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ABSTRACT
Fine-grained entity typing (FET), which assigns entities in text with
context-sensitive, fine-grained semantic types, is a basic but impor-
tant task for knowledge extraction from unstructured text. FET has
been studied extensively in natural language processing and typically
relies on human-annotated corpora for training, which is costly and
difficult to scale. Recent studies explore the utilization of pre-trained
language models (PLMs) as a knowledge base to generate rich and
context-aware weak supervision for FET. However, a PLM still re-
quires direction and guidance to serve as a knowledge base as they
often generate a mixture of rough and fine-grained types, or tokens
unsuitable for typing. In this study, we vision that an ontology pro-
vides a semantics-rich, hierarchical structure, which will help select
the best results generated by multiple PLM models and head words.
Specifically, we propose a novel annotation-free, ontology-guided
FET method, ONTOTYPE, which follows a type ontological struc-
ture, from coarse to fine, ensembles multiple PLM prompting results
to generate a set of type candidates, and refines its type resolution,
under the local context with a natural language inference model.
Our experiments on the Ontonotes, FIGER, and NYT datasets using
their associated ontological structures demonstrate that our method
outperforms the state-of-the-art zero-shot fine-grained entity typing
methods as well as a typical LLM method, ChatGPT. Our error
analysis shows that refinement of the existing ontology structures
will further improve fine-grained entity typing.

CCS CONCEPTS
• Computing methodologies → Information extraction; Lan-
guage resources; Natural language processing.

KEYWORDS
Fine-Grained Entity Typing, Zero-Shot Entity Typing, Masked Lan-
guage Model Prompting, Natural Language Understanding

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
KDD ’24, August 25–29, 2024, Barcelona, Spain
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0490-1/24/08.
https://doi.org/10.1145/3637528.3671745

ACM Reference Format:
Tanay Komarlu, Minhao Jiang, Xuan Wang, and Jiawei Han. 2024. ONTO-
TYPE: Ontology-Guided and Pre-Trained Language Model Assisted Fine-
Grained Entity Typing. In Proceedings of the 30th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining (KDD ’24), August
25–29, 2024, Barcelona, Spain. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3637528.3671745

1 INTRODUCTION
Fine-grained entity typing (FET) is a basic but important task for
knowledge extraction and text content understanding/analysis. As-
signing fine-grained semantic types to parsed entity mention spans
based on the local context enables effective and structured analysis
of unstructured text data, such as entity linking [15, 21], relation
extraction [12], and coreference resolution [21].
Example 1. Given a sentence 𝑆1: “Sammy Sosa got a standing
ovation at Wrigley Field.” and a parsed entity mention span “Sammy
Sosa” in the sentence, an FET method aims to assign it not only
the coarse-grained type “Person” but also the fine-grained types
“Athlete” or “Player”.

FET on large text corpora is a challenging task due to (1) the high
cost of obtaining a large amount of human-annotated training data,
especially in dynamic and emerging domains, and (2) inaccurate
annotations due to (i) different annotators marking concepts at dif-
ferent granularity (e.g., person vs. politician vs. president), and (ii)
contextual subtlety on fine-grained types (e.g., Boston vs. Detroit
could be two sports teams, instead of two cities). Most existing meth-
ods utilize weak or distant supervision to automatically generate
training data for the FET tasks. There are three major approaches
to obtaining weakly-labeled training data to tackle these challenges.
The first is to automatically match the mentions in text with the
concepts in some existing knowledge bases (e.g., Wikipedia) [15].
The typical workflow is to first detect entity mentions from a corpus,
map these mentions to knowledge base (KB) entities of target types,
and then leverage the confidently mapped types as pseudo-labeled
data to infer the final type. The second is to directly obtain the head
words of nominal mentions as its fine-grained type [3]. This ap-
proach leverages the head words of the entity mention to consolidate
context-aware types derived from the KB matching. However, both
approaches suffer from label sparsity and context-agnostic problems,
resulting in the inability to generate high-quality training data for
FET.

https://doi.org/10.1145/3637528.3671745
https://doi.org/10.1145/3637528.3671745
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The third approach is to probe the pre-trained language models
through the use of masked patterns and entailment templates. This
method enables the use of PLM as a knowledge base for weak su-
pervision. Leveraging masked language model (MLM) prompting to
generate rich and context-aware weak supervisions for fine-grained
entity typing is a recent trend, aiming to leverage a PLM’s contex-
tual and “common-sense” knowledge learned at training to reduce
expensive human labor [4, 13].

Given a sentence that contains a mention, one can use a “[MASK]”
token to replace the entity mention span to generate candidate entity
types. However, such a method is unguided which may result in the
generation of tokens that are inadequate for entity typing (e.g., {This,
That, Him, Me, It} for “Wrigley Field” in 𝑆1).

Alternatively, we can seek to extract hypernyms of the entity
mention span of interest by inserting a short phrase that contains
a “[MASK]” token (e.g., exploring the idea of Hearst Patterns [8]).
This method conducts labeling in a more context-aware manner and
greatly enriches the fine-grained types labeled for each mention.

This process, however, still has the potential to generate tokens
unsuitable for typing (e.g., {Team, Thing} for “Wrigley Field” in 𝑆1)
or a mixture of rough and fine-grained types (e.g., {Location, Build-
ing, Stadium}). The difficulty cannot be resolved automatically due
to the lack of hierarchical knowledge of the generated tokens/types.

With the emergence of large language model (LLM) (e.g., Chat-
GPT [22]), it is appealing to directly apply it to tackle these chal-
lenges. However, due to the lack of knowledge structures, an LLM
may generate entity types at a too coarse or too fine level, or fail to
commit to the right one from numerous fine-grained candidates.

