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A B S T R A C T   

Amazon forests are characterized by rich structural diversity. However, the influence of factors such as topog
raphy, soil attributes, and external disturbances on structural variability is not always well characterized, and 
traditional structural metrics may be inadequate to capture this type of complexity. While LiDAR offers expanded 
structural insights, traditional parameters used in LiDAR analysis, such as mean or maximum canopy height, are 
not always well directly linked to environmental variables like topography. Emerging approaches merge LiDAR 
with machine learning to uncover deeper structural complexities. However, work to date may fail to fully utilize 
the potential of fine-scale LiDAR information. Here we introduce a novel approach, leveraging 2D point cloud 
images derived from a profiling canopy LiDAR (PCL). The technique targets intricate details within LiDAR point 
clouds by using deep learning algorithms. With a dataset from the Central Amazon comprising 18 multitemporal 
transects of 450 m in length, our objective was to detect structural "fingerprints" of varied topographical types 
along a hillslope, comprising: Riparian, White-sand, and Plateau, and to detect any gradient of structural shifts 
based on terrain variations here represented by the height above the nearest drainage (HAND). The dataset was 
trained and tested using a leave-one-group-out approach (LOGO) in which, for each iteration, a complete 450 m 
multitemporal transect was excluded from training and tested after each iteration. The fast.ai platform and a 
ResNet-34 architecture, coupled with transfer learning, were used to perform a classification to distinguish 
between three topographical types. Furthermore, a hybrid model combining a Convolutional Autoencoder, and 
Partial Least Square (PLS) regression was designed to detect forest structural gradient correlations with HAND 
variation. Cross-validation achieved a promising high weighted F1 score of 0.83 to classify forests based on the 
topographical types. Additionally, a combined Convolutional Autoencoder and PLS regression revealed a strong 
correlation (R2 = 0.76) between actual and predicted HAND. Innovatively combining deep learning with ground- 
based PCL LiDAR, our study revealed unique Amazon Forest structures connected to topographic variation. Our 
findings underscore the transformative potential of such integrative approaches for investigating forest dynamics 
and promise a powerful new tool for understanding climate-related forest structure change.   

1. Introduction 

Understanding and describing forest structural characteristics and 
the factors that influence them is crucial for determining the ecological 

processes underpinning forested ecosystems (Ehbrecht et al., 2021; Li 
et al., 2023). This knowledge is key to understanding the impact of 
climate change on forests, and to guiding future conservation and 
restoration efforts (; Rödig et al., 2018; Almeida et al., 2019; Atkins 
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et al., 2020). Forests in the Amazon have structural arrangements that 
include variations in the stratification of the canopy, surface rugosity, 
frequency of gap sizes, spatial clustering of leaf age classes and leaf 
quantity that fluctuate seasonally (Lopes et al., 2016; Smith et al., 2019; 
Dalagnol et al., 2021; Gonçalves et al., 2023; Gorgens et al., 2023). 
Several factors may affect these arrangements at a local scale, including 
topography, soil drainage, soil texture, soil chemistry, local climate, 
human activity, and microburst-driven blowdowns (Quesada et al., 
2012; Schietti et al., 2014; Araujo et al., 2017). A large body of evidence 
suggests that topography in the Central Amazon is closely related to 
changes in soil texture and water table depth, which influence tree 
species composition and several other plant life forms (Schietti et al., 
2014; Dalagnol et al., 2022). Other factors may also play a role at the 
basin scale, in addition to those mentioned at the local scale. For 
example, it has been suggested that soil fertility and physical properties, 
climate, and anthropogenic disturbances may impact plant mortality 
and growth rates (Toledo et al., 2011, Quesada et al., 2012, Aleixo et al., 
2019), and affect gap formation patterns (Dalagnol et al., 2021; Gorgens 
et al., 2023; Stark et al., 2012; Dalagnol et al., 2021; Gorgens et al., 
2023; Simonetti et al., 2023). These responses may generate distinct 
forest structures, including biomass and maximum and mean heights in 
plots (Gorgens et al., 2021). Forests may have different “structural sig
natures” due to a combination of these factors. Consequently, the 
structure of a forest can provide clues about its disturbance history 
(Fahey et al., 2019; Atkins et al., 2020; Jucker, 2022, Smith et al., 2023), 
soil fertility, soil drainage, and species composition. 

Traditional univariate methods and low-resolution metrics from 
forest inventories may not adequately capture the full range of structural 
complexity and variability observed in forest ecosystems (Hardiman 
et al., 2011; Atkins et al., 2020; LaRue et al., 2023). Particularly in the 
Amazon, where the intricate interplay of topography and soil attributes 
may define forest structures, univariate forest structure metrics may not 
be suitable. For instance, Suominen et al. (2015) found that, despite 
large differences in soil properties and tree species compositions across 
sites in the Peruvian Amazon, similar forest structures were observed 
using simple forest structure metrics, such as stem density and a gap 
fraction. A plot-based study in the Central Amazon found that only 20% 
of the variance in above-ground biomass (a common structural param
eter) could be accounted for by topography and soil at the 1-ha sample 
scale (n = 72; Castilho et al., 2006). These findings point towards the 
importance of adopting more nuanced and comprehensive methods, like 
LiDAR, to accurately capture the complex interplay between forest 
structure and environmental factors. LiDAR provides fine-scale infor
mation and a broader suite of structural attributes (Reis et al., 2022), 
some of which may be more strongly related to environmental factors. 
Despite this, studies investigating the relationship between forest 
structure derived from airborne LiDAR surveys and topography in 
tropical forests have primarily relied on canopy height or gap fraction 
metrics as a proxy for forest structure (Detto et al., 2013; Jucker et al., 
2018). These studies suggest that only a small portion of the variation in 
these structural variables is directly related to topographical factors. 

