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Amazonia contains the most extensive tropical forests on Earth, but Amazon carbon
sinks of atmospheric CO, are declining, as deforestation and climate-change-
associated droughts'™* threaten to push these forests past a tipping point towards
collapse® 3, Forests exhibit complex drought responses, indicating both resilience
(photosynthetic greening) and vulnerability (browning and tree mortality), that are
difficult to explain by climate variation alone’". Here we combine remotely sensed
photosynthetic indices with ground-measured tree demography to identify
mechanisms underlying drought resilience/vulnerability in different intact forest
ecotopes'®” (defined by water-table depth, soil fertility and texture, and vegetation
characteristics). In higher-fertility southern Amazonia, drought response was
structured by water-table depth, with resilient greening in shallow-water-table forests
(where greater water availability heightened response to excess sunlight), contrasting
with vulnerability (browning and excess tree mortality) over deeper water tables.
Notably, the resilience of shallow-water-table forest weakened as drought lengthened.
By contrast, lower-fertility northern Amazonia, with slower-growing but hardier trees

(or, alternatively, tall forests, with deep-rooted water access), supported more-
drought-resilient forests independent of water-table depth. This functional
biogeography of drought response provides a framework for conservation decisions
and improved predictions of heterogeneous forest responses to future climate
changes, warning that Amazonia’s most productive forests are also at greatest risk,
and that longer/more frequent droughts are undermining multiple ecohydrological
strategies and capacities for Amazon forest resilience.

Three ‘onceinacentury’ droughts (Extended Data Fig.1a-c) occurred
in the Amazon basin over a single decade—in 2005, 2010 and 2015~
2016%°*—provoking multiple forest responses that are difficult to
explain (Fig.1and Extended Data Fig. 1d-f). For example, unexpected
overall increases (green-up) in remotely sensed canopy greenness
(a proxy for photosynthetic function) during the 2005 drought®*°
(Fig. 1a and Extended Data Fig. 1a,d) appear at odds with reports of
simultaneous carbon losses from increased tree mortality observed
in ground plots®. Furthermore, the 2005 green-up contrasts with a
strong decrease ingreenness (brown-down) during the 2010 drought™
(Fig. 1b and Extended Data Fig. 1e), while the 2015/2016 El Nifio, the
largest and most intense drought of the three, provoked an inter-
mediate response that also included substantial green-up regions
(Fig. 1c and Extended Data Fig. 1f). Climate drivers alone, although
important’, are evidently insufficient to predict the complexity of
drought responses across heterogeneous landscapes?. Still miss-
ing is a general understanding of what drives differences in drought

resilience across Amazonian landscapes, a ‘functional biogeogra-
phy®of forest drought response that can address the question of why
some forests (or times) are resilient (exhibiting green-up or reduced
mortality), while others are vulnerable (exhibiting brown-down or
enhanced mortality).

Here we used satellite indices of forest photosynthesis to test whether
three non-exclusive ecological hypotheses that go beyond climate-only
explanations, developed from forest plot-scale observations, can also
predictregional scale responses to these recent droughts across intact
terra firme forest types of the Amazon basin.

The first (other side of drought®*) hypothesis is that shallow-water-
table hydrological environments® provide trees with greater access
to water resources, making them more droughtresilient (as observed
in forest plots near Manaus®*?’), than trees in forests over deep water
tables, of which the mortality rates typically increase with drought>¢.
This hypothesis predicts that shallow-water-table forests should show
less brown-down (or even experience green-up with reduced anoxiaor
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Fig.1|Amazonforest remotely sensed responses to droughts.
a-c,Amazon forest remotely sensed responses to the droughts 0of2005 (a),
2010 (b) and 2015/2016 (c), expressed as standardized anomalies of multiangle
implementation of atmospheric correction (MAIAC) EVI (a proxy of
photosynthetic capacity) in drought-affected pixels (defined in Extended
DataFig.1a-c). Note that a highlights an ellipse of green-up and brown-down
patterns that correspond to shallow and deep water tables in Fig. 2a; c highlights
two areas exhibiting green-up—RN, in the Rio Negro catchmentand AP in
Amapastate—for comparisonto Figs.4 and 5. Insets show the frequency

more sunlight due to reduced cloud cover during drought) compared
with forests with deep water tables.

The second (soil fertility) hypothesis®®? is that, in more-fertile for-
ests, where tree growth and turnover rates are high, fast-growing trees
that invest less in drought tolerance have a competitive advantage
over trees thatinvest more. Thisis becauseitis easier to simply regrow
trees cheaply whenresources are plentiful, especially when tree-killing
droughtsarerare. This hypothesis therefore predicts that more-fertile
forests will exhibit greater drought susceptibility (more brown-down
or less green-up) compared with less fertile forests.

The third (rooting depth/traits) hypothesis focuses on the role of
tree characteristics themselves. This hypothesis predicts that forests
dominated by species with either drought avoidance traits (tall, deeply
rooted trees)** or drought tolerance traits (high wood density or
embolism-resistant xylem)?***3¢ are more drought tolerant, even over
deep water tables.

These three dimensions (water-table depth, soil fertility and vegeta-
tion properties) define an ‘ecotope space’, within which different forest
ecotopesare located and may interact withand respond to climate in dif-
ferent ways. To the extent that such responses are predictably structured
by ecotopes (whichalso vary by geographical region withinthe Amazon;
Extended DataFig.2), it should be possible to derive a unified functional
biogeography of the basin-wide diversity of forest drought responses.

We tested these hypotheses using satellite indices of photosynthetic
capacity (the enhanced vegetation index (EVI), corrected for view-
andillumination-geometry artifacts)* and of photosynthetic activity
(the Global 0CO-2 solar induced fluorescence product (GOSIF))*. We
focused on drought-affected regions, defined as those of which the
maximum cumulative water deficit (MCWD; see Methods, ‘Climate
anomalies for drought definition and mapping’) reached more than
1s.d. below the mean of the remote sensing record (from 2000 to
2020)*. Vegetation index anomalies during drought were analysed
asafunctionof water-table depth (as captured by height above nearest
drainage (HAND))® and of gridded climate data (photosynthetically
active radiation (PAR), vapour pressure deficit (VPD) and precipita-
tion) derived from remote-sensing platforms (see Methods, ‘Drought
resilience and vegetation anomalies’; Extended Data Fig. 3).

We took the relative green-up (more positive or less negative veg-
etation anomalies) as an index of resilient photosynthetic capacity
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distributions of MAIAC EVIanomaliesindrought regions for droughtsin2005
(+0.14, P<0.001, d.f.=916) (a),2010 (-1.06, P< 0.001, d.f.=1,057) (b) and 2015
(-0.57,P<0.001, d.f.=2218) (c). Statistical analysis was performed using
Student’stwo-sided t-tests, whereby, after the variogram analysis (see Methods,
‘Variogram analysis for removal of spatial autocorrelation’), the degrees of
freedom (d.f. = n — 1) were adjusted for spatial autocorrelation based on
n=number of statistically independent 0.4° x 0.4° drought-affected pixels
ineachdroughtregion; all Pvalues are significantly less than the Bonferroni
correction for three comparisonsa=0.05/3=0.016.

or activity because it suggests that there are more carbon resources
for responding to stress and, notably, is predictive of outcomes
on the ground that are commonly associated with resilience at the
individual-tree scale (lower mortality, greater growth and greater xylem
embolismresistance; see Methods, ‘Drought resilience and vegetation
anomalies’).

Southern Amazon forest drought response

Focusing firstonthelocale of the 2005 drought (in the southern Ama-
zon, one of threeregionsidentified in Methods, ‘Classification of forest
regions according to ecotopes’; Extended Data Fig. 4), we found sub-
stantial structuring of the 2005 greening by water-table depth across
the drought-impacted region. This is visually evident in the spatial
correspondence of 2005 forest green-up/brown-down regions (Fig. 1a
(ellipse)) with shallow/deep-water-table forests (Fig. 2a (ellipse)), and
is quantified by bin-averaged EVI (Fig. 2b) and GOSIF (Extended Data
Fig.1g (green symbols/lines)) observations versus water-table depth.
Vegetation green-up in 2005 was concentrated in pixels with shallow
water tables but, as water tables deepened, positive vegetation index
greening anomalies decreased and then reversed to become negative
anomalies (Fig. 2b and Extended Data Fig. 1g). Notably, the strongest
2005 green-up was in forests that experienced the strongest drought
(Fig. 2b (dark orange points)), apparently because these areas expe-
rienced a greater frequency of excess sunlight (Fig. 2c (histograms)),
which was particularly advantageous to shallow-water-table forests
(Fig. 2c (blue-hued lines)).

Torigorously quantify the sensitivity of forest response across mul-
tiple droughts, we implemented two complementary statistical ana-
lytical frameworks: nonlinear multiple regression (using generalized
additive modelling (GAM)), to test our three hypotheses based on their
ability to best predict basin-wide drought anomalies*® (see Methods,
‘AlC-selected GAMs for hypothesis testing and prediction’), and struc-
tural causal modelling (SCM) to formally quantify causal effects of the
different environmental predictors selected by the GAM analysis*
(see Methods, ‘SCM using DAG’). Both modelling approaches were
conducted on a 0.4° grid, the resolution needed to avoid inflation of
statistical significance by accounting for spatial autocorrelation among
nearby pixels (see Methods, ‘Variogram analysis for removal of spatial
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autocorrelation’; Supplementary Fig.1). As the two approaches largely
converged, we report the GAM predictive modelling results here, and
provide comparisons with the SCM results in the Methods (Methods,
‘Comparing inferences from SCM with predictive GAM regressions’).

When all three droughts were modelled simultaneously within
Southern Amazonia, using GAM to also account for the effects of cli-
mate (Supplementary Table 1a), we found that, despite large differ-
ences observed in responses among the years (Fig. 1a-c), the overall
other-side-of-drought (hypothesis 1) prediction of a negative relation-
ship between remotely sensed vegetation anomalies and deepening
water tables observed in 2005 was consistently confirmed across all
three droughts in this region (Fig. 3a). Notably, although there was
an almost universal browning response to the 2010 drought (Fig. 1b),
vegetation anomalies remained significantly structured by water-table
depth (Fig. 3a (purple symbols/lines)).

This analysis suggests that the ability of shallow-water-table forests
(but not of deep) to respond positively to excess sunlight (possibly
including relief from anoxia®*) was a key general (multi-drought) mecha-
nism of southern Amazon forest drought response (Fig. 3b (coloured
curves)). Interdrought differences in climate drivers—not differences
inthe water-table depth distribution ofimpacted areas (Fig. 3a; distri-
butions did not differ much)—accounted for much of the interdrought
differences in forest response (in Fig. 3a, the observed points corre-
spond well with the model predictions, which differ among droughts
only due to climate). Notably, PAR increased during the 2005 and
2015/2016 droughts (Fig. 3b (distributions) and Extended DataFig. 3j,1),
promoting green-up, but decreased during the 2010 drought (due in
part to excess smoke aerosols from high fire rates*?; Fig. 3b (distribu-
tion) and Extended Data Fig. 3k). Anomalously high VPD across the
droughtedregionin2010 (Extended Data Fig. 3n versus Extended Data
Fig.3m,0) may also have contributed to reduced green-up/increased
brown-down in 2010.

Importantly, interdrought differences in southern Amazon forest
responses were mediated by drought length (Fig. 3¢c; as hypothesized

previously?). Despite the even greater sunlight increases in 2015
thanin 2005 (Fig. 3b (histograms)), the overall green-up in 2015/2016
was less than in 2005 (Fig. 3a), apparently due to the exceptional
length of the latter drought (Fig. 3c (distribution)). Initial green-up
in shallow-water-table-forests (Fig. 3c (blue lines)) reversed to
brown-downinregions experiencing drought for longer than3 months,
withincreasingly stronger brown-down the longer the drought. Suffi-
ciently long droughts therefore probably deplete shallow water tables,
diminishing and then reversing their protective effect.

