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ABSTRACT
Massive amount of unstructured text data are generated daily, rang-
ing from news articles to scientific papers. How to mine structured
knowledge from the text data remains a crucial research question.
Recently, large language models (LLMs) have shed light on the text
mining field with their superior text understanding and instruction-
following ability. There are typically two ways of utilizing LLMs:
fine-tune the LLMs with human-annotated training data, which is
labor intensive and hard to scale; prompt the LLMs in a zero-shot
or few-shot way, which cannot take advantage of the useful infor-
mation in the massive text data. Therefore, it remains a challenge
on automated mining of structured knowledge from massive text
data in the era of large language models.

In this tutorial, we cover the recent advancements in mining
structured knowledge using language models with very weak su-
pervision. We will introduce the following topics in this tutorial:
(1) introduction to large language models, which serves as the
foundation for recent text mining tasks, (2) ontology construction,
which automatically enriches an ontology from a massive corpus,
(3) weakly-supervised text classification in flat and hierarchical
label space, (4) weakly-supervised information extraction, which
extracts entity and relation structures.

CCS CONCEPTS
• Information systems→ Data mining; • Computing method-
ologies → Natural language processing; Information extraction;
Classification and regression trees.
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1 INTRODUCTION
The mission of KDD research is to develop new principles and
methodologies for effective mining of knowledge from massive
amounts of data. Since the majority of such data are in the form of
unstructured text, mining structured knowledge from text becomes
a core research problem in KDD. With the enormous volume and
complex, context-sensitive semantics of text data, it is very costly to
rely on human annotation for suchmining. However, for a long time,
developing automated (i.e., unsupervised or weakly supervised)
approaches to accomplish this task remains a major challenge.

With the recent development of representation learning and
large language models (LLMs), new and powerful methods have
been or are being developed for effective and automated mining
of structured knowledge from text. This tutorial provides a com-
prehensive overview of the recent advancements in this research
frontier. We will summarize recent research on exploring the power
of representation learning and large language models for automated
mining of structured knowledge from massive corpora.

We will first introduce the key concepts, primitives, and recent
developments of representation learning and large language mod-
els, which serves as the foundation for understanding recent re-
search on transforming unstructured text into structured knowl-
edge. Then we will introduce three frontiers along this line of
research: (1) automated ontology construction and enrichment, (2)
weakly-supervised text classification in flat and hierarchical label
space, and (3) weakly-supervised information extraction, which
extracts entity and relation structures and construct knowledge
graphs automatically. Finally, we will discuss how such mined,
structured knowledge may impact the applications of large lan-
guage models in question answering, knowledge discovery, and
trustworthiness analysis.

https://creativecommons.org/licenses/by/4.0/
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2 PRELIMINARY FOR LARGE LANGUAGE
MODELS

This section delves into the foundational aspects of Large Lan-
guage Models (LLMs), covering their architectural designs, training
methodologies, and prompting strategies during inference.

2.1 Architectures
The architectures of LLMs can be broadly categorized into three
types: encoder-only, encoder-decoder, and decoder-only models.
Each type serves distinct purposes and is optimized for different
kinds of tasks within the fields of text mining and NLP.

Encoder-only LMs. Encoder-only language models, such as BERT
[15] and its variants (e.g., RoBERTa [56], DeBERTa [26]), are de-
signed primarily for understanding tasks. They consist solely of
an encoder network, processing input text to predict a class label
or generate embeddings. These models have been instrumental in
advancing natural language understanding [107, 108], serving as a
backbone for tasks like text classification, sentiment analysis, and
information extraction.

Enocder-Decoder LMs. Encoder-decoder models, including BART
[48], and T5 [84], incorporate both encoder and decoder networks,
enabling them to excel at generation tasks. These models first en-
code the input text into an intermediate representation, and the
decoder then uses to generate output text. This architecture is
especially effective for tasks requiring a deep understanding of
context and the ability to produce coherent, extended text, such as
translation and text summarization.

Decoder-only LMs. Decoder-only models, such as GPT [5, 81]
and its successors (e.g., PaLM [18], Llama [19]), are optimized for
generative tasks. These models predict the next token in a sequence
based on the previous tokens, making them well-suited for tasks
like text completion and open-ended dialogue. Their architecture
allows for flexible application across a wide range of generative
tasks, from simple text extension to complex content creation.

2.2 Training Paradigm
The training of LLMs unfolds in stages: initial pre-training to grasp
language basics, followed by supervised fine-tuning for specific
applications or desired output styles, and finally, aligning with
human preferences and ethical standards.

Pre-training Tasks. The initial phase of pre-training is crucial for
LLMs to grasp the basics of language [77, 81]. During this stage,
models are exposed to vast amounts of text data, learning to predict
accurately in various contexts without direct supervision. Key tasks
include Masked Language Modeling (MLM), notably employed by
BERT [15], involves obscuring parts of the text for the model to
predict, fostering a deep grasp of context. Autoregressive Language
Modeling, used by GPT [81], trains the model to predict the next
token in a sequence, honing its generative capabilities. Denoising, as
seen in T5 [84] and BART [48], challenges models to correct inten-
tionally introduced textual errors, enhancing their comprehension
and correction skills.Mixture of Experts (MoE), such as those used in
Switch Transformer [20], distribute tasks across specialized model
components to efficiently scale model capacity.