Acknowledging the limitations of univariate approaches in exam
ining the interplay between environment and forest structure, recent 
advancements in the use of LiDAR in forest ecology have sought to offer 
more in-depth and comprehensive insights. It has been shown that a 
multidimensional approach to describing forest structure is more likely 
to produce better results in describing forest complexity and its relation 
to function (Hardiman et al., 2011; Fahey et al., 2019; Murphy et al., 
2022; LaRue et al., 2023). Notably, the integration of LiDAR and ma
chine learning algorithms has emerged as a promising avenue for such 
evaluations. A pioneering study by Almeida et al. (2019) obtained 
several forest structural attributes from a ground-based profiling canopy 
LiDAR (PCL). These were combined with machine learning to classify 
forest types associated with different past land uses. Atkins et al., 2020 
used a similar approach with ground-based lidar in North America and 
Scheeres et al. (2023) employed UAV-borne LiDAR data and a random 

forest classifier to separate forest types within restoration landscapes in 
southeastern Brazil. However, a possible limitation of these studies was 
the reliance on simple descriptive statistics to summarize complex point 
cloud data for a few, relatively large sample units. This tends to ho
mogenize the 2D/3D point cloud and eliminate any spatial features 
contained in the data that could hide important forest structural com
plexities. Consequently, machine learning models may become more 
difficult to train, potentially compromising their robustness and 
generalizability. 

To fully harness the capabilities of LiDAR-derived data, we advocate 
for adopting multidimensional analyses that leverage the entirety of the 
information in a 2D/3D point cloud. Considering the upward-looking 
transect-based LiDAR, the point cloud is two-dimensional, with time 
or distance on the x-axis and pulse return heights on the z-axis. These are 
2D scatterplots that can be split into discrete portions of space along- 
track (with a predefined x-axis length), creating 2D images with suffi
cient samples for visual deep learning algorithms. Such algorithms can 
delve deeply into complex datasets, potentially revealing spatial pat
terns and correlations that are otherwise concealed via alternative 
methods. Drawing an analogy from animal ecology, this transformation 
resembles how sound data is converted into spectrograms: by seg
menting sound into brief time intervals and subsequently calculating 
frequency spectra for each span (McGinn et al., 2023). These "sound 
images", when combined with deep learning algorithms, have demon
strated significant success in various classification tasks (Lee et al., 
2009). A similar methodology applied to LiDAR data for forest science 
applications, could be equally transformative. 

Here, our main objective is to test a novel approach to analyzing 
LiDAR data in the context of forest ecology. In this approach, LiDAR 
point clouds are transformed into images and deep learning techniques 
are applied. We use a ground-based profiling canopy LiDAR (PCL) multi- 
temporal dataset sourced from a small yet representative region in the 
central Amazon. The area is characterized by a marked gradient in soil 
texture and soil drainage along a mature hillslope or topographic profile, 
with LiDAR surveys conducted at high, medium, and low points along 
the topographic gradient that we refer to as Plateau (p), White-sand (w), 
and Riparian (r), respectively. These topographical gradients are ideal 
for exploring the relationships between terrain variation and forest 
structure, offering unique insights into the ecological dynamics of this 
region. We use this unique, multi-temporal LiDAR dataset to investigate 
our main objective and test two key hypotheses, posed as specific 
questions: (1) Can the structural characteristics captured in LiDAR- 
derived Forest structural images effectively differentiate between 
Plateau (p), White-sand (w), and Riparian (r) topographical types in the 
central Amazon? Essentially, do these topographical types exhibit 
distinct forest structural "fingerprints" in LiDAR-derived images? And 
(2) Is there a detectable gradient of structural changes (from LiDAR) 
within these forests that correlates with variations in terrain? In other 
words, can we identify forest structural shifts within these forests along 
the terrain gradient? We compare our image-based technique to a 
traditional approach that employs summary statistics to extract infor
mation from the 2D point clouds. 

2. Methods 

2.1. Study area 

The study area covers about eight square kilometers near the field 
base of the Large-Scale Biosphere-Atmosphere Program in the Amazon 
(LBA) of the National Institute of Amazonian Research (INPA), about 60 
km northwest of the city of Manaus, Brazil. The topographical gradient 
was derived from preferential dissolution and export of kaolin clay and 
by biological cycling of Si, under a stable humid tropical climate with 
minimal physical erosion (Chauvel et al., 1987). The loss of clay fraction 
accelerates where there is a horizontal component to soil water flow 
direction. This leads to differential chemical deflation of the landscape 
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being more advanced on lower slopes and valley bottoms. 
To capture the topographic gradient, six 150 m transects were 

established in each topographical type, i.e., to top, bottom and middle 
sections of the topography (Fig. 1). LiDAR measurements of forest 
structure were made in each transect monthly between March 2015 and 
March 2016, always close to the 15th of the month. 

2.2. Delimitation of environments and placement of transects 

To delineate the three environments associated with sections of the 
local topography, we obtained HAND values (Height Above the Nearest 
Drainage) for all 30x30m raster cells. We start with a Digital Elevation 
Model of elevations above sea level. The HAND value of a cell is its 
vertical height above a reference surface interpolated between all 
stream thalweg cells having running water. Thalweg cells are those 
whose contributing area of runoff from upslope cells exceeds a locally 
verified threshold of 24 ha (270 raster cells) (Rennó et al., 2008; Nobre 
et al., 2011; Schietti et al., 2014). The starting DEM was from the year 
2000 based on the Shuttle Radar Topography Mission (Fig. 1C). Pre- 
processing steps for obtaining the "upslope contributing area" raster 
included (a) 3 × 3 cell moving average to smooth out irregularities in the 
DEM caused by forest canopy rugosity, (b) pit-filling, and (c) flow- 
direction raster. We obtained the slope value of each DEM cell from 
the smoothed DEM. 