The contrasting responses between shallow and deep-water-
table forests of the southern Amazon support the other-side-of-
drought’ (hypothesis 1) and, at the same time, help to reconcile the
much-discussed apparent disagreement between remote-sensing
studies showing 2005 drought-associated green-up on average®'®
(interpreted asshowingforestresiliencetoorevenbenefitfromdrought)
and ground-based plot studies showing 2005 drought-associated
excess in tree mortality on average' (interpreted as showing forest
vulnerability to drought). However, our more-fine-grained analysis sug-
gests that the excess greening and the excess mortality were notinthe
same places; itis the locales with shallow-water-table forests that were
benefited by drought, while deep-water-table forests are vulnerable—a
consistent pattern revealed by both remote sensing (Figs. 2b and 3a)
and ground-based forest demography (tree mortality drought response
increases with water-table depth; Fig. 3d). The apparent disagreement
arises because the published plot-based sampling efforts>' are not
random, but skewed towards the deeper-water-table regions that expe-
rienced brown-down during drought (Figs. 2b and 3e (orange shaded
regions)), while the basin as a whole has more shallow-water-table
forests like those that experienced greening (Figs. 2b and 3e
(green-shaded regions)) (half of the Amazon basin). Shallow water
tables may therefore gain (or lose less) carbon during drought (as
seen previously?), partially offsetting the more negative effect of
drought seen on forest mortality and carbonbalance in deeper-water-
table forests*°.
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Fig.3|Southern Amazon forestresponses to multiple droughts. a, Climate-
adjusted EVIresponses versus HAND water-table depths support the other-side-
of-drought hypothesis (hypothesis1) (with negative slopes) for observations
(binaverages + 95% ClI, solid regression line) and GAM predictions (+95%
confidenceshadedregion, dashed regressionline) for 2005 (green, slope =
-0.019+0.001s.e.m™),2010 (purple, slope =-0.020 + 0.002 s.e. m ™) and 2015
(blue, slope =-0.028 + 0.002 s.e. m™) droughts, each paired with HAND
distributions. b, HAND-specific PAR sensitivity of GAM-predicted EVI
responses (+95% Clshaded region), paired with PAR anomaly distributions
(right axis), show greater sensitivity for shallower water tables. c, HAND-specific
drought-length sensitivity of GAM-predicted EVIresponses (+95% Cl shaded
region), paired with drought-duration distributions (months) (right axis), show
shallow-water-table protection declining after 3 months. Climate-adjusted
responses use GAM and drought-specific median climate to predict responses
oradjust observations.d, Aboveground biomass (AGB) mortality responses

Basin-wide forest drought response

Although we observed consistent support for the other-side-of-drought
hypothesis (hypothesis 1) across both time (three droughts) and space
in southern Amazon forests (Fig. 3a) (separately confirmed by causal
modelling analysis; Extended Data Fig. 6e), we found consistently oppo-
sitedrought responses with water-table depth (EVIanomalies increased
with water-table depth) inthe everwet Amazon of the northwest andin
the lower-fertility Guiana Shield in the northeast (see Extended Data
Fig. 5, in which fertility is quantified as exchangeable base cations*?).
These observations falsify hypothesis 1 outside the southern Ama-
zon. We next used forest responses to the 2015/2016 drought (the only
droughtlarge enoughto substantiallyimpact large portions of all three
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(mortality-associated carbon flux; the percentage deviation fromlong-term
MgC ha'yr'inground plots)? versus HAND (average of plots within each HAND
bin, +95% ClI, regression line for depths less than 30 m) support hypothesis 1
(with consistent positive slopes) for the 2005 (green, slope =1.4% m™, P= 0.051)
and 2010 (purple, linear regressionslope =1.8% m™, P=0.015) droughts (d).

e, Distributions of cumulative basin-wide HAND area (grey bars, left axis),

and of ground-based sampling effort per HAND interval, normalized to the
proportion of the basin area (plot area x years monitored, per HAND interval,
divided by fractional basinarea per HAND interval, giving the effort per
intervalrelative to1.0) (blue bars, right axis). This shows that ground sampling
efforts under-represent prevalent shallow-water-table forests that greened up
(greenband, around 55% of the basin, but 16% of the effort) and over-represent
deep-water-table foreststhat browned down (orange band, about 20% of the
basinbut 55% of the effort).

regions of the basin simultaneously) to test whether joint considera-
tion of all three hypotheses together could explain the biogeography
of forest drought response across the basin as awhole.

When gridded ecotope factors (soil fertility and texture*** and
vegetation properties such as canopy height****) were included as
predictorsin our GAM analyses for the 2015/2016 drought (Fig. 4 and
Supplementary Table 1d), coherent differences between southern
and northern Amazon regions emerged from interacting effects of
water-table depth (hypothesis 1)*, soil fertility (hypothesis 2)%%
and tree rooting depth (hypothesis 3, using forest canopy height as
arough proxy for rooting depth when water tables are deep, consist-
ent with limited observations of tree-height-rooting-depthrelation-
Ships31733,46)-

43,44
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Fig.4|Basin-wide Amazonforestresponses tothe 2015 drought, structured
by ecotopes and predicted by whole-basin GAM analysis. a,b, GAM partial
predictions of EVIanomalies (colour scale) for soil fertility* (vertical axis) and
HAND? (horizontal axis) terms only (a), and for forest height* and HAND*
termsonly (b). Ecotope distributionsinsouthern, everwet and Guiana Shield
forests (a, toprightandb, right), and associated 99% confidence ellipses (main
graph). The mean values of two areas exhibiting green-up in Fig.1c (RN, in Rio
Negro catchment, and AP in Amapastate) illustrate differing mechanisms of
green-up (especially evidentinb, wheretall trees, despite deep water tables,
promote green-up in AP, while shallow water tables promote green-up for RN).
c,d, Adjusted EVIanomaly versus HAND with increasing fertility (blue to green

The effect of water-table depth ondrought response across regions
depended on soil fertility (Fig. 4a): highly fertile areas most strongly
evinced the protective effect of shallow water tables (Fig. 4a (green
portion of the fertility distribution, corresponding to the green lines
in Fig. 4¢)), while lower-fertility areas were either less affected by
water-table depth or showed the opposite response pattern (Fig. 4a
(blue portion of the fertility distribution, corresponding to the blue
lines in Fig. 4c)). This is consistent with hypothesis 2%?’ that, as soil
nutrients become more limiting, trees invest in drought-resistance
traits (for example, high xylem embolismresistance), and with obser-
vations of strong association between regions of low soil fertility and
high wood density (Supplementary Table 2). We also noted interac-
tions of water-table depth with soil texture (Extended Data Fig. 7a),
as discussed in Methods, ‘AIC-selected GAMs for hypothesis testing
and prediction’ (2).

The effect of water-table depth on drought response also depended
on forest height (Fig. 4b), with the tallest forests, which are expected
to have deeper rooting zones, enabling green-up eveninregions (like
the Guiana Shield) with deeper water tables (Fig.4b (red portion of the
forest height distribution, corresponding to the red lines in Fig. 4d)).
Meanwhile, taller forests performed worse thanshorter tree forestsin
shallow-water-table areas (Fig.4d and Extended Data Fig. 6h (red versus
blue lines)), consistent with findings that, when lacking a deep-root
advantage, tall trees may experience higher drought mortality due to
greater exposure to atmospheric drought (high VPD)*¥. Deep water
tables may promote deep-rooted tall trees with resilience to seasonal
atmospheric and soil water deficit exposure, with access to more con-
sistently available deep soil water, enabling them (like shallow rooted
trees over shallow water tables) to take advantage of extra sunlight
during moderate droughts.

shaded areas, corresponding to coloured areas in the tails of the fertility
distributionina, right) (c) or forest height (blue tored shaded areas,
corresponding to coloured areas in the tails of the forest height distribution
inb, right) (d). e, Region-specific EVIanomaly sensitivities to HAND, comparing
adjusted observations (bin averages + 95% Cl,n= 636,668 and 1,792 0.4° pixels
for the everwet, Guiana Shield and southern Amazonregions, respectively) to
adjusted GAM predictions (linesand 95% confidence shaded area). Note that
adjusted EVIanomaliesindicate that climate and ecotope factors not displayed
inthe graphare held constant atbasin-wide (a-d) or regional average (e) values.
See Supplementary Table1d.

An empirical test of the basin-wide model predictions (Fig. 4a-d)
showed that the fully integrated analysis accounting for the differences
inthe ecotope factors in different regions (Extended Data Fig. 2) was
able to consistently predict the different kinds of drought responses
observed in different regions of the basin (Fig. 4e).

Our GAM modelling framework, paired with causal inference model-
ling, generates arich suite of testable hypotheses for future research
into forest drought response (see Methods, ‘Testing alternative inter-
pretations and considering caveats’). These address such questions as:
(1) whether coarse-scale patterns (like those deriving from the 1-40 km
pixels used here) may emerge from such mechanisms as access to water
tables, which vary across landscapes, from forest plateaus to adja-
cent valleys, at fine scales of just a few metres (Extended Data Fig. 8);
(2) whether individual relatively tall trees may be at greater drought
risk (as shown by some studies*®*°) even within tall forests of which the
average heightis here predicted to be more protective against drought
thanshorter forests; (3) whether forests are more sensitive to droughts
thatoccurinwet versus dry seasons (Extended DataFig. 7b-d); (4) the
effects of forest degradation on drought sensitivity; and generally,
of whether these mechanisms apply in other ecosystem types in the
Amazon basin and beyond.

Functional biogeography of Amazon drought

We used the GAM predictions (Fig. 4) of different drought responses
across different forest ecotopes (here defined by water-table depth,
soil fertility and texture, and forest height) to map a biogeography of
forest drought resilience (where resilient pixels, as defined in Meth-
ods, ‘Drought resilience and vegetation anomalies’, are those inwhich
ecotope factors promote relative green-up) and vulnerability (pixels
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predicts plot-based physiological drought tolerance (tree hydraulic safety
margins (HSMs); Methods, ‘Forest plot data’), as seenin theinset (linear

regressionR?=0.65;P=0.008, n =9 plots). b, Overlapping strategies and

in which ecotope factors promote brown-down) across the Amazon
basin (Fig. 5a), including the ecotope factor combinations that are
conducive (or not) to resilience (Fig. 5b,c).

This functional biogeography reveals the importance of ecotopes
in structuring forest drought response: first, simply because the
GAM models that accounted for forest ecotopes (through the vari-
ables HAND, SoilFertility, SoilTexture and ForestHeight; Extended
DataFig.2) along with climate had significantly more predictive power
(higher R?while selected by lower Akaike information criterion (AIC))
than climate-only models (Supplementary Table 1). Importantly, the
ecotope-defined biogeography allows attribution of greening-inferred
resilience in different forests to distinct mechanisms. For example,
during the 2015/2016 drought, forest greening was observed both
in the shallow-water-table forests of the Rio Negro basin and in
deep-water-table forests of Amapa state (RN and AP regions, respec-
tively, highlighted in Figs. 1c, 4b and 5a). The biogeography (Fig. 5b)
and GAM prediction (Fig. 4b) show both regions sharinginfertile soils,
but they pointin particular to forest height—and associated deep root-
ing zones enabling access to deep water—as a key factor supporting
resilience/greening in the deep-water-table forests of AP (Fig. 5b,c
(orange)), whereas the RN forests (Fig. 5b,c (green)), although short,
had access to shallow water tables.

This analysis goes beyond previous climate-based explanations of
Amazon forest drought response and, importantly, complements a
recent map of external anthropogenic tipping-point threats (due to
combined stresses of droughts, deforestation, fire, roads and so on)®
withabiogeography of intrinsic ecological resilience/vulnerability (due
to characteristics of forestsin their adapted environments). Interaction
among the three different hypotheses—that hydrological environ-
ments, soil fertility and tree drought resistance traits structure forest
droughtresponse—shows that nosingle factor could explain drought
response across the whole basin through different droughts. Thus,
shallow-water-table hydrological environments do indeed protect
againstdrought®, but only relatively, especially in regions in which high
fertility stimulates the fast growth of hydraulically more vulnerable
trees® (see Fig. 5¢, inwhich the blue-labelled fertile regions with shallow
water tables are theleast vulnerable among the first four ‘more vulner-
able’ combinations on the left). The most resilient forest types (Fig. 5¢)
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50° W
More resilient

More vulnerable

ecotopes structuring the distribution of relative drought resilience mappedin
a,as promoted by the presence of resilience factors: shallow water table depth
(WTD), indexed by HAND <10 m (blue), low-fertility soils (cation concentrations
<107°% cmol(+) kg™, yellow) or tall deep-rooted trees (heights > 32.5m, red),
with overlap indicated by the primary colour mixingrulesin thelegend, and
whiteindicating noresilience factor (which, notably, corresponds wellto the
mostvulnerableredregionsina).c, Thedistribution of resilience factor groups,
and the proportion of relatively vulnerable, resilient or neutral forest associated
with each (left axis) and the meanrelative resilience (blue horizontal lines, right
axis), ordered from most vulnerable to most resilient.

were those with low soil fertility, occupying all categories of the ‘more
resilient’ end of the drought-response biogeography (Fig. 5c (right)).

Confidence in this forest biogeography arises from corroboration
by ground observations, and by consistent results from different
modelling approaches (in which structural causal models (Extended
DataFig. 6) confirmthat GAM predictive models (Figs. 3 and 4) reflect
causal effects). Remote-sensing observations generally align well with
ecosystem photosynthetic fluxes derived from towers on the ground
(see Methods, ‘Remote sensing validation and consistency’). Here, they
also align with tree demography during the three droughts (Fig. 3a
versus Fig.3d for 2005 and 2010, and Extended Data Fig. 9c-h for 2015)
and withremote photosyntheticanomalies, which are negatively cor-
related with mortality and positively with recruitment, as expected if
more-negative anomalies are associated with increased plant stress.
Notably, our GAM-derived remote-sensing resilience map alsoindepen-
dently predicted observations in forest plots of tree xylem hydraulic
safety margins (HSMs) to mortality-inducing embolism*®, awidely cited
physiological drought-tolerance trait (Fig. 5a (inset)).

Implications of a functional biogeography

This study has important implications for understanding for-
est responses to climatic variability and change. First, because
shallow-water-table forests in Amazonia are extensive (30-40% of
the southern Amazon, where they are found to be protective during
drought) but neglected by most previous studies of forest drought sen-
sitivity (Fig. 3e), southern Amazon forests are probably more resilient
to drought than common estimates of climate sensitivity imply*, and
large-scale plot-based estimates of a drought-induced decline in the
Amazon forest carbon sink? may need to be adjusted to account for
these higher-drought-resilience but neglected forests.

However, this analysis also warns that climate change is probably
simultaneously undermining different strategies and capacities for
drought resilience, and highlights specific mechanisms and Amazon
regions that are likely to be vulnerable to tipping-point failure: the
resilience conveyed by shallow-water-table hydrological environ-
ments in certain regions® is probably limited under growing climate
change. The buffering effect of shallow water tables appears limited



to short-duration droughts (< 3 months; Fig. 3c) that do not last long
enoughto deplete water tables. The benefits of regrowing trees quickly
thatarelost to once-in-a-century droughts® (whether or not protected
by shallow water tables) are much reduced when those drought fre-
quencies increase to become 5 or 10-year droughts (as seen recently
and as predicted to continue in the near future®*?). Importantly, these
fertility resultsimply (consistent with arecent ground-based study of
hydraulic traits®®) thatitis Amazonia’s most productive higher-fertility
forests that are most vulnerable to future climate change.

