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Abstract—Advanced Air Mobility (AAM) envisions a world
where urban mobility is seamlessly integrated with the third
dimension, above the ground. In AAM, different types of Un-
manned Aerial Vehicle (UAVs) will be used to carry people
and goods off the ground, on demand, and into the sky. To
provide safe and efficient AAM services, defining the structure
of air corridors is critical but has not yet been explored. This
paper proposes the detailed design of air corridors and provides
mathematical models of different types of air corridors. Based on
the proposed air corridor models, the multi-UAV control problem
in the context of air corridors is formulated to minimize the
overall travel time among all UAVs, while avoiding collisions and
air corridor boundary crossings. To solve the problem, the paper
proposes transformer-based multi-agent reinforcement learning
for multiple UAV coordination (TransRL), which incorporates
a transformer to handle the dynamic dimension of each UAV’s
observations, and curriculum learning to improve the training
efficiency. The test results show that TransRL is capable of
achieving a successful arrival rate of over 90% under different
test settings. The code of the air corridors model and TransRL
is at https://github.com/fzvincent/air-corridor.

Index Terms—Reinforcement learning, transformer, air corri-
dor

I. INTRODUCTION

With the increasing adoption of Unmanned Aerial Vehicles
(UAVs) across various sectors and industries, NASA and the
FAA have unveiled their intentions and aspirations to create
an air transportation system capable of safely navigating UAVs
to efficiently transport cargo and passengers. Air corridors are
designated and structured 3D highways in the airspace to be
used by aircraft to navigate among different vertiports. UAVs
are expected to operate within these specified air corridors and
adhere to suggested flight regulations, thus facilitating efficient
and controlled movement of air traffic, preventing conflicts,
and improving overall aviation safety. Although FAA provides
very general definitions of air corridors in Class B, C, or D
airspace [1], but without specifying detailed configurations,
such as sizes and shapes of air corridors.

In addition, how to control a group of UAVs to efficiently
fly towards their destinations via designed air corridors while
avoiding collisions, remains a challenging task. One popular
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under grant no. CNS-2323050 and CNS-2148178, where CNS-2148178 is
supported in part by funds from federal agency and industry partners as
specified in the Resilient & Intelligent NextG Systems (RINGS) program.

solution to coordinate multiple UAVs is the centralized control
method, which requires UAVs to send their states (e.g., current
locations and velocities) and observations (e.g., states of other
observed UAVs) to the central controller to have a global view
of airspace. The centralized method, however, is unscalable
to large and crowded airspace, vulnerable to communication
failures, and fails to avoid collisions owing to communication
delay. To overcome the drawbacks, multi-agent reinforcement
learning (MARL) has been applied to enable each UAV to
optimize its behaviors based on its states and observations,
where two neural networks, i.e., actor and critic networks,
are executed in each UAV. The actor network generates the
UAV’s action in terms of acceleration based on its states
and observations, and the critic network evaluates the action
from the actor network. A common limitation hindering the
application of MARL to coordinate multiple UAVs is its fixed
input dimension, making it incapable of handling dynamic
observation dimensions. For example, five pairs of inputs
for an MARL can only handle a maximum of five pairs of
observations from a UAV. If the UAV observes more than five
other UAVs, some observations need to be ignored to fit into
the input lines, thus jeopardizing the generated action. On the
other hand, the transformer architecture has been widely used
in natural language processing tasks to handle different input
lengths by assigning different attention weights to different
parts of the sequence. Inspired by the transformer architec-
ture, we propose the transformer-based MARL framework to
address the limitations of traditional MARL. The paper’s key
contributions are outlined below.

1) We propose the concrete air corridor design and provide
the corresponding models to describe air corridors. These
models are designed with the intention of simplifying the
complexity of the subsequently proposed solution.