The locations of six transects for each of the three topographical 
segments were identified using HAND intervals of >40 m for clay soil 
Plateau forest, 8–20 m for forests on White-sand, and < 1 m for water
logged Riparian forest on White-sand. Slopes were confined to <6 de
grees to minimize topographic shading in a Landsat image. Furthermore, 

mature White-sand podzol does not develop on steep slopes, probably 
due to mechanical erosion (Chauvel et al., 1987). Samples were spread 
over ~8 km2 within the footprint of a micromet tower (K34). Soil 
samples were collected to characterize the soil texture gradient as per
centages of clay, silt and sand. Fourteen composite samples were ob
tained per environment, at a depth of 25 cm below the organic matter 
horizon. Analyses followed the EMBRAPA (1997) pipette method. The 
transects were allocated using a GARMIN MAP 62S GPS and a compass, 
maintaining a single azimuth for each transect. 

2.3. Portable terrestrial LiDAR system 

The portable range-finder LiDAR is model LD90-3100VHS-FLP, 
manufactured by Riegl (Horn, Austria). Each pulse is contained in an 
oval-shaped beam footprint with a 6x4cm major and minor axes near the 
sensor and 15x3 cm at 45 m distance. The instrument provides 1000 last- 
return distances from 1000 pulses per second. Pulses that do not return 
are presumed not to hit an object. These are called skyshots and are 
encoded as zero distance. The emitting and sensing lenses are in the 
same instrument, held with a vertical upward view while traversing a 
transect at constant walking speed. This provides a two-dimensional 
cloud of last returns (x, z), with x being the along-track distance and z 
being the last-return height above the ground. The sensor’s wavelength 
is 900 nm (near-infrared), which is strongly reflected by leafy vegeta
tion. The accuracy is ±25 mm, and the nominal range is 200 m without a 
reflector. The instrument provides alternating first and last returns, but 
only the last returns were used to avoid overestimating understory 
density, and to follow the protocol of previous studies (Parker et al., 
2004; Parker and Russ, 2004; Stark et al., 2012). 

Fig. 1. A) Location of the study site (K34); B) Clay, sand and silt proportion in the three topographical segments: upland Plateau on well drained ferralsol, White- 
sand, characterized by podzolic soils on the gradual inclines of lower slopes, and Riparian forest on sandy soil with permanently high water table; C) Placement of 
transects in the three topographical sections (18 transects in total, each 150 m in length, six per topographical segment), where the topographical gradient is 
represented by vertical Height Above Nearest Drainage (HAND); D) Landsat 8 false-color RGB image using short-wave infrared, near infrared, and red bands. This 
figure was modified from Rosa et al., 2017. Plateaus and steep upper slopes are well-drained clay-rich Ferralsol (FAO)s; gradual lower slopes are on White-sand 
tropical Podzols with a surface root mat; riparian zones have permanently waterlogged sandy soils with thick leaf litter accumulation (Chauvel et al., 1987; 
Luizão et al., 2004). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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The LiDAR is attached to a short pole and held one meter above the 
ground. Two operators are required. The first is responsible for walking 
at a constant speed along the transect, and the second is responsible for 
starting and stopping the recording and saving the data on a PC com
puter. A rope marked every two meters and a metronome installed on 
the PC helped maintain a constant speed. In this way, we obtained 
~2300 last returns per linear meter of transect, or a two-dimensional 
cloud containing the positions of reflective vegetation (x, z) for 
~345,000 last returns in each 150 m transect. 

2.4. Generation of 2D point clouds using PCL LiDAR 

To transform PCL LiDAR raw data into 2D point cloud images, we 
first segmented each 150 m transect into 5-m sections, producing 30 
images per transect totaling (18*30 = 540). Plots below show examples 
of 5 m along-track slices of last return heights using the ggplot2 
(Wickham, 2016) density function (geom_bin2d(bins = 90)) in R (R core 
team, 2020). Each panel is a two-dimensional histogram (Fig. 2) where 
the color of each square bin represents the point counts within a 
particular area of the plot. 2D point cloud images were confined to 
vertical distances ranging from 2 m to 36 m. This range was selected to 
mitigate the impact of structural interference from LiDAR walk below 2 
m and also to eliminate outliers above 36 m. These measures were also 
taken to facilitate the deep learning model’s performance and to fit the 
data more effectively into a square image format (Fig. 2). The resulting 
images can then be used for further analysis. 

To expand our dataset, we tripled the image pool for each transect by 
incorporating multi-temporal data. By drawing data from a three-month 
span (March, September and October 2015) across three environments, 
we could more effectively train and test deep learning models, which 
inherently demand many images to learn effectively, however, 

increasing the number of time periods by more than three was not 
possible, given a limitation in our processing resources (we used Google 
Colab, https://colab.research.google.com, and GPU was limited). These 
particular months were selected at random from those with the highest 
seasonal Leaf Area Index (LAI), as identified by Wu et al. (2016). Uti
lizing this multi-temporal data, a single 150 m transect from any given 
environment effectively yielded 450 m of transect data (hereafter mul
titemporal transect). This is because each 150 m transect was surveyed 
over the three separate time periods, thereby tripling the length of data 
for analysis. Consequently, the total number of images available for the 
training process to answer Q1 and Q2 amounted to 1620, which is 450 m 
divided by 5 m intervals, multiplied by 18 (the number of transects) =
1620 images (Fig. 3). 