Supervised Fine-tuning. Following pre-training, models undergo
supervised fine-tuning to specialize in particular applications. This
step adjusts the pre-trained parameters to optimize performance
for specific text mining and NLP tasks, ranging from classification
to generation. Fine-tuning can also involve multi-task fine-tuning,
which improves the model’s ability to generalize across different
types of data. Parameter-efficient fine-tuning techniques such as
Low-Rank Adaptation (LoRA) [28] are utilized, minimizing compu-
tational costs while maintaining the model performance.
Human Alignment. To align LLM outputs with human values,
the refinement stage begins with instruction tuning [73, 90], a spe-
cialized form of supervised fine-tuning. Unlike general fine-tuning
aimed at improving performance on specific tasks, instruction tun-
ing enables LLMs to engage in dialogues with humans, complete
tasks based on human prompts, and produce outputs in the desired
style. This step is pivotal in transitioning models from text comple-
tion engines to interactive systems that can understand and execute
complex instructions. Following instruction tuning, Reinforcement
Learning from Human Feedback (RLHF) [73] tailors the models’
behavior. Through RLHF, employing algorithms like Proximal Pol-
icy Optimization (PPO) [91] and Direct Preference Optimization
(DPO) [83], models are trained based on human preferences, steer-
ing them toward generating responses that are ethical, relevant,
and contextually appropriate, thereby ensuring their outputs are
closely aligned with human expectations.

2.3 Prompting Strategy
A myriad of prompting techniques have been explored to tailor
these models for specific tasks or to navigate complex scenarios
effectively. These strategies exploit the intrinsic abilities and knowl-
edge accumulated by LLMs, pushing the boundaries of what can
be achieved through few-shot or zero-shot approaches.
In-Context Learning (ICL) [5] allows LLMs to adapt to new tasks
by presenting them with a minimal set of examples within the
prompt. This method utilizes the model’s extensive pre-training on
diverse text data, enabling it to generate responses tailored to the
specifics of the task at hand without the need for additional training.
The selection of in-context demonstrations plays a critical role in
leveraging this capability, with strategies that focus on retrieving
semantically similar examples to a given query showing notable
improvements in model performance [70].
Multi-step Reasoning. Beyond ICL, the development of reason-
ing strategies has further expanded the capabilities of LLMs, en-
abling them to engage in more complex problem-solving processes.
Strategies such as Chain-of-Thought [120], Self-Consistency [113]
prompting guide the model through multi-step reasoning, allow-
ing it to explore various pathways to arrive at an answer. These
strategies not only improve the output accuracy but also enhance
transparency and insight into the reasoning process. The progres-
sion from simple task execution to complex reasoning demonstrates
the growing proficiency of LLMs in handling tasks that require a
deeper level of understanding and cognitive engagement.

These advancements in prompting techniques represent the
evolving interaction between human users and LLMs, showcas-
ing how adaptability and improved task execution can be achieved
without further training.
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3 ONTOLOGY CONSTRUCTION AND
ENRICHMENT

In the weakly-supervised text mining tasks, the form of weak super-
vision often appears as a few labeled samples, external knowledge,
or just the label space with the textual label names or keywords.
While the first two still provides some sample-label pairs, the last
one does not provide any sample-label correlation. Therefore, the
label-name-only weakly-supervised setting, or extremely weakly-
supervised setting, requires the least amount of human supervision,
while also being challenging as the model needs to fully understand
the weak supervision signals before any training.

In this section, we will discuss techniques about the label-name-
only weak supervision, from flat to hierarchical label space, in-
cluding how to enrich the ontology with more class discriminative
features (Sect. 3.1 Taxonomy Enrichment), how to construct such
ontological structure from a text corpus (Sect. 3.2), and how to
update/expand an existing structure (Sect. 3.3).

3.1 Ontology Enrichment
Ontology enrichment aims to enrich each node in the ontology
with more discriminative textual features (e.g., keywords).
Enriching a flat structure. One fundamental task of ontology
enrichment is to enrich a set of flat classes, which can be done
with discriminative topic discovery methods. Unlike recent unsu-
pervised topic discovery methods that directly cluster PLM embed-
dings [68, 151], discriminative topic discovery aims to find topic-
specific key terms for a provided set of topics. For example, “athelets”
and “football” are considered discriminative for the Sports topic
when compared with Politics and Technology topics. CatE [63]
trains a joint word embedding space which not only captures se-
mantic similarity but also enforces topical words of different seed
topics to separate in the embedding space. Therefore, the trained
embedding space ensures discriminativeness between topics. It addi-
tionally assumes a topic-document-word generative process which
learns both local and global context. KeyETM [25] extends embed-
ded topic modeling [16] by incorporating user knowledge (topical
keywords) as topic-level prior over the vocabulary. SeeTopic [146]
specifically tackles the problem of potentially unseen topic names
in the text corpus and proposes to utilize the general knowledge of
PLMs to encode the out-of-vocabulary seeds. SeedTopicMine [149]
studies multiple types of context information: seed-guided text
embeddings, PLM-based contextualized embeddings, and topic-
indicative sentences. The candidate terms are retrieved and ranked
by each type of features and an ensemble ranking mechanism is
used to identify the most confident ones according to all features.
This process is repeated iteratively by adding enrichment words
into each topic and refining the context features.
Enriching a hierarchical structure. Enriching a hierarchy addi-
tionally requires modeling structural information. TaxoGen [137]
is an unsupervised approach which recursively clusters word em-
beddings and constructs local corpora for low-level nodes to refine
word embeddings. NetTaxo [93] extends it by modeling network
structure information associated with the text data. JoSH [69] takes
a taxonomy as guidance and trains a joint embedding space that
captures word semantic meaning with local context and embeds
the structure by preserving relative tree distances between nodes.