2) We formulate multiple UAV coordination in air corridors
as an optimization problem to ensure safe and efficient
UAV navigation toward their destinations. We propose
transformer-based multi-agent reinforcement learning for
multiple UAV coordination (TransRL) to solve the prob-
lem. TransRL incorporates a transformer to handle the
dynamic dimension of each UAV’s observations, and
curriculum learning to improve the training efficiency.

3) Extensive simulations are conducted to demonstrate the
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performance of TransRL.

II. SYSTEM MODEL

Assume that a set of UAVs, denoted as Z, is currently in an
airspace, where ¢ is used to index these UAVs. They need to
traverse several air corridors to reach their destinations. The
trajectory from the source to the destination for each UAV
is predefined, but the real-time actor of a UAV needs to be
optimized based on the control algorithm.

A. Aerodynamic model of a UAV

Consider a 3D Cartesian coordinate system, where ¢;(t) €
R? (i.e., ¢;(t) = [cF(t), ! (), cZ(t)]), vi(t) € R3, and a;(t) €
R3 represent the current position, velocity, and acceleration of
UAV . The controller at each UAV is able to control a;(t)
to adjust v;(¢) and ¢;(t). By assuming the acceleration is
consistent during each time step, the velocity and position of

UAV i at the beginning of the next time step is defined as
'Ui(f,) + ’Ui(t + 1)
2

where At is the duration of a time step.

cilt+1) = cilt) + <AL @)

B. System models of air corridors

The airspace can be segmented into distinct parallel layers,
each containing several air corridors. These air corridors fall
into two primary categories: horizontal lanes and on-off ramps.
Fig. 1 provides an example, where two horizontal lanes that
are connected by an on-off ramp.

1) System model of a horizontal lane: A horizontal lane is
a one-way air corridor located in a parallel layer and can be
modeled as a truncated cylinder, which can be characterized
by the following four parameters.

o Anchor point b%¥! € R? of a truncated cylinder.
« Orientation d°¥! € R? of a truncated cylinder.
« Radius r¥! of a truncated cylinder.

o Length [¢¥! of a truncated cylinder.

Here, we define a truncated cylinder whose b°¥! = [0, 0, 0] and
de¥! = (0,0, 1] as the standard truncated cylinder. Other trun-
cated cylinders can always be transformed into the standard
truncated cylinder, i.e.,

M o] = pea ]

where MZC vl is the transformation matrix to convert the hor-
izontal lane, where UAV i is currently located in the global
3D coordinate system, into the standard truncated cylinder,
and b and d¥' are the anchor point and orientation of
horizontal lane i. Hence, if bfyl and dfyl are known, M vl
can be obtained based on Eq. (3). Then, we use Mf’yl to
convert the position, velocity, and acceleration of UAV ¢ in
the global 3D coordinate system into the ones in the standard

v;, and a; are all referred to as the position, velocity, and
acceleration of UAV i in the standard truncated cylinder for the
rest of the paper. Note that the major reason for implementing
this conversion is to reduce the number of parameters in
describing a truncated cylinder. We can use only two scalars,
i.e., s = [rev! 191, to describe any truncated cylinder in the
global 3D coordinate system, thus reducing the complexity of
the designed MARL model later on.

The following two inequalities are met if UAV ¢ is currently
located within the standard truncated cylinder.

cyl
5;157” < l2 ;
2 @)
<

hor l
0; reyr,

where 67¢" and 47¢" are the vertical and horizontal distance
between UAV i and the anchor point of the standard truncated
cylinder, respectively, which can be calculated based on

{‘55’” =l dv e ]

)
opor = \/lleill* = (67°7)”.

2) System model of an on-off ramp: An on-off ramp is a
one-way air corridor that connects two horizontal lanes. Any
movement between two adjacent horizontal lanes must occur
through the respective on-off ramp, regardless of whether these
lanes are within the same parallel layer or not. To ensure a
seamless shift between two horizontal lanes, an on-off ramp is
modeled as two interconnected partial tori as shown in Fig. 1.
The following parameters can characterize each partial torus.

