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Amazon forest biogeography predicts 
resilience and vulnerability to drought

Shuli Chen1 ✉, Scott C. Stark2, Antonio Donato Nobre3, Luz Adriana Cuartas4, Diogo de Jesus 
Amore4, Natalia Restrepo-Coupe1,5, Marielle N. Smith2,6, Rutuja Chitra-Tarak7, Hongseok Ko1, 
Bruce W. Nelson8 & Scott R. Saleska1,9 ✉

Amazonia contains the most extensive tropical forests on Earth, but Amazon carbon 
sinks of atmospheric CO2 are declining, as deforestation and climate-change- 
associated droughts1–4 threaten to push these forests past a tipping point towards 
collapse5–8. Forests exhibit complex drought responses, indicating both resilience 
(photosynthetic greening) and vulnerability (browning and tree mortality), that are 
difficult to explain by climate variation alone9–17. Here we combine remotely sensed 
photosynthetic indices with ground-measured tree demography to identify 
mechanisms underlying drought resilience/vulnerability in different intact forest 
ecotopes18,19 (defined by water-table depth, soil fertility and texture, and vegetation 
characteristics). In higher-fertility southern Amazonia, drought response was 
structured by water-table depth, with resilient greening in shallow-water-table forests 
(where greater water availability heightened response to excess sunlight), contrasting 
with vulnerability (browning and excess tree mortality) over deeper water tables. 
Notably, the resilience of shallow-water-table forest weakened as drought lengthened. 
By contrast, lower-fertility northern Amazonia, with slower-growing but hardier trees 
(or, alternatively, tall forests, with deep-rooted water access), supported more- 
drought-resilient forests independent of water-table depth. This functional 
biogeography of drought response provides a framework for conservation decisions 
and improved predictions of heterogeneous forest responses to future climate 
changes, warning that Amazonia’s most productive forests are also at greatest risk, 
and that longer/more frequent droughts are undermining multiple ecohydrological 
strategies and capacities for Amazon forest resilience.

Three ‘once in a century’ droughts (Extended Data Fig. 1a–c) occurred 
in the Amazon basin over a single decade—in 2005, 2010 and 2015–
201620,21—provoking multiple forest responses that are difficult to 
explain (Fig. 1 and Extended Data Fig. 1d–f). For example, unexpected 
overall increases (green-up) in remotely sensed canopy greenness 
(a proxy for photosynthetic function) during the 2005 drought9,10 
(Fig. 1a and Extended Data Fig. 1a,d) appear at odds with reports of 
simultaneous carbon losses from increased tree mortality observed 
in ground plots16. Furthermore, the 2005 green-up contrasts with a 
strong decrease in greenness (brown-down) during the 2010 drought11 
(Fig. 1b and Extended Data Fig. 1e), while the 2015/2016 El Niño, the 
largest and most intense drought of the three, provoked an inter-
mediate response that also included substantial green-up regions 
(Fig. 1c and Extended Data Fig. 1f). Climate drivers alone, although 
important10, are evidently insufficient to predict the complexity of 
drought responses across heterogeneous landscapes22. Still miss-
ing is a general understanding of what drives differences in drought 

resilience across Amazonian landscapes, a ‘functional biogeogra-
phy’23 of forest drought response that can address the question of why 
some forests (or times) are resilient (exhibiting green-up or reduced  
mortality), while others are vulnerable (exhibiting brown-down or 
enhanced mortality).

Here we used satellite indices of forest photosynthesis to test whether 
three non-exclusive ecological hypotheses that go beyond climate-only 
explanations, developed from forest plot-scale observations, can also 
predict regional scale responses to these recent droughts across intact 
terra firme forest types of the Amazon basin.

The first (other side of drought24) hypothesis is that shallow-water- 
table hydrological environments25 provide trees with greater access 
to water resources, making them more drought resilient (as observed 
in forest plots near Manaus26,27), than trees in forests over deep water 
tables, of which the mortality rates typically increase with drought2,16. 
This hypothesis predicts that shallow-water-table forests should show 
less brown-down (or even experience green-up with reduced anoxia or 
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more sunlight due to reduced cloud cover during drought) compared 
with forests with deep water tables.

The second (soil fertility) hypothesis28,29 is that, in more-fertile for-
ests, where tree growth and turnover rates are high, fast-growing trees 
that invest less in drought tolerance have a competitive advantage 
over trees that invest more. This is because it is easier to simply regrow 
trees cheaply when resources are plentiful, especially when tree-killing 
droughts are rare. This hypothesis therefore predicts that more-fertile 
forests will exhibit greater drought susceptibility (more brown-down 
or less green-up) compared with less fertile forests.

The third (rooting depth/traits) hypothesis focuses on the role of 
tree characteristics themselves. This hypothesis predicts that forests 
dominated by species with either drought avoidance traits (tall, deeply 
rooted trees)30–33 or drought tolerance traits (high wood density or 
embolism-resistant xylem)29,34–36 are more drought tolerant, even over 
deep water tables.

These three dimensions (water-table depth, soil fertility and vegeta-
tion properties) define an ‘ecotope space’, within which different forest 
ecotopes are located and may interact with and respond to climate in dif-
ferent ways. To the extent that such responses are predictably structured 
by ecotopes (which also vary by geographical region within the Amazon; 
Extended Data Fig. 2), it should be possible to derive a unified functional 
biogeography of the basin-wide diversity of forest drought responses.

We tested these hypotheses using satellite indices of photosynthetic 
capacity (the enhanced vegetation index (EVI), corrected for view- 
and illumination-geometry artifacts)37 and of photosynthetic activity 
(the Global OCO-2 solar induced fluorescence product (GOSIF))38. We 
focused on drought-affected regions, defined as those of which the 
maximum cumulative water deficit (MCWD; see Methods, ‘Climate 
anomalies for drought definition and mapping’) reached more than 
1 s.d. below the mean of the remote sensing record (from 2000 to 
2020)39. Vegetation index anomalies during drought were analysed 
as a function of water-table depth (as captured by height above nearest 
drainage (HAND))25 and of gridded climate data (photosynthetically 
active radiation (PAR), vapour pressure deficit (VPD) and precipita-
tion) derived from remote-sensing platforms (see Methods, ‘Drought 
resilience and vegetation anomalies’; Extended Data Fig. 3).

We took the relative green-up (more positive or less negative veg-
etation anomalies) as an index of resilient photosynthetic capacity 

or activity because it suggests that there are more carbon resources 
for responding to stress and, notably, is predictive of outcomes 
on the ground that are commonly associated with resilience at the 
individual-tree scale (lower mortality, greater growth and greater xylem 
embolism resistance; see Methods, ‘Drought resilience and vegetation 
anomalies’).

Southern Amazon forest drought response
Focusing first on the locale of the 2005 drought (in the southern Ama-
zon, one of three regions identified in Methods, ‘Classification of forest 
regions according to ecotopes’; Extended Data Fig. 4), we found sub-
stantial structuring of the 2005 greening by water-table depth across 
the drought-impacted region. This is visually evident in the spatial 
correspondence of 2005 forest green-up/brown-down regions (Fig. 1a 
(ellipse)) with shallow/deep-water-table forests (Fig. 2a (ellipse)), and 
is quantified by bin-averaged EVI (Fig. 2b) and GOSIF (Extended Data 
Fig. 1g (green symbols/lines)) observations versus water-table depth. 
Vegetation green-up in 2005 was concentrated in pixels with shallow 
water tables but, as water tables deepened, positive vegetation index 
greening anomalies decreased and then reversed to become negative 
anomalies (Fig. 2b and Extended Data Fig. 1g). Notably, the strongest 
2005 green-up was in forests that experienced the strongest drought 
(Fig. 2b (dark orange points)), apparently because these areas expe-
rienced a greater frequency of excess sunlight (Fig. 2c (histograms)), 
which was particularly advantageous to shallow-water-table forests 
(Fig. 2c (blue-hued lines)).

To rigorously quantify the sensitivity of forest response across mul-
tiple droughts, we implemented two complementary statistical ana-
lytical frameworks: nonlinear multiple regression (using generalized 
additive modelling (GAM)), to test our three hypotheses based on their 
ability to best predict basin-wide drought anomalies40 (see Methods, 
‘AIC-selected GAMs for hypothesis testing and prediction’), and struc-
tural causal modelling (SCM) to formally quantify causal effects of the 
different environmental predictors selected by the GAM analysis41 
(see Methods, ‘SCM using DAG’). Both modelling approaches were 
conducted on a 0.4° grid, the resolution needed to avoid inflation of 
statistical significance by accounting for spatial autocorrelation among 
nearby pixels (see Methods, ‘Variogram analysis for removal of spatial 
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Fig. 1 | Amazon forest remotely sensed responses to droughts.  
a–c, Amazon forest remotely sensed responses to the droughts of 2005 (a), 
2010 (b) and 2015/2016 (c), expressed as standardized anomalies of multiangle 
implementation of atmospheric correction (MAIAC) EVI (a proxy of 
photosynthetic capacity) in drought-affected pixels (defined in Extended  
Data Fig. 1a–c). Note that a highlights an ellipse of green-up and brown-down 
patterns that correspond to shallow and deep water tables in Fig. 2a; c highlights 
two areas exhibiting green-up—RN, in the Rio Negro catchment and AP in 
Amapa state—for comparison to Figs. 4 and 5. Insets show the frequency 

distributions of MAIAC EVI anomalies in drought regions for droughts in 2005 
(+0.14, P < 0.001, d.f. = 916) (a), 2010 (−1.06, P < 0.001, d.f. = 1,057) (b) and 2015 
(−0.57, P < 0.001, d.f. = 2218) (c). Statistical analysis was performed using 
Student’s two-sided t-tests, whereby, after the variogram analysis (see Methods, 
‘Variogram analysis for removal of spatial autocorrelation’), the degrees of 
freedom (d.f. = n − 1) were adjusted for spatial autocorrelation based on 
n = number of statistically independent 0.4° × 0.4° drought-affected pixels  
in each drought region; all P values are significantly less than the Bonferroni 
correction for three comparisons α = 0.05/3 = 0.016.
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autocorrelation’; Supplementary Fig. 1). As the two approaches largely 
converged, we report the GAM predictive modelling results here, and 
provide comparisons with the SCM results in the Methods (Methods, 
‘Comparing inferences from SCM with predictive GAM regressions’).

When all three droughts were modelled simultaneously within 
Southern Amazonia, using GAM to also account for the effects of cli-
mate (Supplementary Table 1a), we found that, despite large differ-
ences observed in responses among the years (Fig. 1a–c), the overall 
other-side-of-drought (hypothesis 1) prediction of a negative relation-
ship between remotely sensed vegetation anomalies and deepening 
water tables observed in 2005 was consistently confirmed across all 
three droughts in this region (Fig. 3a). Notably, although there was 
an almost universal browning response to the 2010 drought (Fig. 1b), 
vegetation anomalies remained significantly structured by water-table 
depth (Fig. 3a (purple symbols/lines)).

This analysis suggests that the ability of shallow-water-table forests 
(but not of deep) to respond positively to excess sunlight (possibly 
including relief from anoxia24) was a key general (multi-drought) mecha-
nism of southern Amazon forest drought response (Fig. 3b (coloured 
curves)). Interdrought differences in climate drivers—not differences 
in the water-table depth distribution of impacted areas (Fig. 3a; distri-
butions did not differ much)—accounted for much of the interdrought  
differences in forest response (in Fig. 3a, the observed points corre-
spond well with the model predictions, which differ among droughts 
only due to climate). Notably, PAR increased during the 2005 and 
2015/2016 droughts (Fig. 3b (distributions) and Extended Data Fig. 3j,l), 
promoting green-up, but decreased during the 2010 drought (due in 
part to excess smoke aerosols from high fire rates42; Fig. 3b (distribu-
tion) and Extended Data Fig. 3k). Anomalously high VPD across the 
droughted region in 2010 (Extended Data Fig. 3n versus Extended Data 
Fig. 3m,o) may also have contributed to reduced green-up/increased 
brown-down in 2010.

Importantly, interdrought differences in southern Amazon forest 
responses were mediated by drought length (Fig. 3c; as hypothesized 

previously24). Despite the even greater sunlight increases in 2015 
than in 2005 (Fig. 3b (histograms)), the overall green-up in 2015/2016 
was less than in 2005 (Fig. 3a), apparently due to the exceptional 
length of the latter drought (Fig. 3c (distribution)). Initial green-up 
in shallow-water-table-forests (Fig.  3c (blue lines)) reversed to 
brown-down in regions experiencing drought for longer than 3 months, 
with increasingly stronger brown-down the longer the drought. Suffi-
ciently long droughts therefore probably deplete shallow water tables, 
diminishing and then reversing their protective effect.

