2024 |EEE 48th Annual Computers, Software, and Applications Conference (COMPSAC) | 979-8-3503-7696-8/24/$31.00 ©2024 IEEE | DOI: 10.1109/COMPSAC61105.2024.00139

2024 IEEE 48th Annual Computers, Software, and Applications Conference (COMPSAC)

Ants: Attacking Spatial Temporal Graph Learning Networks
Structurally

Ran Ran*, Qi Liuf, Nuo Xui, Ning Sui*, and Wujie Wen*
*North Carolina State University, JAmazon, {Lehigh University
*{rran, nsui, wwen2} @ncsu.edu, fliugim@amazon.com, Inux219@Iehigh.edu

Abstract—Spatial-temporal graph data widely appear in real-
world applications like traffic flow forecasting and skeleton-based
action recognition. To effectively handle such data, spatial-temporal
graph learning neural networks (STGNNs) have emerged as a
promising solution and outperform traditional deep learning in these
tasks. However, existing studies mainly focus on the performance
aspect but lack a systematic study on their robustness when spatial-
temporal graph structure varies. In this paper, we aim to fill this
gap by systematically investigating the structure vulnerabilities of a
variety of popular STGNNS in practical tasks. To this end, a spatial-
temporal graph attack framework, namely Anfts, which consists
of gradient-sign guided sensitive time-slice selection followed by
quantization-based adversarial edge searching, is proposed to craft
minimized adversarial perturbations on discrete spatial-temporal
graph data in both spatial and temporal dimensions. Extensive
experiments on traffic flow forecasting and human action recognition
tasks with six STGNNs and four datasets well demonstrate the
effectiveness and stealthiness of our Ants. While prior works do
not consider attacks on spatial-temporal graphs, we compare our
attack with state-of-the-art attacks on graphical models extended to
the STGNN setup, and the performance of Ants demonstrates that,
for STGNNSs, the structure vulnerability in the context of spatial

and temporal dynamics needs to be considered carefully.
Index Terms—Adversarial Attack, Spatial-Temporal, Graph Neural
Network

1. INTRODUCTION

Spatial-temporal graph, as a special graph data with spatial-
temporal semantics, plays an increasingly important role in many
practical applications, including human action recognition and traffic
flow forecasting. Unsurprisingly, deep learning on spatial-temporal
graph data has seen increased research exploration recently. In par-
ticular, a growing number of spatial-temporal graph neural networks
(STGNNs) have demonstrated competitive performance in a range
of spatial-temporal graph applications [1], [2].

However, the robustness study of STGNNs, which is of paramount
importance to practical tasks in addition to performance, is still in
its infancy. While there exist some attempts [3], [4] , e.g., graph
adversarial examples, they mainly focus on adding perturbations on
the properties or features of graph node (e.g., the joint position of the
skeleton in human action recognition), leaving the important graph
structure-based attacks against STGNNS, largely unexplored. Indeed,
it is essential to understand how changing graph structure impacts
the performance of STGNNS in the context of spatial and temporal
dynamics. As we shall show in Sec. V, for graph classification tasks
like human action recognition, by just altering a very small amount
of edges without touching node features of spatial-temporal graph
data, STGNN would precisely mispredict the action that may impact
the critical real-time response of self-driving cars.

In response to this, this work aims to explore a graph-structure
adversarial attack dedicated to spatial-temporal graph data. Crafting

new adversarial graph attacks under the context of spatial and tem-
poral dynamics faces the following challenges: 1) Two-dimensional
optimization complexity over space and time. Unlike continuous
data such as image and video, the spatial-temporal graph structure
is discrete. Therefore, we need to design efficient optimization
algorithms to find adversarial examples across space and time in
the discrete domain. There exist prior works which [5], [6] focus on
adding adversarial perturbation on the discrete “spatial-only” graph
for graph neural networks in graph-based tasks. However, we found
that directly using existing solutions to search adversarial pertur-
bations on the spatial-temporal graph cannot ensure a high attack
success rate given the small edge perturbation budget (see Table
VII). This prompts the need for optimized solutions dedicated to the
spatial-temporal graph. 2) Attack stealthiness requirements across
space and time. Different from existing “spatial-only” graph-based
attacks, STGNN attacks should be stealthy in spatial and temporal
dimensions while achieving effective attacks. However, the scale
of spatial graph per time-slice in practical spatial-temporal tasks
is usually smaller than traditional “spatial-only” graph applications
because of physical constraints such as distance or structure, e.g.,
hundreds of nodes/edges in traffic network at a certain time-slice [2]
v.s. tens of thousands of nodes/edges in social networks. This
imposes a tighter margin to hide attacks in the spatial dimension.
Further, the attackers need to ensure that distorted time-slices are
limited to achieve stealthiness in the temporal dimension.

To this end, we propose a spatial-temporal graph adversarial attack
framework, namely structural spatial-temporal attack (Ants) against
STGNNs. First, to efficiently search for adversarial examples on
the complex spatial-temporal graph and achieve a stealthy attack
in the temporal dimension, we develop a gradient sign-based time-
slices selection algorithm to quickly identify a few most sensitive
time-slices from the temporal dimension for generating adversarial
examples. Second, we propose adaptive quantization optimization
to search for a spatial-temporal graph adversarial example in the
discrete domain. We evaluate our attack on two representative appli-
cations: traffic flow forecasting and human action recognition under
six types of STGNNs and four datasets considering both white-
box and black-box settings. Experiments show that Ants achieves
competitive attack effectiveness and stealthiness in both temporal
and spatial dimensions. For example, in the white-box setting, Ants
achieves 94.5% average success rate by changing less than 1% edges
on the human action recognition task.