In this study, we envision that an ontology structure, which pro-
vides a semantics-rich, hierarchical structure, may help select the
best results generated by multiple PLM models. We propose a
annotation-free, ontology-guided, fine-grained entity typing (FET)
method, ONTOTYPE, that leverages an input ontology structure
and the power of MLM prompting and Natural Language Inference
(NLI). We first ensemble multiple Hearst patterns to perform MLM
prompting, reducing the noise in the initial candidate type generation.
Since the generated candidate labels for a given mention are likely a
mixture of fine and coarse-grained labels, or tokens unsuitable for
typing, we propose to automatically match the generated candidate
labels to a coarse-grained type in our type ontology and then rank
and select a coarse-grained type with a pre-trained entailment model
under the local context. Based on the same principle of entailment
score-based type selection, this type resolution process progresses
deeper to finer levels, following the type ontology, until the finest
possible label can be consolidated.
Example 2. For sentence 𝑆1 in Ex. 1, candidate type generation
(Step 1) ensembles prompting results of multiple Hearst patterns
and generates a set of candidate labels: {Stadium, Venues, Location,
Game} for “Wrigley Field” (Fig. 2). Using a given ontology struc-
ture (Fig. 1), this set of types is first resolved to the course-grained
type “Location” via the assistance of a pre-trained entailment model
and the local contextual information (Fig. 3). Note without the type
structure, “Stadium” and “Venue” are rivals to “Location”; but with
the structure, they become its supporters since both are fine-grained
“Location”. With the same principle, the type resolution proceeds

deeper to finer-grained levels, along the type ontology, from “Lo-
cation” to “Building” and further down to “Stadium” for “Wrigley
Field”, leading to the most accurate fine-grained type (Fig. 4).
Our contributions are summarized as follows.

(1) A fully annotation-free, ontology-guided, fine-grained typing
method, ONTOTYPE, is proposed

(2) ONTOTYPE improves fine-grained entity typing (FET) by lever-
aging candidate labels generated and refined with three informa-
tion sources: (i) pre-trained language models, (ii) a fine-grained
type ontology, and (iii) head words

(3) Experiments on the Ontonotes, FIGER, and NYT datasets [6]
using their associated ontological structures show that ONTO-
TYPE clearly outperforms existing zero-shot named entity typing
methods as well as ChatGPT, and even rivals supervised methods.
Our error analysis shows that refinement of ontology structures
will further improve fine-grained entity typing.

We release our data and source code1 to facilitate further studies.

2 RELATED WORK
Fine-grained entity typing benefits various downstream tasks and
has received extensive attention in natural language research. Recent
studies focus on different contexts from the phrase level [35] to
considering specific entity mentions in the sentence or document
level [3, 7, 15]. Entity typing has been generally studied under
supervised learning settings with significant human annotated data
[3, 4, 15, 36].

Minimally Annotated Fine-Grained Entity Typing Methods.
Some recent studies (e.g., [4, 9, 13, 14, 16, 33, 39, 40]) leverage
cross-encoders, pre-trained language models and prompting tem-
plates to obtain knowledge for entity mentions in given sentences.
[4] improves ultra-fine entity typing with a BERT Masked Language
Model (MLM). [13] instead improves ultra-fine entity typing by
treating the task of predicting an entity type as an NLI task. Similar
to ONTOTYPE, ChemNER [30] leverages a type ontology structure
to guide fine-grained Chemistry entity recognition. NFETC-SSL
[33] proposes a semi-supervised learning method with mixed label
smoothing and pseudo labeling. MCCE [9] proposes to first prune
the large type set and generate K candidates. Then, MCCE’s novel
model concurrently encodes and scores these K candidates as final
type labels. DenoiseFET [14] utilizes pre-trained label embeddings
to group the given set of type labels into semantic domains. A fine-
tuned UFET model is utilized to predict initial labels. Finally, the
semantic domains as guidance to infer missing labels and remove
conflicting labels. These recent methods leverage human annotations
and seek to augment SOTA models with prior knowledge acquired
through head words, ontology structures and pre-trained embeddings.
ONTOTYPE seeks to perform FET without the use of any human an-
notations by amalgamating multiple MLM prompts and NLI results
to reduce noises in candidate type generation. Finally, we also utilize
the fine-grained type ontology structure as guidance to progressively
resolve candidate labels from coarse to fine under the local context.

Distant Supervision via Knowledge Bases. To handle difficulties
to acquire human annotation, the zero-shot learning setting has been

1https://github.com/tkomarlu/KDD-OntoType
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introduced for named entity typing [32]. Several studies [37, 41] ad-
dress the problems by grounding the mentions with Knowledge Base
(i.e. Wikipedia) entries from the assembled related pages. These
methods achieve good performance but still require significant hu-
man resources to construct effective knowledge bases which can be
difficult to obtain for emerging domains.
Transfer Learning Methods. Other studies explore learning pre-
trained semantic word-level embeddings from Knowledge Bases and
seen types [18, 23] or extracting raw embeddings without auxiliary
information and utilize end-to-end neural networks [38]. However,
these methods still suffer from low accuracy and inefficiency in zero-
shot settings. As a result, ONTOTYPE turns to the weak supervision
by exploiting pre-trained language models (i.e. BERT [5]) as a
knowledge base due to their substantial knowledge in language
understanding learned by training on massive text collections.

3 METHODOLOGY
We propose ONTOTYPE, an annotation-free, ontology-guided, fine-
grained entity typing method using pre-trained language models and
a fine-grained ontology structure. Given an input sentence and a
set of pre-identified mentions in the sentence, ONTOTYPE consists
of the following steps: (1) generating a set of candidate labels for
each input mention with both head word parsing and an ensemble
of MLM prompting (Fig. 2); (2) resolving the coarse-grained types
by matching and ranking the generated labels to the type ontology
using an entailment model (Fig. 3); and (3) progressively refining the
fine-grained types along the type ontology following the principle
of entailment score-based type selection (Fig. 4). We utilize the
inherent structure of the fine-grained type ontology and a pre-trained
entailment model (RoBERTa model pre-trained on the MNLI dataset
[17]) to guide our fine-grained entity typing.

3.1 Problem Definition
The input to our proposed ONTOTYPE framework is a text corpus
𝐷 and a fine-grained type ontology 𝑂 . In this study, we assume our
input text corpus 𝐷 includes a set of pre-identified entity mentions.
An entity mention, 𝑒, is a token span in the text document that refers
to a real-world entity. Given a sentence 𝑆 and a parsed entity mention
𝑒 ∈ 𝑆 , the fine-grained entity typing (FET) task is to identify one
or more types 𝑡 from the label space 𝑇 (provided in a structured
ontology 𝐺) for the entity mention 𝑒.