3.2 Seed-Guided Taxonomy Construction
To further reduce human effort on curating a taxonomy, seed-
guided taxonomy construction is studied to automatically construct
a hierarchical structure from a text corpus by taking only a small
set of seeds.
Set Expansion. Set expansion is a subtask of taxonomy construc-
tion by considering only a flat structure. This task aims to expand a
set of seed entities (e.g., United States, China, and Spain) with more
entities belonging to the same semantic class (e.g., more countries
like Canada and United Kingdom). SetExpan [96] uses the skip-
grams and word embedding features from a text corpus to evaluate
the similarity of candidate entities with the seed set. It iteratively
bootstraps the entity set by find new entities and features in each
iteration, and a rand ensemble mechanism is applied to reduce
the effect of noisy features. Set-CoExpan [32] additionally gener-
ates auxiliary sets by embedding learning and clustering, which
are semantically similar to the target entity set. Multiple sets are
expanded simultaneously to ensure the expansion quality of the
target entity set. CGExpan [147] introduces the text representation
power of PLMs by automatically constructing knowledge probing
queries. The class-probing queries are used to generate a textual
class name for the target set, which is then used to construct entity-
probing queries to iteratively expand the seed set. ProbExpan [54]
proposes to first refine entity representations with contrastive learn-
ing and heuristic-based hard negative selection. Then, the refined
representations are used in a probabilistic expansion process with
window search and entity re-ranking. FGExpan [122] studies the
fine-grained entity set expansion task which aims to expand the
seed set according to the finest possible common type. Three scores
are combined to infer the finest type, including entity generation
score by MLM, type generation score guided by a type taxonomy,
and textual entailment score.
Seed-Guided Taxonomy Construction. Given a small seed tax-
onomy, this task aims to expand it to a more complete taxonomy
structure by mining from a text corpus. HiExpan [97] expands an
entity taxonomy by decomposing the process into width expansion
and depth expansion, followed by a global structure adjustment
step. The width expansion is done with an entity set expansion
method, and the depth expansion is achieved with an embedding-
based method which captures relation using word analogy [80].
CoRel [33] trains a relation transferring module using PLMs to
learn the seed parent-child relations, which is applied along multi-
ple paths to expand the seed taxonomy in width and depth. Tax-
oCom [47] completes a partial topical taxonomy by first learning
local discriminative word embeddings and then applying novelty
adaptive clustering of embeddings to find novel subtopics.

3.3 Taxonomy Expansion
The taxonomy expansion task assumes an existing taxonomy struc-
ture is provided and aims to expand it by inserting new nodes into
the taxonomy. TaxoExpan [95] proposes to encode the structural
information with local egonets around anchor nodes and a position
enhanced graph neural network. The query-anchormatchingmodel
is then trained using self-supervision automatically derived from
the provided taxonomy and a contrastive loss. STEAM [134] instead
samples mini-paths from the taxonomy as anchors and learns to



KDD ’24, August 25–29, 2024, Barcelona, Spain Yunyi Zhang, et al.

insert a query node into the paths. Three types of features are con-
sidered to capture anchor-query relation, including distributional
similarity, contextual information, and syntactic patterns to train a
model with multi-view co-training. TEMP [57] fine-tunes a PLM to
compare positive and negative paths using a margin ranking loss
with tree-distance based dynamic margins. To deal with long-tail
entities that cannot be easily extracted from a text corpus, Gen-
Taxo [135] identifies positions in the existing taxonomy that miss
an entity and then use a generative model to directly generate new
concept. It pretrains a concept name generator with graph-based
and relation-based contextual embeddings. TMN [138] proposes
to not only find hypernym but also hyponym for a query entity.
A triplet matching network is trained to make holistic predictions
on (hypernym, query, hyponym) triplets by considering multiple
fine-grained signals. QEN [110] proposes a Quadruple Evaluation
Network, which utilizes term descriptions as input and considers
not only parent-child relations but also sibling relations. TaxoEn-
rich [35] learns taxonomy-contextualized embedding incorporating
both semantic meanings and taxonomic relations and trains two
encoders to capture structural information in both vertical and hor-
izontal views. TaxoPrompt [127] utilizes prompt tuning of PLMs
to learn taxonomic relations and utilizes random walk algorithm
to generate self-supervision data that better capture the global
structural information. TaxoComplete [2] trains semantic matching
network with self-supervision data consisting both close neighbors
and distant neighbors. To better learn the hypernymy relations, it
also injects the edge directions into node representations using a
direction-aware population module. BoxTaxo [38] proposes to learn
box embeddings [104] which have “contained”, “intersection”, and
“disjoint” relations. The box embeddings are learned in a joint view
of geometry and probability and are used to decide if a query entity
is contained in an anchor node during inference. TaxoInstruct [98]
proposes a unified instruction tuning method for the entity set
expansion and taxonomy expansion tasks and reformulate the seed-
guided taxonomy construction task as a combination of them. It
fine-tunes an LLM using self-supervision from an external large
taxonomy by constructing task-specific instructions.