II. BACKGROUND

Spatial-Temporal Graph Neural Networks (STGNNs).
STGNNs aim to learn the pattern from spatial-temporal graphs
by capturing the graph’s spatial and temporal dependencies. The
studies of STGNNs are mainly active in two fields: traffic flow
forecasting and human action recognition. 1) STGNNSs in traffic
flow forecasting. Guo et al. [2] propose a spatial-temporal graph

2836-3795/24/$31.00 ©2024 IEEE 1023
DOI 10.1109/COMPSAC61105.2024.00139
Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on September 07,2024 at 02:13:22 UTC from |IEEE Xplore. Restrictions apply.

convolution that utilizes graph convolution to capture spatial patterns
and a standard convolution to extract the temporal features.

Moreover, the attention mechanism is adopted to adaptively
capture dynamic spatial and temporal correlation of traffic data. As a
result, GNN without attention mechanism is named Multi-component
Spatial-temporal Graph Convolution Network (MSTGCN), while the
one with attention mechanism is called Attention based Spatial-
temporal Graph Convolution Network (ASTGCN). Besides, Spatial-
Temporal Synchronous Graph Convolutional Network (STSGCN) [7]
uses a spatial-temporal synchronous modeling mechanism to capture
the localized spatial-temporal correlations instead of using two
separate components like ASTGCN. 2) STGNNs in human action
recognition. Unlike the traffic network, the human skeletal structure
as a graph is relatively simple. However, there is a large number of
human action categories. Thereby, most studies focus on abstracting
hidden graph features from the physical graph structure before
feeding it to GNN for training. Spatial Temporal Graph Convolu-
tional Network (ST-GCN) [8] introduces three human-defined graph
partition strategies [1] to obtain abstracted graph from skeletal
structure. Actional-Structural Graph Convolutional Network (AS-
GCN) [8] uses a trainable auto-encoder to capture fine-grained graph
features from both skeletal structure and action, and then combines
the high-order polynomial of the skeletal graph as final graph input.
Liu et al. [9] propose a powerful feature extractor named MS-G3D
that utilizes a multi-scale aggregation technique to disentangle graph
features and a unified spatial-temporal graph convolution to capture
cross-space-time joint dependencies.

Adversarial Attack can mislead deep learning models by adding
unnoticeable perturbations to input. There exist adversarial examples
against various types of data, including images [10], video [11], and
graph [5]. We focus on studying graph structure-based adversarial
attacks in this work. Most graph adversarial studies focus on ”spatial-
only” graphs and evaluate attacks in traditional graph applications
such as citation networks. For example, Meta-attack [5] applies
meta-gradient to construct a score function to obtain the most
sensitive edge. EpoAtk [6] overcomes the limitation of the meta-
attack that always uses the maximal gradient by introducing a
fine-grained searching process with the generation, evaluation, and
recombination. It results in a better attack performance. Only a few
works [3], [4], [12] have recently started to study adversarial attacks
on the spatial-temporal graph in STGNNs. However, their focus
is perturbing the graph node/vertex instead of the graph structure.
For example, [3] perturbs the locations of body joints (i.e., node
properties on the graph) to generate adversarial examples and utilizes
Generative Adversarial Network (GAN) to make generated examples
more natural. A recent work [12] focuses on selectively attacking
the most sensitive graph node’s features based on the magnitude
of the gradient to craft effective attacks, and it is limited to traffic
flow estimation task only. In general, our work differs in two aspects
from them: 1) graph-structure attacks by modifying graph edges in
spatial-temporal domains v.s. node property attacks by perturbing
the properties of graph nodes; 2) more general spatial-temporal
graph applications (e.g., node property prediction in traffic flow
forecasting), in addition to human action recognition for graph
classification.

ITI. ATTACK FORMULATION

We formulate our proposed spatial-temporal graph attacks by the
following representative STGNN tasks: 1) node property prediction
in time series; and 2) graph classification. For both tasks, the spatial-
temporal graph input data is denoted as G=(A,X)=({A:}M, {Xx: M),
where Ae{0,1}M*NxN and xerM*NxF are the discrete adjacent

matrix and the node properties, respectively. (M, N, F') denote
the number of time-slices, the number of nodes, and the number
of properties per node, respectively. For Task 1-node proper-
ties prediction, the goal is to predict the node properties of the
next 7}, time-slices. Assuming ground truth node properties are
Y = {y ﬁLT 11 » the parameter & of a STGNN model f can be
learned by minimizing the loss function £ defined by Mean Square
Error (MSE), 2= 71y S 11£6(G)i—v,113 5 in which f,(); is the
predicted node property at time-slice ¢. To evaluate attack perfor-
mance for Task 1, we use Mean Absolute Error (MAE) as the
metric to measure how close prediction results and ground truth are:
MAE(f(G),Y) = %p Z?iLTjZl | fo(G)¢ — Yy|. We define fo(a,x)#Y,
when the MAE(f,(G),v)>0. For Task 2—graph classification, each
graph G=(A,x) is assigned a one-hot label y={y;,y2,...,uc}, Where C'
is the number of classes. Training a STGNN model can be achieved
by minimizing the cross entropy loss: £=—& S5 yilog(fo(G)i)s
where y; is the binary indicator for class 7, f4(G); is the predicted
probability of class i. To evaluate attack performance for Task 2,
we use attack success rate as the metric, where it is defined as
fo(A, X)) # Y, when the predicted label does not match with ground
truth. We take traffic flow forecasting and human action recognition
as example of tasks 1 and 2 to demonstrate the proposed attacks.