The contrasting responses between shallow and deep-water- 
table forests of the southern Amazon support the other-side-of- 
drought’ (hypothesis 1) and, at the same time, help to reconcile the 
much-discussed apparent disagreement between remote-sensing 
studies showing 2005 drought-associated green-up on average9,10  
(interpreted as showing forest resilience to or even benefit from drought) 
and ground-based plot studies showing 2005 drought-associated 
excess in tree mortality on average16 (interpreted as showing forest 
vulnerability to drought). However, our more-fine-grained analysis sug-
gests that the excess greening and the excess mortality were not in the 
same places; it is the locales with shallow-water-table forests that were 
benefited by drought, while deep-water-table forests are vulnerable—a 
consistent pattern revealed by both remote sensing (Figs. 2b and 3a) 
and ground-based forest demography (tree mortality drought response 
increases with water-table depth; Fig. 3d). The apparent disagreement 
arises because the published plot-based sampling efforts2,16 are not 
random, but skewed towards the deeper-water-table regions that expe-
rienced brown-down during drought (Figs. 2b and 3e (orange shaded 
regions)), while the basin as a whole has more shallow-water-table 
forests like those that experienced greening (Figs.  2b and  3e 
(green-shaded regions)) (half of the Amazon basin). Shallow water 
tables may therefore gain (or lose less) carbon during drought (as 
seen previously27), partially offsetting the more negative effect of 
drought seen on forest mortality and carbon balance in deeper-water- 
table forests2,16.
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forests (0–8 m, green band) and deep-water- 
table forests (>22 m, orange band) is shown.  
c, Observed EVI anomalies (from Fig. 1a) bin- 
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(top; n = 1,461,118 total 1 km pixels). Bottom, 
histograms of PAR anomaly according to 
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114  |  Nature  |  Vol 631  |  4 July 2024

Article

Basin-wide forest drought response
Although we observed consistent support for the other-side-of-drought 
hypothesis (hypothesis 1) across both time (three droughts) and space 
in southern Amazon forests (Fig. 3a) (separately confirmed by causal 
modelling analysis; Extended Data Fig. 6e), we found consistently oppo-
site drought responses with water-table depth (EVI anomalies increased 
with water-table depth) in the everwet Amazon of the northwest and in 
the lower-fertility Guiana Shield in the northeast (see Extended Data 
Fig. 5, in which fertility is quantified as exchangeable base cations43). 
These observations falsify hypothesis 1 outside the southern Ama-
zon. We next used forest responses to the 2015/2016 drought (the only 
drought large enough to substantially impact large portions of all three 

regions of the basin simultaneously) to test whether joint considera-
tion of all three hypotheses together could explain the biogeography 
of forest drought response across the basin as a whole.

When gridded ecotope factors (soil fertility and texture43,44 and 
vegetation properties such as canopy height34,45) were included as 
predictors in our GAM analyses for the 2015/2016 drought (Fig. 4 and 
Supplementary Table 1d), coherent differences between southern 
and northern Amazon regions emerged from interacting effects of 
water-table depth (hypothesis 1)24, soil fertility (hypothesis 2)28,29 
and tree rooting depth (hypothesis 3, using forest canopy height as 
a rough proxy for rooting depth when water tables are deep, consist-
ent with limited observations of tree-height–rooting-depth relation-
ships31–33,46).
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adjusted EVI responses versus HAND water-table depths support the other-side- 
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(bin averages ± 95% CI, solid regression line) and GAM predictions (±95% 
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(blue, slope = −0.028 ± 0.002 s.e. m−1) droughts, each paired with HAND 
distributions. b, HAND-specific PAR sensitivity of GAM-predicted EVI 
responses (±95% CI shaded region), paired with PAR anomaly distributions 
(right axis), show greater sensitivity for shallower water tables. c, HAND-specific 
drought-length sensitivity of GAM-predicted EVI responses (±95% CI shaded 
region), paired with drought-duration distributions (months) (right axis), show 
shallow-water-table protection declining after 3 months. Climate-adjusted 
responses use GAM and drought-specific median climate to predict responses 
or adjust observations. d, Aboveground biomass (AGB) mortality responses 

(mortality-associated carbon flux; the percentage deviation from long-term 
MgC ha−1 yr−1 in ground plots)2 versus HAND (average of plots within each HAND 
bin, ±95% CI, regression line for depths less than 30 m) support hypothesis 1 
(with consistent positive slopes) for the 2005 (green, slope = 1.4% m−1, P = 0.051) 
and 2010 (purple, linear regression slope = 1.8% m−1, P = 0.015) droughts (d).  
e, Distributions of cumulative basin-wide HAND area (grey bars, left axis),  
and of ground-based sampling effort per HAND interval, normalized to the 
proportion of the basin area (plot area × years monitored, per HAND interval, 
divided by fractional basin area per HAND interval, giving the effort per 
interval relative to 1.0) (blue bars, right axis). This shows that ground sampling 
efforts under-represent prevalent shallow-water-table forests that greened up 
(green band, around 55% of the basin, but 16% of the effort) and over-represent 
deep-water-table forests that browned down (orange band, about 20% of the 
basin but 55% of the effort).
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The effect of water-table depth on drought response across regions 
depended on soil fertility (Fig. 4a): highly fertile areas most strongly 
evinced the protective effect of shallow water tables (Fig. 4a (green 
portion of the fertility distribution, corresponding to the green lines 
in Fig. 4c)), while lower-fertility areas were either less affected by 
water-table depth or showed the opposite response pattern (Fig. 4a 
(blue portion of the fertility distribution, corresponding to the blue 
lines in Fig. 4c)). This is consistent with hypothesis 228,29 that, as soil 
nutrients become more limiting, trees invest in drought-resistance 
traits (for example, high xylem embolism resistance), and with obser-
vations of strong association between regions of low soil fertility and 
high wood density (Supplementary Table 2). We also noted interac-
tions of water-table depth with soil texture (Extended Data Fig. 7a), 
as discussed in Methods, ‘AIC-selected GAMs for hypothesis testing 
and prediction’ (2).

The effect of water-table depth on drought response also depended 
on forest height (Fig. 4b), with the tallest forests, which are expected 
to have deeper rooting zones, enabling green-up even in regions (like 
the Guiana Shield) with deeper water tables (Fig. 4b (red portion of the 
forest height distribution, corresponding to the red lines in Fig. 4d)). 
Meanwhile, taller forests performed worse than shorter tree forests in 
shallow-water-table areas (Fig. 4d and Extended Data Fig. 6h (red versus 
blue lines)), consistent with findings that, when lacking a deep-root 
advantage, tall trees may experience higher drought mortality due to 
greater exposure to atmospheric drought (high VPD)47. Deep water 
tables may promote deep-rooted tall trees with resilience to seasonal 
atmospheric and soil water deficit exposure, with access to more con-
sistently available deep soil water, enabling them (like shallow rooted 
trees over shallow water tables) to take advantage of extra sunlight 
during moderate droughts.

An empirical test of the basin-wide model predictions (Fig. 4a–d) 
showed that the fully integrated analysis accounting for the differences 
in the ecotope factors in different regions (Extended Data Fig. 2) was 
able to consistently predict the different kinds of drought responses 
observed in different regions of the basin (Fig. 4e).

Our GAM modelling framework, paired with causal inference model-
ling, generates a rich suite of testable hypotheses for future research 
into forest drought response (see Methods, ‘Testing alternative inter-
pretations and considering caveats’). These address such questions as: 
(1) whether coarse-scale patterns (like those deriving from the 1–40 km 
pixels used here) may emerge from such mechanisms as access to water 
tables, which vary across landscapes, from forest plateaus to adja-
cent valleys, at fine scales of just a few metres (Extended Data Fig. 8);  
(2) whether individual relatively tall trees may be at greater drought 
risk (as shown by some studies48,49) even within tall forests of which the 
average height is here predicted to be more protective against drought 
than shorter forests; (3) whether forests are more sensitive to droughts 
that occur in wet versus dry seasons (Extended Data Fig. 7b–d); (4) the 
effects of forest degradation on drought sensitivity; and generally, 
of whether these mechanisms apply in other ecosystem types in the 
Amazon basin and beyond.

Functional biogeography of Amazon drought
We used the GAM predictions (Fig. 4) of different drought responses 
across different forest ecotopes (here defined by water-table depth, 
soil fertility and texture, and forest height) to map a biogeography of 
forest drought resilience (where resilient pixels, as defined in Meth-
ods, ‘Drought resilience and vegetation anomalies’, are those in which 
ecotope factors promote relative green-up) and vulnerability (pixels 
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Fig. 4 | Basin-wide Amazon forest responses to the 2015 drought, structured 
by ecotopes and predicted by whole-basin GAM analysis. a,b, GAM partial 
predictions of EVI anomalies (colour scale) for soil fertility43 (vertical axis) and 
HAND25 (horizontal axis) terms only (a), and for forest height45 and HAND25 
terms only (b). Ecotope distributions in southern, everwet and Guiana Shield 
forests (a, top right and b, right), and associated 99% confidence ellipses (main 
graph). The mean values of two areas exhibiting green-up in Fig. 1c (RN, in Rio 
Negro catchment, and AP in Amapa state) illustrate differing mechanisms of 
green-up (especially evident in b, where tall trees, despite deep water tables, 
promote green-up in AP, while shallow water tables promote green-up for RN). 
c,d, Adjusted EVI anomaly versus HAND with increasing fertility (blue to green 

shaded areas, corresponding to coloured areas in the tails of the fertility 
distribution in a, right) (c) or forest height (blue to red shaded areas, 
corresponding to coloured areas in the tails of the forest height distribution 
in b, right) (d). e, Region-specific EVI anomaly sensitivities to HAND, comparing 
adjusted observations (bin averages ± 95% CI, n = 636, 668 and 1,792 0.4° pixels 
for the everwet, Guiana Shield and southern Amazon regions, respectively) to 
adjusted GAM predictions (lines and 95% confidence shaded area). Note that 
adjusted EVI anomalies indicate that climate and ecotope factors not displayed 
in the graph are held constant at basin-wide (a–d) or regional average (e) values. 
See Supplementary Table 1d.
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in which ecotope factors promote brown-down) across the Amazon 
basin (Fig. 5a), including the ecotope factor combinations that are 
conducive (or not) to resilience (Fig. 5b,c).

This functional biogeography reveals the importance of ecotopes 
in structuring forest drought response: first, simply because the 
GAM models that accounted for forest ecotopes (through the vari-
ables HAND, SoilFertility, SoilTexture and ForestHeight; Extended 
Data Fig. 2) along with climate had significantly more predictive power 
(higher R2 while selected by lower Akaike information criterion (AIC)) 
than climate-only models (Supplementary Table 1). Importantly, the 
ecotope-defined biogeography allows attribution of greening-inferred 
resilience in different forests to distinct mechanisms. For example, 
during the 2015/2016 drought, forest greening was observed both 
in the shallow-water-table forests of the Rio Negro basin and in 
deep-water-table forests of Amapa state (RN and AP regions, respec-
tively, highlighted in Figs. 1c, 4b and 5a). The biogeography (Fig. 5b) 
and GAM prediction (Fig. 4b) show both regions sharing infertile soils, 
but they point in particular to forest height—and associated deep root-
ing zones enabling access to deep water—as a key factor supporting 
resilience/greening in the deep-water-table forests of AP (Fig. 5b,c 
(orange)), whereas the RN forests (Fig. 5b,c (green)), although short, 
had access to shallow water tables.

This analysis goes beyond previous climate-based explanations of 
Amazon forest drought response and, importantly, complements a 
recent map of external anthropogenic tipping-point threats (due to 
combined stresses of droughts, deforestation, fire, roads and so on)6 
with a biogeography of intrinsic ecological resilience/vulnerability (due 
to characteristics of forests in their adapted environments). Interaction 
among the three different hypotheses—that hydrological environ-
ments, soil fertility and tree drought resistance traits structure forest 
drought response—shows that no single factor could explain drought 
response across the whole basin through different droughts. Thus, 
shallow-water-table hydrological environments do indeed protect 
against drought24, but only relatively, especially in regions in which high 
fertility stimulates the fast growth of hydraulically more vulnerable 
trees28 (see Fig. 5c, in which the blue-labelled fertile regions with shallow 
water tables are the least vulnerable among the first four ‘more vulner-
able’ combinations on the left). The most resilient forest types (Fig. 5c) 

were those with low soil fertility, occupying all categories of the ‘more 
resilient’ end of the drought-response biogeography (Fig. 5c (right)).

Confidence in this forest biogeography arises from corroboration 
by ground observations, and by consistent results from different 
modelling approaches (in which structural causal models (Extended 
Data Fig. 6) confirm that GAM predictive models (Figs. 3 and 4) reflect 
causal effects). Remote-sensing observations generally align well with 
ecosystem photosynthetic fluxes derived from towers on the ground 
(see Methods, ‘Remote sensing validation and consistency’). Here, they 
also align with tree demography during the three droughts (Fig. 3a 
versus Fig. 3d for 2005 and 2010, and Extended Data Fig. 9c–h for 2015) 
and with remote photosynthetic anomalies, which are negatively cor-
related with mortality and positively with recruitment, as expected if 
more-negative anomalies are associated with increased plant stress. 
Notably, our GAM-derived remote-sensing resilience map also indepen-
dently predicted observations in forest plots of tree xylem hydraulic 
safety margins (HSMs) to mortality-inducing embolism50, a widely cited 
physiological drought-tolerance trait (Fig. 5a (inset)).

Implications of a functional biogeography
This study has important implications for understanding for-
est responses to climatic variability and change. First, because 
shallow-water-table forests in Amazonia are extensive (30–40% of 
the southern Amazon, where they are found to be protective during 
drought) but neglected by most previous studies of forest drought sen-
sitivity (Fig. 3e), southern Amazon forests are probably more resilient 
to drought than common estimates of climate sensitivity imply16, and 
large-scale plot-based estimates of a drought-induced decline in the 
Amazon forest carbon sink2 may need to be adjusted to account for 
these higher-drought-resilience but neglected forests.

