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A B S T R A C T

Sanitary sewer systems are critical urban water infrastructure that protect both human and environmental
health. Their design, operation, and monitoring require novel modeling techniques that capture dominant
processes while allowing for computationally efficient simulations. Open water flow in sewers and rivers
are intrinsically similar processes. With this in mind, we formulated a new parsimonious model inspired
by the Width Function Instantaneous Unit Hydrograph (WFIUH) approach, widely used to predict rainfall-
runoff relationships in watersheds, to a sanitary sewer system consisting of nearly 10,000 sewer conduits and
120,000 residential and commercial sewage connections in Northern Virginia, U.S.A. Model predictions for the
three primary components of sanitary flow, including Base Wastewater Flow (BWF), Groundwater Infiltration
(GWI), and Runoff Derived Infiltration and Inflow (RDII), compare favorably with the more computationally
demanding industry-standard Storm Water Management Model (SWMM). This novel application of the WFIUH
modeling framework should support a number of critical water quality endpoints, including (i) sewer
hydrograph separation through the quantification of BWF, GWI, and RDII outflows, (ii) evaluation of the
impact of new urban developments on sewage flow dynamics, (iii) monitoring and mitigation of sanitary
sewer overflows, and (iv) design and interpretation of wastewater surveillance studies.
1. Introduction

Sanitary sewers convey wastewater from residential and non-
residential users to treatment facilities prior to re-use for non-potable
or potable purposes or disposal to inland or coastal waters. In addi-
tion to these so-called base wastewater flows (BWF), sanitary sewage
collection systems also accumulate extraneous flows in the form of
groundwater infiltration (GWI) and rainfall-derived inflow and infil-
tration (RDII). These extraneous flows vastly increase the energy and
carbon footprint costs of wastewater treatment (Hey, Gerly and Jönsson
and Mattsson, 2016; Lai, 2008; Grant et al., 2012), the frequency of
ewage overflow events (Sojobi and Zayed, 2022), and complicate the
esign and interpretation of epidemiological wastewater surveillance
rograms (Gonzalez et al., 2020). The contribution of GWI and RDII to
ewer flows varies by site depending on the local hydrogeology and
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climate (Pangle et al., 2022; Nasrin et al., 2017), as well structural
deterioration of the sewage collection network (e.g., leaking pipes)
and illicit connections of storm drains into sanitary sewers (Lai, 2008;
Selvakumar et al., 2004; Karpf and Krebs, 2011). Simple and scal-
able methods for estimating the BWF, GWI, and RDII components of
sewage flows under various population growth, climate change, and
management scenarios are urgently needed.

Back-of-the-envelope estimates of BWF can be calculated from me-
tered water consumption data by assuming that a fixed fraction of the
consumed water, commonly 90% (Butler et al., 2018), is returned to the
sanitary sewer system. In reality, the return fraction varies depending
on a number of site-specific factors, including the mix of residential
and commercial connections in a particular sewage collection network,
average household size, and the frequency of indoor and outdoor water
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Abbreviations and symbols

SS-WFIUH Sanitary Sewer Width Function Instanta-
neous Unit Hydrograph

BWF Base Wastewater Flow
GWI Groundwater Infiltration
RDII Runoff Derived Infiltration and Inflow
SWMM Storm Water Management Model
RTK Unit hydrograph method RTK
I/I Inflow and Infiltration
TAZ Transportation Analysis Zones
𝑛 Sewer network node
𝑂 Sewershed outlet
𝑄𝑂 Total outflow at 𝑂
𝑄𝐵𝑊 𝐹 ,𝑂 Outflow of BWF at 𝑂
𝑄𝐺𝑊 𝐼,𝑂 Outflow of GWI at 𝑂
𝑄𝑅𝐷𝐼𝐼,𝑂 Outflow of RDII at 𝑂
𝑄𝑅𝐷𝐼𝐼𝑓𝑎𝑠𝑡 ,𝑂 Fast response component of 𝑄𝑅𝐷𝐼𝐼,𝑂(𝑡)
𝑄𝑅𝐷𝐼𝐼𝑠𝑙𝑜𝑤 ,𝑂 Slow response component of 𝑄𝑅𝐷𝐼𝐼,𝑂(𝑡)
𝑘 Type of flow: BWF, GWI, or RDII
𝑔𝑂,𝑘 Transfer function for the 𝑘th type of flow

for the sewershed at 𝑂
𝑄𝐼,𝑘 Time-varying Input for the 𝑘th type of flow
𝑊𝑂,𝑘 Network’s width function at 𝑂 for the 𝑘th

type of flow
𝑢𝑘 Celerity of a flood wave for type of flow 𝑘
𝐷𝑘 Coefficient of hydrodynamic dispersion for

type of flow 𝑘
𝐿𝑂,𝑘,𝑚𝑎𝑥 Longest flow path through the network at

𝑂
𝐽𝐵𝑊 𝐹 Per person wastewater input flow
𝑁𝑂 Number of people contributing sewage to

the network upstream at 𝑂
𝐷𝐹 (𝑡) Demand factor
𝑞𝐵𝑊 𝐹 Average per capita daily BWF
𝑄𝑂,dry Dry weather sewage outflow at 𝑂
𝑡𝑂,ℎ Time shift
𝑡𝑂,peak Time of day when the measured outflow