4 WEAKLY-SUPERVISED TEXT
CLASSIFICATION

One important task for mining structured knowledge from mas-
sive unstructured text is to classify text into different categories.
To reduce the cost of human annotation and requirement of do-
main expertise, the weakly-supervised text classification setting is
proposed which uses the label name or a small number of exam-
ples of each target class as the only supervision signal to train the
text classifier. In the section, we will introduce recent studies on
weakly-supervised text classification for both flat label space and
hierarchical label space.

4.1 Weakly-Supervised Flat Text Classification
Earlier studies train text classifiers in a fully supervised way with
substantial amount of training data [130, 142], which is expensive
to obtain and hard to scale. Later, the semi-supervised setting is
studied to train classifiers with a smaller amount of training samples
per class and an unlabeled corpus [10, 124]. However, they still need

at least dozens of labels for each target class, which requires domain
knowledge and can still be costly if the class distribution is highly
imbalanced. To further reduce the requirements of human efforts,
the weakly-supervised text classification setting is proposed. Such
supervision signals include distant supervision from knowledge
bases [99], human-curated rules [3, 6, 85], or a list of keywords [62,
64, 86]. Among these settings, the extremely weakly supervised
text classification requires the least amount of supervision signal,
which can train the text classifier using the sole class surface name
of each class as the only supervision. This line of studies can be
classified into keyword-based methods and prompt-based methods.

Keyword-based methods.WeSTClass [64] first models each class
as a distribution in an embedding space, and then sample words
from the class distribution to generate pseudo documents for each
class. Then pseudo documents are used as supervision to train a
text classifier, followed by self-training with soft labeling [125] to
iteratively enhance the classifier performance with its own predic-
tions. LOTClass [67] uses masked language modeling (BERT) to find
replacement tokens for each occurrence of seed word, which are ag-
gregated into a class vocabulary. Then MLM is used to find replace-
ments for each token in to corpus to find those “class-indicative”
tokens that match with any of the class vocabulary. Finally, a
PLM-based classifier is first fine-tuned with masked topic predic-
tion objective, followed by self-training similar to WeSTClass. X-
Class [116] proposes to use contextualized embeddings to first ex-
pand label names with more keywords, which are used to estimate
class representations and class-oriented document representations.
Pseudo labels are assigned based on representation similarity, which
are then used to fine-tune a classifier. ClassKG [140] builds keyword
graph to learn subgraph annotators for pseudo labeling. It is an iter-
ative framework by using the classifier predictions to extract more
keywords to enrich the weak supervision, and repeats the process
until converge. Dong et al. [17] claims the performance of keyword-
based method is limited with the bias introduced in the matching
process and proposes random deletion in the training process to
debias pseudo data. MEGClass [43] further studies the contribution
of different text granularities by learning contextualized sentence
representations, which are then used to calculate document rep-
resentations with an attention mechanism. A feedback method is
also introduced to refine the representations iteratively.

Prompt-based methods. Because keyword-based features can
only generate pseudo labels with limited quality given that their
meaning are highly dependent on their contexts, the prompt-based
methods are also proposed to acquire pseudo labeled documents by
exploiting the contextualized power of PLMs. NPPrompt [152] is a
zero-shot method that first construct a set of verbalizers for each
class using PLM embeddings, and the embedding similarity is used
as weight of the retrieved verbalizer for MLM-based prompting.
PIEClass [144] further studies prompting methods of discriminative
PLMs for pseudo labeling. It also proposes an iterative ensemble
training method that combines two different PLM fine-tuning meth-
ods, namely head-token fine-tuning and prompt-based fine-tuning,
that complement each other to iteratively expand the pseudo labels
while ensure the quality. PIEClass is the first weakly-supervised
approach to achieve comparable performance to a fully-supervised
baseline on the sentiment classification task. CARP [102] studies
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zero-shot and few-shot text classification with LLMs’ reasoning
ability. It follows the chain-of-thought prompting method by first
asking the LLM to identify indicative clues within the input text
before predicting its label.

Besides, LOPS [61] shows that selecting pseudo labels in the
correct order can improve the performance and proposes to use
learning-based confidence scores to decide the order. FuTex [145]
studies the weakly-supervised classification of scientific papers by
incorporating in-paper structure (i.e., sections, paragraphs) and
cross-paper structure (i.e., paper citation network). Wang et al.
[118] introduces the first benchmark of the weakly-supervised text
classification task, which consists of 11 datasets from 4 different
domains with standardized train-test splits.