« Anchor point b*" € R3 of a partial torus.

« Orientation d'°" € R? of a partial torus, which is the
direction that is perpendicular to the direction of the
partial torus (i.e., rule of thumb).

« Tube radius 7" of a partial torus, which is the perpen-
dicular distance between the central path and the edge of
the partial torus as shown in Fig. 1.

o Central points of the begin and end planes for a partial
torus, denoted as g*°" and e'°", respectively.

We also define the standard partial torus, whose anchor point
bt°" = [0,0,0], orientation d'°" = [0,0,1], and the central
point of the end plane is at the y axis, i.e., €°" = [0, R!", 0],
where R'" is the distance between the anchor point and the
axis of the partial torus, i.e., R'" =[] g"°" — b"" ||=|| e'*" —
bt°" ||. Any other partial tori can always be transformed into
the standard partial torus based on

Mfor [bgor, dﬁor) etor]T — [btor’ dtor7 etor]T, (6)

3

where M " is the transformation matrix, and b!°", d.°", and
e!°" are the anchor point, orientation, and central point of the
end plane for the partial torus that UAV i is located. Hence, if
bior, di°r, and el°” are known, M°" can be obtained based
on Eq. (6), and Mit‘"' will be used to convert ¢;, v;, and a; in
the global 3D coordinate system into the ones in the standard
partial torus. By implementing this conversion, we can only

. . 1 l . . .

truncated cylinder, ie., ¢/ = M "cl, vl = M v!, use three scalars to describe a partial torus in the global 3D

and al := M{"al. Hence, without any specification, c;, coordination, i.e., si°" = [rf" R™" ;t°r] where p'" is the
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Fig. 1: Air corridor design.

angle between the x-axis and the line that connects the anchor
point and end plane’s central point in the standard partial torus.

The following two inequalities will be used to evaluate if
UAV 1 is in the standard partial torus.

I Pl —ci [|[<ret
ptor < arctan (¢? /cf) <

where arctan (¢! /c?) indicates the angle between the x-axis
and the line that connects UAV i¢’s location ¢; and the anchor
point in the x-y plane, pl°" is the perpendicular point at the
axis of the partial torus for ¢;, and so || p!°" — ¢; || indicates
the shortest distance between UAV 7 and the axis of the partial
torus. Here, p!°" = R'"" x Te» Where &; is ¢; projected on

a
the x-y plane, i.e., ¢; = ¢;[1,1,0]%.

/2, M

C. Problem formulation

Different UAVs are flying from their sources to destinations
via predefined air corridors. The system is to minimize the
overall travel time for all the UAVs to their destinations while
avoiding collisions and ensuring UAVs are located within
their air corridors. Hence, we formulate the multiple UAV
coordination problem as follows.

PO :arg min Z tiravel 3)
* Ve

stV Yi € Z,0 < |lui(t)]] < o™, ©)

Vt,Vi € Z,0 < [la;(t)]| < a™*", (10)

VeV e T #4 |lei(t) — e (B)] > d, (11)

Vi, Vi € I, Eq. (4) or (7), (12)

where t{7av¢! g the travel time of UAV i to its destination;
Egs. (9) and (10) define the feasible velocity and acceleration
of UAVs (here v™** and a™** are the maximum velocity and
acceleration), respectively; Eq. (11) implies collision avoid-
ance to ensure the Euclidean distance between any two UAVs
less than the safe distance d*f; Eq. (12) indicates UAV ¢
should always locate within its current air corridor. Note that
whether to meet Eqs. (4) or (7) depends on the current air
corridor is a truncated cylinder or partial torus.