However, this analysis also warns that climate change is probably 
simultaneously undermining different strategies and capacities for 
drought resilience, and highlights specific mechanisms and Amazon 
regions that are likely to be vulnerable to tipping-point failure: the 
resilience conveyed by shallow-water-table hydrological environ-
ments in certain regions28 is probably limited under growing climate 
change. The buffering effect of shallow water tables appears limited 
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Fig. 5 | A biogeography of Amazon forest drought resilience and 
vulnerability. a, Regions that are relatively more resilient (likely to exhibit EVI 
green-up) (green) or more vulnerable (red) to drought, based on standardized 
GAM drought response predictions of EVI anomaly from ecotope factors only 
(from Fig. 4 and Supplementary Table 1d; removing the effects of climate 
variability by setting climate equal to its basin-wide average (Methods, ‘Deriving 
the basin-wide biogeography of forest drought resilience/vulnerability’)). 
Crosses indicate validation sites where remote-sensing-derived resilience 
predicts plot-based physiological drought tolerance (tree hydraulic safety 
margins (HSMs); Methods, ‘Forest plot data’), as seen in the inset (linear 
regression R2 = 0.65; P = 0.008, n = 9 plots). b, Overlapping strategies and 

ecotopes structuring the distribution of relative drought resilience mapped in 
a, as promoted by the presence of resilience factors: shallow water table depth 
(WTD), indexed by HAND < 10 m (blue), low-fertility soils (cation concentrations 
< 10−0.35 cmol(+) kg−1, yellow) or tall deep-rooted trees (heights > 32.5 m, red), 
with overlap indicated by the primary colour mixing rules in the legend, and 
white indicating no resilience factor (which, notably, corresponds well to the 
most vulnerable red regions in a). c, The distribution of resilience factor groups, 
and the proportion of relatively vulnerable, resilient or neutral forest associated 
with each (left axis) and the mean relative resilience (blue horizontal lines, right 
axis), ordered from most vulnerable to most resilient.
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to short-duration droughts (< 3 months; Fig. 3c) that do not last long 
enough to deplete water tables. The benefits of regrowing trees quickly 
that are lost to once-in-a-century droughts28 (whether or not protected 
by shallow water tables) are much reduced when those drought fre-
quencies increase to become 5 or 10-year droughts (as seen recently 
and as predicted to continue in the near future51,52). Importantly, these 
fertility results imply (consistent with a recent ground-based study of 
hydraulic traits29) that it is Amazonia’s most productive higher-fertility 
forests that are most vulnerable to future climate change.

Finally, we note that the geographical distribution of these most- 
vulnerable forests (Fig. 5a (reddish regions)) has important warnings 
for sustaining the integrity of critical ecosystems both in the basin and 
beyond. First, these vulnerable forests are at high risk of deforestation 
(substantially overlapping with the ‘arc of deforestation’; Extended Data 
Fig. 10d). Importantly, because they are predominantly situated under 
prevailing winds that bring moist Amazonian air to the south (Extended 
Data Fig. 10d), they are critical to maintaining the evapotranspiration 
that feeds (and probably amplifies53) the ‘atmospheric rivers’ that bring 
forest-recycled precipitable water from the Amazon regions to sustain 
South America’s breadbasket in the agricultural regions of Brazil54.

This unified understanding of the functional biogeography of Ama-
zon drought response provides a basis both for establishing basin-wide 
priorities for conservation planning8 and for achieving improved under-
standing and predictions of tropical forest vulnerability to current 
droughts, threatened tipping points and future climate change.
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Methods

In this study, we applied a hypothesis-testing framework55,56, using 
remote-sensing methods to test a sequence of three key ecological 
hypotheses that predict how different forest types respond to drought. 
To conduct these tests, we assembled key datasets, including two clas-
sic satellite products of vegetation photosynthetic function (the most 
recent version of the EVI and solar induced fluorescence (SIF) (includ-
ing their validation), gridded products of climate, water-table depth, 
soil fertility and texture, and vegetation properties defining ecotopes. 
We focused on intact evergreen forests, mapping data in areas corre-
sponding to evergreen forest cover in non-floodplain, non-deforested 
forest regions. We assembled field datasets of forest demography (from 
RAINFOR2 and ref. 26) and of physiological drought tolerance50 to test 
remote sensing skill at capturing ground-measured metrics for forest 
drought response.

To conduct the statistical analysis, we first interpolated data prod-
ucts onto grids of appropriate spatial resolution, and conducted a 
supervised classification analysis of Amazon forests into three dis-
tinct regions defined by ecotope. We defined climate anomalies and 
drought characteristics and duration on a pixel-by-pixel basis, defined 
forest drought resilience in terms of anomalies in vegetation function, 
conducted a variogram analysis to remove effects of spatial autocor-
relation, and then evaluated the scale dependence or sensitivity of key 
results to the pixel size/spatial resolution. We derived statistical models 
of drought response using two independent approaches: predictive 
regression modelling (GAM, a nonlinear multiple regression technique 
whereby the most predictive models are selected by an information 
criterion), and SCM (using directed acyclic graphs (DAG)). We tested 
GAM predictions by comparison to adjusted observations and then 
used the basin-wide GAM predictive model to derive a functional bio-
geography of drought response.

Finally, we addressed confidence in our interpretations by exploring 
potential alternative mechanisms and caveats, and by using the predic-
tive GAM framework to conduct tests of alternative hypotheses that 
could either support or reject those presented in the main text. These 
provided evidence in support of our interpretation, but also pointed 
to future research needs.

Datasets
Remote-sensing indices of photosynthesis. We applied two widely 
used, ground-validated remote-sensing indices of photosynthesis 
to provide a sensitivity analysis that brackets the plausible range of 
forest canopy response to drought: the EVI, constructed from obser-
vations of surface reflectance by the MODerate resolution Imaging 
Spectroradiometer (MODIS) onboard the Terra/Aqua satellites; and 
the GOSIF product derived from observations by the Orbiting Carbon 
Observatory 2 satellite. EVI, derived from the spectra of light reflected 
from surface vegetation, is designed as an index of the photosynthetic 
capacity57. GOSIF is designed to represent the active light emission from 
fluorescing chlorophyll molecules during photosynthesis, which is 
often well-correlated with canopy-scale instantaneous photosynthetic 
activity57. This distinction (between reflected light used to construct EVI 
as a proxy for capacity, versus actively emitted light used to construct 
GOSIF as a proxy for activity) means that these indices may be expected 
to display divergent responses.

We chose these indices because they aim to capture different 
end-members of a spectrum of canopy responses: from transient physi-
ological changes in photosynthesizing/fluorescing leaves (which might 
be due, for example, to stomatal regulation in response to changing 
atmospheric VPD) that affect photosynthetic activity for a given capac-
ity58, versus more structural responses associated with leaf turnover 
such as leaf flushing or shedding which also change canopy photosyn-
thetic capacity59. We primarily focus here on EVI responses, which have 
been shown to remotely capture seasonal canopy green-up dynamics 

that are consistent with underlying mechanisms of leaf development 
and demography60. However, GOSIF corroboration of EVI drought 
responses at broadscales would suggest that ecophysiological and 
structural canopy responses to drought are aligned in the Amazon, 
increasing confidence in the robustness of remotely observed drought 
responses.

MAIAC EVI. The MAIAC algorithm rigorously accounts for sun-sensor 
geometry, as represented in a bidirectional reflectance distribution 
function (BRDF), estimating reflectance at a nadir view and 45° solar 
zenith angle, with strict atmosphere, aerosol and cloud corrections37. 
We used the 8 day MCD19A3 (MAIAC) 1 km product from MODIS collec-
tion six, a level 3 product composited from cloud-free and low-aerosol 
conditions. We applied the coefficients (weights) of the RossThick/
Li-Sparse BRDF model (available online https://e4ftl01.cr.usgs.gov/
MOTA/MCD19A3.006/). We calculated the 8 day EVI from the MAIAC 
surface reflectances of red, blue and near-infrared bands as previously57 
from 2001 to 2019. The 8 day EVI is then aggregated to a monthly time 
step.

GOSIF. SIF, emitted by chlorophyll molecules in green plants that have 
been excited by absorption of sunlight, provides a direct index of the 
current physiological state of a photosynthesizing canopy61. The OCO-2 
satellite observes SIF at coarse resolutions62, and these are used to cre-
ate the modelled GOSIF data product38 (available at http://data.globa-
lecology.unh.edu/data/GOSIF_v2), which simulates higher-resolution 
SIF dynamics over longer time periods by interpolating among discrete 
OCO-2 SIF soundings using the MODIS surface reflectance product 
MCD43C4 (BRDF-corrected to nadir view and to the solar zenith  
angle at local noon), and meteorological reanalysis data38. We used the 
monthly composite GOSIF product with high spatial resolution of 0.05° 
over the period from 2001 to 2019. Among SIF-related products, GOSIF 
has been found to be the best predictor of gross primary productivity 
(GPP) measured from eddy covariance towers across land cover types63.

Climate variables
To explore climate effects on forest drought responses, we used 
monthly precipitation, MCWD, surface downwelling shortwave radia-
tion and VPD resampled at 0.4°. Precipitation and MCWD are from the 
Global Precipitation Mission and Tropical Rainfall Measuring Mission 
3B43-v7 for 2000–2020 at 0.25° resolution (~25 km × 25 km) (https://
disc2.gesdisc.eosdis.nasa.gov/data/TRMM_L3/TRMM_3B43.7/)64.

MCWD measures local drought intensity, defined as the maximum 
deficit reached in the last month of a string of dry months for each 
grid cell within the year39, treating forest water deficit as analogous to 
a bucket of which the deficit is zero when the bucket is full. To avoid 
splitting a string of dry months between 2 years, we used a 12-month 
‘hydrological year’ running from May to the following April (for exam-
ple, MCWD for 2004 was calculated using CWD data from May 2004 
to April 2005). We also used monthly surface downwelling shortwave 
radiation from Modern-Era Retrospective analysis for Research and 
Applications version 2 (MERRA-2 Reanalysis) for 2000 to 2019 as a proxy 
for PAR at a spatial resolution of 0.5° × 0.625° (https://goldsmr4.gesdisc.
eosdis.nasa.gov/data/MERRA2_MONTHLY/M2TMNXRAD.5.12.4/)65. 
VPD was calculated based on surface air temperature and relative 
humidity (L3 Standard Monthly Product, AIRS3STM) from version 6 
of the Atmospheric Infrared Sounder (AIRS) at a spatial resolution of 
1° for 2003–2017 (~100 km; https://airs.jpl.nasa.gov/data/get-data/
standard-data/)66–69.

Ecotope variables
We follow the ecosystem ecology approach18,19 of characterizing differ-
ent ecosystem types (in this case, forest ecosystems) by their ecotopes, 
that is, by the combination of biotic characteristics and abiotic environ-
ments that define them, here including their hydrological environment 
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(water-table depth), soil types (fertility and texture), vegetation char-
acteristics and other factors70.

We used the HAND-normalized terrain model25,71 as a proxy of 
water-table depth and for plant access to groundwater, rederived at 
100 m resolution from digital elevation model-Shuttle Radar Topog-
raphy Mission (SRTM) data for this study26,72. The HAND normalization 
is relative to the local drainage height, using the flow paths to connect 
all cells (pixels) with the cells of the nearest drainage. The HAND model 
has been validated over an area of 18,000 km2 in the lower Rio Negro 
catchment25 and used for a wide range of ecohydrological studies27,73,74. 
HAND is comparable to the water-table depth model-based product of 
a previous study75, which gave broadly similar results to those reported 
here with HAND. For this study the HAND-normalized terrain model 
was derived from SRTM-DEM at a 100 m resolution.

For soil fertility, we used a map (0.1° spatial resolution) of exchange-
able base cations (Ca++ Mg+ + K+ measured in cmol(+) kg−1) for the 
Amazon basin43, the most extensive empirically validated gridded 
soil fertility product currently available. Soil cation concentrations 
estimated from this product achieved good agreement with an inde-
pendent dataset of field-measured values (correlation of r = 0.71)43.

Our analysis does not include phosphorus, which is generally con-
sidered to be limiting to tropical forest productivity76,77, but was not 
available as a high-quality validated gridded data product at the time of 
our analysis (in the late stages of production of this Article, a phospho-
rous map for the Amazon was published78, which we were not able to 
include in the analysis here). We expect base cations to be a partial index 
of phosphorus availability, as both cations and phosphorus become 
available through weathering of young soils arising from Andean parent 
material or runoff sediment, but are eventually leached, leaving older 
highly weathered soils in the Guiana Shields depleted of both. Cation 
concentration should also be directly relevant to drought tolerance, 
as high concentrations should improve osmotic regulation of stomatal 
conductance, an important regulator of drought response79.

For soil texture, we used soil sand/clay fractions from the SoilGrids 
system released by the International Soil Reference Information Centre 
World Soil Information44.

