tasks. However, we found

that directly using existing solutions to search adversarial pertur-

bations on the spatial-temporal graph cannot ensure a high attack

success rate given the small edge perturbation budget (see Table

VII). This prompts the need for optimized solutions dedicated to the

spatial-temporal graph. 2) Attack stealthiness requirements across
space and time. Different from existing “spatial-only” graph-based

attacks, STGNN attacks should be stealthy in spatial and temporal

dimensions while achieving effective attacks. However, the scale
of spatial graph per time-slice in practical spatial-temporal tasks

is usually smaller than traditional “spatial-only” graph applications

because of physical constraints such as distance or structure, e.g.,

hundreds of nodes/edges in traffic network at a certain time-slice [2]

v.s. tens of thousands of nodes/edges in social networks. This

imposes a tighter margin to hide attacks in the spatial dimension.

Further, the attackers need to ensure that distorted time-slices are

limited to achieve stealthiness in the temporal dimension.

To this end, we propose a spatial-temporal graph adversarial attack

framework, namely structural spatial-temporal attack (Ants) against

STGNNs. First, to efficiently search for adversarial examples on

the complex spatial-temporal graph and achieve a stealthy attack

in the temporal dimension, we develop a gradient sign-based time-

slices selection algorithm to quickly identify a few most sensitive

time-slices from the temporal dimension for generating adversarial

examples. Second, we propose adaptive quantization optimization

to search for a spatial-temporal graph adversarial example in the

discrete domain. We evaluate our attack on two representative appli-

cations: traffic flow forecasting and human action recognition under

six types of STGNNs and four datasets considering both white-

box and black-box settings. Experiments show that Ants achieves

competitive attack effectiveness and stealthiness in both temporal

and spatial dimensions. For example, in the white-box setting, Ants
achieves 94.5% average success rate by changing less than 1% edges

on the human action recognition task.

II. BACKGROUND

Spatial-Temporal Graph Neural Networks (STGNNs).
STGNNs aim to learn the pattern from spatial-temporal graphs

by capturing the graph’s spatial and temporal dependencies. The

studies of STGNNs are mainly active in two fields: traffic flow

forecasting and human action recognition. 1) STGNNs in traffic
flow forecasting. Guo et al. [2] propose a spatial-temporal graph

1023

2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC)

2836-3795/24/$31.00 ©2024 IEEE
DOI 10.1109/COMPSAC61105.2024.00139

20
24

 IE
EE

 4
8t

h
An

nu
al

 C
om

pu
te

rs
, S

of
tw

ar
e,

 a
nd

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e

(C
O

M
PS

AC
) |

 9
79

-8
-3

50
3-

76
96

-8
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
CO

M
PS

AC
61

10
5.

20
24

.0
01

39

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on September 07,2024 at 02:13:22 UTC from IEEE Xplore. Restrictions apply.

convolution that utilizes graph convolution to capture spatial patterns

and a standard convolution to extract the temporal features.

Moreover, the attention mechanism is adopted to adaptively

capture dynamic spatial and temporal correlation of traffic data. As a

result, GNN without attention mechanism is named Multi-component
Spatial-temporal Graph Convolution Network (MSTGCN), while the

one with attention mechanism is called Attention based Spatial-
temporal Graph Convolution Network (ASTGCN). Besides, Spatial-
Temporal Synchronous Graph Convolutional Network (STSGCN) [7]

uses a spatial-temporal synchronous modeling mechanism to capture

the localized spatial-temporal correlations instead of using two

separate components like ASTGCN. 2) STGNNs in human action
recognition. Unlike the traffic network, the human skeletal structure

as a graph is relatively simple. However, there is a large number of

human action categories. Thereby, most studies focus on abstracting

hidden graph features from the physical graph structure before

feeding it to GNN for training. Spatial Temporal Graph Convolu-
tional Network (ST-GCN) [8] introduces three human-defined graph

partition strategies [1] to obtain abstracted graph from skeletal

structure. Actional-Structural Graph Convolutional Network (AS-
GCN) [8] uses a trainable auto-encoder to capture fine-grained graph

features from both skeletal structure and action, and then combines

the high-order polynomial of the skeletal graph as final graph input.

Liu et al. [9] propose a powerful feature extractor named MS-G3D
that utilizes a multi-scale aggregation technique to disentangle graph

features and a unified spatial-temporal graph convolution to capture

cross-space-time joint dependencies.

Adversarial Attack can mislead deep learning models by adding

unnoticeable perturbations to input. There exist adversarial examples

against various types of data, including images [10], video [11], and

graph [5]. We focus on studying graph structure-based adversarial

attacks in this work. Most graph adversarial studies focus on ”spatial-

only” graphs and evaluate attacks in traditional graph applications

such as citation networks. For example, Meta-attack [5] applies

meta-gradient to construct a score function to obtain the most

sensitive edge. EpoAtk [6] overcomes the limitation of the meta-

attack that always uses the maximal gradient by introducing a

fine-grained searching process with the generation, evaluation, and

recombination. It results in a better attack performance. Only a few

works [3], [4], [12] have recently started to study adversarial attacks

on the spatial-temporal graph in STGNNs. However, their focus

is perturbing the graph node/vertex instead of the graph structure.