A. Threat Model

Attacker’s goal. The attacker aims to insert/remove edges of
graph to change A to A’ to achieve a successful attack. We formulate
it as an optimization problem subject to both temporal and spatial
constraints simultaneously:,

argmin{Lap (A", X)}
Al
st fo(A, X) #Y
M

> a4, < loM], o € (0,1]

t=1

()

N2
lA: = Ao < ln=-Jim € (0,1), Ve € [1: M)

where 4’ is the only variable in the above optimization problem,
£ap 18 the attack loss function. For node property prediction, we
define £, as the negative loss for training, i.e., £ p=—£. For
graph classification, we adopt the C&W loss [13] used in adversarial
attacks to image models: £, p=7(G")y —max;,, f(G');. Note that we
do not need future time-slices’ ground truth labels. Instead, we
adopt the trained model (before performing the attack) to predict the
node/graph labels for future graphs based on the current time stamp,
and then minimize £, to make the model’s prediction deviate y.
AA; indicates whether a graph 4, is changed or not during the attack,
ie., AA,=0,if A,=A’; and 1, otherwise. The second condition is thus
a temporal constraint that limits the fraction of perturbed time-
slice graphs to be no large than o. The third condition is a spatial
constraint that restricts the maximum fraction of the perturbed edges
within a time-slice to be 7.

Attacker’s knowledge. STGNN mainly includes three com-
ponents: parameter o, training data (i.e., graph G=(A,x)), model
structure and type. According to the level of maintained knowledge,
we divide the attack into white-box attack and restricted black-box
attack. For the former, the attacker has full knowledge of the target
model and training data. For the latter, the attacker does not know
parameters but has access to training data and model type, and can
train a substitute model to ensure the transferability of the attack [14]
on the target model.

Attacker’s capability. Similar to existing adversarial graph at-
tacks [5], we assume the attacker is capable of modifying the graph
structure (i.e., adding or removing edges) in the spatial-temporal

1024

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on September 07,2024 at 02:13:22 UTC from |IEEE Xplore. Restrictions apply.

Algorithm 1: Overview of Ants

Data: STGNN f(A, X), spatial-temporal graph data GG, number of
nodes NN, edges constraint 7), time-slices constraint o,
maximum iteration number n, the initial/increased number of
selected time-slices To/T}, step size of time-slices updating s.

Result: adversarial graph data G’ = (A’, X)

success, i, 1" < False, 1, Ty

2 mp < 1lrxnxny —1 // initialize mask for
quantization optimization

3 Agup < TimeSliceSelection(A, Tp)

’

-

4 A/7 Asub’ <~ A7 Asub R

s while /success & || Ay — A;Ho < _nNTj & i< ndo

6 ifi%s==0¢&7T < |ocM]| then

7 AL, — AL U TimeSliceSelection(A\ A gup, Tr)

8 T+ T+ Tk

9 A;ub, mp, QuanBasedAdvGraphCreale(Alsub; A,mp)
10 A’ 4 construct entire adversarial graph using A_ , and A
1 if f(A/,X) # f(A, X) then success = True

12 i< i+l

13 return G’ = (A’, X)

graphs. For example, an attacker can hijack the communication
channel between distributed edge sensors which generate graph
data, and the remote cloud server that hosts STGNN models for
efficient inference. Then the attacker could hack the graph structure
by carefully altering graph edges (a.k.a structure perturbation). Here
we assume the node features are not hacked since the graph structure
perturbations have already led to a high attack success rate.

IV. THE DESIGN OVERVIEW OF Ants

Directly solving Eq.1 is computationally intractable in that it is a
discrete optimization problem. Here we develop a spatial-temporal
interactive framework, namely adaptive quantization-based spatial-
temporal attack (Anfs), to solve Eq.1 in a feasible way. Ants includes
two main modules: (M1) sensitive time-slice selection and (IM2)
quantization-based spatial-temporal adversarial graphs generation. In
particular, M1 is guided by a fast gradient sign-based method to
quickly identify the most sensitive time-slices of spatial-temporal
graph data in a coarse-grained manner. M2 further applies adaptive
quantization-based optimization to time-slices selected by M1. By
iterating M1 and M2, highly evasive and effective spatial-temporal
adversarial graphs can be generated efficiently.