For forest height, we used a canopy height metric derived from spa-
ceborne lidar measurements45 (https://webmap.ornl.gov/ogc/data-
set.jsp?dg_id=10023_1) and validated by field measurements, with an 
increased accuracy in the Amazon compared to previous metrics33). 
This wall‐to‐wall global map of canopy height is at a 1 km spatial reso-
lution, interpolated from lidar observations by the Geoscience Laser 
Altimeter System aboard the Ice, Cloud and Land Elevation Satellite. We 
take forest canopy height as a proxy of rooting depth, based on standard 
allometries backed by observations in Brazilian tree plantations31,32,46, 
in a central Amazon forest31,32,46 and across biomes31,32,46 that show they 
are correlated31,32,46. However, observations of the tree height–rooting 
depth allometry are limited, especially in tropical forests (although 
one study cited here31 is directly relevant, as it is from central-eastern 
Amazon upland forest, conducted during the 2015 drought); this limi-
tation remains a key uncertainty in our ability to confidently attribute 
variations in drought response to rooting depth, as opposed to canopy 
height itself, or other (as yet unidentified) correlates of canopy height. 
We also note that shallow water-table depth limits rooting depth such 
that canopy height correlations with rooting depth in these forests 
may be diminished80.

We also applied community-weighted mean wood density and the 
abundance of Fabaceae (legumes)34. Fabaceae refers to a large, nearly 
cosmopolitan family that relates woody plants with nitrogen-fixing 
nodulation, usually assumed adaptations to low-fertility soils81.

Identification of terra firme Amazon basin forests using land-
cover maps
To focus our analysis on the desired domain of terra firme forests, we 
used a forest map at 1 km spatial resolution (MCD12Q1.006) to identify 

evergreen forest pixels within the Amazon basin82, excluding open 
water, deforested forests and non-forest vegetation types. A floodplain 
map was also used to identify targeted non-flooded forests, and exclude 
floodplain forests83. We used the map of a previous study84 to define the 
boundary of the Amazon basin, an inclusive definition encompassing 
all forested parts of the Amazon river catchment and Amazon forests 
technically within the Orinoco river catchment. We used a recently 
published forest cover classification that now includes a category for 
‘degraded’ forests at a 30 m spatial resolution85 (updated to 2022), to 
test drought sensitivity (see the ‘Testing alternative interpretations 
and considering caveats’ section).

Forest plot data
RAINFOR long-term forest plots. We used demographic datasets 
over the period 1983–2011 from all of the 321 re-censused forest plots 
that were published and used to estimate Amazon basin-wide carbon 
balance (most, but not all, of these were from the RAINFOR network)2, 
for three purposes: (1) to characterize the spatial representativity of the 
reported plot-based sampling efforts (area-weighted frequency × du-
ration that plots were monitored) with respect to the distribution of 
water-table depths (HAND) across the Amazon basin (Fig. 3e); (2) to 
test whether forest mortality anomalies (percentage deviation from 
the long-term mean) in 247 plots subject to the 2005 and 2010 droughts 
were associated with water-table depth (Fig. 3d); and (3) to validate EVI 
remote sensing with spatial variations in long term (2000–2011) average 
aboveground net primary productivity (ANPP) rates across the Amazon 
basin (see the ‘Validation by forest plot metrics of demography and of 
physiological drought tolerance’ section; Extended Data Fig. 9a,b). 
The full RAINFOR and related networks sample more plots than these, 
likely including a greater range of environments86, but published results 
representing drought response of ‘the Amazon rainforest’16 and ‘the 
Amazon carbon sink’2 are the ones of which the sample plot distribu-
tions are analysed here for their representivity.

Shallow water table forest plots. For remote-sensing validation, we 
also used mortality and recruitment data from 25 1 ha plots distributed 
across 8 research sites along the BR-319 road in the southern Ama-
zon between Manaus and Porto Velho (from 62.5° W, 5.9° S to 60.9° W, 
4.4° S) as analysed previously26. These are shallow-water-table sites 
(2.81 ± 2.38 m deep (mean ± s.d.)) intended to complement the on 
average deeper water table sites of the RAINFOR network (above). 
These more recent data focused on mortality and recruitment rates 
calculated for the 2015–2016 drought (see the ‘Validation by forest 
plot metrics of demography and of physiological drought tolerance’ 
section; Extended Data Fig. 9c–h).

Forest plot HSMs. We used a pan-Amazon hydraulic trait dataset 
(HSMs, the difference between water potentials experienced by a spe-
cies in the field and the water potentials leading to hydraulic failure, 
with narrower margins indicating greater mortality risk) published by 
Tavares et al.50, including 108 species distributed across 9 forest sites 
across western, central eastern and southern Amazon, to validate our 
derived resilience map (Fig. 5). These sites belong to old-growth lowland 
forests, little disturbed by human activities, spanning the Amazonian 
precipitation gradient and encompassing the principal axes of species 
composition in the Amazon50. The HSM used here was calculated by 
Tavares et al. as HSM50, the difference between minimum observed 
stem water potential and P50, the stem water potential at which 50% of 
xylem hydraulic conductivity is lost. The measurements are conducted 
on individual trees, then aggregated to the species level; basal-area 
weighted averages were then calculated for each plot50.

Remote-sensing validation and consistency
Validation by ecosystem flux measurements (eddy flux towers). 
MAIAC EVI: EVI has been extensively validated against measurements 
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of ecosystem photosynthesis (GPP) from eddy flux towers across land 
types world-wide87, including temperate88–90 and tropical91–93 biomes. 
Earlier versions of MODIS EVI were criticized as influenced by aero-
sol or sun-sensor geometry artifacts when detecting tropical forest  
greening94,95, but such effects are largely eliminated in the current 
MAIAC EVI product used here (which corrects artifacts from aerosol 
contamination and sun-sensor geometry)37. Particularly relevant for 
this study, MAIAC EVI well-detected Amazon forest seasonal green-up 
dynamics across a network of eddy flux tower sites in the Brazilian 
Amazon96,97, with patterns shown to be consistent with understandings 
of leaf development and demography derived from flux towers and 
phenocam studies on the ground60.

EVI or EVI-based models predict independent tower measurements 
of monthly GPP with R2 of around 0.5–0.7 for tropical91–93,96, and R2 of 
about 0.7–0.8+ for temperate88–90 biomes.

GOSIF: despite nonlinear and sometimes decoupled relationships 
between chlorophyll fluorescence and photosynthesis at leaf scales98, 
satellite observations of SIF from OCO-2 have been shown to be linearly 
related to canopy scale GPP62, suggesting that canopy-scale processes 
can effectively average over leafscale complexities. GOSIF-modelled 
datasets built from SIF observations have been multiply validated by 
tower-based CO2 flux estimates of GPP, achieving good correlation 
(R2 = 0.73 globally) with the 91 sites of global Fluxnet GPP (2015 tier 1 
dataset)38, with lower correlations (R2 = 0.51, comparable to EVI in the 
tropics) for the evergreen broadleaf forest biome, including sites in 
the Amazon63.

Note that, for the lower R2 for tropical versus temperate forest GPP 
detection, although both indices (GOSIF and EVI) capture GPP com-
parably in deciduous broadleaf (temperate) versus evergreen broad-
leaf (tropical) forests within active growing seasons, most statistical 
assessments are of full annual cycles, which typically show substantially 
better statistics (R2 > 0.8) for temperate zone forests, largely because 
temperate forests include easily detectable dormant periods when 
GPP ≈ 0, which make total annual variability (hence R2) higher, while 
tropical evergreen forests are active year round.

Validation by forest plot metrics of demography and of physiologi-
cal drought tolerance. We investigated the effect of variations in re-
motely sensed photosynthesis on downstream forest demographic 
effects (growth, recruitment and mortality; see the ‘Forest plot data’ 
section). We should expect remote-sensing skill in predicting demog-
raphy to be weaker than for predicting photosynthetic fluxes, because 
demography emerges not from photosynthesis alone, but from the 
balance of photosynthesis and autotrophic respiration, and is also 
influenced by other factors such as disturbance.

We nevertheless found validation at multiple scales: MAIAC EVI sig-
nificantly predicted spatial variations in decadal forest ANPP (during 
2000–2011) across the Amazon basin (RAINFOR network; see the ‘Forest 
plot data’ section; Extended Data Fig. 9a,b). Using more recent data, we 
also confirmed consistent detection by EVI and GOSIF of short-term 
demographic drought-response metrics during the 2015/2016 drought 
(mortality, recruitment and the mortality:recruitment ratio; Extended 
Data Fig. 9c,h), as expected if excess mortality (or a decline in recruit-
ment) follows declines in photosynthetic carbon assimilation. The R2 
values of 0.25 to 0.35 for remote detection of demography (Extended 
Data Fig. 9) are consistent with our expectation that they should be less 
than the remote detection R2 for GPP (0.5 to 0.7, discussed in the ‘Vali-
dation by ecosystem flux measurements (eddy flux towers)’ section), 
as GPP is only a partial determinant of the NPP driver of demography 
(NPP = GPP − autotrophic respiration, where autotrophic respiration 
is not directly detectable by remote sensing, and with perhaps ~60% 
of the NPP signal due to GPP in the tropics, based on a carbon use effi-
ciency of 0.3 (ref. 99).

With respect to remote detection of the physiological drought toler-
ance of trees, we investigated the ability of our remote-sensing-derived 

forest photosynthetic resilience map (Fig. 5a; see the ‘Deriving the 
basin-wide biogeography of forest drought resilience/vulnerability’ 
section) to predict a metric of the resilience of individual trees to 
drought, HSMs for xylem embolism. Individual tree HSMs—the dif-
ference between observed stem water potentials and the stem water 
potentials at which trees become vulnerable to xylem embolism—are 
widely regarded as predictors of tree mortality risk under drought50, 
with narrower HSMs indicating greater mortality risk36. We found that 
our remote-sensing-derived estimates of forest resilience (Fig. 5a) 
could significantly predict basal-area weighted tree HSM measured 
on the ground at forest plots across the Amazon basin (Fig. 5a (inset)) 
(reported previously50; summarized in the ‘Forest plot data’ section) 
(note that forest resilience was estimated as described in the ‘Deriving 
the basin-wide biogeography of forest drought resilience/vulnerability’ 
section, but using canopy height mapped at 0.1° resolution, instead of 
the baseline model resolution of 0.4°, to avoid mixing the height signal 
of intact HSM plot forests with that of occasionally nearby deforested 
areas). This comparison strongly supports the validity of using remotely 
sensed photosynthetic indices to derive a definition of photosynthetic 
resilience to drought.

Consistency between EVI and GOSIF
Are the two remote sensing metrics showing consistent response to 
drought? The spatial locations of the drought anomalies appear simi-
lar, although not the same (Fig. 1 versus Extended Data Fig. 1d–f) but, 
as EVI and GOSIF are intended to be sensitive to distinct dimensions 
of canopy photosynthetic function—that is, to photosynthetic capac-
ity versus activity, respectively (as discussed in the ‘Remote sensing 
indices of photosynthesis’ section)—we should not expect sameness.

We do expect activity to be generally more sensitive to drought than 
capacity, because activity-based responses encompass both transient/
reversible physiological responses (for example, stomatal adjustment) 
as well as slower structural effects due to changes in capacity (for exam-
ple, biochemical inhibition, leaf growth or shedding)58,100. We indeed see 
this expectation reflected in observed drought response, with the range 
of GOSIF (activity) anomalies (from −9.6 to +4.8 s.d., excluding 0.1% of 
the distribution in each tail) 30% greater than the range of EVI anoma-
lies (−6.5 to +4.5 s.d.; insets in Fig. 1 versus Extended Data Fig. 1d–f).

More important, we examine whether there is consistency in terms of 
support for or rejection of hypotheses that are the focus of this analy-
sis, for example, whether the other-side-of-drought prediction that 
drought response anomalies should decline with water-table depth, 
and here we do see broad support for this hypothesis from both EVI 
and GOSIF: for the 2005 drought ‘ellipse’ region that was discussed 
in the main text (Extended Data Fig. 1g), and for the three droughts 
considered together (Fig. 3a versus Extended Data Fig. 1h). We also see 
similar ability of the two metrics to predict tree demographic responses 
to drought on the ground (Extended Data Fig. 9c–h). Together, these 
comparisons increase confidence that forest drought response hypoth-
eses are robustly supported by the two indices.

Within the broadscale consistency, there are also substantial 
fine-scale differences in spatial location of anomalies (Fig. 1 versus 
Extended Data Fig. 1) and the detailed structure of responses (the pat-
tern of residuals in Fig. 3a versus Extended Data Fig. 1h), suggesting 
that more nuanced study of these finer-scale differences could reveal 
additional insights into the biogeography of forest drought response101.

Mapping and statistical analysis
Spatial grid resolutions. We interpolated the differently resolved 
data products to different grid resolutions as needed for mapping 
and modelling. Native resolutions were used to display most maps 
(exceptions noted):
•	 1 km for MAIAC EVI (Figs. 1 and 2 and Extended Data Figs. 8b and 9a–e)
•	 100 m for HAND, composited to 1 km for mapping (Fig. 2a and 

Extended Data Fig. 2a)



•	 0.05° for GOSIF (Extended Data Figs. 1d–h and 9f–h)
•	 0.25° for precipitation-derived products (Extended Data Figs. 2f,g 

and 3)
•	 0.625 × 0.5° for PAR
•	 1° for VPD (Extended Data Fig. 3)
•	 0.1° for soil fertility (Extended Data Fig. 2b)
•	 0.25 km for soil sand content (Extended Data Fig. 2d)
•	 1 km for forest canopy height (Extended Data Fig. 2c)
•	 1° for wood density and proportion of Fabaceae (Extended Data 

Fig. 2e,h)

For plotting maps, we used ArcGIS v.10.6.1. For graphing and analy-
sis we used R v.4.2.0 (including R packages ggplot2 for graphics, and 
FactoMineR, Mgcv and Dagitty for statistical analysis).