2.5. Framework for analyzing Forest structure complexity using LiDAR- 
derived 2D point cloud images using deep learning 

To address our two questions, we adopted a two-fold methodology, 
involving the same set of the 1620 2D point cloud images derived from 
18 multitemporal transects and the Leave-One-Group-Out (LOGO) cross- 
validation. We believe the two main questions posed here can be 
answered by using deep learning algorithms: a classification task for Q1 
and a regression task for Q2. In our framework, each 5 m wide image 
segment, derived from each 450 m multitemporal transect, is the pri
mary unit for model training. However, to derive final predictions for 
each multitemporal transect, we employ a majority voting strategy on 
the predictions made for individual 5 m image segments, aligning with 
our overarching objective of accurately predicting the entire multi
temporal transect. For the classification task, every image is assigned a 
topographic type label – either "Plateau", "White-sand", and "Riparian", 
corresponding to the respective topographical type. In the regression 

Fig. 2. Examples of 5 m squared binned frequencies from 2D point clouds, used to train the classifier and the regression algorithms (Q1 and Q2). In general, Riparian 
forests had a more compact point cloud, White-sand forests had more gaps and Plateau Forest was taller and had more layers (personal observation). 
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task, each image segment is associated with a continuous value of Height 
Above the Nearest Drainage (HAND) at the respective multitemporal 
transect. These labels and values represent our targets for the training 
and testing process. As a result, in our LOGO approach one entire mul
titemporal transect with 90 images is left out and the 1530 images of the 
remaining 17 multitemporal transects are used to train the data. The 
model is retrained for each fold, ensuring that there is no information 
transfer or contamination from previous folds. Considering the nature of 
our multitemporal dataset, where the same transect (150 m) measured 
over time is not independent, we had to exclude a complete 450 m 
multitemporal transect, comprising 90 images, from each iteration for 
testing purposes. Our initial focus was on a classification task aimed at 
addressing our first question: Can we distinguish between three distinct 
topographical types in terms of forest structure using ground-based 
LiDAR-derived 2D point cloud images? Following this, in order to de
pict the gradual variations in forest structure along the terrain, we 
employed a regression approach to answer Q2. This involved using the 
same 2D point cloud images representing forest structures to predict 
their corresponding topographical variation represented by the HAND 
(Height above the nearest drainage). A diagram illustrating the work
flows of the two approaches that tackle both questions is shown in Fig. 3. 

2.5.1. Classification problem (Q1): Deep learning applied to 2D LiDAR 
images for Forest classification 

We employed the fast.ai platform (Howard and Gugger, 2020) to 
train and validate models for the classification of 2D point cloud images, 
utilizing a LOGO (Leave-One-Group-Out) cross-validation. In this 
approach, our target classes were "Plateau", "White-sand", and "Ripar
ian", designated as "p", "w", and "r" respectively. In each iteration, a 
complete 450 m multitemporal transect was omitted from the training 
process (the grouping factor giving the lack of independence in the 
multi-temporal data) and subsequently tested. This approach ensured an 
assessment of the model’s performance, accounting for our data con
straints and guaranteeing that every multitemporal transect undergoes 

both training and testing. A critical point to highlight is that models are 
retrained for each fold, preventing previous fold’s information from 
being transferred. We utilized the pretrained ResNet-34 (Which consists 
of a 34-layer convolutional neural network) architecture which is a 
variant of the ResNet (Residual Network) family, widely used for deep 
learning tasks, particularly in computer vision (He et al., 2016). ResNet- 
34 was used inside the fast.ai framework (Howard and Gugger, 2020) to 
leverage existing knowledge, this is particularly useful in our dataset 
since its small size. Transfer learning generally consists in using a model 
pre-trained on broad datasets, like ImageNet (Deng et al., 2009), to 
specialized tasks with more limited data. As part of the cross-validation 
of the Leave-One-Group-Out approach, the test directory containing the 
multitemporal transect was temporarily moved to test, and DataLoaders 
were created using the remaining image files from the other 17 multi
temporal transects. We applied automatic data augmentation in fast.ai 
and normalization using the ImageNet statistics, this process includes 
resizing the images to 224 × 224 pixels. We utilized a learning rate of 
0.007 and 15% of the training data was used for training validation 
purposes. We trained the models for 15 epochs for each iteration. After 
each training iteration, we restored the test directory and predicted the 
topographical type for the left-out multitemporal 450 m (90 images) 
transect using the trained model on the other 17 multitemporal tran
sects. The predictions were then saved in a text file for further analysis. 

Using a Leave-One-Group-Out, each multitemporal 450 m transect’s 
final classification was based on the dominant prediction class (or sim
ply the Mode) from the 90 individual 5 m wide images within it. 
Leveraging the majority classification of these segments to identify a 
transect reduced the potential negative effects of misclassifying indi
vidual 5 m images. This approach is particularly crucial since variations 
like gap formations from tree deaths are common and expected, mean
ing that smaller segments might mimic the structural attributes of other 
classes. Additionally, our limited size in data training might not suffi
ciently capture finer structural nuances. 

We evaluated the model’s performance by calculating the broadly 

Fig. 3. Schematic illustration detailing the LiDAR data segmentation into 5-m image slices for each multitemporal transect. The diagram also summarizes the 
training methodology employed for both regression and classification problems, emphasizing the leave-one-group-out (LOGO) cross-validation approach and the 
majority voting strategy. 
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used weighted F1 score. The F1 score is a harmonic mean of precision 
and recall, providing a balanced measure of both the false positives and 
false negatives in the classification results. To calculate the F1 score, we 
first obtained the true labels and predicted majority classes for each 
transect from the aggregated data. We then used the Python Scikit-learn 
(Pedregosa et al., 2011) library to compute the confusion matrix for the 
true and predicted labels, considering the three classes: "p", "w", and "r". 
Finally, we calculated the weighted F1 score using the f1_score function 
from Scikit-learn, specifying the true labels, predicted labels, and the 
average parameter set as "weighted". 