For example, [3] perturbs the locations of body joints (i.e., node

properties on the graph) to generate adversarial examples and utilizes

Generative Adversarial Network (GAN) to make generated examples

more natural. A recent work [12] focuses on selectively attacking

the most sensitive graph node’s features based on the magnitude

of the gradient to craft effective attacks, and it is limited to traffic

flow estimation task only. In general, our work differs in two aspects
from them: 1) graph-structure attacks by modifying graph edges in
spatial-temporal domains v.s. node property attacks by perturbing
the properties of graph nodes; 2) more general spatial-temporal
graph applications (e.g., node property prediction in traffic flow
forecasting), in addition to human action recognition for graph
classification.

III. ATTACK FORMULATION

We formulate our proposed spatial-temporal graph attacks by the

following representative STGNN tasks: 1) node property prediction

in time series; and 2) graph classification. For both tasks, the spatial-

temporal graph input data is denoted as G=(A,X)=({At}Mt=1,{Xt}Mt=1),

where A∈{0,1}M×N×N and X∈R
M×N×F are the discrete adjacent

matrix and the node properties, respectively. (M,N,F) denote

the number of time-slices, the number of nodes, and the number

of properties per node, respectively. For Task 1–node proper-
ties prediction, the goal is to predict the node properties of the

next Tp time-slices. Assuming ground truth node properties are

Y = {yt}M+TP
t=M+1 , the parameter θ of a STGNN model f can be

learned by minimizing the loss function L defined by Mean Square

Error (MSE), L= 1
Tp·N

∑M+Tp
i=M+1

||fθ(G)i−yi||22 , in which fθ(G)i is the

predicted node property at time-slice t. To evaluate attack perfor-

mance for Task 1, we use Mean Absolute Error (MAE) as the
metric to measure how close prediction results and ground truth are:

MAE(fθ(G),Y) = 1
Tp

∑M+Tp

t=M+1 |fθ(G)t−Yt|. We define fθ(A,X)�=Y ,

when the MAE(fθ(G),Y)>0. For Task 2–graph classification, each

graph G=(A,X) is assigned a one-hot label Y ={y1,y2,...,yC}, where C
is the number of classes. Training a STGNN model can be achieved

by minimizing the cross entropy loss: L=− 1
C

∑C
i=1 yilog(fθ(G)i),

where yi is the binary indicator for class i, fθ(G)i is the predicted

probability of class i. To evaluate attack performance for Task 2,

we use attack success rate as the metric, where it is defined as

fθ(A,X) �= Y , when the predicted label does not match with ground

truth. We take traffic flow forecasting and human action recognition

as example of tasks 1 and 2 to demonstrate the proposed attacks.

A. Threat Model

Attacker’s goal. The attacker aims to insert/remove edges of

graph to change A to A′ to achieve a successful attack. We formulate

it as an optimization problem subject to both temporal and spatial
constraints simultaneously:

argmin
A′

{LAE

(
A

′
, X

)}
s.t. fθ(A

′
, X) �= Y

M∑
t=1

ΔAt ≤ �σM�, σ ∈ (0, 1]

‖At − A
′
t‖0 ≤ �ηN2

2
�, η ∈ (0, 1), ∀t ∈ [1 : M]

(1)

where A′ is the only variable in the above optimization problem,

LAE is the attack loss function. For node property prediction, we

define LAE as the negative loss for training, i.e., LAE=−L. For

graph classification, we adopt the C&W loss [13] used in adversarial

attacks to image models: LAE=f(G′)y−maxi �=y f(G′)i. Note that we

do not need future time-slices’ ground truth labels. Instead, we

adopt the trained model (before performing the attack) to predict the

node/graph labels for future graphs based on the current time stamp,

and then minimize LAE to make the model’s prediction deviate y.

ΔAt indicates whether a graph At is changed or not during the attack,

i.e., ΔAt=0, if At=A′
i; and 1, otherwise. The second condition is thus

a temporal constraint that limits the fraction of perturbed time-

slice graphs to be no large than σ. The third condition is a spatial
constraint that restricts the maximum fraction of the perturbed edges

within a time-slice to be η.

Attacker’s knowledge. STGNN mainly includes three com-

ponents: parameter θ, training data (i.e., graph G=(A,X)), model

structure and type. According to the level of maintained knowledge,

we divide the attack into white-box attack and restricted black-box
attack. For the former, the attacker has full knowledge of the target

model and training data. For the latter, the attacker does not know

parameters but has access to training data and model type, and can

train a substitute model to ensure the transferability of the attack [14]

on the target model.