Finally, we note that the geographical distribution of these most-
vulnerable forests (Fig. 5a (reddish regions)) has important warnings
for sustaining the integrity of critical ecosystems both in the basin and
beyond.First, these vulnerable forests are at high risk of deforestation
(substantially overlapping with the ‘arc of deforestation’; Extended Data
Fig.10d). Importantly, because they are predominantly situated under
prevailing winds that bring moist Amazonian air to the south (Extended
DataFig.10d), they are critical to maintaining the evapotranspiration
that feeds (and probably amplifies®®) the ‘atmospheric rivers’ thatbring
forest-recycled precipitable water from the Amazonregions to sustain
South America’s breadbasket in the agricultural regions of Brazil>*.

This unified understanding of the functional biogeography of Ama-
zondroughtresponse provides a basisboth for establishing basin-wide
priorities for conservation planning®and for achievingimproved under-
standing and predictions of tropical forest vulnerability to current
droughts, threatened tipping points and future climate change.
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Methods

In this study, we applied a hypothesis-testing framework>*, using
remote-sensing methods to test a sequence of three key ecological
hypotheses that predict how different forest types respond to drought.
To conduct these tests, we assembled key datasets, including two clas-
sicsatellite products of vegetation photosynthetic function (the most
recent version of the EVIand solar induced fluorescence (SIF) (includ-
ing their validation), gridded products of climate, water-table depth,
soil fertility and texture, and vegetation properties defining ecotopes.
We focused onintact evergreen forests, mapping data in areas corre-
spondingto evergreen forest cover in non-floodplain, non-deforested
forest regions. We assembled field datasets of forest demography (from
RAINFOR?and ref. 26) and of physiological drought tolerance® to test
remote sensing skill at capturing ground-measured metrics for forest
drought response.

To conduct the statistical analysis, we first interpolated data prod-
ucts onto grids of appropriate spatial resolution, and conducted a
supervised classification analysis of Amazon forests into three dis-
tinct regions defined by ecotope. We defined climate anomalies and
drought characteristics and duration on a pixel-by-pixel basis, defined
forestdroughtresilience interms of anomalies in vegetation function,
conducted a variogram analysis to remove effects of spatial autocor-
relation, and then evaluated the scale dependence or sensitivity of key
results to the pixel size/spatial resolution. We derived statistical models
of drought response using two independent approaches: predictive
regression modelling (GAM, anonlinear multiple regression technique
whereby the most predictive models are selected by an information
criterion), and SCM (using directed acyclic graphs (DAG)). We tested
GAM predictions by comparison to adjusted observations and then
used the basin-wide GAM predictive model to derive a functional bio-
geography of drought response.

Finally, we addressed confidencein ourinterpretations by exploring
potential alternative mechanisms and caveats, and by using the predic-
tive GAM framework to conduct tests of alternative hypotheses that
could either support orreject those presented in the main text. These
provided evidence in support of our interpretation, but also pointed
to future research needs.

Datasets

Remote-sensing indices of photosynthesis. We applied two widely
used, ground-validated remote-sensing indices of photosynthesis
to provide a sensitivity analysis that brackets the plausible range of
forest canopy response to drought: the EVI, constructed from obser-
vations of surface reflectance by the MODerate resolution Imaging
Spectroradiometer (MODIS) onboard the Terra/Aqua satellites; and
the GOSIF product derived from observations by the Orbiting Carbon
Observatory 2 satellite. EVI, derived from the spectra of light reflected
fromsurface vegetation, is designed as anindex of the photosynthetic
capacity®’. GOSIF is designed to represent the active light emission from
fluorescing chlorophyll molecules during photosynthesis, which is
oftenwell-correlated with canopy-scale instantaneous photosynthetic
activity””. This distinction (between reflected light used to construct EVI
asaproxy for capacity, versus actively emitted light used to construct
GOSIF asaproxy for activity) means that these indices may be expected
to display divergent responses.

We chose these indices because they aim to capture different
end-members of aspectrum of canopy responses: from transient physi-
ological changes in photosynthesizing/fluorescing leaves (which might
be due, for example, to stomatal regulation in response to changing
atmospheric VPD) that affect photosyntheticactivity for a given capac-
ity®®, versus more structural responses associated with leaf turnover
suchasleaf flushing or shedding which also change canopy photosyn-
thetic capacity*®. We primarily focus here on EVI responses, which have
beenshown to remotely capture seasonal canopy green-up dynamics

that are consistent with underlying mechanisms of leaf development
and demography®®. However, GOSIF corroboration of EVI drought
responses at broadscales would suggest that ecophysiological and
structural canopy responses to drought are aligned in the Amazon,
increasing confidencein the robustness of remotely observed drought
responses.

MAIAC EVI. The MAIAC algorithm rigorously accounts for sun-sensor
geometry, as represented in a bidirectional reflectance distribution
function (BRDF), estimating reflectance at a nadir view and 45° solar
zenithangle, with strictatmosphere, aerosol and cloud corrections®.
We used the 8 day MCD19A3 (MAIAC) 1 km product from MODIS collec-
tionsix, alevel 3 product composited from cloud-free and low-aerosol
conditions. We applied the coefficients (weights) of the RossThick/
Li-Sparse BRDF model (available online https://e4ftlO1.cr.usgs.gov/
MOTA/MCD19A3.006/). We calculated the 8 day EVI from the MAIAC
surfacereflectances of red, blue and near-infrared bands as previously*’
from2001t02019. The 8 day EVIisthen aggregated to amonthly time
step.

GOSIF. SIF, emitted by chlorophyll moleculesin green plants that have
been excited by absorption of sunlight, provides a direct index of the
current physiological state of a photosynthesizing canopy®. The 0CO-2
satellite observes SIF at coarse resolutions®?, and these are used to cre-
ate the modelled GOSIF data product® (available at http://data.globa-
lecology.unh.edu/data/GOSIF_v2), which simulates higher-resolution
SIF dynamics over longer time periods by interpolating among discrete
0OCO-2 SIF soundings using the MODIS surface reflectance product
MCD43C4 (BRDF-corrected to nadir view and to the solar zenith
angleatlocal noon), and meteorological reanalysis data®®. We used the
monthly composite GOSIF product with high spatial resolution of 0.05°
over the period from2001t02019. Among SIF-related products, GOSIF
hasbeenfoundtobethebest predictor of gross primary productivity
(GPP) measured from eddy covariance towers across land cover types®.

Climate variables
To explore climate effects on forest drought responses, we used
monthly precipitation, MCWD, surface downwelling shortwave radia-
tionand VPD resampled at 0.4°. Precipitationand MCWD are from the
Global Precipitation Mission and Tropical Rainfall Measuring Mission
3B43-v7 for 2000-2020 at 0.25° resolution (-25 km x 25 km) (https://
disc2.gesdisc.eosdis.nasa.gov/data/TRMM_L3/TRMM_3B43.7/)%*.
MCWD measures local drought intensity, defined as the maximum
deficit reached in the last month of a string of dry months for each
grid cellwithin the year®, treating forest water deficit as analogous to
abucket of which the deficit is zero when the bucket is full. To avoid
splitting a string of dry months between 2 years, we used a 12-month
‘hydrological year’ running from May to the following April (for exam-
ple, MCWD for 2004 was calculated using CWD data from May 2004
to April 2005). We also used monthly surface downwelling shortwave
radiation from Modern-Era Retrospective analysis for Research and
Applications version 2 (MERRA-2 Reanalysis) for 2000 to 2019 as a proxy
for PAR at aspatial resolution of 0.5° x 0.625° (https://goldsmr4.gesdisc.
eosdis.nasa.gov/data/MERRA2_MONTHLY/M2TMNXRAD.5.12.4/)%.
VPD was calculated based on surface air temperature and relative
humidity (L3 Standard Monthly Product, AIRS3STM) from version 6
of the Atmospheric Infrared Sounder (AIRS) at a spatial resolution of
1°for 2003-2017 (-100 km; https://airs.jpl.nasa.gov/data/get-data/
standard-data/)®"®,

Ecotope variables

We follow the ecosystem ecology approach'®* of characterizing differ-
entecosystemtypes (in this case, forest ecosystems) by their ecotopes,
thatis, by the combination of biotic characteristics and abiotic environ-
mentsthat define them, here including their hydrological environment


https://e4ftl01.cr.usgs.gov/MOTA/MCD19A3.006/
https://e4ftl01.cr.usgs.gov/MOTA/MCD19A3.006/
http://data.globalecology.unh.edu/data/GOSIF_v2
http://data.globalecology.unh.edu/data/GOSIF_v2
https://disc2.gesdisc.eosdis.nasa.gov/data/TRMM_L3/TRMM_3B43.7/
https://disc2.gesdisc.eosdis.nasa.gov/data/TRMM_L3/TRMM_3B43.7/
https://goldsmr4.gesdisc.eosdis.nasa.gov/data/MERRA2_MONTHLY/M2TMNXRAD.5.12.4/
https://goldsmr4.gesdisc.eosdis.nasa.gov/data/MERRA2_MONTHLY/M2TMNXRAD.5.12.4/
https://airs.jpl.nasa.gov/data/get-data/standard-data/
https://airs.jpl.nasa.gov/data/get-data/standard-data/

(water-table depth), soil types (fertility and texture), vegetation char-
acteristics and other factors™.

We used the HAND-normalized terrain mode as a proxy of
water-table depth and for plant access to groundwater, rederived at
100 mresolution from digital elevation model-Shuttle Radar Topog-
raphy Mission (SRTM) data for this study**”2. The HAND normalization
isrelative to the local drainage height, using the flow paths to connect
all cells (pixels) with the cells of the nearest drainage. The HAND model
has been validated over an area of 18,000 km? in the lower Rio Negro
catchment® and used for awide range of ecohydrological studies™”>™,
HAND is comparable to the water-table depth model-based product of
aprevious study”, which gave broadly similar results to those reported
here with HAND. For this study the HAND-normalized terrain model
was derived from SRTM-DEM at a100 mresolution.

For soil fertility, we used amap (0.1° spatial resolution) of exchange-
able base cations (Ca*+ Mg’ + K' measured in cmol(+) kg™) for the
Amazon basin®, the most extensive empirically validated gridded
soil fertility product currently available. Soil cation concentrations
estimated from this product achieved good agreement with an inde-
pendent dataset of field-measured values (correlation of r= 0.71)*.

Our analysis does not include phosphorus, which is generally con-
sidered to be limiting to tropical forest productivity’®”’, but was not
available asa high-quality validated gridded data product at the time of
our analysis (in the late stages of production of this Article, aphospho-
rous map for the Amazon was published”, which we were not able to
includeinthe analysis here). We expect base cations to be a partial index
of phosphorus availability, as both cations and phosphorus become
available through weathering of young soils arising from Andean parent
material or runoff sediment, but are eventually leached, leaving older
highly weathered soils in the Guiana Shields depleted of both. Cation
concentration should also be directly relevant to drought tolerance,
as high concentrations should improve osmotic regulation of stomatal
conductance, animportant regulator of drought response”.

For soil texture, we used soil sand/clay fractions from the SoilGrids
systemreleased by the International Soil Reference Information Centre
World Soil Information*,

Forforest height, we used a canopy height metric derived from spa-
ceborne lidar measurements* (https://webmap.ornl.gov/ogc/data-
set.jsp?dg_id=10023_1) and validated by field measurements, with an
increased accuracy in the Amazon compared to previous metrics®).
This wall-to-wall global map of canopy height is at a1 km spatial reso-
lution, interpolated from lidar observations by the Geoscience Laser
Altimeter System aboard the Ice, Cloud and Land Elevation Satellite. We
take forest canopy height asaproxy of rooting depth, based on standard
allometries backed by observationsin Brazilian tree plantations®>2*°,
ina central Amazon forest®***¢ and across biomes®*2#¢ that show they
are correlated®***¢, However, observations of the tree height-rooting
depth allometry are limited, especially in tropical forests (although
one study cited here® is directly relevant, as it is from central-eastern
Amazonupland forest, conducted during the 2015 drought); this limi-
tation remains akey uncertainty in our ability to confidently attribute
variationsin drought response torooting depth, as opposed to canopy
heightitself, or other (as yet unidentified) correlates of canopy height.
We also note that shallow water-table depth limits rooting depth such
that canopy height correlations with rooting depth in these forests
may be diminished®°.

We also applied community-weighted mean wood density and the
abundance of Fabaceae (legumes)**. Fabaceae refers to alarge, nearly
cosmopolitan family that relates woody plants with nitrogen-fixing
nodulation, usually assumed adaptations to low-fertility soils®'.
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Identification of terra firme Amazon basin forests using land-
cover maps

To focus our analysis on the desired domain of terra firme forests, we
used aforest map at1 km spatial resolution (MCD12Q1.006) to identify

evergreen forest pixels within the Amazon basin®?, excluding open
water, deforested forests and non-forest vegetation types. A floodplain
map was also used to identify targeted non-flooded forests, and exclude
floodplain forests®. We used the map of a previous study®* to define the
boundary of the Amazon basin, aninclusive definition encompassing
allforested parts of the Amazon river catchment and Amazon forests
technically within the Orinoco river catchment. We used a recently
published forest cover classification that now includes a category for
‘degraded’ forests at a 30 m spatial resolution® (updated to 2022), to
test drought sensitivity (see the ‘Testing alternative interpretations
and considering caveats’ section).