For statistical modelling, we interpolated different datasets to com-
mon grid resolutions, according to the resolution of the model. For 
this, we initially downscaled all maps to the native resolution of the 
EVI product (1 km), then aggregated to the desired coarser resolu-
tion, typically 0.4°, that was needed to avoid inflation of statistical 
significance of drought responses in models by accounting for spatial 
autocorrelation among nearby pixels using variogram analysis (see the 
‘Variogram analysis for removal of spatial autocorrelation’ section; 
Supplementary Fig. 1). Grid cells in the drought-affected domain that 
included no intact forest were excluded from the analysis. When an 
analysed grid cell (at a coarse resolution, typically 0.4°) included a mix 
of intact forests and non-forest or deforested regions, we selected and 
aggregated all intact forest pixels at the smaller (1 km) subgrid scale to 
accurately represent intact vegetation properties (EVI, canopy height 
and so on), and represented the coarser model grid cell by those intact 
forest properties.

Classification of forest regions according to ecotopes. We investigat-
ed whether the distribution of factors defining forest types (ecotopes) 
across Amazonia could lead to a coherent clustering of different forest 
ecotopes into different regions, each with different broadscale forest 
drought responses. To this end, we conducted a supervised forest clas-
sification, using factors that were identified in previous studies to be 
important17,34,102,103: two climate variables (average minimum monthly 
precipitation and MCWD variability), soil fertility (concentration of 
exchangeable base cations43) and three tree functional characteristics 
(forest height, wood density and the proportion of trees in the family 
Fabaceae).

We conducted the classification in four steps: first, the six ecotope 
factors, standardized by their mean and s.d., were mapped, with each 
grid cell considered to occupy a point in a six-dimensional space, and 
each dimension indexed in comparable units of standard deviations. 
Second, a principal component analysis (PCA)104 (FactoMineR package 
in R; Extended Data Fig. 4a) identified three complementary dimensions 
of forests in this space: a dimension defined by vegetation character-
istics (wood density and proportions of the family Fabaceae), nearly 
coincident with the first principal component (Extended Data Fig. 4a 
(x axis)); a dimension defined by water availability (minimum monthly 
precipitation and MCWD variability), nearly coincident with the sec-
ond principal component (Extended Data Fig. 4a (y axis)), and a third 
dimension defined mainly by soil fertility (Extended Data Fig. 4a). On 
the basis of these initial PCA results suggesting three relatively distinct 
dimensions, we chose to cluster Amazon basin pixels into three classes. 
Given their diversity, Amazon forests could probably be classified into 
more than three, but we judged that three would be sufficient to cap-
ture substantial functional variation, without being so complex as to 
prevent intuitive understanding.

Third, an automatic procedure extracted end-member charac-
teristics based on percentile thresholds105 from the PCA space106. 
Pixels with low climate variability had high minimum precipitation 
and long wet seasons (in the 90th percentile), and were identified 

as a water-availability-spectrum end-member. Grid cells with the 
highest proportion of Fabaceae, overlaying with tall, dense-wooded 
trees (in the 90th percentile) and low-fertility soils, were identi-
fied as another end-member. A third end-member was defined by a 
combination of high variability climates and moderately high (67th 
percentile) soil fertility. Finally, supervised classification using the 
minimum distance method was used in ENVI (v.5.3)107 to cluster each 
region on the basis of the proximity to the end-members selected in  
step three.

This process identified three clusters of pixels in functional PCA 
space that turned out to also correspond to geographically distinct 
Amazonian regions that were mostly contiguous (Extended Data 
Fig. 4b): an everwet Amazon region in the northwest, a Guiana Shield 
region in the northeast and the southern Amazon. The standardized 
values within each cluster of each of the characteristics defining the 
regional clustering (ordered by water availability, soil fertility and tree 
traits) exhibit the distinct niches of each region (Extended Data Fig. 4c). 
The everwet Amazon is differentiated by lack of dry seasons (periods 
with months with <100 mm rainfall; Extended Data Fig. 2a). Forests 
in this region might be composed of species that do not well-tolerate 
climate conditions (such as droughts), compared with tree assem-
blies (in other regions) adapted to regular droughts or dry seasons. 
The Guiana Shield region is distinct in having old, highly weathered, 
low-fertility soils, with tree communities containing the largest pro-
portion of trees in the family Fabaceae, with dense wood and high 
seed mass34 (Extended Data Fig. 2c–e). The southern Amazon is then 
differentiated further from the Guiana Shield as slightly drier, with 
soil fertility that was both higher on average but also more variable.

This three-region classification (which we use to define the regions 
depicted in the main text figures) is independent of the results (Figs. 3 
and 4) of the basin-wide modelling investigation (described in the 
‘Statistical analyses for inferring causes of, and predicting, drought 
response’ and ‘Comparing adjusted observations to GAM predictions 
for different predictor variables’ sections below) because model pre-
dictions depend on pixel-by-pixel variations of environmental factors 
regardless of what region they are in. However, the three-region Amazon 
is useful for presenting model results because it illustrates how dif-
ferent functional responses emerge from different ecotope regions  
(as shown in Fig. 4e).

Climate anomalies for drought definition and mapping. The spatial 
extent for each of the three droughts (d) was taken to be all grid cells 
where the MCWD anomaly was more than 1 s.d. below the long-term 
mean for that cell (Extended Data Fig. 1a–c). MCWD anomaly for each 
grid cell is calculated by equation (1):

σ
MCWD =

MCWD − MCWD
(1)d

anomaly
MCWD

where MCWDd is the data value in drought year (d), MCWD is the aver-
age of 19 yearly MCWD values for hydrological years 2000–2019 (May 
2000 to April 2020) and σMCWD is the s.d. for the same time period. 
Anomalies of the other climate variables were calculated analogously.

Drought severity in each grid cell was classified into three levels by 
standardized MCWD anomaly: modest drought (−1.5 to −1 s.d. relative 
to the mean), medium drought (−2 to −1.5 s.d. relative to the mean) 
and severe drought (greater magnitude than −2 s.d.) (Extended Data 
Fig. 1a–c).

Drought duration (for each of the three droughts separately for each 
grid cell) was measured in terms of number of drought months (i) for 
a particular drought (d) for each grid cell within the period (May to 
the following April) for the droughts of 2005 and 2010; and from May 
to October of the following year for the El Nino drought of 2015/2016. 
The drought onset month is found where the following is true, recall-
ing that CWD and MCWD are more negative with greater water deficit:
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The end month of drought interval (i) for each grid cell for each of 
the three droughts is defined as follows:
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Then for each grid cell, durationd = endd − onsetd + 1 as shown in 
Extended Data Fig. 3a–i.

Drought resilience and vegetation anomalies. We defined drought 
resilience as a forest’s ability to increase (or relatively better maintain) 
photosynthetic capacity or activity during a perturbation—that is, by its 
tendency to exhibit more positive/less negative anomalies in vegetation 
indices (relative green-up) during drought. There is a broad literature 
on resilience108,109, and our definition (which can also be characterized as 
‘resistance’ or ability to resist changes in function with perturbation108) 
is nominally distinct, for example, from another common definition, 
the capacity of a system to return to its equilibrium state following a 
disturbance110. We chose relative green-up here for conceptual and 
practical reasons. Conceptually, greater relative green-up implies rela-
tively more photosynthesis and, therefore, all else equal, more carbon 
resources to respond to stress, encompassing different strategies (likely 
including system capacity to return to equilibrium after disturbance), 
making it a logical general metric of resilience. Practically, greening has 
been widely cited and discussed in the literature and, notably, is predic-
tive of outcomes on the ground commonly associated with resilience at 
the individual tree and plot scale (lower mortality, greater growth and 
greater xylem embolism resistance; see the ‘Remote sensing validation 
and consistency’ section; Extended Data Fig. 9c–h).

To quantify photosynthetic resilience, we extracted from each grid 
cell for each of the three droughts the anomalies in photosynthetic 
indices for the period of drought (Figs. 1 and 2b,c and Extended Data 
Figs. 1 and 3), calculated as the departure (in standard deviations from 
their non-drought-year means) across a 9 year window centred on each 
drought (for example, 2001–2009 for the 2005 drought and 2011–2019 
for the 2015 drought):

X X
σ

Anomaly =
−

, (4)d
d

,du
,du du

du

where Xd,du is the value of the index in a grid cell during drought d, aver-
aged over the duration du (extracted by equations (2) and (3)), and  
Xdu and σdu are the average and s.d., respectively, of the same ‘du’ period 

across the years of data availability (with the drought years 2005, 2010 
and 2015 excluded). Including pixel-specific drought duration intro-
duces greater realism in drought response metrics by capturing pixel–
pixel variability in drought response due to duration du, which has 
been treated in some previous analyses as fixed (for example, in anal-
yses of the 2005 drought, du was assumed to be the 3 months of July, 
August and September for all pixels)9,10,111.

Correspondingly, we also calculated the field-based demographic 
mortality anomalies for drought years 2005 and 2010 from RAINFOR 
plots2, as aboveground biomass mortality drought responses (mortality 
carbon flux after drought, in percentage change relative to long-term 
mean MgC ha−1 yr−1).

Variogram analysis for removal of spatial autocorrelation. Obser
vations from spatial samples are not independent, due to spatial auto-
correlation among grid cells that are near to each other112. To obtain 
independent observations for GAMs and for statistical quantifica-
tion of average drought response (Fig. 1), we resampled grid cells at 
increasingly coarse resolutions until response differences (between 
forests with different water-table depths) were no longer spatially 
autocorrelated—that is, a sill (plateau) was reached in the variogram 
(Supplementary Fig. 1) at around 40 km, indicating a scale at which the 
samples could be treated as statistically independent. The variogram 
was calculated from the covariance of the difference between drought 
responses in shallow and deep water table grid cells:

∑γ h
N h

z z2 ( ) =
1
( )

( − ) (5)m n N h m n, ∈ ( )
2

z = Anomaly (6)m EVI,SWTDm

z = Anomaly (7)n EVI,DWTDn

where N(h) was the number of grid-cell pairs (m, n) separated by dis-
tance h. Each zm is the standardized EVI anomaly of the first member of 
a grid cell pair, drawn only from cells with shallow water-table depths 
(0, 1, 2, …, 9), while zn is the second member of each pair, drawn only 
from cells with deep water tables (10, 11, 12, …, 19).

Statistical analyses for inferring causes of, and predicting, drought 
response. Our statistical analysis had two main goals: first, to test the 
three core hypotheses presented in the main text introduction (causal 
inference), and to develop the best possible predictions of regional 
to basin-wide drought response by combining ecotope factors with 
climate (predictive inference).

For this, we implemented two sequential statistical approaches: 
first (see the ‘AIC-selected GAMs for hypothesis testing and predic-
tion’ section), we used GAM statistical regression40, selecting among 
ecologically informed models by the AIC to both test hypotheses 
about variables thought to influence forest drought response and to 
identify the best predictive models of regional to basin-wide drought 
response113,114. To avoid known inferential biases of building large regres-
sion models out of many variables selected blindly by information 
criteria like AIC109,111,112, we construct our moderate-sized models within 
a hypothesis-testing framework, in which causal hypotheses are speci-
fied based on ecological considerations and the selected regression fits 
test the predictions made by those hypotheses. Second (see the ‘SCM 
using DAG’ section), we also used SCM41,115, an approach that formalizes 
hypothesis testing as part of the model structure (for example, using 
DAGs116,117). SCM reduces risk from confounding variables that can mask 
or dilute (or magnify) true causal relationships between the ‘exposure’ 
variables (such as climate, soil types) and the ‘outcome’ variable (such 
as forest greening/browning)118. Note that, in both the GAM and SCM 
approaches, accurate inference of the relative magnitude or impor-
tance of inferred relations is conditional on the model (for example, 
the diagram in Extended Data Fig. 6) being true.

Finally, we compare the two approaches (see the ‘Comparing infer-
ences from SCM with predictive GAM regressions’ section) based on 
the idea that, if the inferences from the two approaches are consistent 
with each other in terms of their conclusions about hypotheses, this 
increases the confidence in those conclusions.

AIC-selected GAMs for hypothesis testing and prediction. We  
developed GAM regression models of forest drought response as a 
function of climate variables and ecotope factors10,17,34 to represent our 
three core hypotheses of water-table depth24, soil fertility28,29 and tree 
characteristics30–32,50. GAMs allow for nonlinear relationships between 



response and multiple explanatory variables, in which the underlying 
model structure can be analysed to understand why they make the pre-
dictions that they make, in contrast, for example, to machine learning 
techniques, like boosted regression trees or neural networks40,119. GAM 
links response variables to explanatory variables with a smoothing 
function, or a spline, that can take a variety of shapes, which are then 
added together.