As an example of our FET task, in the sentence 𝑆1 of Ex. 1,
the entity mention to be typed is 𝑒1: “Wrigley Field”. It should be
labeled progressively deeper as “Location→Building→Stadium” as
opposed to other labels like “Organization”, “Person”, or “School”.

3.1.1 Fine-Grained Type Ontology Structure. The structure
of the type ontology is fundamental to the ONTOTYPE algorithm.
In this study, we utilize zero human effort to construct our type
ontologies. We leverage the fine-grained type ontologies provided
in the OntoNotes and FIGER datasets. Extending these ontologies
to new text corpora can be achieved with minimal human efforts
through taxonomy completion and refinement methods[1, 10, 11, 25].
Furthermore, existing automatic ontology constructions methods
[28, 29, 31] build ontologies also based on “is-A” relations (e.g.,
a “Canada” is a “Country”) which minimize the need for human-
annotated ontologies even in emerging domains.

Definition 3.1 (Fine-Grained Type Ontology). ONTOTYPE’s Fine-
Grained Type Ontologies are structured as a strict tree imposing an
“is-a” type hierarchy stemming from a “root” concept. The “root”
concept’s children consist of a handful of coarse-grained types in-
cluding but not limited to: “Organization”, “Person”, or “Location”.
In addition, the ontology follows the following structural constraints:
(1) Each type has a singular parent type; (2) each type (except for
the leaf node) can have a number of children; and (3) each type is
connected by a directional edge indicating a hypernym-hyponym
type relationship between the parent and child nodes.

It is important to recognize that a hypernym-hyponym or “is-a”
relationship is critical for guiding ONTOTYPE’s final fine-grained
type selection. Note that in the given OntoNotes type ontology (Fig.
1), City and Country are sibling types since they share the same par-
ent type Location. Although “City” can be connected to “Country”
by a “is-in” type relationship, ONTOTYPE’s input ontologies orga-
nize these entity types as siblings due to their hypernym-hyponym
relationship to “Location”. By consolidating hypernyms of the entity
mention, we can identify the high-level type in the ontology that
accurately provides a partial label for the entity mention of interest.
Thus, we approach our entity typing process in a hierarchical manner
and refine from a coarse-grained level down to the most accurate
fine-grained level for the mention of interest.

Please note that an ontology structure can be extended to include
“is-in”, “is-part-of” and “is-property-of” relationships. Fine-grained
entity typing using such an extended structure is left to future work.

Country Building

... HospitalStadium

Person Organization

Location

Root

... ...

City

Figure 1: OntoNotes Type Ontology

3.2 Candidate Type Generation
To generate a set of candidate entity types for each input mention, we
leverage two techniques: (1) head word parsing, and (2) ensemble
of hypernyms derived from MLM prompting.

Head words and hypernyms can serve as powerful context-aware
type indicators that can be leveraged as weak supervision sources for
entity typing [3, 4]. We use them to select a set of candidate types
to guide our fine-grained type refinement. We first generate and
parse the head words for a given entity mention, and then generate
candidate types with the use of ensembled MLM prompting2. The
generated candidates are used as input to the following steps of
ontology-guided type resolution.

2If there is no head word, our algorithm generates candidate labels using only MLM
prompting.
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3.2.1 Head Word Parsing. As discussed in [3], the input text
often contains cues that explicitly match a mention to its type. These
cues are often in the form of the mention’s head word. Thus, given
the pre-identified entity mentions in the input sentence, we first
identify the head word of the input mention. We utilize the Stan-
ford Dependency Parser [2] to extract the head word of the entity
that we are interested in typing. Considering the sentence “Gov-
ernor Arnold Schwarzenegger gives a speech at Mission Serve’s
service project on Veterans Day 2010”, the entity mention “Gov-
ernor Arnold Schwarzenegger” can be associated with a few types
(e.g., actor, father, and governor). However, given the head word,
one can easily consolidate it to the right one: “governor”. Thus, ON-
TOTYPE leverages the head word of the input entity, if any, to select
an initial context-sensitive type, which may guide the selection of
the subsequent fine-grained type.

3.2.2 Ensembled MLM Prompting. While head words can pro-
vide strong type indicators, they do not always provide sufficient
information to consolidate a high-level type. In some cases, head
words (e.g., “Red Sox star”) cannot directly provide accurate type
information as they are not directly present in the input type ontol-
ogy. Furthermore, head words are not always available in the input
sentences. Thus, with the parsed entity mention span as input, we
propose to leverage context-aware hypernyms as initial type candi-
dates for the target mention. With an ensembled cloze prompting
method, ONTOTYPE generates candidate types of the mention with
masked language models and performs an initial high-level typing on
the input mention. Specifically, we leverage the BERT model [5] and
artificial Hearst patterns [8] to generate context-aware hypernyms
that serve as candidate types for the mentions. We first modify the
input sentence by inserting a Hearst pattern and [MASK] token into
the sentence. Then we use the BERT to generate candidate types for
the target mention under the local context. For example, in Fig. 2,
we first insert Hearst patterns such as “and the other [MASK]” in
the input sentence and then use the BERT MLM model to generate
candidate types such as “Venue”, “Team”, and “Stadium”.

We evaluated the quality of hypernyms generated with direct
masked prompting and the 44 patterns proposed in [24] on the
Ontonotes Development Dataset. When generating hypernyms, we
expect high-quality candidates to be semantically equivalent to con-
cepts contained in our input type ontology.

Unfortunately, we found that direct masked prompting resulted in
tokens that were indefinite and unsuitable to serve as candidate types.
Based on our observation, the four Hearst patterns in Table 1 provide
the highest quality hypernyms under a simple direct matching to
types in the OntoNotes ontology.