We have also adopted a broader and more conservative cross- 
validation strategy to add robustness to the results we present here, as 
we only use ~5% of the data for every iteration in the previous method. 
This strategy involves excluding three multitemporal transects (~17% 
of the data) for testing in each iteration, specifically one from each target 
class - "Plateau" (p), "White-sand" (w), and "Riparian" (r). This is done to 
avoid strong imbalances in the training data. As we train less data in 
each iteration, we expect some decrease in model performance when 
compared to the previous approach. We use the same training parame
ters from before, also ensuring that each fold was not contaminated from 
previous folds as before. In total, this cross-validation approach involves 
216 unique iterations, each excluding a different combination of one 
multitemporal transect from each class. Through these 216 iterations, 
the model will classify the three held-out multitemporal transects, 
leading to predictions of 648 multitemporal transects (36 predictions for 
each multitemporal transect). In order to measure the model’s perfor
mance across all classified transects, a cumulative evaluation was per
formed. Instead of analyzing each iteration separately, we assess the 
model’s effectiveness using the weighted F1 score, and a confusion 
matrix based on all 648 multitemporal transects predictions. 

2.5.2. Regression problem (Q2): Unveiling the gradient of Forest structural 
shifts along a topographic gradient- a hybrid machine learning approach 
with convolutional autoencoders and partial least squares regression 

To answer our second question: Could we discern a gradient of forest 
structural shifts in these forests based on terrain variations? To do that 
with our data, we developed a hybrid machine learning approach and 
simply represented terrain variation as the Height Above Nearest 
Drainage (HAND) at each multitemporal transect (18 in total). The fast. 
ai platform, although powerful, does not readily support image regres
sion problems, which led us to devise an alternative approach. Our 
strategy aimed to predict the continuous value of HAND of each multi
temporal transect using the same pool of 2D point cloud image data from 
the (Q1) classification problem as the primary input. To do that, we built 
a model that merged the capabilities of a Convolutional Autoencoder 
with a Partial Least Square regression (PLSR). This combination enabled 
us to draw upon the advantages of both deep learning and PLSR in 
addressing regression problems. 

The Convolutional Autoencoder and its variations extracts the most 
critical features and minimizes noise within the training data (Kingma 
and Welling, 2019, Zhao et al., 2019, Bank et al., 2023). This process 
results in a compact and informative feature matrix, which is subse
quently fed into the PLSR or any regression model. PLSR is particularly 
suitable for datasets that have undergone Convolutional Autoencoder 
processing, where the output is a flattened vector representing each 
image, and each vector element is a variable in a tabular form. PLSR 
excels in these scenarios with numerous correlated variables (Carrascal 
et al., 2009). In our case the final matrix is transformed into a vector that 
represents each image with a vector with over 8000 values, each one 
representing one variable as a tabular form. The image dataset is orga
nized into 18 folders, one for each of the 450 m transects (150 m *3). The 
5 m wide images are resampled to 128 × 128 pixels and then normalized 
by dividing by 255. Each folder contains images associated with a 
unique value of HAND represented as a continuous value. As we had 
only a single HAND value for each transect, this value was repeated for 
all the images within a multitemporal transect. We also adopted a leave- 

one-group-out (LOGO) cross-validation approach, where each multi
temporal transect was used once as a test set while the remaining 
transects were used for training. The models are retrained for each fold, 
ensuring that there is no information transfer or contamination from 
previous folds. We trained the autoencoder with 15 epochs and used 15 
components in the PLSR to make predictions every iteration. 

In summary, in the first stage of the model, the Convolutional 
Autoencoder, is trained on the training 2D point cloud image data. The 
autoencoder, composed of an encoder and a decoder, learns to recon
struct the input image (Kingma and Welling, 2019). After training, the 
encoder part of the autoencoder is used to transform both the training 
and testing images into a lower-dimensional representation. The second 
stage of the model involves training a PLSR on the encoded training 
images (transformed into a vector) and their corresponding value of 
HAND. Once the model has been trained, it is deployed to predict the 
HAND of the test multitemporal transects. Similar to the classification 
problem where a majority voting strategy was utilized in the testing 
data, the median was computed for each 450 m multitemporal transect 
containing 90 2D point cloud images. Subsequently, these median 
values were plotted against the true HAND values to provide a visual 
comparison of the model’s performance and show possible gradient of 
structural changes with HAND, coefficient of determination (R2) was 
also calculated. All code and data used in the analysis are on GitHub (htt 
ps://github.com/Nathanborg/Decoding-Amazon-Forest-Structures- 
fingerprints-/). Moreover, an ANOVA was performed with the mgcv 
(Wood, 2011) package in R on the predicted median values from the 
regression model for the test data, (gam(Predicted_HAND ~ Topo
graphical type), where "r" stands for Riparian, "w" for white sand, and "p" 
for plateau. We also tested models including the spatial structure to 
avoid any possible spatial autocorrelation effects in the parametric tests. 
This analysis aims to reveal whether significant differences in forest 
structure exist among these previous classified topographical types and 
to detect any significant forest structural gradients of change as pre
dicted by 2D point cloud data. Plots related to this specific model were 
made using the mgcViz package (Fasiolo et al., 2020). 

We have also adopted a broader and more conservative testing 
strategy as in the classification problem (Q1) involving excluding three 
transects (~17% of the data) for testing in each iteration, specifically 
one from each target class - "Plateau" (p), "White-sand" (w), and "Ri
parian" (r), cross-validation is the same as before with the classification 
problem (see 2.5.1). In order to measure the model’s performance 
across all transects, a cumulative evaluation was also performed. Instead 
of analyzing each iteration separately, we assess the model using coef
ficient of determination (R2) between true vs predicted for all 648 
multitemporal transects predictions. 