Attacker’s capability. Similar to existing adversarial graph at-

tacks [5], we assume the attacker is capable of modifying the graph

structure (i.e., adding or removing edges) in the spatial-temporal

1024

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on September 07,2024 at 02:13:22 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Overview of Ants
Data: STGNN f(A,X), spatial-temporal graph data G, number of

nodes N , edges constraint η, time-slices constraint σ,
maximum iteration number n, the initial/increased number of
selected time-slices T0/Tk , step size of time-slices updating s.

Result: adversarial graph data G′ = (A′, X)
1 success, i, T ← False, 1, T0

2 mh ← 1T×N×N − I // initialize mask for
quantization optimization

3 Asub ← TimeSliceSelection(A, T0)

4 A′, A
′
sub, ← A,Asub

5 while !success & ‖At −A
′
t‖0 ≤ �ηN2

2
� & i < n do

6 if i % s == 0 & T < �σM� then
7 A

′
sub ← A

′
sub∪ TimeSliceSelection(A\Asub, Tk)

8 T ← T + Tk

9 A
′
sub,mh ← QuanBasedAdvGraphCreate(A

′
sub, A,mh)

10 A′ ← construct entire adversarial graph using A
′
sub and A

11 if f(A
′
, X) �= f(A,X) then success = True

12 i ← i+1

13 return G′ = (A′, X)

graphs. For example, an attacker can hijack the communication

channel between distributed edge sensors which generate graph

data, and the remote cloud server that hosts STGNN models for

efficient inference. Then the attacker could hack the graph structure

by carefully altering graph edges (a.k.a structure perturbation). Here

we assume the node features are not hacked since the graph structure

perturbations have already led to a high attack success rate.

IV. THE DESIGN OVERVIEW OF Ants
Directly solving Eq.1 is computationally intractable in that it is a

discrete optimization problem. Here we develop a spatial-temporal

interactive framework, namely adaptive quantization-based spatial-

temporal attack (Ants), to solve Eq.1 in a feasible way. Ants includes

two main modules: (M1) sensitive time-slice selection and (M2)
quantization-based spatial-temporal adversarial graphs generation. In

particular, M1 is guided by a fast gradient sign-based method to

quickly identify the most sensitive time-slices of spatial-temporal

graph data in a coarse-grained manner. M2 further applies adaptive

quantization-based optimization to time-slices selected by M1. By

iterating M1 and M2, highly evasive and effective spatial-temporal

adversarial graphs can be generated efficiently.

Algorithm 1 shows an overview of Ants. To reduce the per-

turbations in both spatial and temporal dimensions and make

generated adversarial graphs more effective, we will execute two

modules (i.e., TimeSliceSelection and QuanBasedAdvGraphCreate)

iteratively. Specifically, we conduct TimeSliceSelection to search

T0 most sensitive time-slices and construct a sub-graph Asub (line

3). Then we perform QuanBasedAdvGraphCreate to generate (or

update) the adversarial sub-graph and validate the reconstructed

adversarial graph’s attack effectiveness (line 9-11). If the attack

cannot succeed in a limited number of iterations, we will add

more time-slices (i.e., Tk) into the current sub-graph by calling

TimeSliceSelection every few iterations (controlled by step size

s) until the total number of selected time-slices (i.e., T) reaches

the constraint �σM� (line 6-8). Finally, we constantly update the

adversarial graph until the attack succeeds or the constraints are

violated. We present the design details of M1 and M2 in Section A

and B, respectively. We experimentally validate and report the time

cost in Table VII.

A. M1: Gradient Sign Time-slice Selection

Different time-slices on spatial-temporal graphs could have dif-

ferent sensitivities to an attack. Hence, to generate an effective

Algorithm 2: Adaptive Quantization-based Adversarial
Graph Generation

Data: adversarial sub-graph A
′
sub, clean graph A, mask mh, loss

function LAE , learning rate lr, clipping threshold h,
quantization coefficient sequence
qs = [τ0, τ0 + g, τ0 + 2 · g, . . . , τn].

Result: adversarial graph structure A′ and mask mh.

1 A
′
sub ← A

′
sub − lr · ∇

A
′
sub

LAE
mh ;

2 A
′
sub,mh ← clip A

′
sub to (−h, 1 + h) and update mh;

3 A
′
sub ← Asub
 (1−mh) +A

′
sub
mh ;

4 τ ← obtain optimal quantization coefficient τ from qs ;

5 A
′
sub ← Q(Asub, A

′
sub, τ) ;

6 return A
′
sub,mh

adversarial graph with few edge perturbations in the temporal

domain, it is essential to measure the importance of each time-slice

and select the relatively sensitive time-slices.