Algorithm 1 shows an overview of Ants. To reduce the per-
turbations in both spatial and temporal dimensions and make
generated adversarial graphs more effective, we will execute two
modules (i.e., TimeSliceSelection and QuanBasedAdvGraphCreate)
iteratively. Specifically, we conduct TimeSliceSelection to search
T, most sensitive time-slices and construct a sub-graph 4.,, (line
3). Then we perform QuanBasedAdvGraphCreate to generate (or
update) the adversarial sub-graph and validate the reconstructed
adversarial graph’s attack effectiveness (line 9-11). If the attack
cannot succeed in a limited number of iterations, we will add
more time-slices (i.e., 73) into the current sub-graph by calling
TimeSliceSelection every few iterations (controlled by step size
s) until the total number of selected time-slices (i.e., T) reaches
the constraint [on) (line 6-8). Finally, we constantly update the
adversarial graph until the attack succeeds or the constraints are
violated. We present the design details of M1 and M2 in Section A
and B, respectively. We experimentally validate and report the time
cost in Table VII.

A. M1: Gradient Sign Time-slice Selection

Different time-slices on spatial-temporal graphs could have dif-
ferent sensitivities to an attack. Hence, to generate an effective

Algorithm 2: Adaptive Quantization-based Adversarial
Graph Generation

Data: adversarial sub-graph A;ub’ clean graph A, mask myp, loss
function £ 4 g, learning rate {7, clipping threshold h,
quantization coefficient sequence
4s = [10,70 + 9,70 +2- g, ..,).

Result: adversarial graph structure A’ and mask my,.

1A;ubeA, Ir-V o Lap©my;

sub
2 A/,ub,m;L <+ clip A;ub to (—h, /1 + h) and update my,;
3 Asub <~ Asub @ (1 - mh) + Asub @mh 5
4 T < obtain optimal quantization coefficient 7 from g5 ;
7 ’
s Asub <~ Q(Asubv Asub’ T) 5
6 return A_ , mp

sub

adversarial graph with few edge perturbations in the temporal
domain, it is essential to measure the importance of each time-slice
and select the relatively sensitive time-slices.

To find 7" most vulnerable time-slices, we design a coarse-
grained strategy that quickly evaluates the impact of (a few) edge
modifications on the loss function per time-slice. This consists
of two steps: i) intra-time-slice search (for ». most sensitive
edges); ii) cross-time-slice search (for 7 most vulnerable time-
slices). For Step i, we identify the most sensitive edges per
time-slice by ranking the absolute value of the gradient V4, cap
within that time-slice @,={A;,x;}, which can be expressed as
et=TOPy, .|V, Lap(f(X,A)|t=1,..,M, where ToP function returns
the index of n. sensitive edges at time-slice ¢. To determine how
to change selected sensitive edges in each time-slice independently
for coarse-grained attack evaluation, we adapt the fast gradient
sign method (FGSM) [10] for continuous data (e.g., image) to
discrete graph data. Specifically, given a binary graph data A; and
sign(Va, Lap), if Ay ;;=1 and sign(Va, ,;Lap)=—1 OF Ay ;=0 and
sign(Va, Lap)=1, then 4, ,; changes as “1-0” or “o—1". Then,
we define a mask m, to filter the top e, sensitive edges as below:

sign(Va,, Lap) + 1
me= A, @ <+ @

where & is the “Exclusive OR” logic operator. Then the per time-
slice graph with the perturbation becomes A;+sign(v Ae, Lap)Ome,
where © is the Hadamard Product. For Step ii, we generate an
attack loss profile set (c',z2,...,cM) for all m time-slice graphs
after perturbation based on Step i. Finally, time-slices corresponding
to the 7 largest losses (Topr{ct}}M,), will be selected as the
candidates sub-graphs for optimized spatial-temporal adversarial
graph generation (M2).

B. M2: Adversarial Graph Generation

Once sensitive time-slices are selected, our next step is to generate
optimized spatial-temporal adversarial graphs with least edge per-
turbations. To this end, we propose an adaptive quantization-based
optimization to effectively and efficiently generate spatial-temporal
adversarial graphs.

Given that all elements in a graph a should be either 0 or 1, we
propose to quantize an adversarial graph aA’. One naive solution is
as follows:
1Al > 1L
0 otherwise

QA" = { 3)

However, this can bring a large fixed quantization error (e.g. 1/2)
at all iterations and hence hurt the optimization process significantly.
To tackle this problem, we propose a fine-grained adaptive quanti-
zation function as below:
1A > AT+ (1= Agy) - (1—7)
0 otherwise

QA)i = {)

1025

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on September 07,2024 at 02:13:22 UTC from |IEEE Xplore. Restrictions apply.

TABLE 1
RESULTS OF APPLYING THE ROUND FUNCTION AND ADAPTIVE
QUANTIZATION WITH DIFFERENT GAPS g (AQ(g)).