2.5.3. A comparative evaluation of traditional LiDAR-derived metrics and 
2D point cloud image-based machine learning in Forest type classification 
and regression analysis 

To provide a comparison between our 2D point cloud image-based 
methodology against “traditional” metrics for both the regression and 
classification problems (Q2 and Q1, respectively), we calculated 11 
common LiDAR-derived Forest structure metrics at the 5 m segment 
level within each multitemporal transect. As in our primary analysis, 
which analyzed 5 m segmented images from a 3-month period, our 
comparative analysis utilizes the same dataset, but instead of being 
transformed into 2D point cloud images, it utilizes 11 summary statistics 
that are commonly used in ground-based lidar studies to summarize 2D- 
point cloud data (Stark et al., 2012, Almeida et al., 2019, Smith et al., 
2023). The metrics were calculated using the same heights used in the 
image analysis (from 2 m to 36 m). As before, a total of 1620 (30 seg
ments*18 transects* 3 months) segments are used, and in this case the 5 
m point cloud is summarized in 11 variables. For each 5 m segment we 
calculated, Maximum Height: defined as the maximum height of the last 
return-pulse within each 5-m segment along the transect; Canopy 
Rugosity: calculated by retrieving the 150 highest returns within every 
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5 m segment along the transect and computing their standard deviation 
(Parker and Russ, 2004). Average height: the average of the 150 highest 
heights within each 5 m segment. Skyshots_1m, Skyshots_5m and Sky
shots_10m: the percentage of each 5-m segment without vegetation 
above 1.5 and 10 m canopy height, respectively; Leaf Area Density 
(LAD) average: computed as the average of the leaf area density profile 
for each 5-m segment. LAD_SD: calculated as the standard deviation of 
the leaf area density profile for each 5-m segment; Leaf Area Height 
Volume (LAHV): introduced in Almeida et al., 2019, it is the sum of the 
products of height and mean LAD at that height, for all 5-m segments of 
transect. Leaf Area Index (LAI): for each 5-m segment, computed as the 
sum of the LAD profile; and 99% Percentile Height: determined by 
finding the height of the 99% percentile of pulses for each segment. 
These variables were organized in a tabular format with 1620 rows and 
11 columns variables for further analysis. 

As with the 2D point cloud images we also used a Leave-one-group 
out (LOGO) approach as cross validation with one multitemporal tran
sect (450 m) left out for testing and the remaining for training. We now 
use a Random Forest classifier for the classification problem for Q1 and a 
Random Forest regressor and a PLSR for Q2 to train and test the models 
for each iteration. Random Forest is considered one of the most popular 
and effective ensemble methods for classifying and regressing tabular 
data where multidimensionality exists and rigorous feature selection is 
not always needed (Cutler et al., 2007; Belgiu and Drăguţ, 2016; Ziegler 
and König, 2014). And it is broadly used in several ecology and remote 
sensing applications. In the same way as before (2.5.1 and 2.5.2), pre
dictions are made for the test data after every iteration and saved for 
later analysis. We used the Random Forest using the RandomForest 
package in R (Liaw and Wiener, 2002). We tuned the mtry hyper
parameter with the caret package in R (Kuhn, 2008) while keeping other 
hyperparameters at their default values. However, we explored varia
tions in the ntree parameter, experimenting with settings of 500, 1000, 
5000, and 10,000. With a cutoff of 0.7, we also tested models in which 
features are selected prior to training using the findCorrelation function 
in the Caret package in R. We also used a majority voting strategy, using 
the mode for classification Q1 and the median for Q2 regression (see 
2.5.1 and 2.5.2). In this process, each 5-m segment within a 450 m 
multitemporal transect is assigned a predicted class or a continuous 
value for regression. This side-by-side analysis allowed us to assess the 
relative performance, effectiveness, and accuracy of our novel image- 
based machine-learning approach in contrast to ‘traditional’ metrics- 
based methods. 

3. Results 

For the classification problem (Q1), we employed the Leave-One- 
Group-Out (LOGO) cross-validation and a majority voting strategy. In 
this approach, each of the 18 multitemporal transects, comprising 90 
images each, was classified based on the mode prediction across all its 5- 
m segments. As depicted in Fig. 3, this method, where the multitemporal 
transect itself was the unit of classification (Using the majority voting 
strategy for all 5-m segments within a 450 multitemporal transect) in 
each iteration, achieved a weighted F1 score of 0.83 (Fig. 4). In Fig. S6, 
we present the curves for loss and accuracy across epochs for each fold 
using the initial Leave-One-Group-Out (LOGO) training method, 
alongside the average accuracy and loss for all folds. We also used a 
variation of LOGO for Q1 in a more conservative way using 3 multi
temporal transects (~17% of the data) as testing for every iteration, 
which also showed a very high weighted F1 score of 0.76 (Fig. S3). The 
‘traditional’ metrics-based approach, employing 11 commonly used 
forest structure metrics to summarize the 2D point cloud using the same 
number of sample units as the image analysis (1620) and the majority of 
voting strategy, produced a low weighted F1 score (0.33–0.48) in the 
three tested random forest ntree parameters (Fig. S5, for 500 ntree and 
prior tuned mtry = 3). Prior feature selection did not affect these results. 

The regression problem (Q2), a combination of a Convolutional 

Autoencoder and a PLS regressor, also demonstrated strong predictive 
power in predicting HAND. As indicated by the coefficient of determi
nation (R2) value of 0.76 (Fig. 5, p < 0.001), there was a strong and 
significant relationship between the observed and predicted HAND of 
the multitemporal transects, indicating that forest structure shifts along 
the topographic gradient from low (r) to intermediate (w) and uphill (p). 
The observed HAND values ranged from 0 to 50 m, while the predicted 
ranged from 12 to 30 m (Giving these are medians from within multi
temporal transect 5 m segments). A straightforward ANOVA conducted 
on the median values predicted by the regression model revealed a 
significant influence of topographical type on the dependent variable (F 
(2) = 21.81, p < 0.001). This result verifies the existence of a distinct 
gradient, as demonstrated by Fig. S2, which displays a 95% confidence 
interval for the aggregated median transects across the topographical 
types “w”, “p”, and “r”. Such findings underscore the regression model’s 
capacity to effectively differentiate among the three distinct topo
graphical types (or forest types) through the use of 2D point cloud im
ages depicting forest structure. A more conservative variation of our 
LOGO cross-validation method, utilizing three multitemporal transects 
(approximately 17% of the dataset) as the testing set for every iteration, 
also demonstrated a very high coefficient of determination (R2 = 0.79, p 
< 0.001). An ANOVA was also conducted as before on the median values 
predicted by the regression models and revealed a significant influence 
of topographical type on the dependent variable (F(2) = 44.28, p <
0.001, Fig. S4). The baseline comparison for the regression problem 
using the conventional metrics-based approach, employing 11 common 
forest structure metrics presented a lower correlation compared to the 
image-based analysis (p = 0.01, R2 = 0.43), for the PLS regression the 
correlation was not significant (p = 0.29). 