III. TRANSFORMER-BASED MARL FOR MULTIPLE UAV
COORDINATION

PO is difficult to solve by using traditional optimization
methods since #£72v¢! is difficult to estimate. MARL is a
machine learning method that enables each agent to train
a policy by interacting with an environment modeled as a
Markov Decision Process (MDP). A well-trained policy can
generate optimal actions that maximize the cumulative reward
for an agent. Hence, in this paper, we propose the Transformer-
based Multi-agent Reinforcement Learning for Multiple UAV
Coordination (TransRL) to solve PO. Specifically, PO is first
converted into an MDP, where each agent is to control its
UAV’s acceleration based on its states and observations. Here,

1) State of UAV i: s;(t) comprises 1) self-state includes
UAV 4’s current position ¢;(¢t) and velocity v;(t), and 2) the
characteristics of the air corridor that UAV 1 is residing, i.e.,
sV (t) = [revt, 191 or stor(t) = [rto", R uto], depending
on the air corridor is a truncated cylinder or partial torus.
Also, we add another parameter n;(¢) to imply the current
air corridor is the first n = 1, last n = 3, or middle n = 2 in
its trajectory.

2) Observations of UAV i: 0;(t) comprises the positions
and velocities of other UAVs observed by UAV 1, i.e., 0; =
{cir,vy |t' € T;}, where Z; is the set of UAVs observed by
UAV .

3) Action of UAV i: , ay(t) is its acceleration. To facilitate
the calculation, we use the Spherical coordinate to define UAV
i’s acceleration, i.e., a;(t) = [pi(t),0:(t), q/)z( )], which are
the size, azimuthal angle, polar angle of UAV +¢’s acceleration,
and the conversion between a;(t) = [a¥(t),a?(t),a?(t)] in

the Cartesian coordinate and (p;(t),0;(t), ¢;(t)) in Spherical
coordinate is

a; (t) pi(t) sin(0;(t)) cos(¢4(t))

a;(t) = |al(t)| = |pi(t)sin(0;(t))sin(¢:i(t)) (13)
a; (t) pi(t) cos(0;(t))

4) Reward of UAV i: r;(t) guides the agent’s learning

process and reflects the desired behavior. 7;(t) is determined
according to the following set of rules. 1) The agent receives
a +160 reward if it arrives at the destination; 2) The agent

507

Authorized licensed use limited to: COLORADO SCHOOL OF MINES. Downloaded on September 09,2024 at 06:43:20 UTC from IEEE Xplore. Restrictions apply.



WS32 IEEE ICC 2024 Workshop on Cooperative Communications and Computations in Space-Air-Ground-Sea Integrated Networks

receives a +40 reward if it arrives at the end plane of its current
air corridor; 3) The agent receives a -140 penalty if it breaches
an air corridor’s boundary; 4) The agent receives a -80 penalty
if it collides with any other agent; 5) The agent receives a -0.2
penalty in each time step if it does not arrive at the destination.
Having a time penalty encourages the agent to reduce its travel
time [2]; 6) The agent receives a liability penalty of -10 if any
other two agents have a collision. Having a liability penalty is
to discourage the agent from being selfish, e.g., reducing its
travel time but leading to other agents’ collisions. Note that all
rewards, except for the time penalty, are sparse, which poses a
challenge for training efficiency [3]. TransRL will incorporate
curriculum learning to address the challenge.

Existing RL solutions, such as the advantage actor critic [4],
deep deterministic policy gradient [5], and the proximal policy
optimization [6], can efficiently train policies to derive opti-
mal actions. In general, these solutions comprise two neural
networks, i.e., actor and critic networks, where the actor
network generates the action of UAV i «;(t) to maximize
the cumulative reward, i.e., ), v'r;(t) (where  is a discount
factor), based on the inputs, including the states s;(¢) and
observations 0;(t) of UAV ¢. The critic network also inputs
s;(t) and 0;(t), but outputs the state value V'(s;(¢)) to evaluate
the quality of the action generated by the actor network. Two
major challenges hinder the existing RL solutions to solve
the proposed MDP problem. First, the dimension of UAV #’s
observation o;(t) may change, depending on how many other
UAVs are observed by UAV :. Yet, the input dimension of the
actor and critic networks cannot change. It is not clear how to
fit the dynamic dimension of o;(t) into the fixed dimension
of the actor and critic networks. Second, as mentioned before,
the rewards are sparse, which reduces learning efficiency. How
to improve learning efficiency is critical.