Nevertheless, based on the syntax and grammar of the sentence,
hearst patterns can generate tokens that are unsuitable to serve as
fine-grained entity types. For example, with a single prompt, the
MLM can generate “Famous”, “Actor”, “Celebrity” and “Person” as
the most probable words, where “Famous” is unsuitable to serve as a
fine-grained entity type. To reduce the noises caused by the use of a
single Hearst pattern, we ensemble 𝑛 Hearst Patterns to consolidate
the most commonly generated candidate types. For each pattern in
the pattern list 𝑃 , we collect the top 𝑘 most probable tokens from
the probability distribution predicted by the BERT MLM. Then, we
aggregate the tokens and identify the set of candidates that have the

Masked Prompt Pattern Prec Rec F1
[MASK] 11.8 5.2 7.2
[MASK] such as 53.3 72.4 61.4
such [MASK] as 47.9 68.7 56.5
and some other [MASK] 48.8 66.6 56.4
and the other [MASK] 47.6 68.3 56.1

Table 1: Performance of direct masked token prompting &
Hearst patterns with simple type mapping on Ontonotes Dataset.

largest overlap. We perform the voting ensemble as follows:

𝑦 = 𝑐𝑜𝑢𝑛𝑡 (𝑚) {𝐻1 (𝑥), 𝐻2 (𝑥), ..., 𝐻𝑛 (𝑥)} (1)

where𝐻𝑛 (𝑥) is the candidate type generated by the 𝑛𝑡ℎ hearst pattern
and 𝑐𝑜𝑢𝑛𝑡 (𝑚) is the function that selects all candidates generated
at least 𝑚 times. In our experiments, we take 𝑚 = ⌊𝑛2 ⌋ + 1. We
observe that the number of Hearst patterns employed is not sensitive
as ensembling ensures the most confident candidates retain.

...Wrigley Field and the other [MASK].

...Wrigley Field and some other [MASK].

... [MASK] such as Wrigley Field.

1. Candidate Type Generation

Stadium, Venue, Location, Game, Thing, Team

Ensembled Candidate Type Prediction

Venue, Team, Stadium, Location, Game...

Game, Stadium, Place, Thing, Venue, ...

Location, Stadium, Venue, Event, Place, ...

Candidate Type Generation with MLM Prompting

Sammy Sosa got a standing ovation at Wrigley Field.

Head Word Parsing

Figure 2: Candidate Type Generation

Example 3: As shown in Fig. 2, by ensembling the results from
prompting with several Hearst patterns, the quality types for 𝑒1
“Stadium, Venue, Location, Game” retain but the noisy types “Thing”
and “Team” are removed.

3.3 High-Level Type Resolution
Given the generated candidate types and head words for each men-
tion in the sentence, we seek to resolve the concrete type for this
candidate type set at the high levels of the type ontology. Specifically,
we first align the generated candidates to several high-level types in
the type ontology, and then select the most accurate high-level types
with a pre-trained entailment language model.

3.3.1 Candidate Type Alignment. Following the previous step
of candidate type generation, we combine the generated candidates
from both the parsed head words and the ensembled cloze prompting
to form a candidate type set. These candidates are generally noisy
and may not exist directly in our type ontology. However, we observe
that the generated candidates will usually cluster closely around a
high-level concept in the ontology. Thus, we perform our high-level
type alignment with a cosine-similarity-based matching.

We use Word2Vec3 [19] embeddings to construct our type embed-
dings for the cosine-similarity-based type alignment. We construct

3https://code.google.com/archive/p/word2vec/
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a verbalizer by selecting at least 𝑙 semantically related words for
each coarse type. For a high-level type of “Organization”, we might
include seed types such as “Corporation”, “University”, “Firm”,
“Business”, and “Government” in its verbalizer. This verbalizer is
then utilized to systematically map the MLM hypernym prediction
to the most relevant type. In our experiments, we provide at least
five seed types 𝑆 for each type node 𝑐 in the first level of the type
ontology. Increasing the number of seed types increases the cov-
erage and confidence of the verbalizer. Since the most commonly
generated hypernyms for each concept are in the input ontologies,
ONTOTYPE is not sensitive to the number of seed types collected.
With the seed types, we construct a node embedding 𝑁 by taking
the average of word embeddings from both the first-level type and
its corresponding seed types,

𝑁 =

∑
𝑠𝑖 ∈𝑆 𝑒𝑚𝑏 (𝑠𝑖 ) + 𝑒𝑚𝑏 (𝑐)

|𝑆 | + 1
. (2)

where 𝑒𝑚𝑏 (·) indicates the Word2Vec embeddings.
Then we rank each generated candidate type to a first-level type

on our type ontology by calculating the cosine similarity between
the embeddings of the generated candidate labels 𝑏 and that of the
first-level types 𝑇 ,

𝑠𝑐𝑜𝑟𝑒 (𝑏,𝑇 ) rank
= 𝑐𝑜𝑠𝑖𝑛𝑒 (𝑒𝑚𝑏 (𝑏), 𝑒𝑚𝑏 (𝑇 )) . (3)

Finally, the first-level type that has the highest similarity is selected
as the aligned high-level type.

⋮

Figure 3: Candidate Type Generation

Example 4: In Figures 2 and 3, the consolidated candidate labels
“Location”, “Stadium”, “Venue”, and “Game” are closely related to
the high-level type “Location” in our ontology. By performing the
cosine-similarity-based matching, “Location” is identified as 𝑒1’s
high-level type over “Organization” or “Person”. Thus, we select
the most similar high-level type given by the head word, generated
candidate labels, and the entailment model.

3.3.2 High-Level Type Selection. After the previous step of
candidate type alignment, we obtain several high-level types for
each entity mention in the sentence. Given these types, we seek
to select the most accurate high-level type for each entity men-
tion under the local context. We observe that the task of selecting
the most appropriate entity type can be viewed as a Natural Lan-
guage Inference (NLI) task. Thus, we treat the input sentence as
the premise in NLI and generate the hypothesis using a pre-defined
declarative template. To resolve the type of the input mention, we
use the template: “In this sentence, [MENTION] is a
[TYPE].” We then rank each type in the first level of the ontology
with the entailment score from a RoBERTa NLI model [17].

Example 5: In Fig. 3, we align a majority of the generated candidate
type set to the Location seed types. The NLI model further ranks
Location over Organization or Person. By utilizing the information in
conjunction, 𝑒1 is solidly aligned to the high-level type “Location”.