Forest plot data

RAINFOR long-term forest plots. We used demographic datasets
over the period 1983-2011 from all of the 321 re-censused forest plots
that were published and used to estimate Amazon basin-wide carbon
balance (most, butnotall, of these were from the RAINFOR network)?,
forthree purposes: (1) to characterize the spatial representativity of the
reported plot-based sampling efforts (area-weighted frequency x du-
ration that plots were monitored) with respect to the distribution of
water-table depths (HAND) across the Amazon basin (Fig. 3e); (2) to
test whether forest mortality anomalies (percentage deviation from
thelong-term mean) in 247 plots subject to the2005and 2010 droughts
were associated with water-table depth (Fig. 3d); and (3) to validate EVI
remote sensing with spatial variationsin long term (2000-2011) average
aboveground net primary productivity (ANPP) rates across the Amazon
basin (see the ‘Validation by forest plot metrics of demography and of
physiological drought tolerance’ section; Extended Data Fig. 9a,b).
The full RAINFOR and related networks sample more plots than these,
likely including agreater range of environments®, but published results
representing drought response of ‘the Amazon rainforest™ and ‘the
Amazon carbon sink’ are the ones of which the sample plot distribu-
tions are analysed here for their representivity.

Shallow water table forest plots. For remote-sensing validation, we
also used mortality and recruitment data from 251 ha plots distributed
across 8 research sites along the BR-319 road in the southern Ama-
zonbetween Manaus and Porto Velho (from 62.5°W,5.9°St0 60.9° W,
4.4°S) as analysed previously®. These are shallow-water-table sites
(2.81+2.38 mdeep (mean +s.d.)) intended to complement the on
average deeper water table sites of the RAINFOR network (above).
These more recent data focused on mortality and recruitment rates
calculated for the 2015-2016 drought (see the ‘Validation by forest
plot metrics of demography and of physiological drought tolerance’
section; Extended Data Fig. 9c-h).

Forest plot HSMs. We used a pan-Amazon hydraulic trait dataset
(HSMs, the difference between water potentials experienced by aspe-
ciesin the field and the water potentials leading to hydraulic failure,
with narrower margins indicating greater mortality risk) published by
Tavares et al.*®, including 108 species distributed across 9 forest sites
across western, central eastern and southern Amazon, to validate our
derivedresilience map (Fig. 5). These sites belong to old-growthlowland
forests, little disturbed by human activities, spanning the Amazonian
precipitation gradient and encompassing the principal axes of species
composition in the Amazon®’. The HSM used here was calculated by
Tavares et al. as HSM;,, the difference between minimum observed
stem water potential and P, the stem water potential at which 50% of
xylem hydraulic conductivity is lost. The measurements are conducted
onindividual trees, then aggregated to the species level; basal-area
weighted averages were then calculated for each plot™®.

Remote-sensing validation and consistency
Validation by ecosystem flux measurements (eddy flux towers).
MAIACEVI: EVI has been extensively validated against measurements
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of ecosystem photosynthesis (GPP) from eddy flux towers across land
types world-wide¥, including temperate®®*° and tropical® ** biomes.
Earlier versions of MODIS EVI were criticized as influenced by aero-
sol or sun-sensor geometry artifacts when detecting tropical forest
greening®®, but such effects are largely eliminated in the current
MAIAC EVI product used here (which corrects artifacts from aerosol
contamination and sun-sensor geometry)¥. Particularly relevant for
this study, MAIAC EVIwell-detected Amazon forest seasonal green-up
dynamics across a network of eddy flux tower sites in the Brazilian
Amazon®*”, with patterns shown to be consistent with understandings
of leaf development and demography derived from flux towers and
phenocam studies on the ground®®.

EVlor EVI-based models predictindependent tower measurements
of monthly GPP with R? of around 0.5-0.7 for tropical® °*, and R? of
about 0.7-0.8+ for temperate®®°° biomes.

GOSIF: despite nonlinear and sometimes decoupled relationships
between chlorophyll fluorescence and photosynthesis at leaf scales®,
satellite observations of SIF from OCO-2 have been shown tobe linearly
related to canopy scale GPP®?, suggesting that canopy-scale processes
can effectively average over leafscale complexities. GOSIF-modelled
datasets built from SIF observations have been multiply validated by
tower-based CO, flux estimates of GPP, achieving good correlation
(R?=0.73 globally) with the 91 sites of global Fluxnet GPP (2015 tier 1
dataset)*, with lower correlations (R? = 0.51, comparable to EVlin the
tropics) for the evergreen broadleaf forest biome, including sites in
the Amazon®.

Note that, for the lower R*for tropical versus temperate forest GPP
detection, although both indices (GOSIF and EVI) capture GPP com-
parably in deciduous broadleaf (temperate) versus evergreen broad-
leaf (tropical) forests within active growing seasons, most statistical
assessments are of full annual cycles, which typically show substantially
better statistics (R* > 0.8) for temperate zone forests, largely because
temperate forests include easily detectable dormant periods when
GPP = 0, which make total annual variability (hence R?) higher, while
tropical evergreen forests are active year round.

Validation by forest plot metrics of demography and of physiologi-
cal drought tolerance. We investigated the effect of variationsin re-
motely sensed photosynthesis on downstream forest demographic
effects (growth, recruitment and mortality; see the ‘Forest plot data’
section). We should expect remote-sensing skill in predicting demog-
raphy to be weaker than for predicting photosynthetic fluxes, because
demography emerges not from photosynthesis alone, but from the
balance of photosynthesis and autotrophic respiration, and is also
influenced by other factors such as disturbance.

We nevertheless found validation at multiple scales: MAIAC EVI sig-
nificantly predicted spatial variations in decadal forest ANPP (during
2000-2011) across the Amazon basin (RAINFOR network; see the ‘Forest
plotdata’section; Extended DataFig. 9a,b). Using more recent data, we
also confirmed consistent detection by EVI and GOSIF of short-term
demographic drought-response metrics during the 2015/2016 drought
(mortality, recruitment and the mortality:recruitment ratio; Extended
DataFig. 9¢,h), as expected if excess mortality (or a declineinrecruit-
ment) follows declines in photosynthetic carbon assimilation. The R?
values of 0.25t0 0.35 for remote detection of demography (Extended
DataFig.9) are consistent with our expectation that they should be less
than the remote detection R*for GPP (0.5to 0.7, discussed in the “Vali-
dation by ecosystem flux measurements (eddy flux towers)’ section),
as GPPis only a partial determinant of the NPP driver of demography
(NPP = GPP - autotrophic respiration, where autotrophic respiration
is not directly detectable by remote sensing, and with perhaps -60%
of the NPP signal due to GPP in the tropics, based on a carbon use effi-
ciency of 0.3 (ref. 99).

Withrespect toremote detection of the physiological drought toler-
ance of trees, we investigated the ability of our remote-sensing-derived

forest photosynthetic resilience map (Fig. 5a; see the ‘Deriving the
basin-wide biogeography of forest drought resilience/vulnerability’
section) to predict a metric of the resilience of individual trees to
drought, HSMs for xylem embolism. Individual tree HSMs—the dif-
ference between observed stem water potentials and the stem water
potentials at which trees become vulnerable to xylem embolism—are
widely regarded as predictors of tree mortality risk under drought®,
with narrower HSMs indicating greater mortality risk®®. We found that
our remote-sensing-derived estimates of forest resilience (Fig. 5a)
could significantly predict basal-area weighted tree HSM measured
onthe ground at forest plots across the Amazon basin (Fig. 5a (inset))
(reported previously*®; summarized in the ‘Forest plot data’ section)
(notethat forestresilience was estimated as described in the ‘Deriving
thebasin-wide biogeography of forest drought resilience/vulnerability’
section, but using canopy height mapped at 0.1° resolution, instead of
the baseline model resolution of 0.4°, to avoid mixing the height signal
ofintact HSM plot forests with that of occasionally nearby deforested
areas). This comparison strongly supports the validity of using remotely
sensed photosyntheticindices to derive a definition of photosynthetic
resilience to drought.

Consistency between EVIand GOSIF

Are the two remote sensing metrics showing consistent response to
drought? The spatial locations of the drought anomalies appear simi-
lar, although not the same (Fig. 1 versus Extended Data Fig. 1d-f) but,
as EVIand GOSIF are intended to be sensitive to distinct dimensions
of canopy photosynthetic function—thatis, to photosynthetic capac-
ity versus activity, respectively (as discussed in the ‘Remote sensing
indices of photosynthesis’ section)—we should not expect sameness.

We do expect activity to be generally more sensitive to drought than
capacity, because activity-based responses encompass both transient/
reversible physiological responses (for example, stomatal adjustment)
aswell as slower structural effects due to changesin capacity (for exam-
ple, biochemicalinhibition, leaf growth or shedding)*®'°°. We indeed see
this expectationreflected in observed drought response, with the range
of GOSIF (activity) anomalies (from -9.6 to +4.8s.d., excluding 0.1% of
thedistributionin eachtail) 30% greater than the range of EVIanoma-
lies (-6.5to +4.5s.d.; insets in Fig. 1 versus Extended Data Fig. 1d-f).

Moreimportant, we examine whether there is consistency in terms of
support for or rejection of hypotheses that are the focus of this analy-
sis, for example, whether the other-side-of-drought prediction that
drought response anomalies should decline with water-table depth,
and here we do see broad support for this hypothesis from both EVI
and GOSIF: for the 2005 drought ‘ellipse’ region that was discussed
in the main text (Extended Data Fig. 1g), and for the three droughts
considered together (Fig.3a versus Extended Data Fig.1h). We also see
similar ability of the two metrics to predict tree demographic responses
to drought on the ground (Extended Data Fig. 9c-h). Together, these
comparisonsincrease confidence that forest drought response hypoth-
eses are robustly supported by the two indices.

Within the broadscale consistency, there are also substantial
fine-scale differences in spatial location of anomalies (Fig. 1 versus
Extended DataFig.1) and the detailed structure of responses (the pat-
tern of residuals in Fig. 3a versus Extended Data Fig. 1h), suggesting
that more nuanced study of these finer-scale differences could reveal
additional insightsinto the biogeography of forest drought response!”’,

Mapping and statistical analysis

Spatial grid resolutions. We interpolated the differently resolved
data products to different grid resolutions as needed for mapping
and modelling. Native resolutions were used to display most maps
(exceptions noted):

» 1kmfor MAIACEVI(Figs.1and 2 and Extended DataFigs. 8band 9a-e)
« 100 m for HAND, composited to 1 km for mapping (Fig. 2a and

Extended Data Fig. 2a)



« 0.05° for GOSIF (Extended Data Figs. 1d-h and 9f-h)

« 0.25° for precipitation-derived products (Extended Data Figs. 2f,g
and 3)

* 0.625x0.5°for PAR

« 1°for VPD (Extended Data Fig. 3)

« 0.1°for soil fertility (Extended Data Fig. 2b)

« 0.25 km for soil sand content (Extended Data Fig. 2d)

« 1km for forest canopy height (Extended Data Fig. 2c)

« 1° for wood density and proportion of Fabaceae (Extended Data
Fig.2e,h)

For plotting maps, we used ArcGIS v.10.6.1. For graphing and analy-
sis we used R v.4.2.0 (including R packages ggplot2 for graphics, and
FactoMineR, Mgcv and Dagitty for statistical analysis).

For statistical modelling, we interpolated different datasets to com-
mon grid resolutions, according to the resolution of the model. For
this, we initially downscaled all maps to the native resolution of the
EVIproduct (1km), then aggregated to the desired coarser resolu-
tion, typically 0.4°, that was needed to avoid inflation of statistical
significance of drought responses inmodels by accounting for spatial
autocorrelationamong nearby pixels using variogram analysis (see the
‘Variogram analysis for removal of spatial autocorrelation’ section;
Supplementary Fig.1). Grid cells in the drought-affected domain that
included no intact forest were excluded from the analysis. When an
analysed grid cell (ata coarse resolution, typically 0.4°) included a mix
ofintact forests and non-forest or deforested regions, we selected and
aggregated allintact forest pixels at the smaller (1 km) subgrid scale to
accurately represent intact vegetation properties (EVI, canopy height
andsoon), andrepresented the coarser model grid cell by those intact
forest properties.

Classification of forest regions according to ecotopes. We investigat-
ed whether the distribution of factors defining forest types (ecotopes)
across Amazonia could lead to a coherent clustering of different forest
ecotopesinto different regions, each with different broadscale forest
drought responses. To thisend, we conducted a supervised forest clas-
sification, using factors that were identified in previous studies to be
important”*1921%%: two climate variables (average minimum monthly
precipitation and MCWD variability), soil fertility (concentration of
exchangeable base cations*) and three tree functional characteristics
(forest height, wood density and the proportion of trees in the family
Fabaceae).

We conducted the classification in four steps: first, the six ecotope
factors, standardized by their meanand s.d., were mapped, with each
grid cell considered to occupy a point in a six-dimensional space, and
each dimension indexed in comparable units of standard deviations.
Second, a principal component analysis (PCA)'** (FactoMineR package
inR; Extended Data Fig. 4a) identified three complementary dimensions
of forests in this space: a dimension defined by vegetation character-
istics (wood density and proportions of the family Fabaceae), nearly
coincident with the first principal component (Extended Data Fig. 4a
(xaxis)); adimension defined by water availability (minimum monthly
precipitation and MCWD variability), nearly coincident with the sec-
ond principal component (Extended Data Fig. 4a (y axis)), and a third
dimension defined mainly by soil fertility (Extended Data Fig. 4a). On
the basis of these initial PCA results suggesting three relatively distinct
dimensions, we chose to cluster Amazon basin pixels into three classes.
Giventheir diversity, Amazon forests could probably be classified into
more than three, but we judged that three would be sufficient to cap-
ture substantial functional variation, without being so complex as to
prevent intuitive understanding.