Actor-Critic

Embedding Layer V(s:()

) ot
eee H,(s:(1)) ;»((t))
States of UAV i o000 e’;(t)
—> . :
s;(t) : BY(t)
\OOC el (t)
e e B? (1)
ervations H,(0i(t
Observations eooeo ;l Encoder — Decoder
of UAV i 0; (£) : - G(H:(0:(1)))
o000

— Transformer
Embedding Layer h

Fig. 2: The TransRL architecture.

In this paper, we design TransRL, which incorporates the
transformer model and curriculum learning into the existing
RL model, i.e., Proximal Policy Optimization with Generalized
Advantage Estimation (PPO-GAE) [6], [7].

Incorporating transformer into PPO-GAE: Transformers
have been widely used to process a sequence with varying
length (e.g., a sentence with a varying number of words) in
Natural Language Processing [8]. In general, a transformer
comprises a permutation-invariant encoder and decoder, thus
capable of handling an indefinite number of time-varying

inputs. Hence, it is reasonable to apply the transform model to
process the observations of UAV ¢. We design the structure of
TransRL as shown in Fig. 2, where the states and observations
of UAV 7 are first fed into their embedding layers to normalize
the input values and standardize the input dimensions. Denote
H, (s;(t)) and Hs (0;(t)) as the output of two embedding
layers, where H;() and Ho() are the functions achieved by
the two embedding layers. Hs (0;(t)) is then fed into the
transformer to extract features of the observations. Denote
G (Hz (04(t))) as the output of the transformer, where G()
is the function achieved by the transformer. Note that the
dimension of G (Hz (0;(t))) is fixed and does not change by
the dimension of o;(¢). Finally, G (H3 (0;(t))) and H; (s;(t))
are concatenated together to be the inputs of the actor and critic
networks. Here, instead of creating two independent neural
networks, we combine the actor and critic networks into a
single neural network, which can potentially lead to more
efficient training. The output of the actor and critic neural
network comprises 1) the estimated state value V'(s;(t)), and
2) three distributions, i.e., B(ef(t),87(t)), B(e(t),8Y(t)),
and B(e?(t),ﬁf (t)), which are used to sample the actions
pi(t), 0;(t), and ¢;(t), respectively. Here, instead of using a
Gaussian distribution, we apply a Beta distribution to allow
the agent to explore different actions, where € and [ in
B(e,B) are the two parameters to control the shape of the
distribution. The major reason to use a Beta distribution
instead of a Gaussian distribution for exploration is because
a Beta distribution naturally generates values between 0 and
1. This feature is particularly useful as it directly aligns with
the range of possible action values, eliminating the need for
additional steps, such as clipping or normalization. Therefore,
the TransRL model can be represented as

UCORONAORONAORON0)
= F (H1 (s:(0) DG (Ha (0:(1))))

where F'() is the function achieved by the actor and critic
neural network and €D denotes vector concatenation.

Integrating curriculum learning into PPO-GAE for ef-
ficiency training: Curriculum learning is a training strategy
that starts with simpler tasks and gradually increases task
complexity, allowing the model to learn more effectively and
converge to a better solution [3], [9]. The complexity of air
coordination task is denoted as (, where ¢ = 0.1 indicates the
lowest complexity of the task. Since TransRL is trained based
on a single truncated cylinder or partial torus in each episode,
it is reasonable to define the task complexity based on the
length of a truncated cylinder or partial torus. Specifically,

e Task complexity for training TransRL in a truncated
cylinder. The length of a truncated cylinder ! is randomly
selected in each episode, following a uniform distribution
[ =UI™™, ™"+ Al x (), where [™™ and Al are predefined.
Hence, a larger ¢ implies a longer truncated cylinder would
be generated to have a higher task complexity.

e Task complexity for training TransRL in a partial torus.
The angle of a partial torus 1‘°" is randomly selected in each

(14)
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episode, following a uniform distribution p**" = % x U (0.9 —
¢,1 =), where a smaller x*°" indicates a longer length of a
partial torus. Hence, a larger ¢ implies a wider spanning torus
would be generated to have a higher task complexity.