4. Discussion 

In this study, we explored a novel application of ground-based 

Fig. 4. Model performance confusion matrix when the validation set (1 entire 
multitemporal transect) is left out of the training process. True classes are in 
rows and predicted classes are in columns. Correctly classified segments fall 
along the diagonal from the top-left to the bottom-right. Shows classification 
accuracy of 83% when the majority voting strategy is applied, and the objects 
being classified are the eighteen multitemporal (3*150 m) 450 m transects. For 
each multitemporal transect of 450 m, the topographical class predicted most 
frequently (or simply the mode) among all of its 5-m segments is considered the 
final prediction for that multitemporal transect. Weighted F1 Score was 0.83. 
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canopy profiling LiDAR (PCL) data transformed into 2D point cloud 
images, combined with deep learning techniques, to discern forest 
structure “fingerprints” within the central Amazon, an area character
ized by contrasting environmental gradients, particularly in soil and 
topography. Our approach set out to answer two primary questions: 
whether unique vertical forest “signatures” or “fingerprints” linked to 
different topographical types can be identified using LiDAR derived 2D 
point cloud images, and if there is a gradient of forest structural changes 
linked to the terrain gradient (Here represented by HAND). Our results 
affirmatively answer both these questions. This was reflected in the high 
accuracy our model achieved in classifying the testing multitemporal 
transects using 2D point cloud image data (weighted F1 score of 0.83), 
illustrating the effectiveness of our approach in identifying these unique 
forest structural patterns, and the strong correlation between predicted 
and observed Height above nearest drainage (HAND) (R2 = 0.76) un
derscores the success in detecting these forest structure gradients along 
the hillslope. 

Our approach is influenced by earlier research, including works by 
Almeida et al. (2019), Atkins et al. (2020), and Scheeres et al. (2023). 
These studies laid the groundwork by employing a "multidimensional" 
framework to analyze forest structure and classify forest types using 
LiDAR data. However, their main emphasis was on utilizing simple 
metrics, particularly in areas that are disturbed or undergoing regen
eration. Here, we extend their foundational work by integrating deep 
learning techniques, which enabled a more in-depth exploration of the 
available data within an undisturbed old-growth forest. Our deep 
learning framework, even when trained with a limited dataset of just six 
transects per topographical type, effectively discerns fine-scale forest 
structures using 2D point cloud image data. This approach marks also a 
departure from previous studies like Almeida et al. (2019), Atkins et al. 
(2020), and Scheeres et al. (2023), which relied on summary statistics 
from larger sample units, essentially condensing entire 2D/3D point 
clouds into a few comprehensive metrics. In contrast, our method cap
italizes on breaking down these larger units into more detailed 5-m 
segments of 2D point cloud image data. 

To enable a comprehensive comparison with our proposed method
ology, we also computed 11 prevalent structural metrics derived from 

LiDAR, utilizing identical multitemporal datasets employed in the image 
analysis for Q1 and Q2. However, we segmented the data into 5 m 
segments, diverging from the previous approaches that aggregated data 
by plot (Almeida et al., 2019). This adjustment yields a dataset of 1620 
continuous values for model training (90 values for each of the 450 
multitemporal transects), as opposed to the limited dataset of 54 values 
that would result from summarizing the multitemporal transects. This 
approach resulted in suboptimal performance for both classification and 
regression tasks on the multitemporal transects when compared to the 
method proposed here (F1 score of 0.48 for classification and as high as 
R2 of 0.43 for regression), strongly suggesting that important informa
tion may be lost when using summary statistics of 2D/3D point-cloud 
data. For the classification problem for example we would not be able 
to separate “r” Riparian from “w” White-sand forests based solely on 
these metrics (Fig. S5). 

Utilizing image data, particularly in the form of density maps, pre
sents significant advantages, especially when dealing with extensive 
datasets in the case of LiDAR point cloud returns, in our case each 
multitemporal transect sized about 24 MB (8*3) in raw return data while 
the images are compressed into 1 MB by multitemporal transect. In 
comparison to large tabular data with millions of rows, image data offers 
a more efficient and expedient processing alternative. For example, in 
the regression problem we used comparatively small 64 × 64 pixel 
images, thereby enabling faster computations. This approach is partic
ularly beneficial when handling large datasets, as it requires fewer 
computational resources and less processing time than traditional 
methods. A similar approach, on a different application, was studied by 
Klauberg et al. (2023), where terrestrial LiDAR scanning (TLS) 3-D point 
cloud data of trees were simplified to 2-D images and used with a deep 
learning approach to classify tree damage from a hurricane. Further
more, the ability of image data to encapsulate spatial relationships can 
offer additional insights that might be missed by other data forms, 
thereby enriching understanding of the structure of forests. 