Third, an automatic procedure extracted end-member charac-
teristics based on percentile thresholds'® from the PCA space'®®.
Pixels with low climate variability had high minimum precipitation
and long wet seasons (in the 90th percentile), and were identified

as a water-availability-spectrum end-member. Grid cells with the
highest proportion of Fabaceae, overlaying with tall, dense-wooded
trees (in the 90th percentile) and low-fertility soils, were identi-
fied as another end-member. A third end-member was defined by a
combination of high variability climates and moderately high (67th
percentile) soil fertility. Finally, supervised classification using the
minimum distance method was used in ENVI (v.5.3)'" to cluster each
region on the basis of the proximity to the end-members selected in
step three.

This process identified three clusters of pixels in functional PCA
space that turned out to also correspond to geographically distinct
Amazonian regions that were mostly contiguous (Extended Data
Fig.4b): an everwet Amazon region in the northwest, a Guiana Shield
region in the northeast and the southern Amazon. The standardized
values within each cluster of each of the characteristics defining the
regional clustering (ordered by water availability, soil fertility and tree
traits) exhibit the distinct niches of each region (Extended Data Fig. 4c).
The everwet Amazon is differentiated by lack of dry seasons (periods
with months with <100 mm rainfall; Extended Data Fig. 2a). Forests
in this region might be composed of species that do not well-tolerate
climate conditions (such as droughts), compared with tree assem-
blies (in other regions) adapted to regular droughts or dry seasons.
The Guiana Shield region is distinct in having old, highly weathered,
low-fertility soils, with tree communities containing the largest pro-
portion of trees in the family Fabaceae, with dense wood and high
seed mass** (Extended Data Fig. 2c-e). The southern Amazon is then
differentiated further from the Guiana Shield as slightly drier, with
soil fertility that was both higher on average but also more variable.

This three-region classification (which we use to define the regions
depictedin the main text figures) isindependent of the results (Figs.3
and 4) of the basin-wide modelling investigation (described in the
‘Statistical analyses for inferring causes of, and predicting, drought
response’ and ‘Comparing adjusted observations to GAM predictions
for different predictor variables’ sections below) because model pre-
dictions depend on pixel-by-pixel variations of environmental factors
regardless of whatregion they arein. However, the three-region Amazon
is useful for presenting model results because it illustrates how dif-
ferent functional responses emerge from different ecotope regions
(asshownin Fig. 4e).

Climate anomalies for drought definition and mapping. The spatial
extent for each of the three droughts (d) was taken to be all grid cells
where the MCWD anomaly was more than 1s.d. below the long-term
mean for that cell (Extended Data Fig.1a-c). MCWD anomaly for each
grid cellis calculated by equation (1):

MCWD, - MCWD

MCWDanomaIy = Oucwn

@®

where MCWD,is the data value in drought year (d), MCWDis the aver-
age of 19 yearly MCWD values for hydrological years 2000-2019 (May
2000 to April 2020) and oy is the s.d. for the same time period.
Anomalies of the other climate variables were calculated analogously.

Drought severity in each grid cell was classified into three levels by
standardized MCWD anomaly: modest drought (-1.5to-1s.d. relative
to the mean), medium drought (-2 to -1.5 s.d. relative to the mean)
and severe drought (greater magnitude than -2 s.d.) (Extended Data
Fig.1a-c).

Drought duration (for each of the three droughts separately for each
grid cell) was measured in terms of number of drought months (i) for
a particular drought (d) for each grid cell within the period (May to
the following April) for the droughts of 2005 and 2010; and from May
to October of the following year for the EINino drought of 2015/2016.
The drought onset month is found where the following is true, recall-
ingthat CWD and MCWD are more negative with greater water deficit:
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if CWD,,;>MCWD,

CWD, ;< MCWD, 2
and CWD, ;,;<MCWD,
then onset;=i

The end month of drought interval (i) for each grid cell for each of
the three droughts is defined as follows:

if  CWD,;<MCWD,

CWD, j,; > MCWD, 3)
and  end,>onsety,
then end, =j

Then for each grid cell, duration,=end, - onset,+1as shown in
Extended Data Fig. 3a-i.

Drought resilience and vegetation anomalies. We defined drought
resilience as aforest’s ability to increase (or relatively better maintain)
photosynthetic capacity or activity during a perturbation—that s, by its
tendency to exhibit more positive/less negative anomalies in vegetation
indices (relative green-up) during drought. Thereis abroad literature
onresilience'®®'°’, and our definition (which canalso be characterized as
‘resistance’ or ability to resist changes in function with perturbation'®®)
is nominally distinct, for example, from another common definition,
the capacity of a system to return to its equilibrium state following a
disturbance'®. We chose relative green-up here for conceptual and
practical reasons. Conceptually, greater relative green-up implies rela-
tively more photosynthesis and, therefore, all else equal, more carbon
resourcesto respond to stress, encompassing different strategies (likely
including system capacity toreturnto equilibrium after disturbance),
makingitalogical general metric of resilience. Practically, greening has
beenwidely cited and discussed in the literature and, notably, is predic-
tive of outcomes on the ground commonly associated with resilience at
theindividual tree and plot scale (lower mortality, greater growth and
greater xylemembolism resistance; see the ‘Remote sensing validation
and consistency’ section; Extended Data Fig. 9c-h).

To quantify photosynthetic resilience, we extracted from each grid
cell for each of the three droughts the anomalies in photosynthetic
indices for the period of drought (Figs. 1and 2b,c and Extended Data
Figs.1and 3), calculated asthe departure (in standard deviations from
their non-drought-year means) across a9 year window centred oneach
drought (for example, 2001-2009 for the 2005 drought and 2011-2019
for the 2015 drought):

Xy qu— X,

Anomalyd’du= %, “)
where X, 4, is the value of theindexinagrid cell during drought d, aver-
aged over the duration du (extracted by equations (2) and (3)), and
‘Xg,and o4, arethe averageands.d., respectively, of the same ‘du’ period
across the years of data availability (with the drought years 2005,2010
and 2015 excluded). Including pixel-specific drought duration intro-
ducesgreaterrealismin drought response metrics by capturing pixel-
pixel variability in drought response due to duration du, which has
beentreated in some previous analyses as fixed (for example, in anal-
yses of the 2005 drought, du was assumed to be the 3 months of July,
August and September for all pixels)*°™,

Correspondingly, we also calculated the field-based demographic
mortality anomalies for drought years 2005 and 2010 from RAINFOR
plots?, asaboveground biomass mortality drought responses (mortality
carbon flux after drought, in percentage change relative to long-term
meanMgC hayr?).

Variogram analysis for removal of spatial autocorrelation. Obser-
vations from spatial samples are notindependent, due to spatial auto-
correlation among grid cells that are near to each other'?, To obtain
independent observations for GAMs and for statistical quantifica-
tion of average drought response (Fig. 1), we resampled grid cells at
increasingly coarse resolutions until response differences (between
forests with different water-table depths) were no longer spatially
autocorrelated—thatis, asill (plateau) was reached in the variogram
(Supplementary Fig.1) ataround 40 km, indicating ascale at which the
samples could be treated as statisticallyindependent. The variogram
was calculated from the covariance of the difference between drought
responses in shallow and deep water table grid cells:

1
2y (h) = W zm,rzeN(h) (Zm _zn)z X
Zy = AnomalyEVl,SWTDm ©
z,=Anomalyg, por 7

where N(h) was the number of grid-cell pairs (m, n) separated by dis-
tance h.Eachz,is the standardized EVI anomaly of the first member of
agrid cell pair, drawn only from cells with shallow water-table depths
0,1,2,...,9), while z, is the second member of each pair, drawn only
from cells with deep water tables (10, 11,12, ..., 19).

Statistical analyses for inferring causes of, and predicting, drought
response. Our statistical analysis had two main goals: first, to test the
three core hypotheses presented in the main textintroduction (causal
inference), and to develop the best possible predictions of regional
to basin-wide drought response by combining ecotope factors with
climate (predictive inference).

For this, we implemented two sequential statistical approaches:
first (see the ‘AlC-selected GAMs for hypothesis testing and predic-
tion’ section), we used GAM statistical regression*, selecting among
ecologically informed models by the AIC to both test hypotheses
about variables thought to influence forest drought response and to
identify the best predictive models of regional to basin-wide drought
response'®*, To avoid known inferential biases of building large regres-
sion models out of many variables selected blindly by information
criterialike AIC***"™"2 we construct our moderate-sized models within
ahypothesis-testing framework, in which causal hypotheses are speci-
fied based on ecological considerations and the selected regression fits
test the predictions made by those hypotheses. Second (see the 'SCM
using DAG’ section), we also used SCM*'5, an approach that formalizes
hypothesis testing as part of the model structure (for example, using
DAGs"*"). SCM reduces risk from confounding variables that can mask
or dilute (or magnify) true causal relationships between the ‘exposure’
variables (such as climate, soil types) and the ‘outcome’ variable (such
as forest greening/browning)"®. Note that, in both the GAM and SCM
approaches, accurate inference of the relative magnitude or impor-
tance of inferred relations is conditional on the model (for example,
the diagram in Extended Data Fig. 6) being true.

Finally, we compare the two approaches (see the ‘Comparing infer-
ences from SCM with predictive GAM regressions’ section) based on
theideathat, iftheinferences from the two approachesare consistent
with each other in terms of their conclusions about hypotheses, this
increases the confidence in those conclusions.

AlC-selected GAMs for hypothesis testing and prediction. We
developed GAM regression models of forest drought response as a
function of climate variables and ecotope factors'®”** to represent our
three core hypotheses of water-table depth?, soil fertility?®* and tree
characteristics®*3>*°, GAMs allow for nonlinear relationships between



response and multiple explanatory variables, in which the underlying
model structure can be analysed to understand why they make the pre-
dictions that they make, in contrast, for example, to machine learning
techniques, like boosted regression trees or neural networks**""?, GAM
links response variables to explanatory variables with a smoothing
function, or a spline, that can take a variety of shapes, which are then
added together.

We developed GAMs of two types: (1) regional models—fit within
regions—designed to test the other-side-of-drought hypothesis 1, by
including hydrological environments (as represented by HAND) in
addition to climate variables used in previous climate-only regres-
sion models of forest drought response'’; and (2) basin-wide models
designedtotestallthree of our hypotheses together (including effects
of soil fertility and tree characteristics) and, in particular, to under-
stand the opposite sensitivity of forest responses to water tables across
different regions (Fig. 3a versus Extended Data Fig. 5).

(1) For the effect of local hydrological environment and climate on
drought response (regional GAMs), GAMs were fit separately for the
southern Amazon, Guiana Shield and everwet Amazon regions, and
for all three droughts together, as:

AEVI=s(HAND) + s(4PAR) + s(4VPD) + s(4P) + s(AMCWD) + s(DL)
+ ti(pairwise interactions of every two predictors) + £

(8
where AEVlis the vegetation response anomaly, APAR, AVPD, AP and
AMCWD are the radiation, VPD, precipitation and MCWD anomalies,
respectively; DL denotes the drought length; is the normally distrib-
uted residual; s() and ti() are the smoothing functions of predictor
variables, obtained using a scatterplot smoothing algorithm with a
back-fitting procedure for the appropriate smoothing function foreach
predictor. The degree of freedom (d.f.) for the smoothersis determined
using the restricted maximum-likelihood (REML) method with Gauss-
ian distribution implemented by the R package mgcv'™. Models were
implemented with the gam.check function of the R package mgcv™
for diagnostics of residual, distribution and k basis dimension as well
as concurvity. All of the predictors were scaled to the same range and
unit (40 kmor ~0.4°).

The smooth functions were determined by thin plate splines
Here, we fitted thin plate regression splines using automatically opti-
mized smoothing parameters using the REML method. Three opti-
mal models were selected for the corresponding three regions, with
all three model selection procedures evaluated by delta AIC and R?
(ref.113) using the dredge function of the mgcv package in R™, with
results reported in Supplementary Table 1 (models a, b and c).