During the curriculum learning, ¢ is initialized as 0.1 and
incrementally increased by 0.1 if the probability of the UAV
successfully arriving at its destination is higher than 80%
among 50 episodes. The curriculum learning continues until
¢ = 1.0. It should be noted that TransRL also applies the
coordinate conversion by mapping UAVs and air corridors in
the global 3D Cartesian coordinate system into the correspond-
ing standard truncated cylinder or partial torus coordinate to
reduce the dimension of the states, as mentioned in Section II,
thus significantly improving the training efficiency.

IV. SIMULATION RESULTS
A. Training Performance

In the training process, there are five UAVs in the system and
their trajectories are the same, meaning that they will start at
the same source locations (i.e., the same beginning plane of the
first air corridor), traverse the same air corridors and end at the
same destination locations (i.e., the same end plane of the last
air corridor). Also, they take off simultaneously, thus having a
high collision probability if they are not well-coordinated. The
distance between any two UAVs’ source locations is larger than
the safe distance d**f¢, thus ensuring that the initial states of
UAVs are safe. In addition, we assume that each UAV can
observe the states of the other 4 UAVs. Moreover, to test
the scalability of TransRL, we train TransRL in four different
scenarios, denoted as TransRL-1, TransRL-2, TransRL-3, and
TransRL-4, where TransRL-n indicates the TransRL model is
trained based on the environment, where 5 UAVs traverse n
interconnected air corridors, which are randomly generated in
each episode. These TransRL models will be tested in different
environments to see their scalability. Finally, they will be tested
traversing 4 interconnected air corridors, cylinder-torus-torus-
cylinder, shown in Fig.1.

TABLE I: Training Parameters

Parameter Value
Minimum length of a truncated cylinder (I™") 5
Maximum length of a truncated cylinder ("™ 4 Al) 20
Radius of a truncated cylinder (revh) 2
Maximum velocity of a UAV (v™%%) 1.5
Maximum acceleration of a UAV (a™%T) 0.3

Safe distance to avoid collisions (d5%¢) 0.4
Tube radius of a partial torus (rt°") 2
Distance from the anchor to the axis of a torus (R*°")  U(5,10)

Maximum duration of an episode (17%) 1,000 time steps
Duration of a time step (At) 1

During the training process, we gather 16,192 transitions
and then group them into several mini-batches, each containing
1,024 transitions. The training extends across 10 epochs,
alternating between the actor and critic, starting from the actor.
Adam is used with learning rates to be 10~ for the actor and

10~° for the critic. Other training parameters are listed in Table
I. Note that some numbers in Table I are relative values, and
so we do not provide the corresponding units.