To find T most vulnerable time-slices, we design a coarse-

grained strategy that quickly evaluates the impact of (a few) edge

modifications on the loss function per time-slice. This consists

of two steps: i) intra-time-slice search (for ne most sensitive
edges); ii) cross-time-slice search (for T most vulnerable time-
slices). For Step i, we identify the most sensitive edges per

time-slice by ranking the absolute value of the gradient ∇At
LAE

within that time-slice Gt={At,Xt}, which can be expressed as

et=TOPne |∇At
LAE(f(X,A))|,t=1,..,M, where TOP function returns

the index of ne sensitive edges at time-slice t. To determine how

to change selected sensitive edges in each time-slice independently

for coarse-grained attack evaluation, we adapt the fast gradient

sign method (FGSM) [10] for continuous data (e.g., image) to

discrete graph data. Specifically, given a binary graph data At and

sign(∇At
LAE), if At,ij=1 and sign(∇At,ij

LAE)=−1 or At,ij=0 and

sign(∇At,ij
LAE)=1, then At,ij changes as “1→0” or “0→1”. Then,

we define a mask mt to filter the top et sensitive edges as below:

mt = At ⊕
(

sign(∇Aet
LAE) + 1

2

)
(2)

where ⊕ is the “Exclusive OR” logic operator. Then the per time-

slice graph with the perturbation becomes At+sign(∇Aet
LAE)	mt,

where 	 is the Hadamard Product. For Step ii, we generate an

attack loss profile set (L1,L2,...,LM) for all M time-slice graphs

after perturbation based on Step i. Finally, time-slices corresponding

to the T largest losses (TOPT {Lt}Mt=1), will be selected as the

candidates sub-graphs for optimized spatial-temporal adversarial

graph generation (M2).

B. M2: Adversarial Graph Generation

Once sensitive time-slices are selected, our next step is to generate

optimized spatial-temporal adversarial graphs with least edge per-

turbations. To this end, we propose an adaptive quantization-based

optimization to effectively and efficiently generate spatial-temporal

adversarial graphs.

Given that all elements in a graph A should be either 0 or 1, we

propose to quantize an adversarial graph A′. One naive solution is

as follows:

Q(A
′
)ij =

{
1 if A′

ij ≥ 1
2

0 otherwise
(3)

However, this can bring a large fixed quantization error (e.g. 1/2)

at all iterations and hence hurt the optimization process significantly.

To tackle this problem, we propose a fine-grained adaptive quanti-

zation function as below:

Q(A
′
, τ)ij =

{
1 if A′

ij ≥ Aij · τ + (1 − Aij) · (1 − τ)

0 otherwise
(4)

1025

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on September 07,2024 at 02:13:22 UTC from IEEE Xplore. Restrictions apply.

TABLE I
RESULTS OF APPLYING THE ROUND FUNCTION AND ADAPTIVE

QUANTIZATION WITH DIFFERENT GAPS g (AQ(g)).
Quantization function Round function AQ(0.2) AQ(0.1) AQ(0.05)

Success rate 74% 90.5% 93.2% 93.6%

changed edges 226 168 157 154

Time cost 204s 220s 284s 527s

TABLE II
RESULTS OF VARYING INITIALLY SELECTED TIME-SLICES IN Ants.

T0 5% 10% 15% 20% 25% 30%

Success rate (%) 80.6% 88.5% 93.6% 93.8% 93.7% 93.7%

changed edges 226 183 155 152 158 158

changed time-slices 33 35 38 42 50 54

Time cost (s) 224s 285s 326s 389s 475s 572s

where τ∈(0,1) is to adjust the quantization threshold by considering

value changes of A′ at each iteration, thereby offering a varied quan-

tization error–τ during the optimization. Since the goal is to find “ad-

versarial edges”, we could start with a small τ which incurs a small

quantization error, and then gradually increase τ if the attacker’s goal

is hard to achieve. To refine the quantization process, we adjust the

quantization threshold at every few iterations: [τ0,τ0+g,τ0+2·g,...,τn],

where τ0 (τn) is the initial (final) value, and g is the quantization gap.

Then we approximately replace the gradient ∇ALAE as ∇Q(A′,τ)LAE

in each iteration. Accordingly, the gradient update can be expressed

as (∇Q(A′,τ)LAE)
i+1

=lr·(∇Q(A′,τ)LAE)
i
	mh . Here lr is the learn-

ing rate, and mh is a mask. We design a heuristic clipping strategy

to update the mask mh to reduce the search space of potential

adversarial edges automatically, which can be represented as:

mh,ij =

⎧⎪⎪⎨
⎪⎪⎩

0
if (A

′
ij − ∇Q(A′,τ)ij

LAE ≥ h + 1 & Aij = 1)

or (A
′
ij − ∇Q(A′,τ)ij

LAE) < −h & Aij = 0)

1 otherwise

(5)

where h∈[0,1) is a heuristic clipping threshold. Once A′
t,ij exceeds

the threshold (h), we will stop updating A′
t,ij and reset it to the

original (i.e., At,ij). The details are shown in Algorithm 2.