We developed GAMs of two types: (1) regional models—fit within 
regions—designed to test the other-side-of-drought hypothesis 1, by 
including hydrological environments (as represented by HAND) in 
addition to climate variables used in previous climate-only regres-
sion models of forest drought response10; and (2) basin-wide models 
designed to test all three of our hypotheses together (including effects 
of soil fertility and tree characteristics) and, in particular, to under-
stand the opposite sensitivity of forest responses to water tables across  
different regions (Fig. 3a versus Extended Data Fig. 5).

(1) For the effect of local hydrological environment and climate on 
drought response (regional GAMs), GAMs were fit separately for the 
southern Amazon, Guiana Shield and everwet Amazon regions, and 
for all three droughts together, as:

(8)
Δ s s Δ s Δ s ΔP s Δ s

ti ε

EVI = (HAND) + ( PAR) + ( VPD) + ( ) + ( MCWD) + (DL)

+ (pairwise interactions of every two predictors) +

where ∆EVI is the vegetation response anomaly, ∆PAR, ∆VPD, ∆P and 
∆MCWD are the radiation, VPD, precipitation and MCWD anomalies, 
respectively; DL denotes the drought length; ε is the normally distrib-
uted residual; s() and ti() are the smoothing functions of predictor 
variables, obtained using a scatterplot smoothing algorithm with a 
back-fitting procedure for the appropriate smoothing function for each 
predictor. The degree of freedom (d.f.) for the smoothers is determined 
using the restricted maximum-likelihood (REML) method with Gauss-
ian distribution implemented by the R package mgcv119. Models were 
implemented with the gam.check function of the R package mgcv119 
for diagnostics of residual, distribution and k basis dimension as well 
as concurvity. All of the predictors were scaled to the same range and 
unit (40 km or ~0.4°).

The smooth functions were determined by thin plate splines120,121. 
Here, we fitted thin plate regression splines using automatically opti-
mized smoothing parameters using the REML method. Three opti-
mal models were selected for the corresponding three regions, with 
all three model selection procedures evaluated by delta AIC and R2  
(ref. 113) using the dredge function of the mgcv package in R119, with 
results reported in Supplementary Table 1 (models a, b and c).

(2) For the effect of hydrological environment interacting with 
regional ecotopes (basin-wide GAM), we included soil types (fertility 
and texture) and vegetation characteristics (forest height, wood den-
sity) into the GAM of section (1). Without specifying regions, we aimed 
to explore whether soil and vegetation characteristics (Extended Data 
Fig. 2) are able to explain regional differences in the sensitivity of forest 
response to water-table depth. GAMs were fitted across the whole basin 
for the 2015/2016 El Niño drought, the only drought that had substan-
tial simultaneous impacts on all three regions of the Amazon basin. 
The forest responses were comprised of three components: (1) the 
climate predictor variables (PAR anomaly, VPD anomaly, precipitation 
anomaly and MCWD anomaly); (2) the ecotope-based environmental 
predictor variables, in addition to HAND, associated with regional 
differences: soil fertility, soil texture, forest height and wood density;  
(3) error terms assumed to be a Gaussian distribution. Specifically, 
GAMs were fitted as below:

(9)

Δ s s s s s s Δ s Δ

s ΔP s Δ ti
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Δ ε

EVI = (HAND) + (SF) + (ST) + (FH) + (DSL) + ( PAR) + ( VPD)

+ ( ) + ( MCWD) + (pairwise interactions of every two

climate variables) + (pairwise interactions of HAND with

other ecotope − based variables and PAR) +

where DSL denotes dry-season length, FH denotes forest height, ST 
denotes soil texture and SF denotes soil fertility. Considering variable 
correlations (Supplementary Table 2), we avoided choosing highly 
correlated variables for the same model (which, for example, excluded 
wood density when soil fertility was in the model). Considering the 
complexity of the model and computational cost, the pairwise interac-
tions were included separately among ecotope factors, among climate 
variables, and between HAND and PAR, but did not traverse interactions 
among every possible pair of variables. The fitting process was the 
same as for the regional GAMs of (1): smoother determined with REML 
as implemented by mgcv119, and models evaluated by delta AIC and R2  
(ref. 113) coded by the dredge function of the mgcv package in R, with 
the final results reported in Supplementary Table 1 (model d). The basin- 
wide modelled forest response for the 2015/2016 drought is presented 
in Extended Data Fig. 10a–c, in which the GAM well-predicts the pattern 
of response (Extended Data Fig. 10b), but underestimates the extremes 
of the responses (as evident from residuals in Extended Data Fig. 10c, 
showing greening/browning patterns beyond the predictions).

Beyond the three more recent hypotheses discussed in the main text, 
soil texture was also expected to affect soil hydraulic properties and 
forest ecosystem response to drought102,122. We found that forests on 
sandy soils were more resilient (that is, higher relative green-up) than 
those on clay soils (which bind water more closely), consistent with the 
findings of process model studies22 of clays that bring soils more quickly 
to wilting points22. But again, this depended on water-table depth, and 
deep-water-table forests also became more vulnerable with increasing 
sand content (Extended Data Fig. 7a), perhaps because, in the absence 
of a shallow water resource, sandy soils drained water too quickly.

This final basin-wide GAM model (Supplementary Table 1d) includ-
ing soil texture (along with water-table depth, forest height and soil 
fertility) suggests a further hypothesis for how soil texture moderates 
the effects of forest height and water-table depth on drought response 
(Extended Data Fig. 7a). The potential counteracting effects of the 
positively correlated forest height (which increases resilience when 
water tables are deep) and soil clay fraction (which generally decreases 
resilience due to binding water more tightly to soil particles) may 
explain the otherwise puzzling result that the tall forest advantage 
in deep-water-table forests does not just disappear but reverses in 
shallow-water-table environments (Fig. 4d). As shown in Extended 
Data Fig. 7a, the reversal of the general trend (of decreasing resilience 
as the clay fraction increases, which corresponds to the sand fraction 
decreasing) in deep-water-table forests (the red lines in Extended 
Data Fig. 7a reverse as sand content falls below 50%), is associated 
with increasing forest height, especially in deep-water-table forests. 
Thus, at the low sand (high clay) end of the spectrum, the effect of soil 
texture depends strongly on water-table depth: in shallow-water-table 
depth forests in which tall trees are not advantaged, the negative effect 
of clay depresses forest drought response but, in deep-water-table 
depth forests, drought resilience increases again, even with increasing 
clay (decreasing sand), possibly because the associated taller tree effect 
outweighs the negative effect of clay soils. This mechanism could serve 
to improve models of how soil texture modulates drought response22,123.

SCM using DAG. To further test the causal mechanisms proposed by 
our three core hypotheses, we used a framework for causal inference 
from SCM41,115, DAG analysis117,124. We proposed and tested hypothesized 
causal relationships (represented by DAG diagrams; Extended Data 
Fig. 6a).

Implementing DAG analysis with the dagitty R package125, we first 
developed a DAG diagram for Amazon forest drought response with 
relevant climate variables and ecotope factors expected from the 
literature10,17,34, including our three core hypotheses of water-table 
depth24, soil fertility28,29 and tree characteristics30–32,50 (Extended Data 
Fig. 6a). We assessed DAG-data consistency, testing to ensure that 
unconnected nodes are not correlated, applying root mean square 
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error of approximation (RMSEA) (R functions localTests and cis.loess 
to allow potential nonlinear correlations using loess fits125; Extended 
Data Fig. 6b).

We iteratively tested and revised the DAG by repairing detected 
independence violations between unconnected nodes (that is, where 
RMSEA was greater than 0.30, as previously116), by adding either a new 
direct causal link between such nodes (after first verifying an ecolog-
ical basis for the link), or new links to each of the correlated nodes 
from a common causal node (again, if they made ecological sense). 
For example, longer DSL should promote generally drier conditions, 
including greater VPD and MCWD; positive precipitation anomalies 
will cause higher relative humidity and therefore lower VPD anomaly33; 
higher-clay soils allow taller trees126, supporting the addition of links 
between these nodes. These adjustments gave a final DAG with a greater 
number of links (Extended Data Fig. 6c) and no conditional independ-
ence violations among the remaining unconnected nodes (Extended 
Data Fig. 6d).

Finally, we used the backdoor criterion to test the causal effects of 
key predictors. For example, Extended Data Fig. 6c illustrates block-
ing the confounding ‘backdoor path’ influence of average DSL on the 
causal relationship between drought length and drought response. 
Applying this approach, we exposed the influence of each variable of 
interest on drought response, one-by-one, while blocking (or adjusting 
for) the influence of backdoor variables on non-causal pathways (that 
is, pathways in which at least one arrow points in a direction opposite 
to the hypothesized causal influence)115,117 (Extended Data Fig. 6e–j). 
Note that, because the backdoor criterion often yields different sets 
of control variables for different pairs of causal predictor and outcome 
of interest119,120, we separately fit these models to quantify the causal 
effects of the different predictors of interest.

Comparing inferences from SCM with predictive GAM regressions. 
We found that both modelling approaches consistently supported the 
other-side-of-drought hypothesis (hypothesis 1) for forest drought 
response in the southern Amazon across all three droughts (negative 
dependence on water-table depth; Fig. 3a and Extended Data Fig. 6e), 
with associated consistent climate dependencies (positive dependence 
on sunlight (Fig. 3b and Extended Data Fig. 6f) and declining overall 
dependence on drought length, but with a peak at ~3 month duration 
(Fig. 3c and Extended Data Fig. 6g)). Across the basin for the 2015/2016 
drought, both modelling approaches supported hypothesis 2, that 
increasing soil fertility (past a moderate fertility level) would negatively 
affect drought response (Fig. 4a,c and Extended Data Fig. 6i), and both 
supported a ‘hypothesis 1–hypothesis 3’ interaction, finding that in-
creasing forest height (and presumed deeper rooting depth) positively 
affected drought response in deep-water-table forests, but had the 
opposite effect in shallow-water-table forests (Fig. 4b,d and Extended 
Data Fig. 6h). Finally, although not part of the three core hypotheses, 
both modelling approaches found similar effects of soil texture on 
drought response (Extended Data Fig. 6j and Extended Data Fig. 7a).

Comparing adjusted observations to GAM predictions for different  
predictor variables. The observed vegetation indices (MAIAC EVI 
and GOSIF) were graphed in adjusted form (as climate-adjusted or 
ecotope-adjusted observations) to compare observed versus predict-
ed relationships with one predictor variable at a time (for example, 
water-table depth) while adjusting for the effect of the other, potentially 
influential, predictor variables represented in the GAM models (see 
the ‘AIC-selected GAMs for hypothesis testing and prediction’ sec-
tion above). This is analogous to partial regression plots or adjusted 
variable plots in conventional regression models127. EVI (Figs. 3a and 4e  
and Extended Data Fig. 5a,b) or GOSIF (Extended Data Fig. 5c,d) obs
ervations of anomalies were adjusted by the difference between the 
full GAM predictions at each pixel and the partial prediction for the 
median conditions. For example, to plot climate-adjusted EVI/GOSIF 

versus water-table depth (across different HAND bins) as in Fig. 3a and 
Extended Data Fig. 5, the adjustment (shown for EVI) was:

Δ Δ

f f

Adjusted EVI = EVI − Correction Correction

= (HAND , Climates ) − (HAND , Climates)
(10)i i i i

i i i

where ΔEVIi is the observed ith EVI anomaly, f(HANDi, Climatesi) is the 
prediction of the ith EVI anomaly from GAM (model function for equa-
tion (8) denoted as f() here) and f (HAND , Climates)i  is the prediction 
when holding climates constant at the median value of the domain of 
the prediction (in this case, the median climate within each drought).

Similar calculations are applied to observations in Fig. 4e to account 
for the regional differences in climates and ecotopes (everwet, Guiana 
Shield and southern Amazon), while isolating the effects of water-table 
depth (HAND) on EVI anomalies with the basin-wide GAM model. The 
correction term applied to equation (9) in the case of Fig. 4e was

f

f

Correction = (HAND , Climates , SF , ST, FH )

− (HAND , Climates, SF, ST, FH)
(11)i i i i i i

i

where SF denotes soil fertility, ST denotes soil texture and FH denotes 
forest height. The domain of the prediction for which median values 
of ecotope distributions were taken was, in this case, each of the three 
regions, considered separately.

Deriving the basin-wide biogeography of forest drought resilience/
vulnerability. Classic biogeography in ecology focuses on the drivers 
of the distribution of species and their phylogenies over space and 
time, as an emergent consequence of their evolutionary histories128,129. 
Here, following recent ideas in the emerging field of functional bioge-
ography23,130, we extend classic species-based biogeography to derive a 
functional biogeography of Amazon forest drought resilience and vul-
nerability. To accomplish this, we used the GAM analysis that included 
ecotopes and was derived for the whole basin (see the ‘AIC-selected 
GAMs for hypothesis testing and prediction’ section; equation (9), 
Supplementary Table 1d and Extended Data Fig. 10a–c). Resilience 
(as plotted in Fig. 5a) was defined as the standardized GAM prediction 
(positive values corresponding to greening and resilience) from the 
spatially varying ecotope factors alone (with effects of spatial variation 
in climate removed by setting each pixel’s climate factors equal to their 
basin-wide average during the 2015 drought):

Standardized resilience =
Resilience − Resilience

SD
(12)i

i

resilience

fResilience = (HAND , SF , ST, FH , Climates) (13)i i i i i

where Resiliencei is the prediction for pixel i using equation (9) as func-
tion f(), and Resilience and SDresilience denote the mean and s.d. across 
the basin, respectively.