4.2 Weakly-Supervised Hierarchical Text
Classification

Given a label space structured as a taxonomy, the hierarchical text
classification task aims to classify input text into a path or multiple
nodes on the label taxonomy. Compared to flat text classification
where the label space is typically small (e.g., with less than 20
classes), the hierarchical text classification task is more challenging
because of its large and structured label space.

Most studies tackle the hierarchical text classification task in
the fully-supervised [39, 115] or semi-supervised settings [23, 121].
Previous studies can be classified into local approaches and global
approaches. The local approaches train multiple text classifiers
for each node or level of the label taxonomy and make the final
predictions recursively [4, 119]. The global approaches propose to
learn the global structure with a single text classifier [8, 39, 75, 115,
117]. These methods normally requires a substantial amount of
annotated training data and domain expertise

The weakly-supervised hierarchical text classification task is
also studied to save annotation efforts. WeSHClass [65] extends
WeSTClass by first modeling the label hierarchy with a mixture
of distribution in an embedding space and sampling vectors from
the distributions as input to a pre-trained LSTM model to generate
pseudo documents. Then, it utilizes the pseudo data to train local
text classifier for each internal node and then trains a global classi-
fier by ensembling local classifiers with soft-labeling self-training.
HiMeCat [143] additionally studies the metadata acompanied with
the text data by learning a joint representation space for label hier-
archy, metadata, and text data with a hierarchical generative model.
The learned distributions are then used to generate augmented
documents to enrich the weak supervision signals, and a text clas-
sifier is trained recursively for each internal node. TaxoClass [94]
uses a pre-trained textual entailment model to estimate document-
class similarity, based on which a taxonomy-based top-down search
method is proposed to obtain the confident core classes for each
document. Here, a document’s core classes are defined as the set of
classes that most accurately describe the document. They are then
used to construct pseudo training samples to train a multi-label text
matching network. TELEClass [148] proposes to enrich the raw
label taxonomy with class-indicative features to help better class
understanding. Additionally, it tailors LLMs for the hierarchical la-
bel space. An LLM is used to select pseudo labels for each document
from a set of candidate classes retrieved from the label hierarchy.

To deal with long-tail and fine-grained classes in the taxonomy, the
LLM is also prompted to generate pseudo documents conditioned
on paths sampled from the taxonomy.

5 WEAKLY-SUPERVISED INFORMATION
EXTRACTION

Mining structure for entities is another important task for text
mining. In this section, we will introduce recent weakly-supervised
methods on entity recognition and typing, relation extraction, and
comprehensive knoelwdge structuring.

5.1 Entity Mining
Mining of structured knowledge at an entity level aims to extract
and identify the types of entities within their respective contexts.
Being an elementary building block for texts, it could be integrated
into more advanced structures such as knowledge graphs (KG).
The task of entity-level text mining could be categorized as named
entity recognition (NER) and fine-grained entity typing (FET).

5.1.1 Named Entity Recognition. NER is a typical sequence labeling
task that assigns an entity label to each token in the sequence. There
are usually less than 10 labels for NER datasets containing coarse-
grained tags such as “location” and “person”. In this section, we
focus on the existing NER frameworks with weak supervision [30],
which could be divided into the following three categories based
on how they deal with noisy distant supervision.
Incorporating Distant Label Uncertainty. One solution is to
introduce uncertainty expressions to distantly supervised labels,
e.g., dictionary-matching results. AutoNER [92] explores learning
NER model using only dictionaries. It transcends the conventional
sequence labeling framework by introducing the “Tie or Break”
tagging strategy. This innovative method enhances the model’s
ability to utilize noisy distance supervision effectively by determin-
ing whether adjacent tokens belong to the same entity or should
be separated. Although AutoNER achieves performance gains, it
still utilizes limited information from incomplete dictionaries. PaT-
NER [111] was further proposed to automatically mine the entity
naming principles to automatically expand the input dictionaries.
PaTNER was particularly useful when it comes to domain-specific
NER tasks such as biomedical or technical domains. ETAL [7] fur-
ther designs a method with pseudo-labeling to search for highly
confident entities that maximize the probability of BIO sequences.
Noise-Tolerant Tuning. The semi-supervised scheme [125] has
proved to be an effectivemethod for effectively leveraging unlabeled
data with limited labeled data as the distant supervision. BOND [55]
leverages the power of PLMs, specifically RoBERTa, to improve
the performance of NER. It is a two-stage algorithm where the
model is firstly trained on distantly-labeled data with early stopping,
and then a teacher-student framework is employed to iteratively
self-train the model. RoSTER [66] aims to exclude the influence
of incomplete and noisy labels. It first proposes a noise-robust
learning scheme with a new loss function and a noisy label removal
step for training NER in a distantly supervised manner. Then a self-
trainingmethod was created by leveraging PLMs to further enhance
the contextualized generalization ability. Instead of focusing on
the representations of entities, X-NER [76] further investigates
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the contextualized information of entities being replaced in the
sentence. The top-ranked entity spans are then treated as pseudo-
labels to train a NER tagger.
Leverating External Knowledge. ChemNER [112] provides the
first fine-grained chemistry NER dataset with 65 types. Building
upon the dataset, ChemNER designs a flexible KB-Matching for
domain-specific entities and then uses the ontology as the guidance
for multi-type disambiguation to train a sequence labeling model.
SpanNER [21] separates span detection and type prediction, using
external class descriptions to construct class representations for
matching detected spans, though its model designs differ from the
backbone pre-trained model BERT. Similarly, SDNET [9] pre-trains
a T5 model on silver entities from Wikipedia, to help universally
describe mentions using concepts and map novel entity types to
concepts. Then the model is fine-tuned on few-shot examples to
adaptively recognize entities on-demand. SEE-Few [131] expands
seeded entities using external tools and applies an entailment frame-
work to efficiently learn from a few examples. More recently, LLMs
have been investigated in the field of NER with its immense para-
metric knowledge store. However, it is shown that LLMs perform
poorly on this sequence labeling task in zero-shot settings [79]. To
this end, GPT-NER [109] further explores how to leverage LLMs for
better NER systems, by bridging the gap between sequence labeling
and text generation. By instructing LLMs using in-context learn-
ing techniques to generate special tokens for entity recognition,
GPT-NER largely boosts LLMs’ ability in NER tasks.