3.4 Fine-Grained Type Resolution
Given the high-level types of the entity mentions, ONTOTYPE further
leverages the ontology structure to progressively resolve the fine-
grained label. Following the same principle of entailment-based type
selection for the high-level types, we utilize the entailment model
[17] to compute the entailment score, 𝜎𝑒𝑛𝑡𝑎𝑖𝑙 . Then, ONTOTYPE

can automatically select the most accurate fine-grained entity types
along our type ontology. Specifically, we first examine the child
types of the previously determined higher-level types and then select
the child type with the highest ranked score as the fine-grained type.

In addition to the entailment model, we also utilize the candidate
type set to refine our fine-grained type selection. If the parsed head
word is present in our type ontology, the entailment scores of that
parent and its child types are weighted higher through 𝜎𝑐𝑎𝑛𝑑 . Simi-
larly, if the generated candidate types are in our type ontology, the
entailment scores of their parents and children are also weighted
higher through 𝜎𝑐𝑎𝑛𝑑 . Finally, we select the fine-grained type for
each mention with the highest-ranked score.

We calculate the ranking score for the entities at the current level
of the ontology as follows:

𝑟𝑎𝑛𝑘 (𝑡𝑦𝑝𝑒) = 𝜎𝑒𝑛𝑡𝑎𝑖𝑙 + 𝜎𝑐𝑎𝑛𝑑 (4)

We first leverage our NLI pre-trained model [17] to find the en-
tailment score 𝜎𝑒𝑛𝑡𝑎𝑖𝑙 for each entity type. Then if a type in the
candidate type set is a descendent to the entity type, we add a weight
𝜎𝑐𝑎𝑛𝑑 . We repeat this entailment-based selection process recursively
along the type ontology to select the best fine-grained type.

Definition (Entity Type Granularity Parameter 𝜃 ): We assume there
is a scalar of 𝜃 indicating how granular or specific the final selected
entity type should be. The smaller 𝜃 is, the more granular entity
types are consolidated as the final one.

Thus, if the child types do not have a sufficient gain of at least 𝜃
in ranking score over the parent type at a certain level, we stop the
recursion and select the parent type as the final fine-grained type. We
conduct a parameter study to explore the sensitivity of ONTOTYPE

to the parameter 𝜃 in Section 4.5.1.

⋮

Figure 4: Fine-Grained Type Refinement
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Example 6: In Fig. 4, we consider all descendent types of “Location”
as potential fine-grained entity types for 𝑒1. To begin, ONTOTYPE

generates the hypotheses and ranks all child types of “Location”.
With the resultant entailment score rankings of these sibling types,
we consolidate and select “Building” as the highest-ranked type.
Then, a similar process is done at a deeper level of the ontology to
select the final type “Stadium”.

4 EXPERIMENTS

Datasets Ontonotes FIGER NYT
# of Types 89 113 125
# of Documents 300k 3.1M 295k
# of Entity Mentions 242K 2.7M 1.18M
# of Train Mentions 223K 2.69M 701K
# of Test Mentions 8,963 563 1,010

Table 2: Dataset Statistics

4.1 Datasets
We compare the performance of ONTOTYPE and several baseline
methods on three benchmark FET datasets: NYT, Ontonotes [6] and
FIGER [15]. The basic statistics of the datasets are shown in Table
2. For the OntoNotes and FIGER datasets, we leverage the included
type ontologies while the NYT dataset leverages the input FIGER
ontology. All NER test sets are annotated using the ontologies as
a set of type labels. Thus, each entity mention is labeled with a
fine-grained label represented as a path within the ontology. The
ontologies have a maximum depth of three and contain four to six
high-level types (e.g., Location, Person, and Organization).

4.2 Baselines
ONTOTYPE is a FET method that does not require human anno-
tation as supervision. We compare ONTOTYPE with four weakly
supervised and nine zero-shot FET methods as discussed below. We
conduct all experiments on a single NVIDIA RTX A6000 GPU.
For each baseline method, we utilize the default parameters as de-
tailed in their studies. Finally, we evaluate generative LLMs on FET
using Gemma 2b model[26], Llama 2 7b model[27] and OpenAI
“gpt-3.5-turbo”[22]. ONTOTYPE leverages a pre-trained BERT [5]
(BERT-base, uncased) and pre-trained RoBERTa fine-tuned on the
MNLI dataset [17] available in the HuggingFace Library. In addition,
ONTOTYPE utilizes Word2Vec4 [19] embeddings to construct our
type embeddings. Finally, we conduct parameter and ablation studies
listed in Sections 4.5.1 and 4.5.2 respectively.
Weak Supervision with Human Annotations.
UFET [3]: This weakly supervised baseline is a model that predicts
open types and is trained using a multitask objective that pools
head-word supervision with supervision from entity linking.
BERT MLMET [4]: This weakly supervised baseline fine-tunes a
BERT-based model using human annotations, supervision from head
words and mention hypernyms generated from Hearst patterns.
LITE [13]: This weakly supervised baseline is a fine-tuned MNLI
model leveraged to rank ultra-fine entity types.
NFETC-SSL [34]: This weakly supervised baseline proposes a
semi-supervised learning method with mixed label smoothing and
pseudo labeling for fine-grained entity typing.
4https://code.google.com/archive/p/word2vec/

Distant Supervision from Knowledge Bases.
ZOE [41]: This zero-shot baseline leverages a type taxonomy de-
fined as Boolean functions of Freebase types and grounds a given
entity mention to the type-compatible Wikipedia entries to infer the
target mention’s types.
DZET [20]: This zero-shot baseline utilizes the type description
available from Wikipedia to build a distributed semantic representa-
tion of the types and aligns the target entity mention type representa-
tions onto the known types.
Transfer Learning Methods.
OTyper [37]: This zero-shot baseline is a neural network trained
on a limited training dataset. The model is evaluated on the Open
Named Entity Typing task, which is FET where the set of target
types is not unknown.
MZET [38]: This zero-shot baseline leverages the semantic mean-
ing and the hierarchical structure into the type representation. The
method leverages the knowledge from seen types to label the zero-
shot types through the use of a memory component.
ChatGPT [22]: This zero-shot, annotation-free baseline leverages a
generative large language model as a knowledge source for entity
typing. We evaluate ChatGPT on three different prompts to mitigate
possible prompt construction-based errors.