We defined thresholds conducive to resilience to define ecotope 
factor groups associated with resilience or vulnerability. Overlap-
ping ecotope factors generally conducive to resilience (shallow water 
tables, low soil fertility and tall trees) were distributed across the basin 
(Fig. 5b,c). The resilience thresholds for the different factors were: 
shallow-water-table forests, <10 m, taken from ref. 25; low soil fertil-
ity, exchangeable base cation concentrations < 10−0.35 cmol+ kg−1; and 
tall forests, heights > 32.5 m. The thresholds for soil fertility and for-
est height were chosen as the level at which the average slope of EVI 
anomaly sensitivity to HAND changed sign (Fig. 4a,b).

Testing alternative interpretations and considering caveats
To address potential questions about whether alternative interpreta-
tions might either undermine or further illuminate our reported results, 
we identified additional hypotheses posing alternative interpretations. 



Among the additional hypotheses we considered were the following 
five, the first four of which we were able to partially test here with the 
functional biogeography GAM model:

H1: that spatial scaling artifacts contaminate the results. In particu-
lar, it might be that the primary spatial scale of our analysis (~40 km, 
to achieve statistical independence; see the ‘Variogram analysis for 
removal of spatial autocorrelation’ section) is too large and does not 
reflect the fine scale of individual tree response to drought in distinct 
environments, raising the question of whether the effects reported 
here can be confidently attributed to the aggregation of these fine-scale 
responses, or to some other effect.

To test this hypothesis, we investigated how the sensitivity of forest 
drought response to water-table depth depended on the scale of the 
analysis (Extended Data Fig. 8), from 40 km (Fig. 3a, reproduced in 
Extended Data Fig. 8a) to the native MODIS scale (1 km) (Extended Data 
Fig. 8b), and across the finer scales (resolved to 30 m using Landsat 
OLI 8 land surface reflectance; Extended Data Fig. 8c) available for 
a region near Manaus131 (at scales below 40 km, spatial autocorrela-
tion is evident; this artificially narrows confidence intervals, but does 
not hinder the scaling comparisons). These analyses showed that the 
sensitivity of forest drought response to water-table depth did not 
detectably depend on scale, adding confidence that the key factor 
of water-table depth indeed structures Southern Amazon drought 
response (as in Fig. 3a) across different scales. Note that this analysis 
suggests a need for future investigation of how the actual magnitudes 
of greenness anomalies at the ecological neighbourhood scale (1 ha) of 
operation of community and ecophysiological mechanisms translate 
to magnitudes at larger scales.

H2: that different aspects of drought dynamics (for example, severity 
interacting with duration) may confound the reported interpretation 
of drought duration (Fig. 3). Drought severity and duration are known 
to have distinct effects on different species in other biomes, raising 
the question of whether these dimensions of drought have distinct 
effects in the Amazon.

We tested the interacting effects of severity (as defined as in the 
‘Climate anomalies for drought definition and mapping’ section, by the 
MCWD anomaly) and drought duration by further analysing the model 
of Supplementary Table 1a. This analysis (not shown) confirms that 
droughts that are both deep and long have the most-negative effects 
on photosynthesis. This also confirmed the hump-shaped response 
to drought duration reported in Fig. 3c (with a primary hump occur-
ring earlier but persisting longer through a secondary hump for less 
severe droughts).

H3: that drought impacts during dry seasons are different than during 
wet seasons, complicating interpretation of PAR anomaly and drought 
length effects (Fig. 3). If light limitation (and therefore PAR sensitivity) 
is stronger in the wet season (because light is already more limiting in 
the wet season due to greater cloud cover), longer droughts will not 
just be longer, but (because seasons are of finite length) they will also 
be more likely to encompass, in varying fractions, the differing light 
sensitivities of dry and wet seasons.

To test whether the proportion of the drought that occurs in the wet 
versus dry season affects reported forest responses, we constructed 
DryDrought as a predictor variable, representing the proportion of 
a given pixel’s drought that occurred in the dry season. We, added 
DryDrought to the GAM for the Southern Amazon (Supplementary 
Table 1a), comprising HAND, climate factors and the error terms.  
Specifically:

Δ s s Δ s

s Δ s ΔP s Δ s
ti

ti Δ ti

EVI = (HAND) + ( PAR) + (DryDrought)

+ ( VPD) + ( ) + ( MCWD) + (DL)
+ (pairwise interactions of every two

variables except for DryDrought)

+ (DryDrought, PAR) + (DryDrought, DL)

(14)

This analysis (Extended Data Fig. 7b–d) showed that the longest 
drought (2015) also had the broadest distribution of occurrences across 
dry and wet seasons, with about equal parts of the drought occurring in 
the dry versus the wet season (median fraction in the dry season = 0.51; 
Extended Data Fig. 7b). By contrast, the 2005 and 2010 droughts were 
primarily dry-season droughts (median dry-season fractions = 0.83 and 
0.77, respectively). This analysis confirms our finding of a generally pos-
itive sensitivity of droughted forests to sunlight reported in the main 
narrative (Fig. 3b), but further shows that the greater the proportion 
of the drought that occurs in the wet season, the greater the positive 
sensitivity to sunlight anomalies (in Extended Data Fig. 7c, the blue line 
representing pixels experiencing predominantly wet-season drought 
is steeper than the red line representing pixels predominantly expe-
riencing dry-season drought). This analysis also confirms (Extended 
Data Fig. 7d) that the hump-shaped response to drought duration (as in 
Fig. 3c, especially the peak of vegetation response at 3 month duration) 
is general across both dry- and wet-season droughts. A consistent result 
of both analyses is that (with the exception of PAR anomalies greater 
than +2 s.d.; Extended Data Fig. 7c), forests experiencing wet-season 
droughts are generally more negatively affected by drought than are 
forests experiencing dry-season droughts, consistent with the idea that, 
although trees are adapted to the dry conditions of annually recurring 
dry seasons, they are especially vulnerable when droughts hit in the 
wet (recovery) season.

H4: that deforested or degraded forests may be driving or contami-
nating results that are reported as for intact forests. Deforested regions 
are excluded from the analysis, but the mask may still include forests in 
proximity to deforested regions that, although not deforested, may be 
experiencing degradation. We conducted a sensitivity test to address 
the question of whether different drought responses in degraded 
forests could be contaminating our findings using a recent classifica-
tion85 that identifies partially degraded forests as distinct from both 
deforested and intact forests, now updated through 2022. We repeated 
the GAM analysis reported in Fig. 4, but excluded pixels representing 
degraded forests. The results (not shown) were similar to in Fig. 4, but 
suggested that partially degraded forests are indeed probably more 
vulnerable. For example, analysis of purely intact (non-degraded) for-
ests gave curves analogous to those in Fig. 4c,d that reached a slightly 
greater EVI anomaly value than the corresponding curves of Fig. 4c,d 
(including mainly intact and but also some degraded forests). This 
suggests that a functional biogeography approach may be fruitful for 
future investigations of the effect of forest degradation on drought 
sensitivity at the local scale. However, the differences are slight at the 
basin scale, and the overall patterns in the results shown in Figs. 4 and 5 
do not depend much on whether these forests in between deforested 
and intact regions are included or excluded.

H5: that relatively taller individual trees are more vulnerable to 
drought, even as tall-canopy deep-water-table forests are on average 
more resilient to drought. We found that greater forest canopy height 
promoted resilience for deep-water-table forests, but increased vul-
nerability for shallow-water-table forests (Fig. 4d and Extended Data 
Fig. 6h). Observations of drought responses in the RAINFOR network49 
and drought experiments47,48, in seeming contrast, report that tall trees 
were more vulnerable to drought. One of the drought experiments was 
above a moderately shallow water table (7–10 m) and the vulnerability 
of tall trees there could be explained by our result47, but the forest of a 
previously reported drought experiment48, and many of the plots in the 
RAINFOR network, are over deep water tables, raising the question as 
to whether the results reported here might be inconsistent with those.

Recalling that the satellite-derived canopy heights are not individual 
tree heights but overall mean heights of forest canopies over a 1 km 
pixel, we hypothesize that both results are true: that deep-water-table 
forests that are tall on average (and presumed to have on average deeper 
roots that bring greater collective access to deep water resources) 
are more resilient than forests that are on average shorter, but that 
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individual trees that are relatively taller than their neighbours are sub-
ject to greater atmospheric drought stress from higher VPD, and may 
therefore be individually more vulnerable than their average-height 
neighbours. Hydraulic redistribution by roots, observed as part of a 
previous48 Amazon drought experiment132 and by other studies, is a 
mechanism that could further enhance forest benefit from redistribut-
ing deep waters upward in the soil profile.

This is a more challenging hypothesis to test and, in contrast to 
the hypotheses above, it is beyond the scope of our current study 
to test here. However, this could be tested by extensive plot data or 
higher-resolution LIDAR data100,133 that could resolve individual tall 
trees in the canopy, and compare their drought-induced mortality 
rates across forests of different average heights.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
All remote sensing data and products (vegetation/photosynthetic 
indices (https://lpdaac.usgs.gov/products/mcd19a3v006/, http://data.
globalecology.unh.edu/data/GOSIF_v2), climate variables (https://
disc2.gesdisc.eosdis.nasa.gov/data/TRMM_L3/TRMM_3B43.7/, https://
goldsmr4.gesdisc.eosdis.nasa.gov/data/MERRA2_MONTHLY/M2TM-
NXRAD.5.12.4/, https://airs.jpl.nasa.gov/data/get-data/standard-data/), 
land cover (https://lpdaac.usgs.gov/products/mcd12q1v006/, https://
forobs.jrc.ec.europa.eu/TMF), tree characteristics (canopy height, 
https://webmap.ornl.gov/ogc/dataset.jsp?dg_id=10023_1) and soil 
texture (https://maps.isric.org/)) are publicly available online. The 
ground-based demographic validation data are publicly available in 
refs. 2,26. The ground-based hydraulic trait validation data are pub-
licly available in ref. 50. The HAND data are from ref. 25, which derived 
them from the digital elevation model from the Shuttle Radar Topog-
raphy Mission. The soil fertility data are available in ref. 43.

Code availability
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Extended Data Fig. 1 | Drought maps 2005, 2010 and 2015/16 droughts and 
GOSIF-based forest responses droughts. (a)-(c): Maximum cumulative water 
deficit (MCWD) standardized anomalies. (relative to the long term mean MCWD 
across years, blue=positive, orange=negative) during drought for (a) 2005,  
(b) 2010, and (c) 2015 droughts. MCWD is calculated (see Methods, ‘Climate 
variables’) as the maximum water deficit reached for each hydrologic year 
(from May of the nominal year to the following April). The “drought region” is 
defined as pixels whose MCWD anomaly is more than one SD below the mean 
(light orange to red). (d)-(f): GOSIF-based forest response to droughts. 
GOSIF anomalies during drought, relative to the long term mean GOSIF 
(green=positive, orange=negative) in drought regions for the (d) 2005, (e) 

2010 and (f) 2015 droughts, respectively. (g) EVI (left axis) and GOSIF (right 
axis) anomalies in the 2005 drought elliptical region (as depicted in Figs. 1a, 2a, 
and here in Extended Data Fig. 1d) show consistent patterns versus HAND (bin 
averages ±95% CI, with N = 6,547 5-km pixels for both EVI and GOSIF); (h) GOSIF 
anomalies (bin averages points ±95% CI and solid regression line) vs. water-table 
depths (indexed by HAND) support hypothesis 1 (with negative slopes, consistent 
with EVI in Fig. 3a) for the 2005 (green, slope = −0.016 ± 0.006 SE m−1), 2010 
(purple, slope = −0.012 ± 0.003 SE m−1), and 2015 (blue, slope = −0.010 ± 0.003 
SE m−1) droughts, paired with HAND distributions in each drought region 
(bottom graphs, right axis, with N = 34,980, 30,004, 43,475 5-km pixels for 
2005, 2010, and 2015 droughts, respectively).



Extended Data Fig. 2 | Ecotope factors of the Amazon basin. (a) Height  
Above Nearest Drainage (HAND), a proxy for water-table depth25; (b) Soil 
fertility, as exchangeable base cation concentrations43; (c) Average forest 
heights as acquired by lidar45; (d) Soil sand content44; (e) Proportion of trees 
belonging to the Fabaceae family34; (f) MCWD variability (see the ‘Climate 
anomalies for drought definition and mapping’ section of methods), in terms 
of the standard deviation of the long-term MCWD timeseries. High variance in 
climate and low soil fertility in Guiana shield might contribute to the greatest 

proportion of trees belonging to the family Fabaceae with the very high  
wood density; (g) Averaged minimum monthly precipitation (low=green, 
high=orange). The north-west everwet Amazon is distinguished by lacking a 
dry season (precipitation exceeds evapotranspiration). (h) Community- 
weighted wood density34. Panels a-d are used as ecotope predictors in the GAM 
analysis of Supplementary Table 1. (Data sources: see the ‘Climate variables’ 
and ‘Climate anomalies for drought definition and mapping’ sections of 
methods).
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Extended Data Fig. 3 | Spatial distributions of climate dynamics in the 2005, 
2010 and 2015 droughts. a–i, Spatial distributions of climate dynamics in the 
2005 (left column), 2010 (middle column) and 2015 (right column) droughts 
for: (a)-(i): Drought dynamics showing drought onset date (row 1, a-c), drought 
end date (row 2, d-f), and drought duration (row 3, g-i, end date minus start 
date). Pixel-by-pixel drought responses (EVI in Figs. 1–4; or GOSIF in Extended 

Data Figs. 1 & 5) are taken as the standardized anomalies that occur during the 
pixel-specific drought period defined here. ( j)-(r): climatic anomalies of: 
photosynthetic active radiation (PAR) (row 4, j-l), vapor pressure deficit (VPD) 
(row 5, m-o), and precipitation (row 6, p-r). precipitation (Data source: see the 
‘Climate variables’ section of methods).