(2) For the effect of hydrological environment interacting with
regional ecotopes (basin-wide GAM), we included soil types (fertility
and texture) and vegetation characteristics (forest height, wood den-
sity) into the GAM of section (1). Without specifying regions, we aimed
toexplore whether soil and vegetation characteristics (Extended Data
Fig.2)areableto explainregional differencesin the sensitivity of forest
response to water-table depth. GAMs were fitted across the whole basin
for the 2015/2016 EINifio drought, the only drought that had substan-
tial simultaneous impacts on all three regions of the Amazon basin.
The forest responses were comprised of three components: (1) the
climate predictor variables (PAR anomaly, VPD anomaly, precipitation
anomaly and MCWD anomaly); (2) the ecotope-based environmental
predictor variables, in addition to HAND, associated with regional
differences: soil fertility, soil texture, forest height and wood density;
(3) error terms assumed to be a Gaussian distribution. Specifically,
GAMs were fitted as below:

120,121

AEVI=5(HAND) + s(SF) +s(ST) +s(FH) + s(DSL) +s(4PAR) +s(4VPD)
+5(AP) +s(AMCWD) + ti(pairwise interactions of every two )

climate variables) + ti(pairwise interactions of HAND with
other ecotope —based variables and APAR) + ¢

where DSL denotes dry-season length, FH denotes forest height, ST
denotes soil texture and SF denotes soil fertility. Considering variable
correlations (Supplementary Table 2), we avoided choosing highly
correlated variables for the same model (which, for example, excluded
wood density when soil fertility was in the model). Considering the
complexity of the model and computational cost, the pairwise interac-
tions were included separately among ecotope factors, among climate
variables, and between HAND and PAR, but did not traverse interactions
among every possible pair of variables. The fitting process was the
same as for the regional GAMs of (1): smoother determined with REML
asimplemented by mgcv'®, and models evaluated by delta AIC and R?
(ref.113) coded by the dredge function of the mgcv package in R, with
thefinalresults reported in Supplementary Table1(model d). The basin-
wide modelled forest response for the 2015/2016 drought is presented
inExtended DataFig.10a-c,in whichthe GAM well-predicts the pattern
ofresponse (Extended Data Fig.10b), but underestimates the extremes
of the responses (as evident from residuals in Extended Data Fig. 10c,
showing greening/browning patterns beyond the predictions).
Beyond the three more recent hypotheses discussed in the main text,
soil texture was also expected to affect soil hydraulic properties and
forest ecosystem response to drought'®'?2, We found that forests on
sandy soils were moreresilient (that is, higher relative green-up) than
those on clay soils (which bind water more closely), consistent with the
findings of process model studies® of clays that bring soils more quickly
towilting points?. But again, this depended on water-table depth, and
deep-water-table forests also became more vulnerable with increasing
sand content (Extended DataFig.7a), perhaps because, in the absence
of ashallow water resource, sandy soils drained water too quickly.
This final basin-wide GAM model (Supplementary Table 1d) includ-
ing soil texture (along with water-table depth, forest height and soil
fertility) suggests a further hypothesis for how soil texture moderates
the effects of forest height and water-table depth ondrought response
(Extended Data Fig. 7a). The potential counteracting effects of the
positively correlated forest height (which increases resilience when
water tables are deep) and soil clay fraction (which generally decreases
resilience due to binding water more tightly to soil particles) may
explain the otherwise puzzling result that the tall forest advantage
in deep-water-table forests does not just disappear but reverses in
shallow-water-table environments (Fig. 4d). As shown in Extended
DataFig.7a, thereversal of the general trend (of decreasing resilience
asthe clay fractionincreases, which corresponds to the sand fraction
decreasing) in deep-water-table forests (the red lines in Extended
Data Fig. 7areverse as sand content falls below 50%), is associated
withincreasing forest height, especially in deep-water-table forests.
Thus, at the low sand (high clay) end of the spectrum, the effect of soil
texture depends strongly on water-table depth: in shallow-water-table
depthforestsinwhichtalltrees are not advantaged, the negative effect
of clay depresses forest drought response but, in deep-water-table
depthforests, drought resilience increases again, even with increasing
clay (decreasing sand), possibly because the associated taller tree effect
outweighs the negative effect of clay soils. This mechanism could serve
toimprove models of how soil texture modulates drought response'%,

SCM using DAG. To further test the causal mechanisms proposed by
our three core hypotheses, we used a framework for causal inference
from SCM*5, DAG analysis"*'>*, We proposed and tested hypothesized
causal relationships (represented by DAG diagrams; Extended Data
Fig. 6a).

Implementing DAG analysis with the dagitty R package'®, we first
developed a DAG diagram for Amazon forest drought response with
relevant climate variables and ecotope factors expected from the
literature'®”* including our three core hypotheses of water-table
depth?, soil fertility?®* and tree characteristics**>*° (Extended Data
Fig. 6a). We assessed DAG-data consistency, testing to ensure that
unconnected nodes are not correlated, applying root mean square
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error of approximation (RMSEA) (R functions localTests and cis.loess
to allow potential nonlinear correlations using loess fits'; Extended
DataFig. 6b).

We iteratively tested and revised the DAG by repairing detected
independence violations between unconnected nodes (thatis, where
RMSEA was greater than 0.30, as previously"¢), by adding either anew
direct causal link between such nodes (after first verifying an ecolog-
ical basis for the link), or new links to each of the correlated nodes
from a common causal node (again, if they made ecological sense).
For example, longer DSL should promote generally drier conditions,
including greater VPD and MCWD; positive precipitation anomalies
will cause higher relative humidity and therefore lower VPD anomaly®;
higher-clay soils allow taller trees'?, supporting the addition of links
betweenthese nodes. These adjustments gave afinal DAG with agreater
number of links (Extended Data Fig. 6¢) and no conditional independ-
ence violations among the remaining unconnected nodes (Extended
DataFig. 6d).

Finally, we used the backdoor criterion to test the causal effects of
key predictors. For example, Extended Data Fig. 6¢ illustrates block-
ing the confounding ‘backdoor path’ influence of average DSL on the
causal relationship between drought length and drought response.
Applying this approach, we exposed the influence of each variable of
interest on drought response, one-by-one, while blocking (or adjusting
for) theinfluence of backdoor variables on non-causal pathways (that
is, pathways in which atleast one arrow points in a direction opposite
to the hypothesized causal influence)™>" (Extended Data Fig. 6e—j).
Note that, because the backdoor criterion often yields different sets
of control variables for different pairs of causal predictor and outcome
of interest"'?°, we separately fit these models to quantify the causal
effects of the different predictors of interest.

Comparing inferences from SCM with predictive GAM regressions.
We found that bothmodelling approaches consistently supported the
other-side-of-drought hypothesis (hypothesis 1) for forest drought
response in the southern Amazon across all three droughts (negative
dependence on water-table depth; Fig. 3a and Extended Data Fig. 6e),
withassociated consistent climate dependencies (positive dependence
on sunlight (Fig. 3b and Extended Data Fig. 6f) and declining overall
dependence on drought length, but with a peak at -3 month duration
(Fig.3cand Extended Data Fig. 6g)). Across the basin for the 2015/2016
drought, both modelling approaches supported hypothesis 2, that
increasing soil fertility (past amoderate fertility level) would negatively
affect droughtresponse (Fig. 4a,c and Extended Data Fig. 6i),and both
supported a ‘hypothesis 1-hypothesis 3’ interaction, finding that in-
creasing forest height (and presumed deeper rooting depth) positively
affected drought response in deep-water-table forests, but had the
opposite effectin shallow-water-table forests (Fig.4b,d and Extended
DataFig. 6h). Finally, although not part of the three core hypotheses,
both modelling approaches found similar effects of soil texture on
drought response (Extended Data Fig. 6j and Extended Data Fig. 7a).

Comparing adjusted observations to GAM predictions for different
predictor variables. The observed vegetation indices (MAIAC EVI
and GOSIF) were graphed in adjusted form (as climate-adjusted or
ecotope-adjusted observations) to compare observed versus predict-
edrelationships with one predictor variable at a time (for example,
water-table depth) while adjusting for the effect of the other, potentially
influential, predictor variables represented in the GAM models (see
the ‘AlC-selected GAMs for hypothesis testing and prediction’ sec-
tion above). This is analogous to partial regression plots or adjusted
variable plots in conventional regression models'®. EVI (Figs. 3aand 4e
and Extended Data Fig. 5a,b) or GOSIF (Extended Data Fig. 5c,d) obs-
ervations of anomalies were adjusted by the difference between the
full GAM predictions at each pixel and the partial prediction for the
median conditions. For example, to plot climate-adjusted EVI/GOSIF

versus water-table depth (across different HAND bins) as in Fig. 3aand
Extended DataFig. 5, the adjustment (shown for EVI) was:

Adjusted4EVI]; = AEV]; - Correction; Correction;

=f (HAND;, Climates;) - f(HAND,, Climates) 10)
where AEVI;isthe observed ith EVIanomaly, f(HAND,, Climates,) is the
prediction of the ith EVIanomaly from GAM (model function for equa-
tion (8) denoted as f() here) and f(HAND;, Climates) s the prediction
when holding climates constant at the median value of the domain of
the prediction (in this case, the median climate within each drought).

Similar calculations are applied to observationsin Fig. 4e to account
forthe regional differencesin climates and ecotopes (everwet, Guiana
Shield and southern Amazon), while isolating the effects of water-table
depth (HAND) on EVIanomalies with the basin-wide GAM model. The
correction term applied to equation (9) in the case of Fig. 4e was

Correction; =f (HAND;, Climates;, SF;, ST, FH;)

- 1)
-f(HAND;, Climates, SF,ST, FH)

where SF denotes soil fertility, ST denotes soil texture and FH denotes

forest height. The domain of the prediction for which median values

of ecotope distributions were taken was, in this case, each of the three

regions, considered separately.

Deriving the basin-wide biogeography of forest drought resilience/
vulnerability. Classic biogeography inecology focuses onthe drivers
of the distribution of species and their phylogenies over space and
time, as an emergent consequence of their evolutionary histories?',
Here, following recent ideasin the emerging field of functional bioge-
ography®"*°, we extend classic species-based biogeography to derivea
functional biogeography of Amazon forest drought resilience and vul-
nerability. To accomplish this, we used the GAM analysis thatincluded
ecotopes and was derived for the whole basin (see the ‘AIC-selected
GAM s for hypothesis testing and prediction’ section; equation (9),
Supplementary Table 1d and Extended Data Fig. 10a-c). Resilience
(asplottedinFig.5a) was defined as the standardized GAM prediction
(positive values corresponding to greening and resilience) from the
spatially varying ecotope factors alone (with effects of spatial variation
in climate removed by setting each pixel’s climate factors equal to their
basin-wide average during the 2015 drought):

Resilience; - Resilience 12)

Standardized resilience; = D
resilience

Resilience; = f(HAND,, SF, ST, FH;, Climates) (13)
where Resilience;is the prediction for pixel i using equation (9) as func-
tion f(), and Resilience and SD,gjience denote the mean and s.d. across
the basin, respectively.

We defined thresholds conducive to resilience to define ecotope
factor groups associated with resilience or vulnerability. Overlap-
ping ecotope factors generally conducive toresilience (shallow water
tables, low soil fertility and tall trees) were distributed across the basin
(Fig. 5b,c). The resilience thresholds for the different factors were:
shallow-water-table forests, <10 m, taken from ref. 25; low soil fertil-
ity, exchangeable base cation concentrations <107°* cmol* kg™; and
tall forests, heights > 32.5 m. The thresholds for soil fertility and for-
est height were chosen as the level at which the average slope of EVI
anomaly sensitivity to HAND changed sign (Fig. 4a,b).

Testing alternative interpretations and considering caveats

To address potential questions about whether alternative interpreta-
tions might either undermine or further illuminate our reported results,
weidentified additional hypotheses posing alternative interpretations.



Among the additional hypotheses we considered were the following
five, the first four of which we were able to partially test here with the
functional biogeography GAM model:

H1: that spatial scaling artifacts contaminate the results. In particu-
lar, it might be that the primary spatial scale of our analysis (-40 km,
to achieve statistical independence; see the ‘Variogram analysis for
removal of spatial autocorrelation’ section) is too large and does not
reflect the fine scale of individual tree response to drought in distinct
environments, raising the question of whether the effects reported
here canbe confidently attributed to the aggregation of these fine-scale
responses, or to some other effect.

Totest this hypothesis, we investigated how the sensitivity of forest
drought response to water-table depth depended on the scale of the
analysis (Extended Data Fig. 8), from 40 km (Fig. 3a, reproduced in
Extended Data Fig. 8a) to the native MODIS scale (1 km) (Extended Data
Fig. 8b), and across the finer scales (resolved to 30 m using Landsat
OLI 8 land surface reflectance; Extended Data Fig. 8c) available for
aregion near Manaus™ (at scales below 40 km, spatial autocorrela-
tionis evident; this artificially narrows confidence intervals, but does
not hinder the scaling comparisons). These analyses showed that the
sensitivity of forest drought response to water-table depth did not
detectably depend on scale, adding confidence that the key factor
of water-table depth indeed structures Southern Amazon drought
response (as in Fig. 3a) across different scales. Note that this analysis
suggests aneed for future investigation of how the actual magnitudes
of greenness anomalies at the ecological neighbourhood scale (1 ha) of
operation of community and ecophysiological mechanisms translate
to magnitudes at larger scales.

H2:that differentaspects of drought dynamics (for example, severity
interacting with duration) may confound the reported interpretation
of drought duration (Fig. 3). Drought severity and duration are known
to have distinct effects on different species in other biomes, raising
the question of whether these dimensions of drought have distinct
effectsin the Amazon.

We tested the interacting effects of severity (as defined as in the
‘Climate anomalies for drought definition and mapping’ section, by the
MCWD anomaly) and drought duration by further analysing the model
of Supplementary Table 1a. This analysis (not shown) confirms that
droughts that are both deep and long have the most-negative effects
on photosynthesis. This also confirmed the hump-shaped response
to drought duration reported in Fig. 3¢ (with a primary hump occur-
ring earlier but persisting longer through a secondary hump for less
severe droughts).

H3:thatdroughtimpacts during dry seasons are different than during
wet seasons, complicatinginterpretation of PAR anomaly and drought
length effects (Fig. 3). If light limitation (and therefore PAR sensitivity)
isstronger inthe wet season (because light is already more limitingin
the wet season due to greater cloud cover), longer droughts will not
justbelonger, but (because seasons are of finite length) they will also
be more likely to encompass, in varying fractions, the differing light
sensitivities of dry and wet seasons.