Quantization function|Round function|AQ(0.2)|AQ(0.1) |AQ(0.05)
Success rate 74% 90.5% | 93.2% | 93.6%
changed edges 226 168 157 154
Time cost 204s 220s 284s 527s
TABLE II
RESULTS OF VARYING INITIALLY SELECTED TIME-SLICES IN Ants.
To 5% | 10% | 15% | 20% | 25% | 30%
Success rate (%) [80.6% | 88.5% |93.6% | 93.8% | 93.7% | 93.7%
changed edges 226 183 155 152 | 158 158
changed time-slices | 33 35 38 42 50 54
Time cost (s) 224s | 285s | 326s | 389s | 475s | 572s

where re(0,1) is to adjust the quantization threshold by considering
value changes of A’ at each iteration, thereby offering a varied quan-
tization error—r during the optimization. Since the goal is to find “ad-
versarial edges”, we could start with a small - which incurs a small
quantization error, and then gradually increase - if the attacker’s goal
is hard to achieve. To refine the quantization process, we adjust the
quantization threshold at every few iterations: [ro,79+g,70+2-9.-...,7n],
where 7, (7,,) is the initial (final) value, and g is the quantization gap.
Then we approximately replace the gradient Vacap as Voar . Lan
in each iteration. Accordingly, the gradient update can be expressed
as (VQ(A/,T)LAE)H_I:M»(VQ(A/YT)LAE)ith . Here 1r is the learn-
ing rate, and m,, is a mask. We design a heuristic clipping strategy
to update the mask m, to reduce the search space of potential
adversarial edges automatically, which can be represented as:

if (A7, — Voarm, Lap 2 h+1& Ay =1)
or (A% = Vgar,m,; Lar) < —h & Aij =0)

1 otherwise

0)

Mh,ij =
where he[0,1) is a heuristic clipping threshold. Once 4}, exceeds
the threshold (h), we will stop updating 4} ,; and reset it to the
original (i.e., A, ;). The details are shown in Algorithm 2.

C. Time and Space Complexity Analysis

Time complexity. We analyze the time complexity of our attack
from spatial and temporal dimensions, respectively. In the temporal
dimension, our algorithm needs to traverse M time-slices to se-
lect n. most vulnerable time-slices, and then to traverse selected
n. time-slices to generate an adversarial graph, leading to time
complexity of ©(M+n.). In spatial dimension, we need to compute
gradients of each element in the adjacency matrix Ae{o,1}V*N for
each selected time-slice, which leads to time complexity of o(n?).
Thus, in the worst case, the total time complexity of our attack
is O(n-(M+n.-N2)) (ne is a constant), where n is the maximum
number of iterations. Especially, because of the elaborate design in
spatial and temporal domains, the time complexity is reduced from
the standard o(n-M-N?) (e.g., adversarial graph from a 3D graph
directly) to o(n-N?)).

Space complexity. Since we need to store gradients in the
adjacency matrix for a time-slices, the space complexity should
be o(m-N?). We experimentally validate and evaluate the time cost
against SOTA solutions in Table VII.

That is the reason that the time cost of our attack algorithm is
much lower than existing adversarial graph attacks (e.g., our attack
326s v.s. EpoAtk 12963s on AS-GCN, see Table 5 on page 6).

V. EVALUATION
A. Experimental Setup

All simulations are conducted in a workstation with one AMD
Ryzen Threadripper PRO 3975WX 32-Cores Processor and two
NVIDIA GeForce RTX 3090 GPUs.

1026

~

w

~

Num. of changed edges

-

1 3 5 7 911131517 1921 23 25 27 29 31 33 35 37 39 41 43 45 47 49

. . . . Time-slice indices
Fig. 1. Visualization of example adversarial graph created by Ants. Three

double boxes show the clean spatial graph (left) and corresponding
adversarial graph (right) in 17-, 24-, 32-th time-slice. The red dotted (solid)
line means removing (adding) edge.

Datasets. For the human action recognition task, we evaluate our
attack on two datasets: NTU [15] and Kinetics [16]. NTU is the
largest dataset with 3D joint annotations for human action recogni-
tion, which contains 56K action clips and covers 60 action classes.
Kinetics is the largest unconstrained action recognition dataset with
around 300K video clips collected from YouTube with 400 action
classes. For the traffic flow forecasting task, we use two highway
traffic datasets: PeMSDS and PeMSD4 collected by the Caltrans
Performance Measurement System (PeMS) [17]. PeMSDS is traffic
data including 1979 detectors on 8 roads in San Bernardino from
07/2016-08/2016. PeMSD4 involves traffic data in San Francisco Bay
area, containing 3848 detectors on 29 roads from 01/2018-02/2018.

Target models. We evaluate Ants across 6 different STGNN
architectures. ST-GCN [1], AS-GCN [8], and MS-G3D [9] are
evaluated on human action recognition, while MSTGCN, AST-
GCN [2], and STSGCN [7] are used in traffic flow forecasting.
For evaluation generality, these selected STGNNSs consist of graphs
with static and dynamic structures. For human action recognition,
the baseline accuracy of well-trained ST-GCN, AS-GCN, and MS-
G3D is 88.1% (52.8%), 93.9% (56.4%), and 96.1% (60.7%) on NTU
(Kinetics) dataset, respectively (Top-5 accuracy for Kinetics). For
traffic flow forecasting, the baseline MAE of MSTGCN, ASTGCN,
and STSGCN is 19.04 (23.85), 18.78 (23.14), and 17.25 (21.28)
on PeMSD8 (PeMSD4), respectively. The model accuracy of all
baselines (without attack) are consistent with that of original papers.