C. Time and Space Complexity Analysis

Time complexity. We analyze the time complexity of our attack

from spatial and temporal dimensions, respectively. In the temporal

dimension, our algorithm needs to traverse M time-slices to se-

lect ne most vulnerable time-slices, and then to traverse selected

ne time-slices to generate an adversarial graph, leading to time

complexity of O(M+ne). In spatial dimension, we need to compute

gradients of each element in the adjacency matrix A∈{0,1}N×N for

each selected time-slice, which leads to time complexity of O(N2).

Thus, in the worst case, the total time complexity of our attack

is O(n·(M+ne·N2)) (ne is a constant), where n is the maximum

number of iterations. Especially, because of the elaborate design in

spatial and temporal domains, the time complexity is reduced from

the standard O(n·M·N2) (e.g., adversarial graph from a 3D graph

directly) to O(n·N2)).

Space complexity. Since we need to store gradients in the

adjacency matrix for M time-slices, the space complexity should

be O(M·N2). We experimentally validate and evaluate the time cost

against SOTA solutions in Table VII.

That is the reason that the time cost of our attack algorithm is

much lower than existing adversarial graph attacks (e.g., our attack

326s v.s. EpoAtk 12963s on AS-GCN, see Table 5 on page 6).

V. EVALUATION

A. Experimental Setup

All simulations are conducted in a workstation with one AMD

Ryzen Threadripper PRO 3975WX 32-Cores Processor and two

NVIDIA GeForce RTX 3090 GPUs.

Fig. 1. Visualization of example adversarial graph created by Ants. Three
double boxes show the clean spatial graph (left) and corresponding
adversarial graph (right) in 17-, 24-, 32-th time-slice. The red dotted (solid)
line means removing (adding) edge.

Datasets. For the human action recognition task, we evaluate our

attack on two datasets: NTU [15] and Kinetics [16]. NTU is the

largest dataset with 3D joint annotations for human action recogni-

tion, which contains 56K action clips and covers 60 action classes.

Kinetics is the largest unconstrained action recognition dataset with

around 300K video clips collected from YouTube with 400 action

classes. For the traffic flow forecasting task, we use two highway

traffic datasets: PeMSD8 and PeMSD4 collected by the Caltrans

Performance Measurement System (PeMS) [17]. PeMSD8 is traffic

data including 1979 detectors on 8 roads in San Bernardino from

07/2016-08/2016. PeMSD4 involves traffic data in San Francisco Bay

area, containing 3848 detectors on 29 roads from 01/2018-02/2018.

Target models. We evaluate Ants across 6 different STGNN

architectures. ST-GCN [1], AS-GCN [8], and MS-G3D [9] are

evaluated on human action recognition, while MSTGCN, AST-

GCN [2], and STSGCN [7] are used in traffic flow forecasting.

For evaluation generality, these selected STGNNs consist of graphs

with static and dynamic structures. For human action recognition,

the baseline accuracy of well-trained ST-GCN, AS-GCN, and MS-

G3D is 88.1% (52.8%), 93.9% (56.4%), and 96.1% (60.7%) on NTU

(Kinetics) dataset, respectively (Top-5 accuracy for Kinetics). For

traffic flow forecasting, the baseline MAE of MSTGCN, ASTGCN,

and STSGCN is 19.04 (23.85), 18.78 (23.14), and 17.25 (21.28)

on PeMSD8 (PeMSD4), respectively. The model accuracy of all

baselines (without attack) are consistent with that of original papers.

Attack configuration. We derive two attack variants: 1) Ants
−: an attack that replaces proposed gradient sign time-slice selec-

tion (M1) with a simple time-slice selection method adopted in

video-based adversarial attack for RNN+CNN [18], i.e., choose the

first few time-slices in M2. 2) Ants: an attack with all proposed

techniques. In Algorithm 1, we set the initial number and incre-

ment number of time-slices as T0 = 15%M and Tk = 5%M (i.e.,

T0 = 45/37, Tk = 15/12 for action/traffic datasets). We enforce

spatial-temporal constraints on perturbations: η = 0.01 (change 1%

edges in each time-slice at most), and σ = 0.3 (distort 30% time-

slices at most). The first 1000 test data of human action dataset and

all test data of traffic datasets are used to generate corresponding

adversarial examples, respectively.

Metrics. We evaluate the effectiveness and stealthiness of the

attack. The attack success rate and MAE variation are used to

measure attack effectiveness in human action recognition and traffic

flow forecasting, respectively. The number of changed edges (in the

entire spatial-temporal graph) and attacked time-slices are used to

validate the attack stealthiness of both tasks.

B. Ablation Study

To demonstrate the generalization of our attack, we analyze key

hyper-parameters based on the AS-GCN and NTU dataset, and then

1026

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on September 07,2024 at 02:13:22 UTC from IEEE Xplore. Restrictions apply.