Prompt1: “Return the fine-grained entity types of the given entity
mentioned in the sentences below. Be concise and ONLY utilize the
types from this list of possible entity types. [entity types] {entity
types} [sentence] {sentence} [entity mention] {entity mention}”.

Prompt2: “Select a single label from the following list that best
serves as a hyponym for the entity mention. [labels] {entity types}
[sentence] {sentence} [entity mention] {entity mention}"

Prompt3: "Select the single most fine-grained entity type from
the following list for the given entity mention. [entity types] {entity
types} [sentence] {sentence} [entity mention] {entity mention}"

We discuss the limitations of leveraging ChatGPT as a fine-
grained entity typing method in Section 5.3.
Gemma [26]: This zero-shot, annotation-free baseline leverages a
generative large language model as a knowledge source for entity
typing. We utilize Prompt1 for evaluation on the FET task.
LLaMA 2 [27]: This zero-shot, annotation-free baseline leverages a
generative large language model as a knowledge source for entity
typing. We utilize Prompt1 for evaluation on the FET task.

4.3 Evaluation Metrics
Following the prior FET studies ([4], [15], [18]), we evaluate our
methods and the baselines using three evaluation metrics: Strict
Accuracy (Acc), Micro-F1 (Mi-F1), and Macro-F1 (Ma-F1).
Accuracy. Given a set of entity mentions 𝑀 , we denote the set of
ground truths and predicted types as 𝑡𝑀 and ˆ𝑡𝑀 respectively. Given
𝜎 as an indicator function, strict accuracy is defined as

𝐴𝑐𝑐 =
Σ𝑚∈𝑀𝜎 (𝑡𝑚 == ˆ𝑡𝑚)

𝑀

Macro-F1. Macro-F1 is calculated using Macro-Precision (𝑃𝑚𝑎)
and Macro-Recall (𝑅𝑚𝑎) where

𝑃𝑚𝑎 =
1
|𝑀 | Σ𝑚∈𝑀

|𝑡𝑚 ∩ ˆ𝑡𝑚 |
ˆ𝑡𝑚
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Settings Model NYT FIGER Ontonotes
Acc Mi-F1 Ma-F1 Acc Mi-F1 Ma-F1 Acc Mi-F1 Ma-F1

Weak Supervision UFET [3] - - - - - - 59.5 71.8 76.8

with Human Annotations BERT-MLMET [4] - - - - - - 67.44 80.35 85.44
LITE [13] - - - 66.2 74.7 80.1 68.2 81.4 86.6
NFETC-SSL [34] - - - 71.2 80.2 81.9 64.4 74.3 79.7

Distant Supervision via KBs DZET [20] 27.3 53.1 51.6 28.5 56.0 55.1 23.1 28.1 27.6
ZOE [41] 62.1 73.7 76.9 58.8 71.3 74.8 50.7 60.8 66.9

Transfer Learning OTyper [37] 46.4 65.7 67.3 47.2 67.2 69.1 31.8 36.0 39.1
MZET [38] 30.7 58.2 56.7 31.9 57.9 55.5 33.7 43.7 42.3
ChatGPT Prompt 1[22] 47.3 59.1 54.3 51.7 65.3 58.3 27.7 37.5 32.6
ChatGPT Prompt 2 [22] 45.1 64.0 61.9 52.3 67.8 61.4 31.3 41.3 35.9
ChatGPT Prompt 3 [22] 44.8 56.9 52.1 49.9 61.1 55.8 24.7 33.8 29.4
Gemma [26] 44.8 56.9 52.1 49.9 61.1 55.8 24.7 33.8 29.4
LLaMA 2 [27] 43.2 55.6 51.7 48.5 59.7 54.4 24.1 33.2 28.8

Annotation-Free ONTOTYPE + Original Ontology 69.6 78.4 82.8 49.1 67.4 75.1 65.7 73.4 81.5
ONTOTYPE + Modified Ontology - - - 51.1 68.9 77.2 - - -

Table 3: Results (%) on Three Test Sets (Some slots in the benchmarked methods marked "-" due to no fully annotated training data).

𝑅𝑚𝑎 =
1
|𝑀 | Σ𝑚∈𝑀

|𝑡𝑚 ∩ ˆ𝑡𝑚 |
𝑡𝑚

Micro-F1. Micro-F1 is calculated using Micro-Precision (𝑃𝑚𝑖 ) and
Micro-Recall (𝑅𝑚𝑖 ) where

𝑃𝑚𝑖 =
Σ𝑚∈𝑀 |𝑡𝑚 ∩ ˆ𝑡𝑚 |

Σ𝑚∈𝑀 ˆ𝑡𝑚

𝑅𝑚𝑖 =
Σ𝑚∈𝑀 |𝑡𝑚 ∩ ˆ𝑡𝑚 |

Σ𝑚∈𝑀𝑡𝑚

Macro-F1 and Micro-F1 are calculated using the F1 score formula
with their respective granular precision and recall scores.

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

4.4 Main Results
Table 3 shows our results on the test set of NYT, FIGER and
Ontonotes, especially comparing with the notable exising method
ZOE. On the NYT dataset, ONTOTYPE achieves the best zero-shot
performance on this dataset. It achieves 5.9 absolute Ma-F1 improve-
ment over the state-of-the-art zero-shot fine-grained entity typing
method ZOE. While on the Ontonotes dataset, ONTOTYPE achieves
the best zero-shot performance on this dataset while trailing the
best supervised method by 3.94 Ma-F1 points. ONTOTYPE achieves
14.6 absolute Ma-F1 improvement over the state-of-the-art zero-shot
fine-grained entity typing method ZOE.

A performance comparison between ONTOTYPE and ZOE demon-
strates the benefit of leveraging the knowledge embedded in pre-
trained language models as a form of minimal supervision to identify
entity mention types. ZOE leverages a type ontology and maps a
given mention to type-compatible Wikipedia Entries. As a result,
ZOE relies on surface-level information from the mention string. On-
toType ensembles contextual information from various PLMs to con-
solidate the final entity type. Given a sentence: “The biggest cause
for concern for McGuff is the bruised hamstring Regina Rogers
suffered against (Utah) last Saturday”, ZOE incorrectly utilizes the
surface string to label “Utah” as a location. With PLMs, OntoType
recognizes “Team” or “Opponent” as candidates and finally consoli-
dates to “Sports Team”.