5.1.2 Fine-grained Entity Typing. Compared with NER, FET fo-
cuses on a much more fine-grained classification of a given entity.
The label space of FET usually entails dozens and even hundreds
of entity types, which is organized as a hierarchical ontology struc-
ture (Sect. 3). Due to the large label space and accurate annotation
requirement, weakly-supervised frameworks are invented to deal
with the data scarcity issue, which could be briefly divided into the
following categories.
Ontology-Guided Methods. Since the FET usually entails a large
and structured ontology as the label space, how to fully interpret
and leverage the structure/hierarchy of the ontology can play a
decisive role in FET. AFET [87] proposes a method for embedding
both clean and noisy entity references individually. The technique
leverages a defined type hierarchy to formulate loss functions and
integrates them into a unified optimization problem to calculate
the embeddings of references and type paths. OntoType [45] is an
ontology-guided framework that leverages the weak supervision of
pre-trained languagemodels and headwords, which are further used
to match the fine-grained types to type ontology. ALIGNIE [31] is a
prompt-based method that consists of two modules. One for entity
type interpretation that learns to relate entity types with vocabu-
lary using the ontology. Then a type-based instance generator is
designed to enrich the few-shot training samples. OnEFET [74] pro-
poses to enrich the original ontology structure with instances and
topics. The instances are used for pseudo-training data generation,
while the topics are integrated into the attention mechanism to
better discriminate fine-grained entity types. The pseudo-training
data are used to train an entailment model, which is used iteratively
in a top-down style for inference. SEType [150] further works in the
field of technology. Different from OnEFET, SEType first enriches

the weak supervision by finding more entities for each seen type
from an unlabeled corpus using the contextualized representations
of pre-trained language models. It then matches the enriched en-
tities to unlabeled text to get pseudo-labeled samples and trains a
textual entailment model that can make inferences for both seen
and unseen types.
Knowledge-Based Methods. It is found that lack of world knowl-
edge is one of the major disadvantages of existing methods. There-
fore, many works are dedicated to integrating external knowledge
to enrich the understanding of entity types. Notably, UFET [13]
predicts open types without a pre-defined label structure and is
trained using a multi-objective approach that combines supervision
from the headwords and prior information from entity linking in
Wikipedia. ZOE [153] uses a new type taxonomy defined as Boolean
functions of Freebase types and determines the type of a given en-
tity reference by linking it to the type-compatible Wikipedia entries.
Recently, there are also works that investigate how LLMs perform
on the FET task. However, due to the large label space, it is often dif-
ficult for LLMs to strictly follow the instructions and predict entity
types in the label space [74]. Also, LLMs have problems interpreting
the nuanced contextualized information in the input.
Ultra-Fine-Grained FET. There is another line of FET research
that further expands the original label space with tens of thousands
of types [13]. It is often infeasible to walk over all the types and
give predictions using the entailment method as mentioned before.
Targeting this setting, BERT-MLMET [14] invents a model that
starts with BERT-base and fine-tunes it using supervision from
headwords and entity-type hypernyms extracted from Hearst pat-
terns. The resulting model is used to predict ultra-fine entity types
and produce fine-grained entity types by means of a simple type
mapping process. LITE [49] borrows indirect supervision from NLI
to perform entity typing. It also involves a type-ranking module to
help with generalizing prediction with disjoint type sets. Denoise-
FET [52] to first cluster the large label space into several centroids
with embeddings, after which the clusters are treated as additional
domains for typing.

5.2 Relation Extraction
Built on top of classified texts and potentially extracted entity struc-
tures, relation extraction (RE) aims to identify and classify semantic
relationships between entities. To empower model’s understanding
on structured relational patterns given scarce expert supervision,
the weakly-supervised setting has also been extensively adopted
which grasps different dimensions of the nuggets of relation.

5.2.1 Relation Instance Synthesis. With the emergence of power-
ful generative language models, synthesizing relation instances
to alleviate the scarcity of high-quality data becomes a more and
more promising direction for relation extraction [42]. LLMs, such
as the GPT family and LlaMA family [19], are pre-trained for the
domain adaptation ability [82]. They have demonstrated to contain
factual relation knowledge [78] and follow-up evaluation studies
have shown that LLMs are relatively skilled at constrained content
generation, story telling, and rationale generation [100].