Totest whether the proportion of the drought that occursinthe wet
versus dry season affects reported forest responses, we constructed
DryDrought as a predictor variable, representing the proportion of
agiven pixel’s drought that occurred in the dry season. We, added
DryDrought to the GAM for the Southern Amazon (Supplementary
Table 1a), comprising HAND, climate factors and the error terms.
Specifically:

AEVI=s(HAND) + s(4PAR) + s(DryDrought)
+S(AVPD) + s(4P) + s(AMCWD) + s(DL)
+ ti(pairwise interactions of every two
variables except for DryDrought)
+ ti(DryDrought, APAR) + ti(DryDrought, DL)

(14)

This analysis (Extended Data Fig. 7b-d) showed that the longest
drought (2015) also had the broadest distribution of occurrences across
dryand wet seasons, with about equal parts of the drought occurringin
thedry versusthe wet season (median fractioninthedry season = 0.51;
Extended DataFig. 7b). By contrast, the 2005 and 2010 droughts were
primarily dry-season droughts (median dry-season fractions = 0.83 and
0.77,respectively). This analysis confirms our finding of agenerally pos-
itive sensitivity of droughted forests to sunlight reported in the main
narrative (Fig. 3b), but further shows that the greater the proportion
of the drought that occurs in the wet season, the greater the positive
sensitivity to sunlight anomalies (in Extended DataFig. 7c, the blueline
representing pixels experiencing predominantly wet-season drought
is steeper than the red line representing pixels predominantly expe-
riencing dry-season drought). This analysis also confirms (Extended
DataFig.7d) that the hump-shaped response to drought duration (asin
Fig.3c, especially the peak of vegetation response at 3 month duration)
isgeneral across both dry-and wet-season droughts. A consistent result
of both analyses is that (with the exception of PAR anomalies greater
than +2 s.d.; Extended Data Fig. 7c), forests experiencing wet-season
droughts are generally more negatively affected by drought than are
forests experiencing dry-season droughts, consistent with the idea that,
althoughtreesare adapted to the dry conditions of annually recurring
dry seasons, they are especially vulnerable when droughts hit in the
wet (recovery) season.

H4:thatdeforested or degraded forests may be driving or contami-
nating results that arereported as for intact forests. Deforested regions
are excluded from the analysis, but the mask may stillinclude forestsin
proximity to deforested regions that, although not deforested, may be
experiencing degradation. We conducted a sensitivity test to address
the question of whether different drought responses in degraded
forests could be contaminating our findings using a recent classifica-
tion® that identifies partially degraded forests as distinct from both
deforested and intact forests, now updated through 2022. We repeated
the GAM analysis reported in Fig. 4, but excluded pixels representing
degraded forests. The results (not shown) were similar toin Fig. 4, but
suggested that partially degraded forests are indeed probably more
vulnerable. For example, analysis of purely intact (non-degraded) for-
ests gave curves analogousto those in Fig.4c,d thatreached aslightly
greater EVIanomaly value than the corresponding curves of Fig. 4c,d
(including mainly intact and but also some degraded forests). This
suggests that afunctional biogeography approach may be fruitful for
future investigations of the effect of forest degradation on drought
sensitivity at the local scale. However, the differences are slight at the
basinscale, and the overall patternsin the results shownin Figs.4and 5
donot depend much on whether these forests in between deforested
and intact regions are included or excluded.

HS: that relatively taller individual trees are more vulnerable to
drought, even as tall-canopy deep-water-table forests are on average
more resilient to drought. We found that greater forest canopy height
promoted resilience for deep-water-table forests, but increased vul-
nerability for shallow-water-table forests (Fig. 4d and Extended Data
Fig. 6h). Observations of drought responses in the RAINFOR network*
and drought experiments***8,in seeming contrast, report that tall trees
were more vulnerable to drought. One of the drought experiments was
above amoderately shallow water table (7-10 m) and the vulnerability
of tall trees there could be explained by our result”, but the forest of a
previously reported drought experiment*$, and many of the plotsin the
RAINFOR network, are over deep water tables, raising the question as
towhether the results reported here might be inconsistent with those.

Recalling that the satellite-derived canopy heights are notindividual
tree heights but overall mean heights of forest canopies over alkm
pixel, we hypothesize that both results are true: that deep-water-table
foreststhataretall onaverage (and presumed to have on average deeper
roots that bring greater collective access to deep water resources)
are more resilient than forests that are on average shorter, but that
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individual trees that are relatively taller than their neighbours are sub-
jecttogreater atmospheric drought stress from higher VPD, and may
therefore be individually more vulnerable than their average-height
neighbours. Hydraulic redistribution by roots, observed as part of a
previous*® Amazon drought experiment™? and by other studies, is a
mechanism that could further enhance forest benefit fromredistribut-
ing deep waters upward in the soil profile.

This is a more challenging hypothesis to test and, in contrast to
the hypotheses above, it is beyond the scope of our current study
to test here. However, this could be tested by extensive plot data or
higher-resolution LIDAR data'*®** that could resolve individual tall
trees in the canopy, and compare their drought-induced mortality
rates across forests of different average heights.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All remote sensing data and products (vegetation/photosynthetic
indices (https://Ipdaac.usgs.gov/products/mcd19a3v006/, http://data.
globalecology.unh.edu/data/GOSIF_v2), climate variables (https://
disc2.gesdisc.eosdis.nasa.gov/data/TRMM_L3/TRMM_3B43.7/, https://
goldsmr4.gesdisc.eosdis.nasa.gov/data/MERRA2_MONTHLY/M2TM-
NXRAD.5.12.4/, https://airs.jpl.nasa.gov/data/get-data/standard-data/),
land cover (https://Ipdaac.usgs.gov/products/mcd12qlv006/, https://
forobs.jrc.ec.europa.eu/TMF), tree characteristics (canopy height,
https://webmap.ornl.gov/ogc/dataset.jsp?dg_id=10023_1) and soil
texture (https://maps.isric.org/)) are publicly available online. The
ground-based demographic validation data are publicly available in
refs. 2,26. The ground-based hydraulic trait validation data are pub-
licly availableinref. 50. The HAND data are fromref. 25, which derived
them from the digital elevation model from the Shuttle Radar Topog-
raphy Mission. The soil fertility data are available in ref. 43.

Code availability

Code for reproducing the modelling analysis and figures is posted at
Code Ocean (https://codeocean.com/capsule/5610160/tree/v1).
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Extended DataFig.1|Drought maps2005,2010 and 2015/16 droughts and
GOSIF-based forest responses droughts. (a)-(c): Maximum cumulative water
deficit (MCWD) standardized anomalies. (relative to the long term mean MCWD
across years, blue=positive, orange=negative) during drought for (a) 2005,
(b) 2010, and (¢) 2015 droughts. MCWD is calculated (see Methods, ‘Climate
variables’) as the maximum water deficit reached for each hydrologic year
(from May of the nominal year to the following April). The “droughtregion” is
defined as pixels whose MCWD anomaly is more than one SD below the mean
(light orange tored). (d)-(f): GOSIF-based forest response to droughts.
GOSIF anomalies during drought, relative to the long term mean GOSIF
(green=positive, orange=negative) in drought regions for the (d) 2005, (e)

80°W 70°W 60°W 50°W 80°W 70°W 60°W 50°W 80°W 70°W 60°W 50°W
a
0° 0°
10°S F10°S
D Anomaly
20 -2.0-1.5-1.0 0 1.01.52.0 e
80°W 70°W 60°W 50°W 80°W 70°W 60°W 50°W 80°W 70°W 60°W 50°W
80°W 70°W 60°W 50°W 80°W 70°W 60°W 50°wW 80°W 70°W 60°W 50°W
d e f
Guiana shield e
0] ;
Everwet Amazon
10°S 7
“ R 0.4 '
-7 Southern Amazon !
ot 2 /! |\
GOSIF anomaly’ i
20°81 2-10 1 2 —1=D 2 4 -4 2 3 -4 2 3 4520°S
5 Standard Deviation Standard Deviation Standard Deviation
80°W 70°W 60°W 50°W 80°W 70°W 60°W 50°W 80°W 70°W 60°W 50°W
g h
1.5 -2 0.5 #2005
* 4 2010
+¢ * 2015
> L 3
©
£
<]
0.5 0 s -0.5
©
E g Q
2 s O
© s
S %]
o O
-0.5- F=20
S
s€
Ec
© 0
3=
SIE
-1.5 -4 =
0 5 10 15 20 0 10 20 30 40

HAND (meter)

2010 and (f) 2015 droughts, respectively. (g) EVI (left axis) and GOSIF (right
axis) anomaliesinthe 2005 droughtelliptical region (as depicted in Figs.1a, 2a,
and herein Extended DataFig.1d) show consistent patterns versus HAND (bin
averages +95% CI, with N = 6,547 5-km pixels for both EVIand GOSIF); (h) GOSIF
anomalies (bin averages points +95% Cland solid regression line) vs. water-table
depths (indexed by HAND) support hypothesis 1(with negative slopes, consistent
with EVIin Fig.3a) for the 2005 (green, slope =-0.016 + 0.006 SEm™), 2010
(purple,slope=-0.012+0.003 SE m™), and 2015 (blue, slope =-0.010 + 0.003
SEm™) droughts, paired with HAND distributionsin each drought region
(bottomgraphs, right axis, with N =34,980,30,004, 43,475 5-km pixels for
2005,2010,and 2015 droughts, respectively).



HAND

60°0'0"W 50°0'0"W

70°0'0"W

Soil fertility
60°0/0"W

Forest height
70°0/0"W

50°0'0"W 60°0'0"W 50°0'0"W

70°0'0"W

0°0'0" 0°0'0" 0°0'0"

10°00"s 10°0'0"S 10°0'0"S:

20°00"S 25510204080 | 20000'S 20°00"S

0°0'0" 0°0'0" 0°0'0"

70°00"W 60°0'0"W 50°0'0"W 70°0'0"W

Wood density

70°0'0"W 60°00"W 50°Q'0"wW 70°0'0"W

60°0'0"W

Proportion of Fabaceae
60°00"W

0°0'0" 0°0'0" 0°0'0"

10°0'0"S: 10°0'0"S 10°0'0"S:

20°0'0"S: 20°0'0"S 20°0'0"S

10°0'0"S 10°0'0"S: 10°0'0"S
20°0'0"S 20°0'0"S 20°0'0"S
50°0'0"W 70°00'W  60°00'W  50°0'0"W
MCWD variability
50°0/0"W 70°00'W__ 60°00'W _ 50°0'0'W
0°0'0" 0°0'0" 0°0'0"
10°0'0"S 10°0'0"S 10°0'0"S
20°0'0"S 20°0'0"S 20°0'0"S

70°0'0"W

60°00"W

70°0'0"W 50°0'0"W

Minimum monthly precipitation
60°0'0"W

70°0'0'W 50°0'0"W 70°0'0"W

60°00"W

50°0'0"W 70°0'0"W 60°0'0"W 50°0'0"W

Soil sand content

50°0'0"W

0°0'0"™ 0°0'0" 0°0'0"

10°0'0"S 10°0'0"S 10°0'0"S:

20°00"s: 20°0'0"S 20°0'0"S:

60°0'0"W

0°0'0"

10°0'0"S

20°0'0"S

70°0'0"W

%
60°0'0"W

70°0'0"W 50°0'0"W

Extended DataFig.2|Ecotope factors of the Amazon basin. (a) Height
Above Nearest Drainage (HAND), a proxy for water-table depth?; (b) Soil
fertility, as exchangeable base cation concentrations*?; (c) Average forest
heights as acquired by lidar*; (d) Soil sand content**; (e) Proportion of trees
belonging to the Fabaceae family®*; (f) MCWD variability (see the ‘Climate
anomalies for drought definition and mapping’ section of methods), interms
ofthe standard deviation of the long-term MCWD timeseries. High variance in
climate and low soil fertility in Guiana shield might contribute to the greatest
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proportion of trees belonging to the family Fabaceae with the very high

wood density; (g) Averaged minimum monthly precipitation (low=green,
high=orange). The north-west everwet Amazonis distinguished by lacking a
dry season (precipitation exceeds evapotranspiration). (h) Community-
weighted wood density**. Panels a-d are used as ecotope predictors in the GAM
analysis of Supplementary Table 1. (Data sources: see the ‘Climate variables’
and ‘Climate anomalies for drought definition and mapping’ sections of
methods).
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Supplementary Table 1b, ), with climate fixed to region-wide median drought
conditions for each drought.) Observations for EVI (a-b): N =83 and 666 0.4°
pixels for2005and 2015 droughts respectively, in the Guiana shield (a), and
N=147,368,and 648 for2005,2010 and 2015 droughtsrespectivelyinthe
ever-wet Amazon (b). Observations for GOSIF (c-d): N=1876,and 25,460 5-km
pixels for2005and 2015 droughts, respectively, in Guiana shield (c), and
N=1,914,8,261,and 19,918 for 2005,2010 and 2015 droughts, respectively, in
the ever-wet Amazon (d). Purple points (2010) are not shownin panelsa,c,
because the 2010 drought did not significantly affect the Guianashield.