TABLE III
THE ATTACK PERFORMANCE OF OUR ATTACKS ON HUMAN ACTION RECOGNITION AND TRAFFIC FLOW FORECASTING (WHITE-BOX).

Attack success rate (human action recognition) MAE variation (traffic flow forecasting)

Model ST-GCN AS-GCN MS-G3D
AVG

MSTGCN ASTGCN STSGCN
AVG

Dataset NTU Kinetics NTU Kinetics NTU Kinetics PeMSD8 PeMSD4 PeMSD8 PeMSD4 PeMSD8 PeMSD4

Ants − 89.1% 85.3% 78.2% 76.4% 75.4% 78.2% 80.4% +17.39 +15.97 +18.98 +17.54 +18.93 +18.24 +17.93
Ants 97.5% 92.8% 93.6% 92.1% 94.2% 96.7% 94.5% +19.23 +18.11 +21.59 +20.23 +23.17 +22.82 +20.85

TABLE IV
THE ATTACK SUCCESS RATE AND MAE VARIATION OF OUR Ants ON

NTU(VIEW) AND PEMSD8 IN BLACK-BOX SETTINGS.
ST-GCN

(sub)
AS-GCN

(sub)
MS-G3D

(sub)
MSTGCN

(sub)
ASTGCN

(sub)
STSGCN

(sub)

ST-GCN 79.5% n/a n/a MSTGCN +15.52 +12.44 n/a
AS-GCN n/a 72.3% n/a ASTGCN +14.73 +18.01 n/a
MS-G3D n/a n/a 73.4% STSGCN n/a n/a +19.12

TABLE V
RESULTS OF ATTACKING RANDOM TIME-SLICES USING OUR Ants IN

ST-GCN ON HUMAN ACTION RECOGNITION.
of attacked time-slices 5% 10% 20% 30%

Attack success rate 80.6% 86.5% 94.3% 96.2%

of changed edges 12 (0.08%) 14 (0.09%) 18 (0.12%) 21 (0.14%)

directly adopt the values of these hyper-parameters for evaluations

on other models and datasets.

Optimized quantization coefficient sequence. Table I shows the

impact of using different quantization gap g on attack effectiveness

and efficiency. Compared with the round function, our three AQ(g)

settings are better in terms of the number of changed edges and

success rate. This is because the proposed adaptive quantization

function smoothens the minimization process of the loss function, so

“better” edges with a fewer number can be identified to achieve at-

tack effectiveness and stealthiness simultaneously. Among the three

AQ(g), a smaller g indicates a smoother quantization optimization

process and therefore could increase attack effectiveness and reduce

the number of changed edges. However, this would increase the

time cost. In practice, we found that a very small g does not

significantly benefit attack effectiveness and stealthiness despite the

increased optimization time, especially for more complex traffic

datasets. Therefore, we adopt a hybrid strategy: using a large g (i.e.,

0.1) to accelerate the optimization process early on and subsequently

reducing g (i.e., 0.05) for a smoother search towards the end of

the optimization. The final quantization coefficient sequence is as

follows: qs = [0.1, 0.2, . . . , 0.5, 0.55, 0.6, 0.65, . . . , 0.9].
Number of initially selected time-slices. An appropriate number

of initially selected vulnerable time-slices (T0) can promote attack

performance and efficiency. In Table II, we observe that too few

selected time-slices (e.g., T0 = 5% and 10%M) lead to a lower

success rate and need more changed edges due to limited search

scope for “adversarial edges” at the initial stage. However, too large

T0 (e.g., T0 = 25% and 30%M) could change more time-slices and

incur higher time costs. To ensure a high success rate and fewer edge

changes, we select T0 = 15%M for all STGNNs and datasets.

C. Result and Analysis

White-box attack. Table III reports our evaluation results on

two tasks under the white-box attack. For human action recognition,

the attack variant–Ants − performs worse than our Ants (80.4% vs.

94.5% on average). This is because our gradient sign-based time-

slice selection can always identify the most vulnerable time-slices to

improve attack performance, while simply picking the first few time-

slices as attack targets does not work well in STGNNs, especially for

more advanced models (e.g., MS-G3D). We can observe a similar

trend in traffic flow forecasting tasks.

Ants can be also easily adapted to the specific time-slices attack

and targeted attack. For the specific time-slices attack, we can replace

TABLE VI
RESULTS OF TARGETED ATTACK USING OUR Ants ON TRAFFIC FLOW

FORECASTING.
Model MAE variation # of changed edges # of changed time-slices

MSTGCN +10.29 0.43% 7.9%

ASTGCN +10.32 0.41% 7.5%

STSGCN +10.23 0.3% 8.3%

M1 stage with a random time-slices selection method (i.e., selected

time-slices randomly), and then construct adversarial examples in the

randomly selected time-slices in M2 stage. As Table V shows, even

if we only select 5% time-slices randomly, the attack success rate

still can reach 80.6%. For the targeted attack, we can slightly change

the loss function. Take the traffic flow prediction task as an example,

we can use LAE=L(o,t) where o is the output of the model, and t is

the targeted output expected by the attacker. In our experiment, we

randomly select one of the node features as the target (e.g., traffic

speed) and set it as the targeted value (e.g., overestimate a specific

feature by enlarging its original value by 50%). As Table VI shows,

with just < 1% edge changes, the MAE variation in the targeted

feature can be more than 10. For example, for STSGCN, when we

only change 0.3% edges, the MAE variation in the targeted feature

can be +10.23 (the original MAE without attack is 19.76).