RelationPrompt [12] trains two sequence-to-sequence models
with one serving as the data generator conditioned on the rela-
tion label names while the other serving as the relation triplet(s)
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extractor conditioned on the input texts. Apart from vanilla gen-
eration methods, recent synthesis-based RE works mainly focus
on reducing the hallucinations and noise of generated instances.
STAR [59] applies a self-refinement by self-reflection approach to
verify the synthesized instance with LLMs. DocGNRE [51] leverages
a generate-then-validate paradigm where GPT serves to generate
candidate relation triplets given context and entity list while an NLI
module serves to filter them to augment the original dataset. Gen-
RDK [101] takes the names of similar relation groups to generate
relation instances step by step. To mitigate the noisy labels, it trains
a pre-denoising relation extractor which produces pseudo labels and
applies consistency scores for filtering based on cross-document
knowledge graph level statistics.

Instead of synthesizing based on relation names, REPaL [155]
shows that relation descriptions or definitions offer a more com-
plete coverage of multifaceted relational semantics which involve
entity-entity interactions and entity-related specifications. In terms
of synthesis methodology, REPaL emphasizes both correctness of
synthesized instances and the internal synergy among synthesized
instances. Specifically, REPaL adopts a multi-turn generation ap-
proach conditioned on the relation definition while incorporating
feedback. The feedback is constructed by (1) sampling inference
results on the unlabeled corpus with a small language model trained
on the synthesized data and (2) examining the generation history.
Therefore, the feedback conveys both the bias of downstream fine-
tuned relation extractor and the patterns of generated instance.

5.2.2 Relational Reasoning. Relational reasoning is the cornerstone
of the relation extraction task as it aims to enhance models’ com-
prehension and reasoning capabilities to derive target relations.

One line of research resort to boosting the models’ relational
reasoning ability by formulating the relation extraction task into
different task formulations that models are more capable at. Oba-
muyide and Vlachos [72] and Sainz et al. [89] convert RE into the
NLI task. REBEL [34] converts the relation triplet extraction process
into Seq2seq generation process leveraging the power of decoder-
based LMs. SURE [58] verbalizes relation names with templates and
formulates RE as the summarization task. There are also various
prompt tuning models for RE [11, 24] that incorporate different
relation prompts to distill PLM’s relational knowledge for better
reasoning performance. SumAsk [50], based on LLMs, adopts a
summarize-and-ask prompting paradigm to formulate relation in-
ference as summarization and formulate the validation process as
question answering.

Another line of research tries to aggregate relation indicative
evidence to strengthen the reasoning process. REPEL [80] proposes
to co-train a dependency path based pattern module with the dis-
tributional module for relation extraction. RClus [154] leverages
the patterns of relation-specific entity types and relation indicative
words in the dependency path to form relation representations.
Eider [126], a document-level RE method, tries to extract sentence-
level evidence by learning a classifier. SAIS [123] supervises and
augments intermediate steps of extracting relation clues which
include: coreference resolution of contextual roles, entity typing,
pooled evidence retrieval to distinguish entity-pairs with and with-
out supporting sentences, and fine-grained evidence retrieval for
more interpretable and relation-specific evidence sentence.

The fast development of powerful LLMs have further pushed
the progress of relation reasoning forward, especially by tuning-
free reasoning methodologies like in-context learning. Wadhwa
et al. [105] demonstrates the promising potential of few-shot prompt-
ing of GPT-3 which matches state-of-the-art fully supervised RE
models and it also explores a LLM-based data augmentation tech-
nique to inject CoT style explanations for fine-tuning. GPT-RE [106]
extends the in-context learning approach by leveraging task-aware
sentence-level and entity-level representations to conduct kNN re-
trieval of demonstration examples. The demonstrations are further
enriched with gold label-induced explanations to enhance LLM’s
relational reasoning power.

In parallel, some RE works have noticed LLM’s relative insuffi-
ciency in relational reasoning which might be related to the low
incidence of RE in instruction tuning datasets [114, 139] and hence
resort to circumvent this. Ma et al. [60] demonstrates that LLM is
better rerankers for information extraction and further propose
the LLM-SLM cooperation framework named as filter-then-rerank
paradigm. Under the filter-then-rerank paradigm, SLM contributes
to the initial attempt of extracting relations and LLM will rank low-
confidence candidates extracted by SLM to yield the final extraction.
QA4RE [139] introduces to formulate RE as question answering
which aligns RE with more common instruction-tuning tasks and
SumAsk [50] adopts the formulation of summarization and QA.

There are other recent works not covered due to page limitations
including but not limited to GeoWISE [29] for geospatial topological
RE and GenRES [37] for open RE evaluation.

5.3 Comprehensive Knowledge Structuring
Structured knowledge, especially knowledge graphs and databases,
have long been the subject of study in knowledge structuring and
grounding.