On the FIGER dataset, ONTOTYPE achieves 0.3 absolute Macro-
F1 improvement over state-of-the-art zero-shot fine-grained entity
typing method ZOE [41]. However, our method trails ZOE in strict

MZET US President Joe Biden \Person\Politician was one of
many foreign leaders to speak with President Zelensky,
and he "pledged to continue providing Ukraine \Loca-
tion with the support needed to defend itself, including
advanced air defence systems", the White House \Loca-
tion\Building said.

ZOE US President Joe Biden \Person\Politician was one of
many foreign leaders to speak with President Zelensky,
and he "pledged to continue providing Ukraine \Loca-
tion\Country with the support needed to defend itself,
including advanced air defence systems", the White
House \Location\Building said.

ONTOTYPE US President Joe Biden \Person\Politician\President
was one of many foreign leaders to speak with Presi-
dent Zelensky, and he "pledged to continue providing
Ukraine \Location\Country with the support needed to
defend itself, including advanced air defence systems",
the White House \Organization\Government said.

Table 4: Type predictions (in color) on three entity mentions (in
bold): ONTOTYPE vs. two other Zero-Shot FET methods.

accuracy and Micro-F1. In the FIGER dataset, predictions are made
based on both the surface-level information and the contextual infor-
mation in the sentence. The major advantage of ONTOTYPE is to ac-
curately capture the contextual information to provide a fine-grained
entity type. However, ONTOTYPE does not involve a mechanism
to capture the surface-level information of an entity mention. We
discuss this issue further in our error analysis (Section 5.2).

4.5 Ablation and Parameter Studies
4.5.1 Study of Sensitivity to Parameters. A potential concern
with the experimental setup can be overtly high sensitivity of ONTO-
TYPE to the Entity Type Specificity parameter 𝜃 . For all experiments
in Table 3, we leverage the same 𝜃 value of 0.3. Additionally, from
the plot in Figure 5, we clearly see that F1 scores are not drastically
sensitive to theta with standard deviations of 0.3631 and 0.6262 on
FIGER and OntoNotes respectively.

4.5.2 ONTOTYPE Module Ablation Study. We also include the
prediction results of our ablation models to demonstrate how the NLI
module contributes to the final type assignment. We utilize a simple
type mapping to evaluate our ensembled BERT Cloze Prompting
module. Figure 6 shows the results of ablation studies on the test set
of the Ontonotes dataset. We compared the ONTOTYPE full model
with various ablations and variations. We find that direct prompting
performs the worst whereas including parsed head words further
improves the recall. Including the NLI module significantly improves
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Figure 5: Parameter study: 𝜃 on OntoNotes and FIGER
the precision of the framework as we are able to leverage the type
hierarchy to consolidate the fine-grained type that best represents
the initial candidates. Furthermore, we include Table 6 to examine
alternative embedding approaches for the high-level type assignment.
When performing high-level type assignment, we aim to leverage
the surface-level information of the candidate type set to select the
high-level type that is most conceptually similar. As a result, we find
the one with word2vec embeddings performs better than BERT[5]
and RoBERTa[17] which incorporate the semantic context of a word
in the sentence.

4.5.3 Efficiency & Scalability Study. Finally, we conduct an
efficiency and scalability study to gauge the impact of larger scale
data sets on our method and include the results in Table 5.

Number of Mentions Time to Predict Types
1000 1.75 min
25000 57.1 min
100000 4.3 hr

Table 5: Results of the efficiency & scalability study.
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Figure 6: ONTOTYPE ablation study on OntoNotes: Results (%)

Model Prec Rec Ma-F1
ONTOTYPE𝐵𝐸𝑅𝑇 82.3 77.1 79.6
ONTOTYPE𝑅𝑜𝐵𝐸𝑅𝑇𝑎 81.9 76.9 79.4
ONTOTYPE𝑊𝑜𝑟𝑑2𝑉𝑒𝑐 84.7 78.4 81.5

Table 6: High-level type alignment ablation study: Results (%)

4.6 Comparative Case Study
Table 4 presents a sentence from a recent news article with tagged
mentions and predicted entity types. We find that methods like
MZET sometimes predict incompatible types due to incorrect or mis-
leading surface information. For example, when typing “The White
House”, MZET and ZOE leverage the surface-level information

from large KBs to identify the mention as a location. However, given
the local context, the White House clearly refers to the U.S. govern-
ment. When considering the mention “US President Joe Biden”, our
method utilizes the type information from the candidate type set (Of-
ficial, Leader, Politician, Individual) to explore the “Person” branch
within the ontology, and then it searches the “Politician” branch to
select the best fine-grained context-aware type “President” for our
given entity mention. Thus, with the assistance of the PLMs, we
can incorporate contextual information to derive more context-aware
type labels.

5 DISCUSSION
5.1 Modified Fine-Grained Type Ontology
The structure of the fine-grained type ontology is important to the
performance of ONTOTYPE. The input ontology must be built using
hypernym-type relationships where each parent type is a generaliza-
tion of the child type. The provided FIGER ontology contains logical
inconsistencies in how various types of relations are organized.

For example, the FIGER ontology considers the parent of the
“Road” type to be “Transportation” rather than “Location”. This
logical inconsistency leads to erroneous typing from our method.

Table 3 includes our results on the test set of FIGER with and
without a modified type ontology.

The modification of an ontology is done by reorganizing the types
to leverage hypernym-hyponym type relationships. That is, in the
revised type ontology, each parent type is a generalization of its
child(ren) type(s). The included FIGER type ontology considers the
parent type of the “Road” type to be "Other\Transportation” and
the parent type of “Building” to be “Other”. While “Other” can
be considered a valid generalization, it is extremely broad and the
coarse-grained type of “Location” serves as a stronger parent for
both fine-grained types. Thus, we modify the included ontology
by reorganizing the fine-grained types under parent types that have
stronger generalizations (e.g., Building & Road under Location
rather than Other). ONTOTYPE achieves 2.1 absolute Ma-F1 im-
provement given this modified type ontology. Thus, we find that
ONTOTYPE can be further improved with correct type ontologies to
leverage the inherent hierarchical relationships between coarse and
fine-grained types. We provide insights into specific reasons for the
mistakes made by the ONTOTYPE framework. For our analysis, we
collect some of the erroneous decisions in the Ontonotes and FIGER
test sets. We highlight the Gold Type for each mention in blue.