Visualization for adversarial examples. Fig. 1 shows the first

50 out of 300 time-slices of adversarial graph generated by our Ants
based on AS-GCN and NTU dataset. It misleads the prediction from

“point something” to “taking a selfie” by only a few edges changes.

We observe that most time-slices incur no edge changes because

our attack only pinpoints the most sensitive time-slices to improve

the imperceptibility (in the temporal domain). In this case, only 29

out of 300 time-slices get more than one edge change. On the other

hand, for time-slices with edge changes, the edge modifications in

17-, 24-, 32-th time-slice are unnoticeable (in the spatial domain).

This is because our attack can find the least number of edge changes.

Thus our attack can achieve stealthiness in both temporal and spatial
domains.

Restricted black-box attack. We adopt a common substitute

model-based strategy to achieve the restricted black-box attack by

transferability [14]. It uses a local substitute model to craft adver-

sarial examples (the attacker knows everything about the substitute

model, white-box setting) to mislead the targeted model (black-

box). We train the corresponding substitute model with a reduced

structure compared with the targeted model for each type of model,

to achieve acceptable performance. Note that, because the graph

structure across some STGNNs (e.g., ST-GCN, AS-GCN, MS-G3D)

could be different for the same raw graph data, they cannot attack

each other. As Table IV shows, the attack success rate or MAE

variation of our attack is still high for human action recognition or

traffic flow forecasting, indicating a high attack transferability on

various STGNNs.

D. Compare with Solutions Augmented from Existing Spatial-only

Graph Attacks

To better evaluate our spatial-temporal graph attack–Ants, we also

compare it with four baselines augmented from the recently devel-

oped representative “spatial-only” graph attacks against classic 2D

graph tasks: PGD projection [19], GradArgmax [20], meta-attack [5]

1027

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on September 07,2024 at 02:13:22 UTC from IEEE Xplore. Restrictions apply.

TABLE VII
COMPARISON BETWEEN OUR Ants AND THREE BASELINES ON NTU DATASET (FIRST 100 TEST DATA).

Metric Attack success rate Num. of changed edges Num. of changed time-slices Time cost (s)

Model ST-GCN AS-GCN MS-G3D ST-GCN AS-GCN MS-G3D ST-GCN AS-GCN MS-G3D ST-GCN AS-GCN MS-G3D

PGD proj 68% 52% 42% 76 (0.52%) 305 (0.4%) 1289 (0.46%) 15 (5%) 139 (46.3%) 182 (60.7%) 24 428 569
GradArgmax 69% 51% 45% 75 (0.51%) 317 (0.42%) 1245 (0.45%) 14 (4.7%) 144 (48%) 185 (61.7%) 26 687 894
Meta-attack 89% 72% 61% 25 (0.16%) 214 (0.32%) 752 (0.27%) 12 (4%) 89 (29.7%) 152 (50.7%) 28 1057 1752

EpoAtk 92% 74 % 64% 21 (0.14%) 195 (0.26%) 704 (0.25%) 11 (3.7%) 83 (27.7%) 145 (48.3%) 92 12963 20192
Our Attack 97% 93% 94% 19 (0.13%) 155 (0.2%) 495 (0.18%) 8 (2.7%) 38 (12.7%) 48 (16%) 23 326 368

and EpoAtk [6]. We choose these attacks because 1) a similar

attack vector, i.e., adding/removing graph edges; 2) a similar threat

assumption, i.e., knowing the model’s gradient information to craft

adversarial examples; 3) the similar applications, i.e., graph/node

classification or embedding. To make a fair comparison, the attack

baselines applicable to spatial-temporal graphs are developed as

follows: 1) treat a spatial-temporal graph as a 3D graph without

differentiating the time and space; 2) apply the three “spatial-only”

2D graph attack algorithms to the unfolded 3D graph and generate

adversarial examples from the whole graph space. We only constrain

the maximum number of changed edges (i.e., 1%) but no constraint

for a number of the changed time-slices. As Table VII shows, Ants al-

ways presents much better attack effectiveness and stealthiness than

the other three augmented attacks for all STGNNs. In addition, it also

achieves the lowest time cost among all solutions, which aligns

with our complexity analysis in Sec IV. It is noteworthy that, with the

complexity of STGNNs increasing, the gaps of all metrics between

our attack and others are significantly increased (e.g., for success

rate gap, 5% in ST-GCN vs. 19% in AS-GCN vs. 30% in MS-G3D

comparing with the best baseline using EpoAtk). This is because our

attack optimizes the search of graph structure change by recognizing

that the spatial and temporal dimensions of the model need to be

considered separately, and constructing an optimization framework

to search across these dimensions differently, consequently, making

the process more efficient and crafted adversarial examples much

effective and more indistinguishable.