5.3.1 Knowledge Graph Construction. Knowledge graphs (KGs)
are collections of relations between real-world entities. Based on
the scope of knowledge, the KGs can be categorized into general
KGs like Wikidata1 and domain-specific KGs like UMLS2. Conven-
tionally, construction of KGs consists of entity mining (Sect. 5.1),
relation extraction (Sect. 5.2), and comprehensive KG construction.

Specifically, OIE4KGC [71] applies an open information extrac-
tion tool to take the raw documents as input and extract the triples
within this documents. Then triples are then filtered, linked and
merged to generate a knowledge graph. To prevent the error prop-
agation of pipelines, generative KG construction powered by lan-
guage models are proposed. Zeng et al. [136] constructs KGs in an
end-to-end manner based on sequence-to-sequence model where
entities and relations can be jointly extracted. The model can solve
the overlap problem of triples through the copy mechanism. REBEL
[34] and ABSA [129] are also generative frameworks that can for-
mulate the triple extraction task as a sequence-to-sequence task.
They translate raw text to structured knowledge schema based on
pre-trained language models. TAGREAL [36] exploits the implicit
knowledge of PLM for KG completion. TAGREAL automatically
generates high-quality query prompts by pattern mining methods
and retrieves support information to probe the knowledge in PLM.
1https://www.wikidata.org/wiki/Wikidata:Main_Page
2https://www.nlm.nih.gov/research/umls/index.html



KDD ’24, August 25–29, 2024, Barcelona, Spain Yunyi Zhang, et al.

LLMs also have shown the power in KG construction task. Knowl-
edgeGraph GPT [103] directly utilizes prompting to convert plain
texts to KG with the power of GPT-4. AutoKG [156] adopts a multi-
agent-based approach employing LLMs’ inner knowledge for KG
construction and reasoning.

Domain-specific KG construction usually requires more human
effort on annotations or ontology construction. Rotmensch et al.
[88] construct a health KG based on the annotated electronic med-
ical records and the concepts and relations in existing medical
KGs. Recent advancements leverage LLMs to facilitate the domain-
specific KG construction. PAIR [22] constructs a KG for online
marketing, which uses LLM as a relation filter to reduce the search
space of pre-defined relation set. PAIR also introduces a progressive
prompting augmentation for entity expansion. The prior domain
knowledge is injected into LLMs with prompt engineering. In the
biomedical domain, Karim et al. [44] first constructs a an ontology
for validating gene-disease relations and then proposes BioBERT
to create RDF triples. Finally, they applies LLMs to revise incon-
sistencies or incompleteness in KG. In the e-commerce domain,
FolkScope [133] proposes a semi-automatic approach for KG con-
strcution. FolkScope designs domain-specific prompts to leverages
LLMs to probe the intention of user behaviours, which can be
aligned to the pre-defined relations.

5.3.2 Database Population. Some recent works focus on the effi-
cient extraction, structuring, and integration of information into ta-
bles or databases. These works bridge the gap between unstructured
data and structured database requirements. Each of the discussed
methods offers a unique perspective on addressing the challenges
on schema identification, information extraction, and integration.

Specifically, AVATAR [46] proposes the use of probabilistic data-
base techniques as the formal underpinnings of information ex-
traction systems. RolePred [40] utilizes information redundancy
in multiple documents to extract structured tables including the
attribute names and the corresponding values of an event type.
ODIE [41] adopts instruction tuning for large language models to
extract a single table from the texts following user instructions.
Specially, the table structures can be either defined by users or
inferred by the model automatically. TableLLAMA [141] and Table-
GPT [53] also fine-tuning large language models with table-related
data to improve their ability of processing tables, like row popula-
tion, column addition, and cell filling. EVAPORATE [1] develops
a prototype LLMs-powered system that ingests semi-structured
documents and outputs a tabular, structured view of the documents.
This system can identify the schema and perform extraction to pop-
ulate the table. ChatDB [27] builds a symbolic memory framework
instantiated as an LLM and a set of SQL databases, where the LLM
generates SQL instructions to manipulate the SQL databases, in-
cluding the read and write operations. DB-GPT [128] utilizes large
language models to understand natural language queries and gener-
ate complex SQL queries to ingest, structure, and access data with
privatization technologies. Also, it uses an adaptive learning mech-
anism to continuously improve the system based on user feedback.
Text2DB [132] emphasizes the integration of information extrac-
tion output and the target database (or knowledge base). Given a
user instruction, a document set, and a database, it aims to update
the database with values from the document set to satisfy the user

instruction. To handle this task, it propose an multi LLM-agent
framework which calls for existing information extraction tools to
populate the database automatically.

6 CONCLUSION
In this tutorial, we have presented a timely overview on the theme
of mining structured knowledge from text by exploring various
methods developed in representation learning and large language
model research. It is convincing that LLMs have substantially en-
hanced the power and effectiveness of mining massive text data.
At the end of the tutorial, we will present not only important re-
search topics on mining structured knowledge from text but also
discuss how such mined, structured knowledge may impact the
performance of large language models. In particular, we will show
how extracted knowledge structures may guide quality question
answering, knowledge discovery, and trustworthiness analysis by
LLMs. For example, mined knowledge structures from a theme-
specific corpus, together with the corpus data, may endow a large
language model additional power to conduct in-depth reasoning on
specific themes, with less hallucination and better explainability.
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