Despite the effectiveness of our majority voting strategy in identi
fying the most dominant class within each multitemporal transect, the 
models performance were lower when classifying individual 5 m seg
ments (Fig. S1). This difference indicates that while our models can 

Fig. 5. A scatter plot showing our regression model’s capability to estimate topographical variation, specifically the Height Above Nearest Drainage (HAND), based 
on density images depicting forest structures. Observed HAND values are shown on the x-axis, while median predicted HAND values are shown on the y-axis. Each 
data point on the graph corresponds to a distinct multitemporal transect. For a comprehensive evaluation, the median of all predicted HAND values within a given 
multitemporal transect (5mr segments) was computed to yield the final prediction. Symbol definitions: "r"–Riparian, "w"–White-sand, "p"–Plateau. Shaded red area in 
95% of confidence interval. 
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accurately classify forest structure at larger scales, it is not as proficient 
at recognizing subtleties at smaller scales. However, this is an expected 
outcome given the inherent variability of natural forest structures. 
Factors such as tree mortality create gaps, leading to different stages of 
forest development within the same multitemporal transect. For 
example, one section of the transect may be in a regeneration phase 
while another is in a more advanced succession stage. Other than that, 
transects are more prone to have more variability than squared samples. 
This is because transects can span different environmental conditions or 
habitats within the same area. Future research should aim to enhance 
the classification of individual segments. This could be achieved by 
integrating additional data sources, such as 3DTerrestrial Laser Scan 
(TLS) data. By doing so, one could capture more of the nuanced varia
tion within forests, leading to a more comprehensive understanding of 
these intricate ecosystems. 

Our study underscores the link between topography and forest 
structure in the central Amazon. Our results indicate that varying ter
rains can give rise to distinct forest "signatures". Such unique patterns 
may hint at diverse species compositions and ecological processes, 
including varying water usage strategies. Several individual forest 
structure attributes could be behind these signatures; earlier analyses of 
the same dataset analyzed here indicated that Riparian and White-sand 
topographical types typically exhibit on average a shorter and more 
uniform canopy surface, as reported in Rosa et al., 2017 and partially 
shown in Fig. 2. Conversely, Plateaus situated on well-drained clay are 
characterized by a taller and more uneven canopy. These insights are 
crucial for understanding how forests, especially those with shallow 
water tables, adapt to drought conditions (Sousa et al., 2022, Costa 
et al., 2023). The variations in structure suggest that certain 
topographical-related adaptations might help these forests tolerate 
moderate water stress. However, the risk posed by intense droughts 
highlights the need for a deeper exploration into the relationship be
tween topography, forest structure, and water availability (Esteban 
et al., 2021; Costa et al., 2023). 

5. Conclusions 

In conclusion, our study successfully demonstrated the power and 
potential of combining ground-based LiDAR with deep learning algo
rithms to discern and characterize unique structural "fingerprints" as 
well as forest structure gradients within the central Amazon Forest 
landscape. This approach, employing image data instead of conven
tional tabular data, successfully detected distinct forest types arising 
from varying topography within a representative region in the central 
Amazon. Despite dealing with a limited dataset, our framework proved 
robust, achieving a high weighted F1 score in classifying transects with a 
strong relationship between predicted and observed HAND showing a 
gradient of forest structural changes. The application of this novel 
approach to different ecosystems and geographical scales could signifi
cantly expand our understanding of tropical forest structure. A 
comprehensive database of forest structure "fingerprints" could prove 
instrumental in detecting disturbances, monitoring ecosystem health, 
and aiding in biodiversity conservation. 
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Belgiu, M., Drăguţ, L., 2016. Random forest in remote sensing: a review of applications 
and future directions. ISPRS J. Photogramm. Remote Sens. 114, 24–31. 

Carrascal, L.M., Galván, I., Gordo, O., 2009. Partial least squares regression as an 
alternative to current regression methods used in ecology. Oikos 118 (5), 681–690. 

Castilho, C.V., Magnusson, W.E., de Araújo, R.N.O., Luizao, R.C., Luizao, F.J., Lima, A.P., 
Higuchi, N., 2006. Variation in aboveground tree live biomass in a central 
Amazonian Forest: effects of soil and topography. For. Ecol. Manag. 234 (1–3), 
85–96. 

Chauvel, A., Lucas, Y., Boulet, R., 1987. On the genesis of the soil mantle of the region of 
Manaus, Central Amazonia, Brazil. Experientia 43, 234–241. 

Costa, F.R., Schietti, J., Stark, S.C., Smith, M.N., 2023. The other side of tropical forest 
drought: do shallow water table regions of Amazonia act as large-scale hydrological 
refugia from drought? New Phytol. 237 (3), 714–733. 

Cutler, D.R., Edwards Jr., T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J., Lawler, J.J., 
2007. Random forests for classification in ecology. Ecology 88 (11), 2783–2792. 

Dalagnol, R., Wagner, F.H., Galvão, L.S., Streher, A.S., Phillips, O.L., Gloor, E., Aragão, L. 
E., 2021. Large-scale variations in the dynamics of Amazon forest canopy gaps from 
airborne lidar data and opportunities for tree mortality estimates. Sci. Rep. 11 (1), 
1388. 

Dalagnol, R., Wagner, F.H., Emilio, T., Streher, A.S., Galvão, L.S., Ometto, J.P., 
Aragao, L.E., 2022. Canopy palm cover across the Brazilian Amazon forests mapped 
with airborne LiDAR data and deep learning. Remote Sens. Ecol. Conserv. 8 (5), 
601–614. 

Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L., 2009, June. Imagenet: A large- 
scale hierarchical image database. In: In 2009 IEEE Conference on Computer Vision 
and Pattern Recognition. Ieee, pp. 248–255. 

Detto, M., Muller-Landau, H.C., Mascaro, J., Asner, G.P., 2013. Hydrological networks 
and associated topographic variation as templates for the spatial organization of 
tropical forest vegetation. PLoS One 8 (10), e76296. 

Ehbrecht, M., Seidel, D., Annighöfer, P., Kreft, H., Köhler, M., Zemp, D.C., Puettmann, K., 
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