VI. CONCLUSION

Spatial-temporal graph neural networks (STGNNs) have re-

cently demonstrated remarkable performance in a variety of spatial-

temporal applications. However, so far, studying the robustness of

STGNNs to structure-based graph attacks is still in its infancy, in

particular, by crafting new spatial-temporal graph adversarial attacks.

This work strives to address this gap. We propose a spatial-temporal

graph-based attack framework, namely the adaptive quantization-

based spatial-temporal attack (Ants), to search adversarial examples

in complex spatial-temporal graph data. Results show that Ants
achieves competitive attack effectiveness and stealthiness in both

white-box and black-box settings across various STGNNs on repre-

sentative spatial-temporal tasks–traffic flow forecasting and human

action recognition.

VII. ACKNOWLEDGEMENT

We thank all anonymous reviewers for their constructive com-

ments and suggestions on this work. This work is partially supported

by the National Science Foundation (NSF) under Grants No. CNS-

2349538 and CCF-2401544.

REFERENCES

[1] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” in Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[2] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
2019, pp. 922–929.

[3] J. Liu, N. Akhtar, and A. Mian, “Adversarial attack on skeleton-based
human action recognition,” IEEE Transactions on Neural Networks and
Learning Systems, 2020.

[4] H. Wang, F. He, Z. Peng, T. Shao, Y.-L. Yang, K. Zhou, and D. Hogg,
“Understanding the robustness of skeleton-based action recognition
under adversarial attack,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021, pp. 14 656–14 665.

[5] D. Zügner and S. Günnemann, “Adversarial attacks on graph neural
networks via meta learning,” arXiv preprint arXiv:1902.08412, 2019.

[6] X. Lin, C. Zhou, H. Yang, J. Wu, H. Wang, Y. Cao, and B. Wang,
“Exploratory adversarial attacks on graph neural networks,” in 2020
IEEE International Conference on Data Mining (ICDM). IEEE, 2020,
pp. 1136–1141.

[7] C. Song, Y. Lin, S. Guo, and H. Wan, “Spatial-temporal synchronous
graph convolutional networks: A new framework for spatial-temporal
network data forecasting,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, no. 01, 2020, pp. 914–921.

[8] M. Li, S. Chen, X. Chen, Y. Zhang, Y. Wang, and Q. Tian, “Actional-
structural graph convolutional networks for skeleton-based action recog-
nition,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 3595–3603.

[9] Z. Liu, H. Zhang, Z. Chen, Z. Wang, and W. Ouyang, “Disentangling
and unifying graph convolutions for skeleton-based action recognition,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 143–152.

[10] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[11] Z. Wei, J. Chen, X. Wei, L. Jiang, T.-S. Chua, F. Zhou, and Y.-G. Jiang,
“Heuristic black-box adversarial attacks on video recognition models,”
in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 07, 2020, pp. 12 338–12 345.

[12] F. Liu, H. Liu, and W. Jiang, “Practical adversarial attacks on spatiotem-
poral traffic forecasting models,” in Advances in Neural Information
Processing Systems.

[13] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in Security and Privacy (SP), 2017 IEEE Symposium on.
IEEE, 2017, pp. 39–57.

[14] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security. ACM, 2017, pp. 506–519.

[15] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, “Ntu rgb+ d: A large
scale dataset for 3d human activity analysis,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016,
pp. 1010–1019.

[16] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijaya-
narasimhan, F. Viola, T. Green, T. Back, P. Natsev et al., “The kinetics
human action video dataset,” arXiv preprint arXiv:1705.06950, 2017.

[17] C. Chen, K. Petty, A. Skabardonis, P. Varaiya, and Z. Jia, “Freeway
performance measurement system: mining loop detector data,” Trans-
portation Research Record, vol. 1748, no. 1, pp. 96–102, 2001.

[18] X. Wei, J. Zhu, S. Yuan, and H. Su, “Sparse adversarial perturbations
for videos,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, no. 01, 2019, pp. 8973–8980.

[19] M. Sun, J. Tang, H. Li, B. Li, C. Xiao, Y. Chen, and D. Song, “Data
poisoning attack against unsupervised node embedding methods,” arXiv
preprint arXiv:1810.12881, 2018.

[20] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song, “Ad-
versarial attack on graph structured data,” in International Conference
on Machine Learning, 2018, pp. 1123–1132.

1028

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on September 07,2024 at 02:13:22 UTC from IEEE Xplore. Restrictions apply.