Attack configuration. We derive two attack variants: 1) Ants
“: an attack that replaces proposed gradient sign time-slice selec-
tion (M1) with a simple time-slice selection method adopted in
video-based adversarial attack for RNN+CNN [18], i.e., choose the
first few time-slices in M2. 2) Ants: an attack with all proposed
techniques. In Algorithm 1, we set the initial number and incre-
ment number of time-slices as To = 15%M and T}, = 5%M (i.e.,
Ty = 45/37, T, = 15/12 for action/traffic datasets). We enforce
spatial-temporal constraints on perturbations: 7 = 0.01 (change 1%
edges in each time-slice at most), and o = 0.3 (distort 30% time-
slices at most). The first 1000 test data of human action dataset and
all test data of traffic datasets are used to generate corresponding
adversarial examples, respectively.

Metrics. We evaluate the effectiveness and stealthiness of the
attack. The attack success rate and MAE variation are used to
measure attack effectiveness in human action recognition and traffic
flow forecasting, respectively. The number of changed edges (in the
entire spatial-temporal graph) and attacked time-slices are used to
validate the attack stealthiness of both tasks.

B. Ablation Study

To demonstrate the generalization of our attack, we analyze key
hyper-parameters based on the AS-GCN and NTU dataset, and then

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on September 07,2024 at 02:13:22 UTC from |IEEE Xplore. Restrictions apply.

TABLE III
THE ATTACK PERFORMANCE OF OUR ATTACKS ON HUMAN ACTION RECOGNITION AND TRAFFIC FLOW FORECASTING (WHITE-BOX).

Attack success rate (human action recognition)

MAE variation (traffic flow forecasting)

Model [STGCN | AS-GCN | MSGID | oo MSTGCN ASTGCN STSGCN | v
Dataset | NTU [Kinetics | NTU [Kinetics | NTU [Kinetics | PeMSD8 [PeMSD4 | PeMSD8 | PeMSD4 [PeMSDS8 [PeMSD4 |
Ants = 89.1% 853% 782% 76.4% 754% 782% 80.4% +17.39 +1597 +1898 +17.54 +1893 +18.24 +17.93
Ants 97.5% 92.8% 93.6% 921% 942% 96.7% 94.5% +19.23 +18.11 +21.59 +20.23 +23.17 +22.82 +20.85
TABLE 1V TABLE VI
THE ATTACK SUCCESS RATE AND MAE VARIATION OF OUR Ants ON RESULTS OF TARGETED ATTACK USING OUR Ants ON TRAFFIC FLOW
NTU(VIEW) AND PEMSDS IN BLACK-BOX SETTINGS. FORECASTING.
ST-GCNJAS-GCN|MS-G3D MSTGCN|ASTGCNISTSGCN| Model |MAE variation |# of changed edges|# of changed time-slices
(sub) (sub) (sub) (sub) ‘ (sub) ‘ (sub) MSTGCN +10.29 0.43% 7.9%
ST-GCN| 79.5% n/a n/a |[MSTGCN| +15.52 +12.44 n/a ASTGCN +10.32 0.41% 7.5%
AS-GCN| n/a 72.3% n/a |[ASTGCN| +14.73 +18.01 n/a STSGCN +10.23 0.3% 8.3%
MS-G3D| n/a n/a 73.4% ||STSGCN n/a n/a +19.12
M1 stage with a random time-slices selection method (i.e., selected
TABLE V time-slices randomly), and then construct adversarial examples in the

RESULTS OF ATTACKING RANDOM TIME-SLICES USING OUR Ants IN
ST-GCN ON HUMAN ACTION RECOGNITION.

of attacked time-slices 5% 10% 20% 30%
Attack success rate 80.6% 86.5% 94.3% 96.2%
of changed edges |12 (0.08%)[14 (0.09%)|18 (0.12%)|21 (0.14%)

directly adopt the values of these hyper-parameters for evaluations
on other models and datasets.

Optimized quantization coefficient sequence. Table I shows the
impact of using different quantization gap g on attack effectiveness
and efficiency. Compared with the round function, our three AQ(g)
settings are better in terms of the number of changed edges and
success rate. This is because the proposed adaptive quantization
function smoothens the minimization process of the loss function, so
“better” edges with a fewer number can be identified to achieve at-
tack effectiveness and stealthiness simultaneously. Among the three
AQ(g), a smaller g indicates a smoother quantization optimization
process and therefore could increase attack effectiveness and reduce
the number of changed edges. However, this would increase the
time cost. In practice, we found that a very small g does not
significantly benefit attack effectiveness and stealthiness despite the
increased optimization time, especially for more complex traffic
datasets. Therefore, we adopt a hybrid strategy: using a large g (i.e.,
0.1) to accelerate the optimization process early on and subsequently
reducing g (i.e., 0.05) for a smoother search towards the end of
the optimization. The final quantization coefficient sequence is as
follows: ¢ = [0.1,0.2,...,0.5,0.55,0.6,0.65,...,0.9].

Number of initially selected time-slices. An appropriate number
of initially selected vulnerable time-slices (75) can promote attack
performance and efficiency. In Table II, we observe that too few
selected time-slices (e.g., To = 5% and 10% M) lead to a lower
success rate and need more changed edges due to limited search
scope for “adversarial edges” at the initial stage. However, too large
Ty (e.g., To = 25% and 30% M) could change more time-slices and
incur higher time costs. To ensure a high success rate and fewer edge
changes, we select Ty = 15%M for all STGNNs and datasets.