Extended Data Fig. 4 | Regions in the Amazon basin. that emerge from a 
principal components analysis (PCA) followed by classification: (a) PCA of  
the Amazon basin 0.4° x 0.4° pixel data (coloured according to a supervised 
classification into three classes identified by variance minimization), projected 
onto their first two principal components, which are composed mainly of  
three dimensions, one defined by wood density and proportions of the family 
Fabaceae (first principal component, horizontal axis), one defined by minimum 
monthly precipitation and MCWD variability (second principal component, 
vertical axis), and a third defined mainly by soil fertility; the classes are 
significantly separated in PCA space (psuedo-F ratio =950, df=2, 3805, p ~ 0, 

permanova test); (b) The Amazon pixels coloured according to their class 
(corresponding to the colours in a), showing that the classification of (a) maps 
pixels into distinct, mostly contiguous spatial regions.) (c) Standardized 
values, for each region, of each group of characteristics (ordered by water 
availability, soil fertility, and tree traits/characteristics), illustrate distinct 
regional niches: the everwet Amazon is highest in minimum precipitation and 
lowest (highest negative) in MCWD variability; the Southern Amazon is 
moderately high in mean fertility, and the Guiana Shield has the tallest mean 
forest height and greatest wood density. (d) scree plot of the eigenvalues 
(principal components) of the PCA shown in (a), plotted in rank order.
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Extended Data Fig. 5 | Amazon forest drought responses in different 
regions using the EVI and GOSIF remote sensing indices. Amazon forest  
EVI (top row) and GOSIF (bottom row) responses to multiple droughts in the 
Guiana shield (left column) and the ever-wet northwest (right column). These 
generally do not support the “other side of drought” hypothesis 1, because they 
show generally consistently positive slopes with water-table depth (HAND), in 
contrast to negative slope responses in the Southern Amazon (Fig. 3a). Plots 
show observations (bin average points ±95% CI, and solid regression lines) and 
unified multi-drought GAM predictions (±95% CI shaded region, for models in 

Supplementary Table 1b, c), with climate fixed to region-wide median drought 
conditions for each drought.) Observations for EVI (a-b): N = 83 and 666 0.4° 
pixels for 2005 and 2015 droughts respectively, in the Guiana shield (a), and 
N = 147, 368, and 648 for 2005, 2010 and 2015 droughts respectively in the 
ever-wet Amazon (b). Observations for GOSIF (c-d): N = 1876, and 25,460 5-km 
pixels for 2005 and 2015 droughts, respectively, in Guiana shield (c), and 
N = 1,914, 8,261, and 19,918 for 2005, 2010 and 2015 droughts, respectively, in 
the ever-wet Amazon (d). Purple points (2010) are not shown in panels a,c, 
because the 2010 drought did not significantly affect the Guiana shield.



Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Implementing Structured Causal Modeling (SCM)  
of Amazon forest drought response using Directed acyclic graphs (DAGs).  
a–d, Development of a Directed acyclic graph (DAG) representing the structure 
of factors influencing tropical forest responses to drought. (a) Initially 
hypothesized DAG characterizing the causal relationships among climatic, 
environmental, and forest variables (measured variables depicted as blue 
nodes, unmeasured rooting depth is depicted in grey) leading to forest 
drought response (other colour node), with arrows representing the 
hypothesized causal links. (b) DAG-data consistency tests for initial DAG, with 
the largest 20 approximated non-linear correlation coefficients (estimated via 
root mean square error of approximation, RMSEA) between unlinked variables 
in (a). (Note: unlinked variables in a DAG are hypothesized to have zero 
correlation or zero conditional correlation; thus, the second row of panel b 
tests “DR_ | | _DSL | DL” -- whether DR is independent of DSL conditioned on DL, 
by estimating the non-linear correlation between DR and the residuals of DSL 
regressed on DL.) Correlations greater than an acceptability threshold (dashed 
vertical lines at ±0.30) fail the test of conditional independence, addressed by 
adding to the DAG either a direct causal link (indicated by a green symbol), or 
links to a common cause (pink symbol) (such added arrows are included in 
panel c). (c) Final DAG after correcting for conditional independency 

inconsistencies of the initial DAG in A, in light of ecological considerations. 
Also illustrates use of the backdoor criterion to determine the causal effect of 
‘drought length (DL)’ (the exposed predictor node and associated forward 
causal paths, in green) on forest drought response (corresponding to the 
model in Extended Data Fig. 10c), while blocking the confounding variable dry 
season length, DSL (hypothesized to itself affect DL) and its associated causal 
backdoor paths (which are considered non-causal paths with respect to the 
exposed variable DL) (in pink). (d) DAG-Data consistency tests for final DAG 
(panel c), showing the largest 20 RMSEA values. (e)-( j): GAM regression model 
predictions (±95% CI shaded region) of causal effects of different variables 
derived from DAG, employing backdoor criterion, for the Southern Amazon, 
average across all three droughts: (e) of HAND (no backdoor to be blocked) 
(f) of PAR (adjusting for back door paths through drought length, dry season 
length) (g) of Drought length (adjusting for back door path through dry season 
length) on EVI responses (adjusted EVI prediction); the whole Amazon basin 
during the 2015 drought: (h) of forest height, categorized by shallow (blue, 
HAND = 0-10 m) and deep (red, HAND = 20–40 m) water tables (adjusting for 
back door paths through soil fertility, soil texture and dry season length), (i) of 
soil fertility (adjusting for back door path through dry season length) ( j) of soil 
texture (no backdoor path to be blocked).



Extended Data Fig. 7 | The sensitivities of forest drought response to soil 
texture and drought timing. (a) The sensitivity of forest response to soil 
texture (sand content) and water- table depth (HAND) in basin-wide GAM 
analysis. GAM-predicted adjusted EVI anomaly (left axis) versus soil sand 
content (%), with water table-depth in colour (shallow=blue to deep=red), 
paired with distributions of mean forest height in each soil texture bin (bottom 
graph, right axis, with N = 3,318, and 1,142 0.4° pixels for shallow and deep  
water tables, respectively). ‘Adjusted’ GAM predictions are made by setting 
non-displayed predictors (climate variables, tree-height, soil fertility) to their 

median values during the drought. (b)-(d): The sensitivity of forest responses 
to dry versus wet season drought periods, across the three-droughts:  
(b) distribution of the proportion of drought that was in the dry season (0 = all 
in the wet season to 1= all in the dry season) for drought-affected pixels in each 
of the three droughts; (c) GAM-predicted EVI anomaly versus PAR, for different 
proportions of dry season drought (blue=all wet to red=all dry, corresponding 
to coloured tick marks in the vertical axis of b). (d) Adjusted EVI anomaly from 
GAM prediction versus drought length, for different proportions of dry-season 
drought (blue to red, as in panel c).
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Extended Data Fig. 8 | Scale-dependence of Southern Amazon forest 
responses to drought, showing that detected response patterns are largely 
invariant across different scales of analysis. (a) At 0.4 degree (40-km) scale 
(across the Southern Amazon. all three droughts): Climate-adjusted EVI 
responses (standardized anomalies from MODIS) vs. water-table depths 
(indexed by HAND) for observations (solid points ±95% CI and solid regression 
line) and for unified multi-drought GAM predictions (model of Supplementary 
Table 1a, shaded bands and dashed regression line slopes) for the 2005 (green, 
slope = −0.019 ± 0.001 SE m−1), 2010 (purple, slope = −0.020 ± 0.002 SE m−1), 
and 2015 (blue, slope = −0.028 ± 0.002 SE m−1) droughts (with N = 1,384, 1,673, 
and 1,837 0.4° pixels for 2005, 2010, and 2015 droughts, respectively); (b) At 
1-km scale (across the Southern Amazon, all three droughts), as in (a): climate- 
adjusted EVI responses vs. HAND for observations (solid points and regression 
line) and corresponding GAM (with the same Supplementary Table 1a model 
now fit at 1 km scale, revealing autocorrelation in observations causing 
too-narrow confidence bands, and slight model underpredictions of the 
extremes of the 2005 greenup and the 2010 browdown, but maintaining the 

similar negative dependence on HAND across all droughts); (c) At 30 to 180 m 
scales (for a forest region around Manaus, 2015-2016 drought only): Delta EVI, 
the fraction change in EVI due to the drought = (after-drought EVI (July 2016) - 
pre-drought EVI (August 2015))/pre-drought EVI (Landsat OLI8, at 30 m 
resolution) vs. water-table depths (indexed by HAND) for Landsat observations 
(solid points ±95% CI and solid regression line) at native (30 m) and aggregated 
to 90 and 180-m scales (with N = 105,359, 11,901, and 2,999 pixels for 30-m, 
90-m, and 180-m scales, respectively). Also shown in the bottom of each  
panel is the distribution of water-table depth (HAND proxy) at each scale. 
Aggregations to larger (coarser) scales induce an apparent regression towards 
the mean in the water-table depth distributions (as more extreme water-table 
depths at finer scales become diluted by averaging to large scales), while similar 
dilution of extremes in EVI response (not shown) preserves the overall relation 
between EVI responses and watertable depth (especially evident in the Landsat 
analysis where the slopes through data aggregated at different scales do not 
detectably differ).



Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Remote sensing validation with forest inventory  
plot demography. (a) Remotely sensed map of MAIAC EVI (1-km resolution), 
overlaid with aboveground NPP (ANPP) rates from 321 ground-monitored 
forest plots (red circles, % standing biomass y−1) as aggregated to 1 degree grid 
plots (RAINFOR plots in Brienen et al. 2), with both EVI and ANPP taken during 
the 2000–2011 interval. ANPP rate is calculated as Aboveground Biomass  
(AGB) gain (Mg/(ha·yr)) (total annual AGB productivity of surviving trees plus 
recruitment, plus inferred growth of trees that died between censusing 
intervals) divided by initial AGB (Mg/ha) (standing above ground biomass at 
the start of the census interval). (b) ANPP rates as predicted by EVI (points 
from (a) plus solid regression line with statistics; Dashed line and associated 
statistics in grey represent linear regression without the high leverage point, 
shown in red, defined by Cook’s distances > 4/n, where n=number of points134). 
EVI is the mean extracted from intervals matching the average census interval 
of the corresponding plots in Brienen et al. 2 (c)–(e) MAIAC EVI anomalies  
(1-km pixels) versus ground-monitored tree demography in shallow water 

table forests during the 2015-2016 drought26 for: (c) mortality, (d) recruitment, 
and (e) mortality:recruitment ratios in 1-ha plots. (f)–(h): GOSIF anomalies  
(5-km pixels) versus ground-monitored (f) mortality, (g) recruitment, and  
(h) mortality:recruitment ratios; Solid lines and statistics (R2 and p-values) 
represent standard linear regression fits to all data. Red points, if they exist, are 
high leverage, i.e. with Cook’s distances > 4/n, where n=number of points134, 
and dotted lines and associated statistics in grey represent standard linear 
regressions without such points, showing that remote detection of ground-
derived demographic trends is robust. R2 values reported here are consistent 
with the expectation that they should be less than for remote detection of 
tropical forest GPP (R2 = 0.5-0.7), because GPP contributes only partially to the 
NPP driver of demography (as discussed in the 'Validation by forest plot metrics 
of demography and of physiological drought tolerance' section of Methods). 
Considering multple comparisons (six regressions), the probability, under the 
null hypothesis, of seeing five or more significant regresssions out of six is 
p = 0.000002 (Binomial test).



Extended Data Fig. 10 | Modeled forest response to the 2015 drought  
and implications of the derived map of Amazon forest biogeography.  
a–c, Forest response to the 2015 drought in drought-affected pixels. (a) Observed 
EVI anomalies (resampled at 0.4 degrees to match model resolution which 
accounts for spatial autocorrelation (see Supplementary Fig. 1). (b) GAM- 
predicted EVI anomalies (model of Supplementary Table 1d). (c) Residual EVI 
anomalies (panel a observations minus panel b predictions). The GAM well- 
predicts the pattern of response (Panel b), but under-estimates the extremes  
of the responses (as evident from residuals in panel c continuing to show 

greening/browning patterns beyond the predictions). (d) Map of Amazon 
forest biogeography of resilience/vulnerability, overlaid with mean winds 
(arrows, at height 650 hPa) and location of the arc of deforestation. The 
most productive as well as the most vulnerable forests (in red) are also those 
most experiencing deforestation (in the “arc of deforestation”) which is 
causing local climatic warming/drying4, further stressing these vulnerable 
forests. These “arc of deforestation”/vulnerable forests are often upwind 
forests135 (especially when the Intertropical convergence zone, ITCZ, swings to 
the south) that are critical for hydrological recycling in the Amazon.
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