Fig. 3(a) shows the normalized cumulative reward for train-
ing different TransRL models over time. Since curriculum
learning is used to improve training efficiency, the complexity
of controlling UAVs during each episode may vary. Hence, it
is reasonable to measure the normalized cumulative reward,
which is calculated based on (), v'r;(t). From Fig. 3(a),
we can conclude that 1) normalized cumulative rewards for
all models are converged, thus proving the training stabil-
ity; 2) the training curve of each TransRL model exhibits
ladder-type growth. For example, the normalized cumulative
reward of TransRL-4’s training curve (i.e., the orange curve)
is dramatically increased around 2.4 x10° and 3.0 x10°
time steps, indicating the complexity ( increases from 0.1
to 0.2 and from 0.2 to 0.3, respectively; 3) TransRL-4 has
higher normalized cumulative reward after the convergence
than TransRL-3, TransRL-2, and TransRL-1 because UAVs
in TransRL-4 need to traverse more air corridors, and each
agent receives a +40 reward if it arrives at the end plane of
any of these air corridors. Fig. 3(b) shows the normalized
successful arrival rate for training different TransRL models
over time. Here, a successful arrival means that a UAV arrives
at its destination without having any collisions or breaching
air corridor boundaries. The normalized successful arrival rate
is also used by multiplying the successful arrival rate by
complexity ¢. All the curves in Fig. 3(b) reach almost 100%.

B. Testing Performance

The setups of the testing process are very similar to those in
the training process. One major difference is when generating
several interconnected air corridors in the testing process, the
generated partial torus is always a quarter torus (i.e., u'°" =
0 when the torus is mapped into the standard partial torus
coordinate), and the length of the generated truncated cylinder
is always the longest, i.e., [*°" = [™" + Al, thus maximizing
the task difficulties. Note that, for all the testing results, we
average the values over 2,000 episodes.

TransRL is first tested with different observation dimen-
sions. Since TransRL is trained on the basis of 5 UAVs, each
UAV can observe the states of the other 4. The number of
UAVs varies, while keep the number of interconnected air
corridors identical to each individual training environment (i.e.,
there are n-interconnected air corridors to test the performance
of TransRL-n). As shown in Fig. 4, all models can achieve a
successful arrival rate higher than 90% when the number of
UAVs is no more than 7. Note, all UAVs simultaneously take
off in the same plane, having the highest collision probability.

Assuming that there are 5 UAVs in the system, we then
test the scalability of TransRL by changing the number of
interconnected air corridors, which is different from that in
the training process. As shown in Fig. 5, the successful arrival
rates of TransRL-1 and TransRL-2 decrease notably when
the number of interconnected air corridors is 3 and 4. The
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Fig. 6: TransRL performance in 4-interconnected air corridors.

reason for this performance drop has been identified, i.e., the
models have poor performance in maneuvering multiple UAVs
as they enter the subsequent air corridor, characterized as a
partial torus. The generated acceleration cannot provide the
necessary centripetal force to avoid drifting. This is evident
from the calculation Hﬂ%zn: % = 0.45, which exceeds
the maximum acceleration a™%* = 0.3. As a result, UAVs
inevitably breach the boundaries of the partial torus. One
possible solution to mitigate this issue is to input the states of
the next air corridor in a UAV’s trajectory to the actor-critic
network such that TransRL may reduce the UAVs’ acceleration
and velocity before they enter the next air corridor.

The last testing is designed to change both the number of
UAVs and air corridors. Specifically, we create the environ-
ment shown in Fig. 1 where there are four interconnected

air corridors, starting from a truncated cylinder, quarter torus,
quarter torus, and truncated cylinder. As shown in Fig. 6,
TransRL-4 has the highest performance, which is reasonable
as TransRL-4 is trained based on the environment with four
interconnected air corridors. Also, the performance drop is not
significant in TransRL-1, TransRL-3, and TransRL-4 as the
number of UAVs increases, which demonstrates TransRL is
capable of handling different observation dimensions.

V. CONCLUSION

In this paper, we modeled and simulated the 3D air corridor
environment, and formulated the multiple UAV control prob-
lem in 3D air corridors to minimize the overall travel time
among all the UAVs, while avoiding collisions and boundary
crossings. To solve this problem, we designed TransRL, which
incorporates 1) a transformer to handle dynamic observation
dimension, and 2) curriculum learning to improve the training
efficiency. The test results show that TransRL-4 is capable
of achieving a successful arrival rate of more than 90% in
different numbers of UAVs when the number of interconnected
air corridors is not greater than 4.
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