C. Result and Analysis

White-box attack. Table III reports our evaluation results on
two tasks under the white-box attack. For human action recognition,
the attack variant-Ants ~ performs worse than our Ants (80.4% vs.
94.5% on average). This is because our gradient sign-based time-
slice selection can always identify the most vulnerable time-slices to
improve attack performance, while simply picking the first few time-
slices as attack targets does not work well in STGNNSs, especially for
more advanced models (e.g., MS-G3D). We can observe a similar
trend in traffic flow forecasting tasks.

Ants can be also easily adapted to the specific time-slices attack
and targeted attack. For the specific time-slices attack, we can replace

1027

randomly selected time-slices in M2 stage. As Table V shows, even
if we only select 5% time-slices randomly, the attack success rate
still can reach 80.6%. For the targeted attack, we can slightly change
the loss function. Take the traffic flow prediction task as an example,
we can use £, p=L(o,t) Where o is the output of the model, and ¢ is
the targeted output expected by the attacker. In our experiment, we
randomly select one of the node features as the target (e.g., traffic
speed) and set it as the targeted value (e.g., overestimate a specific
feature by enlarging its original value by 50%). As Table VI shows,
with just < 1% edge changes, the MAE variation in the targeted
feature can be more than 10. For example, for STSGCN, when we
only change 0.3% edges, the MAE variation in the targeted feature
can be +10.23 (the original MAE without attack is 19.76).

Visualization for adversarial examples. Fig. 1 shows the first
50 out of 300 time-slices of adversarial graph generated by our Ants
based on AS-GCN and NTU dataset. It misleads the prediction from
“point something” to “taking a selfie” by only a few edges changes.
We observe that most time-slices incur no edge changes because
our attack only pinpoints the most sensitive time-slices to improve
the imperceptibility (in the temporal domain). In this case, only 29
out of 300 time-slices get more than one edge change. On the other
hand, for time-slices with edge changes, the edge modifications in
17-, 24-, 32-th time-slice are unnoticeable (in the spatial domain).
This is because our attack can find the least number of edge changes.
Thus our attack can achieve stealthiness in both temporal and spatial
domains.

Restricted black-box attack. We adopt a common substitute
model-based strategy to achieve the restricted black-box attack by
transferability [14]. It uses a local substitute model to craft adver-
sarial examples (the attacker knows everything about the substitute
model, white-box setting) to mislead the targeted model (black-
box). We train the corresponding substitute model with a reduced
structure compared with the targeted model for each type of model,
to achieve acceptable performance. Note that, because the graph
structure across some STGNNSs (e.g., ST-GCN, AS-GCN, MS-G3D)
could be different for the same raw graph data, they cannot attack
each other. As Table IV shows, the attack success rate or MAE
variation of our attack is still high for human action recognition or
traffic flow forecasting, indicating a high attack transferability on
various STGNNS.

D. Compare with Solutions Augmented from Existing Spatial-only
Graph Attacks

To better evaluate our spatial-temporal graph attack—Ants, we also
compare it with four baselines augmented from the recently devel-
oped representative “spatial-only” graph attacks against classic 2D
graph tasks: PGD projection [19], GradArgmax [20], meta-attack [5]

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on September 07,2024 at 02:13:22 UTC from |IEEE Xplore. Restrictions apply.

TABLE VII
COMPARISON BETWEEN OUR Ants AND THREE BASELINES ON NTU DATASET (FIRST 100 TEST DATA).

Metric | Attack success rate Num. of changed edges Num. of changed time-slices Time cost (s)
Model [ST-GCNJAS-GCN[MS-G3D| ST-GCN | AS-GCN [MS-G3D [ST-GCN [AS-GCN | MS-G3D [ST-GCNJAS-GCN[MS-G3D
PGD proj 68% 52% 42% 76 (0.52%) 305 (0.4%) 1289 (0.46%) 15 (5%) 139 (46.3%) 182 (60.7%) 24 428 569
GradArgmax 69% 51% 45% 75 (0.51%) 317 (0.42%) 1245 (0.45%) 14 (4.7%) 144 (48%) 185 (61.7%) 26 687 894
Meta-attack ~ 89% 72% 61% 25 (0.16%) 214 (0.32%) 752 (0.27%) 12 (4%) 89 (29.7%) 152 (50.7%) 28 1057 1752
EpoAtk 92% 74 % 64% 21 (0.14%) 195 (0.26%) 704 (0.25%) 11 (3.7%) 83 (27.7%) 145 (48.3%) 92 12963 20192
Our Attack 97% 93% 94% 19 (0.13%) 155 (0.2%) 495 (0.18%) 8 (2.7%) 38 (12.7%) 48 (16%) 23 326 368

and EpoAtk [6]. We choose these attacks because 1) a similar
attack vector, i.e., adding/removing graph edges; 2) a similar threat
assumption, i.e., knowing the model’s gradient information to craft
adversarial examples; 3) the similar applications, i.e., graph/node
classification or embedding. To make a fair comparison, the attack
baselines applicable to spatial-temporal graphs are developed as
follows: 1) treat a spatial-temporal graph as a 3D graph without
differentiating the time and space; 2) apply the three “spatial-only”
2D graph attack algorithms to the unfolded 3D graph and generate
adversarial examples from the whole graph space. We only constrain
the maximum number of changed edges (i.e., 1%) but no constraint
for a number of the changed time-slices. As Table VII shows, Ants al-
ways presents much better attack effectiveness and stealthiness than
the other three augmented attacks for all STGNNS . In addition, it also
achieves the lowest time cost among all solutions, which aligns
with our complexity analysis in Sec I'V. It is noteworthy that, with the
complexity of STGNNSs increasing, the gaps of all metrics between
our attack and others are significantly increased (e.g., for success
rate gap, 5% in ST-GCN vs. 19% in AS-GCN vs. 30% in MS-G3D
comparing with the best baseline using EpoAtk). This is because our
attack optimizes the search of graph structure change by recognizing
that the spatial and temporal dimensions of the model need to be
considered separately, and constructing an optimization framework
to search across these dimensions differently, consequently, making
the process more efficient and crafted adversarial examples much
effective and more indistinguishable.