5.2 Error Analysis: ONTOTYPE
ONTOTYPE, though having high performance, still generates nontriv-
ial errors. We analyze the reasons behind the errors on the Ontonotes
and FIGER test sets and categorize them into three types. Note the
Gold Type for each mention is highlighted in blue (and Italian font).

Error Type 1: Lack of Knowledge Base

Sentence E1: He was a caseworker in Minnesota [\Location\Region]
but left the job because he found himself perpetually sick from the
environments in which he worked.
In E1, ONTOTYPE incorrectly types Minnesota as a Country rather
than the gold type of Region. In context, we should consider State a
more reasonable type to predict. With a simple KB-matching method,
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we would be able to capture the surface-level information to type it
as a State/Province. ONTOTYPE relies on neither human annotations
nor a knowledge base. Obviously, introducing a knowledge base and
the KB-matching mechanism will further improve its performance.

Error Type 2: Incomplete Fine-Grained Type Ontology

Sentence E2: Valley Federal Savings & Loan Association said
Imperial Corp. of America withdrew from regulators its application
to buy five Valley Federal branches [\Location\Structure], leaving
the transaction in limbo.
In E2, ONTOTYPE generates \Other. Even when ONTOTYPE is able
to generate high-quality candidate labels, it can sometimes fail to
align to the correct entity type due to an incomplete type set. In this
example, our Candidate Type set generated by prompting consists
of Asset, Property, Facility, Bank, and Branch. Clearly, the best
fine-grained type should be Asset or Property (rather than the Gold
Type: Location or Structure). Since the provided OntoNotes ontology
does not include such fine-grained types, ONTOTYPE is unable to
generate the correct answer. Clearly, a refined ontology will further
improve its performance.

Error Type 3: Incapability to Type Nested Entities

Sentence E3: The 33-year-old Billings [\Location\City] native en-
listed as a military veterinarian.
In E3, ONTOTYPE identifies Billings as \Person. This mistake can
be caused by confusing the type of the whole entity “Billings native”
with the type of the nested entity “Billings”. PLM is good at gen-
erating candidate types for the whole entity based on its contextual
structure, whereas the knowledge about a nested entity like “Billings”
(in front of head word “native”) can be more easily derived from a
knowledge-base or from some nested entity type patterns. We will
leave the issue of typing nested entities to future work.

5.3 Error Analysis: LLM on Fine-grained Typing
Recent developments of large language models (LLMs) (e.g., Chat-
GPT and GPT-4 [22]) lead to enhanced capability at generating
high-quality responses to prompts based on the knowledge learned
from their extensive training corpora. Clearly, LLMs can provide
stronger context-aware knowledge for ONTOTYPE’s candidate type
generation. However, without an ontological structure as guidance,
an LLM (e.g. ChaptGPT) may still generate many errors, leading to
lower performance than our method, as shown in Table 3. Here we
conduct error analysis for types generated by ChatGPT through the
following prompt: “Return the fine-grained entity types of the given
entity mentioned in the sentences below. Be concise and ONLY utilize
the types from this list of possible entity types. [entity types] {entity
types} [sentence] {sentence} [entity mention] {entity mention}”.
LLM Error Type 1: Incomplete Entity Types
LLM-E1: Given a sentence 𝑆2: “The ceremony will take place Feb.
16–20.” and a parsed entity mention span “Feb. 16–20”, we prompted
ChatGPT to generate candidate types for the masked entity mention
span, which generates: “Later”, “There”, “Outside” and “Indoors”.
While these tokens complete the sentence accurately, they cannot
serve as precise hypernyms or fine-grained types for the entity men-
tion span of interest. With Hearst patterns, we can elicit more accu-
rate hypernyms like “Time”, “Date” and “Event”. However, we are
still unable to derive the most accurate fine-grained label of “Period”

or “Interval”. In contrast, ONTOTYPE utilizes a top-down approach
guided by a fine-grained type ontology to refine and finally select
the most conclusive entity type.
LLM Error Type 2: Incorrect Entity Types
LLM-E2: Given a sentence 𝑆3: “It will be the first time the Falcon
Heavy has conducted a launch for the U.S. military’s secretive X-
37B spaceplane project” and a parsed entity mention span “Falcon
Heavy”, we can again prompt ChatGPT to generate candidate types
for the masked entity mention span. With our prompt, ChatGPT
generates: “Company”, “Organization”, “Team”, “Government”,
and “Agency”. With Hearst patterns, we can extract more accurate
candidates like “Vehicle”, “Carrier” and “Launcher”. Furthermore,
ChatGPT is unable to derive the most accurate fine-grained label
of “Spacecraft”, “Shuttle” or “Rocket”. While some generated to-
kens accurately type the mention span, ChatGPT still requires a
structured mechanism to mitigate hallucinations and select the most
fine-grained entity type.

Overall, to achieve high quality fine-grained typing, we believe
an LLM should be assisted with structured knowledge (e.g., a fine-
grained ontological structure), which is an interesting direction for
future research.

6 CONCLUSIONS
We propose ONTOTYPE, which leverages the weak supervision set-
ting of pre-trained language model prompting. We use head words
and MLM cloze prompting for fine-grained candidate label genera-
tion. Then we automatically match the generated fine-grained types
to our type ontology with an inference method to select the most
appropriate fine-grained types under the local context. Extensive
experiments on real-world datasets show that ONTOTYPE is highly
effective and substantially outperforms the state-of-the-art zero-shot
FET methods. In the future, we plan to further refine and enrich
a type ontology which will enable us to incorporate more type in-
formation for even better performance. Furthermore, ONTOTYPE

lacks the capability to address nested entities (e.g., Denver Native).
We plan to resolve this in future work by incorporating boundary
knowledge to extract accurate and complete type information.
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