Extended DataFig.5|Amazonforest droughtresponsesindifferent
regions using the EVIand GOSIF remote sensing indices. Amazon forest
EVI(top row) and GOSIF (bottom row) responses to multiple droughtsin the
Guianashield (left column) and the ever-wet northwest (right column). These
generally donotsupportthe “other side of drought” hypothesis 1, because they
show generally consistently positive slopes with water-table depth (HAND), in
contrastto negative sloperesponsesinthe Southern Amazon (Fig. 3a). Plots
show observations (bin average points +95% CI, and solid regression lines) and
unified multi-drought GAM predictions (+95% Cl shaded region, for modelsin
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Extended DataFig. 6 | Implementing Structured Causal Modeling (SCM)

of Amazon forest drought response using Directed acyclic graphs (DAGs).
a-d,Development ofaDirected acyclicgraph (DAG) representing the structure
offactorsinfluencing tropical forest responses to drought. (a) Initially
hypothesized DAG characterizing the causal relationships among climatic,
environmental, and forest variables (measured variables depicted as blue
nodes, unmeasured rooting depthis depicted in grey) leading to forest
droughtresponse (other colour node), witharrows representing the
hypothesized causal links. (b) DAG-data consistency tests forinitial DAG, with
thelargest 20 approximated non-linear correlation coefficients (estimated via
root meansquare error of approximation, RMSEA) between unlinked variables
in (a). (Note: unlinked variablesina DAG are hypothesized to have zero
correlation or zero conditional correlation; thus, the second row of panel b
tests“DR_||_DSL|DL”--whether DRisindependent of DSL conditioned on DL,
by estimating the non-linear correlation between DR and the residuals of DSL
regressed on DL.) Correlations greater than an acceptability threshold (dashed
vertical lines at £0.30) fail the test of conditionalindependence, addressed by
addingtothe DAGeitheradirect causallink (indicated by agreen symbol), or
links toacommon cause (pink symbol) (suchadded arrows areincludedin
panel c). (c) Final DAG after correcting for conditionalindependency

inconsistencies of the initial DAGin A, inlight of ecological considerations.
Alsoillustrates use of the backdoor criterion to determine the causal effect of
‘droughtlength (DL) (the exposed predictor node and associated forward
causal paths, ingreen) on forest drought response (corresponding to the
modelin Extended DataFig.10c), while blocking the confounding variable dry
seasonlength, DSL (hypothesizedtoitselfaffect DL) andits associated causal
backdoor paths (which are considered non-causal paths with respect to the
exposed variable DL) (in pink). (d) DAG-Data consistency tests for final DAG
(panelc), showing the largest 20 RMSEA values. (e)-(j): GAM regression model
predictions (+95% Clshaded region) of causal effects of different variables
derived from DAG, employingbackdoor criterion, for the Southern Amazon,
average across all three droughts: (e) of HAND (no backdoor to be blocked)
(f) of PAR (adjusting for back door paths through drought length, dry season
length) (g) of Droughtlength (adjusting for back door path through dry season
length) on EVIresponses (adjusted EVI prediction); the whole Amazon basin
during the 2015 drought: (h) of forest height, categorized by shallow (blue,
HAND = 0-10 m) and deep (red, HAND = 20-40 m) water tables (adjusting for
back door paths through soil fertility, soil texture and dry season length), (i) of
soil fertility (adjusting for back door path through dry season length) (j) of soil
texture (nobackdoor path tobeblocked).
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texture and drought timing. (a) The sensitivity of forest response to soil todry versus wet season drought periods, across the three-droughts:
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analysis. GAM-predicted adjusted EVIanomaly (left axis) versus soil sand inthe wetseasontol=allinthe dryseason) for drought-affected pixelsineach
content (%), with water table-depthin colour (shallow=blue to deep=red), ofthe three droughts; (c) GAM-predicted EVIanomaly versus PAR, for different
paired with distributions of mean forest height ineach soil texture bin (bottom  proportions of dry season drought (blue=all wet to red=all dry, corresponding
graph, rightaxis, withN=3,318,and 1,142 0.4° pixels for shallow and deep to coloured tick marks in the vertical axis of b). (d) Adjusted EVIanomaly from
water tables, respectively). ‘Adjusted’ GAM predictions are made by setting GAM prediction versus droughtlength, for different proportions of dry-season

non-displayed predictors (climate variables, tree-height, soil fertility) to their drought (bluetored, asin panelc).
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Extended DataFig. 8|Scale-dependence of Southern Amazon forest
responses to drought, showing that detected response patterns are largely
invariantacrossdifferent scales of analysis. (a) At 0.4 degree (40-km) scale
(across the Southern Amazon. all three droughts): Climate-adjusted EVI
responses (standardized anomalies from MODIS) vs. water-table depths
(indexed by HAND) for observations (solid points +95% Cl and solid regression
line) and for unified multi-drought GAM predictions (model of Supplementary
Tablela, shaded bands and dashed regression line slopes) for the 2005 (green,
slope =-0.019 + 0.001SEm™), 2010 (purple, slope =—0.020 + 0.002SEm™),
and 2015 (blue, slope =-0.028 + 0.002 SEm™) droughts (withN=1,384,1,673,
and 1,837 0.4° pixels for 2005,2010, and 2015 droughts, respectively); (b) At
1-kmscale (across the Southern Amazon, all three droughts), asin (a): climate-
adjusted EVIresponses vs. HAND for observations (solid points and regression
line) and corresponding GAM (with the same Supplementary Table lamodel
now fitat1kmscale, revealing autocorrelation in observations causing
too-narrow confidence bands, and slight model underpredictions of the
extremes of the 2005 greenup and the 2010 browdown, but maintaining the
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similar negative dependence on HAND across all droughts); (c) At30 t0 180 m
scales (for aforest regionaround Manaus, 2015-2016 drought only): DeltaEVI,
thefractionchangein EVIdueto the drought = (after-drought EVI (July 2016) -
pre-drought EVI(August 2015))/pre-drought EVI (Landsat OLI8,at 30 m
resolution) vs. water-table depths (indexed by HAND) for Landsat observations
(solid points +95% Cland solid regression line) at native (30 m) and aggregated
t0 90 and 180-mscales (with N=105,359,11,901, and 2,999 pixels for 30-m,
90-m, and 180-mscales, respectively). Alsoshownin the bottom of each
panelisthedistribution of water-table depth (HAND proxy) ateach scale.
Aggregations to larger (coarser) scalesinduce an apparent regression towards
the meanin the water-table depth distributions (as more extreme water-table
depthsatfinerscalesbecome diluted by averaging to large scales), while similar
dilution of extremesin EVIresponse (not shown) preserves the overall relation
between EVIresponsesand watertable depth (especially evidentin the Landsat
analysiswhere the slopes through dataaggregated at different scales donot
detectably differ).
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Extended DataFig. 9|See next page for caption.
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Extended DataFig. 9 |Remote sensingvalidation with forestinventory
plot demography. (a) Remotely sensed map of MAIAC EVI (I-kmresolution),
overlaid withaboveground NPP (ANPP) rates from 321 ground-monitored
forest plots (red circles, % standing biomass y™) as aggregated to1degree grid
plots (RAINFOR plotsinBrienen etal.?), withboth EVIand ANPP taken during
the2000-2011interval. ANPP rateis calculated as Aboveground Biomass
(AGB) gain (Mg/(ha-yr)) (total annual AGB productivity of surviving trees plus
recruitment, plusinferred growth of trees that died between censusing
intervals) divided by initial AGB (Mg/ha) (standing above ground biomass at
the start of the census interval). (b) ANPP rates as predicted by EVI (points
from (a) plus solid regression line with statistics; Dashed line and associated
statisticsingrey represent linear regression without the highleverage point,

showninred, defined by Cook’s distances >4/n, where n=number of points’**).

EVlisthe meanextracted fromintervals matching the average census interval
of the corresponding plotsin Brienen etal.? (c)-(e) MAIAC EVIanomalies
(1-km pixels) versus ground-monitored tree demography in shallow water

table forests during the 2015-2016 drought?* for: (c) mortality, (d) recruitment,
and (e) mortality:recruitment ratios in1-ha plots. (f)-(h): GOSIF anomalies
(5-km pixels) versus ground-monitored (f) mortality, (g) recruitment, and

(h) mortality:recruitment ratios; Solid lines and statistics (R?and p-values)
represent standard linear regression fits to all data. Red points, if they exist, are
highleverage, i.e. with Cook’s distances >4/n, where n=number of points’**,
and dotted lines and associated statisticsin grey represent standard linear
regressions without such points, showing that remote detection of ground-
derived demographic trends is robust. R?values reported here are consistent
with the expectation that they should be less than for remote detection of
tropical forest GPP (R?=0.5-0.7), because GPP contributes only partially to the
NPP driver of demography (as discussed in the 'Validation by forest plot metrics
of demography and of physiological drought tolerance’ section of Methods).
Considering multple comparisons (six regressions), the probability, under the
null hypothesis, of seeing five or more significant regresssions out of six is
p=0.000002 (Binomial test).
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Extended DataFig.10 | Modeled forestresponse to the 2015 drought

and implications of the derived map of Amazon forest biogeography.

a-c, Forest response tothe 2015 droughtin drought-affected pixels. (a) Observed
EVlanomalies (resampled at 0.4 degrees to match model resolution which
accounts for spatial autocorrelation (see Supplementary Fig.1). (b) GAM-
predicted EVIanomalies (model of Supplementary Table 1d). (c) Residual EVI
anomalies (panel a observations minus panelb predictions). The GAM well-
predicts the pattern of response (Panel b), but under-estimates the extremes

of the responses (as evident from residuals in panel c continuing to show

Esri, Garmin, GZBCO, NOAAINGDC jand
T

40°W

greening/browning patternsbeyond the predictions). (d) Map of Amazon
forest biogeography of resilience/vulnerability, overlaid withmean winds
(arrows, at height 650 hPa) and location of the arc of deforestation. The
most productive as well as the most vulnerable forests (inred) are also those
mostexperiencing deforestation (in the “arc of deforestation”) whichis
causinglocal climatic warming/drying?, further stressing these vulnerable
forests. These “arc of deforestation”/vulnerable forests are often upwind
forests' (especially when the Intertropical convergence zone, ITCZ, swings to
thesouth) thatare critical for hydrological recycling in the Amazon.
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https://forobs.jrc.ec.europa.eu/TMF), tree characteristics (canopy height https://webmap.ornl.gov/ogc/dataset.jsp?dg_id=10023_1), soil texture (https://
maps.isric.org/)) are publicly available at the website locations cited in the methods. The ground-based demographic validation data is publicly available in the
method to Sousa et al. (2020; see References), and Brienen et al. (2015; see References). The ground-based hydraulic trait validation data is publicly available in the
method to Tavares et al. (2023; see References). The HAND data are derived from digital elevation model-Shuttle Radar Topography Mission in Nobre et al. (2011;
see References). The soil fertility data is available in Zuquim et al. (2019; see References).

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender NA

Reporting on race, ethnicity, or NA
other socially relevant

groupings

Population characteristics NA
Recruitment NA
Ethics oversight NA

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|:| Life sciences D Behavioural & social sciences Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description This study models forest responses to three 'once in a century' droughts using satellite vegetation indices and ground-based
demographic data to go beyond climate-only explanations, to test three hypotheses for how climate interacts with different forest
'ecotypes' to explain the complexity of forest drought response at multiple scales. Two basic approaches taken in forest drought
research have been: remote sensing explorations of drought-induced vegetation greening/browning patterns and how they correlate
with climate across landscapes (but without much mechanistic biology); and ground- based studies of biological mechanisms of
individual tree resilience or of plot-scale tree demography (but with limited connection to the heterogeneity of the broader
landscape). Our study takes a novel approach that uniquely integrates both approaches, using remote sensing to test and then
constrain region- to basin-scale implications of recent ecological hypotheses. The study shows how forest responses to drought are
structured across landscapes, according to ecotype factors (water-table depth, soil fertility, and tree community characteristics) that
are conducive (or not) to drought resilience. Our results provides new insight (and a warning) about which forests may be vulnerable,
and which resilient, to future droughts.

Research sample Well-validated satellite vegetation indices of photosynthetic capacity (the Enhanced Vegetation Index, EVI) and photosynthetic
activity (the Global OCO-2 Solar Induced Fluorescence, GOSIF) were sampled over 19 hydrological years across the whole basin
constrained by evergreen forests. The EVI is sampled as 8-day and aggregated to a monthly time step while GOSIF is sampled as
monthly. Climate and ecotope observations were sampled to match the corresponding remotely sensed vegetation observations. The
ground-based demographic forest tree samples from Brienen at al. (2015; see References) are as described in the reference
individual trees > 10cm in diameter at breast height sampled and measured over 28 years from 321 tree plots of RAINFOR and other
networks, which are distributed through regions of the Amazon basin). The mortality and recruitment demographic data from Sousa
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et al (2020; see References) are as described in the reference (observations of approximately 15,000 trees from two censuses during
dry season in 2015 and 2016 with 25 1-ha plots). A pan-Amazon hydraulic trait dataset (hydraulic safety margins) from Tavares et al
(2023; see References) are as described in the reference (sampled across 9 forest sites, including 108 species, distributed across
western, central eastern and southern Amazon, sampling species representing between 14% and 70% of the total basal area).

Sampling strategy We only sampled observations in evergreen forest type from non-flooded areas with cloud-free and low aerosol conditions. For
statistical modeling we interpolated different datasets to common grid resolutions, according to the desired resolution of the model.
This was typically 0.4°, the resolution needed to avoid inflation of statistical significance of drought responses in models by
accounting for spatial autocorrelation among nearby pixels using variogram analysis.

Data collection All remote sensing and ground-based demographic/hydraulic trait raw data and products are collected and processed by researchers
at the website locations cited in the supplementary methods.

Timing and spatial scale  The remote sensed vegetation observations (1-km) are across 19 hydrological years of 2000-2020 (May 2000 to April 2020) at a
monthly step across the whole basin constrained by drought region. The published demographic datasets from Brienen at al.
(2015; see References) are over the period 1983-2011 from 321 tree plots of the RAINFOR and other networks, while the mortality
and recruitment data from Sousa et al (2020; see References) are collected from two censuses during dry season in 2015 and 2016
with 25 1-ha plots distributed across eight research sites along the BR-319 road in the southern Amazon between Manaus and Porto
Velho. A pan-Amazon hydraulic trait dataset (hydraulic safety margins) from Tavares et al (2023; see References) are sampled across
9 forest sites distributed across western, central eastern and southern Amazon over the period of 2014-2018.

Data exclusions We excluded observations belonging to open water, deforested forests, and non-forest vegetation types, but only included
evergreen forests. We also excluded floodplain from non-flooded forests, as well as excluded observations with cloud/aerosol
contaminations. We conducted a sensitivity test by excluding majority or the entirety of degraded forests.

Reproducibility The study is not based on experiments.
Randomization This is not relevant to the study, as no experiments were performed.
Blinding Blinding was not necessary as we did not perform any experiment containing groups and/or treatments, but analyzed long-term

vegetation indices and demographic/hydraulic trait data for which blinding is not required.

Did the study involve field work? [ yes No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging
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