VI. CONCLUSION

Spatial-temporal graph neural networks (STGNNs) have re-
cently demonstrated remarkable performance in a variety of spatial-
temporal applications. However, so far, studying the robustness of
STGNNS to structure-based graph attacks is still in its infancy, in
particular, by crafting new spatial-temporal graph adversarial attacks.
This work strives to address this gap. We propose a spatial-temporal
graph-based attack framework, namely the adaptive quantization-
based spatial-temporal attack (Ants), to search adversarial examples
in complex spatial-temporal graph data. Results show that Ants
achieves competitive attack effectiveness and stealthiness in both
white-box and black-box settings across various STGNNs on repre-
sentative spatial-temporal tasks—traffic flow forecasting and human
action recognition.

VII. ACKNOWLEDGEMENT

We thank all anonymous reviewers for their constructive com-
ments and suggestions on this work. This work is partially supported
by the National Science Foundation (NSF) under Grants No. CNS-
2349538 and CCF-2401544.

REFERENCES

[1] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” in Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

1028

[2] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
2019, pp. 922-929.

J. Liu, N. Akhtar, and A. Mian, “Adversarial attack on skeleton-based
human action recognition,” IEEE Transactions on Neural Networks and
Learning Systems, 2020.

H. Wang, F. He, Z. Peng, T. Shao, Y.-L. Yang, K. Zhou, and D. Hogg,
“Understanding the robustness of skeleton-based action recognition
under adversarial attack,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021, pp. 14656—14 665.
D. Ziigner and S. Giinnemann, “Adversarial attacks on graph neural
networks via meta learning,” arXiv preprint arXiv:1902.08412, 2019.
X. Lin, C. Zhou, H. Yang, J. Wu, H. Wang, Y. Cao, and B. Wang,
“Exploratory adversarial attacks on graph neural networks,” in 2020
1EEE International Conference on Data Mining (ICDM). 1EEE, 2020,
pp. 1136-1141.

C. Song, Y. Lin, S. Guo, and H. Wan, “Spatial-temporal synchronous
graph convolutional networks: A new framework for spatial-temporal
network data forecasting,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, no. 01, 2020, pp. 914-921.

M. Li, S. Chen, X. Chen, Y. Zhang, Y. Wang, and Q. Tian, “Actional-
structural graph convolutional networks for skeleton-based action recog-
nition,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2019, pp. 3595-3603.

Z. Liu, H. Zhang, Z. Chen, Z. Wang, and W. Ouyang, “Disentangling
and unifying graph convolutions for skeleton-based action recognition,”
in Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 143-152.

I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

Z. Wei, J. Chen, X. Wei, L. Jiang, T.-S. Chua, F. Zhou, and Y.-G. Jiang,
“Heuristic black-box adversarial attacks on video recognition models,”
in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 07, 2020, pp. 12338-12345.

F. Liu, H. Liu, and W. Jiang, “Practical adversarial attacks on spatiotem-
poral traffic forecasting models,” in Advances in Neural Information
Processing Systems.

N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in Security and Privacy (SP), 2017 IEEE Symposium on.
IEEE, 2017, pp. 39-57.

N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,” in
Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security. ACM, 2017, pp. 506-519.

A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, “Ntu rgb+ d: A large
scale dataset for 3d human activity analysis,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016,
pp. 1010-1019.

W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijaya-
narasimhan, F. Viola, T. Green, T. Back, P. Natsev et al., “The kinetics
human action video dataset,” arXiv preprint arXiv:1705.06950, 2017.
C. Chen, K. Petty, A. Skabardonis, P. Varaiya, and Z. Jia, “Freeway
performance measurement system: mining loop detector data,” Trans-
portation Research Record, vol. 1748, no. 1, pp. 96-102, 2001.

[3

[4

=

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18] X. Wei, J. Zhu, S. Yuan, and H. Su, “Sparse adversarial perturbations
for videos,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, no. 01, 2019, pp. 8973-8980.

[19] M. Sun, J. Tang, H. Li, B. Li, C. Xiao, Y. Chen, and D. Song, “Data
poisoning attack against unsupervised node embedding methods,” arXiv
preprint arXiv:1810.12881, 2018.

[20] H. Dai, H. Li, T. Tian, X. Huang, L. Wang, J. Zhu, and L. Song, “Ad-
versarial attack on graph structured data,” in International Conference
on Machine Learning, 2018, pp. 1123-1132.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on September 07,2024 at 02:13:22 UTC from |IEEE Xplore. Restrictions apply.