peaks
𝑡𝐷𝐹 ,peak Time of day when the demand factor peaks
𝑄𝑂,dry, min Minimum dry weather flow measured at 𝑂
𝑄𝑂,dry, ave Average dry weather flow measured at 𝑂
𝐴1 Calibration constant
𝐴𝑂 Total area that drains to 𝑂
𝐿𝑂 Total conduit length that drains to 𝑂
𝐽𝐺𝑊 𝐼,𝐴 Input groundwater flux per unit draining

area
𝐽𝐺𝑊 𝐼,𝐿 Input groundwater flux per unit length of

conduit
𝐽𝑅𝐷𝐼𝐼𝑓𝑎𝑠𝑡 Input flow of RDII𝑓𝑎𝑠𝑡
𝐽𝑅𝐷𝐼𝐼𝑠𝑙𝑜𝑤 Input flow of RDII𝑠𝑙𝑜𝑤
𝑅𝑓𝑎𝑠𝑡 Fraction of precipitation that becomes RDII

for the fast response
𝑅𝑠𝑙𝑜𝑤 Fraction of precipitation that becomes RDII

for the slow response
𝑃 Precipitation
𝑑0 Diameter of the circular cross-section
𝑣𝐼 Initial flow velocity
2

𝐵𝐼 Initial water surface width
𝜃𝐼 Initial slope of the water surface
𝑅𝐼 Initial hydraulic radius
𝑆0 Conduit slope
𝐹 Froude number
𝑄∗

𝑂,RDII Observed RDII
𝛥𝑄𝐵𝑊 𝐹 Expected variation of 𝑄𝑂,dry, ave
𝐷𝐹𝑚𝑖𝑛 Minimum demand factor
𝑡𝐷𝐹 ,𝑝𝑒𝑎𝑘 Time of the morning peak for water

consumption
𝑡ℎ Average hydraulic response time for the

sewershed

use, which is related to local climate (Jacobs and Haarhoff, 2004).
Obtaining realistic estimates of GWI and RDII, collectively known as
inflow and infiltration (I/I), is even more challenging and can be
a major source of uncertainty in evaluating the costs and benefits
of sewer replacement programs and long-range planning for sewage
treatment facilities, particularly in the face of climate change (Zhang
et al., 2018a,b; Beheshti et al., 2015).

Unit hydrograph theory is a well-known framework for modeling
rainfall-runoff events in watershed systems. The similarities between
natural river systems and sewer systems have inspired applications
of the theory for predicting I/I in urban stormwater and sewage col-
lection systems. For example, the RTK method, which is based on
triangular unit hydrographs, is one of the most popular methods used
by practitioners to estimate I/I and has been incorporated into the
EPA SWMM and SSOAP software package (Lai, 2008; Vallabhaneni
and Burgess, 2007). Among the multiple formulations derived from
the seminal paper describing the unit hydrograph (Sherman, 1932),
the width function instantaneous unit hydrograph (WFIUH) is a ro-
bust and flexible formulation that captures key hydrodynamic pro-
cesses controlling runoff routing in watershed systems (Rigon et al.,
2016). The WFIUH modeling framework has been used to represent
diverse physical mechanisms affecting streamflow responses, including
drainage density (Mutzner et al., 2016; Di Lazzaro et al., 2015), melt-
waters (Yang et al., 2018), storm trajectory (Volpi et al., 2013; Perez
et al., 2023), and even the effect of reservoirs and lakes in the runoff
routing for large basin scales (Piccolroaz et al., 2016).

In this paper, we develop and test a novel application of WFIUH
theory for modeling sanitary sewer (SS) flows, a framework we re-
fer to as SS-WFIUH. Specifically, we: (i) formulate the fundamental
equations required to predict BWF, GWI, and RDII fluxes in a sanitary
sewer system; (ii) calibrate the SS-WFIUH model using hourly measure-
ments of sanitary flow from a moderately sized (≈100,000 connections)
and mostly residential sanitary sewage collection system in Northern
Virginia, U.S.A; and (iii) validate the performance of the SS-WFIUH
framework by comparison to hourly sewer flow measurements and pre-
dictions from the more computationally demanding industry standard
Storm Water Management Model (SWMM) modeling system (Vallab-
haneni and Burgess, 2007). Our modeling framework is notable in
its conceptual simplicity, computational efficiency, and scalability to
sewer networks of arbitrary complexity and size.

2. Model formulation

Sanitary sewer networks can be conceptualized as open channel
systems composed of sewer conduits (links) connected through man-
holes (nodes) in a tree-like structure draining to a discharge point,
commonly a pump station or wastewater treatment plant (Fig. 1). The
network structure typically includes: (i) the main sewer line, which is
the primary conduit through which sewage from all connections flows
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Fig. 1. Sketch of a sewershed layout with 36 nodes (𝑛) highlighting the location of
eaf and internal nodes and the sewershed outlet, 𝑂. Arrows depict the flow direction
n sewer pipes.

o the discharge point; and (ii) local drain lines that convey the sewage
rom individual connections (e.g., residential units or commercial and
ndustrial facilities) to the main sewer line. Due to a lack of data
t the scale of individual connections, the analysis of sewer network
ydraulics is typically focused on the main sewer line, while local drain
ines are represented as a spatially variable collection of sewage inputs.
gnoring local drain lines is not expected to significantly impact our
odeling results because these lines typically involve short travel times
rom the input to the main sewer line, and thus have a minor impact
n the system’s width function.

.1. Mathematical framework

The total outflow from the sewer network, 𝑄𝑂(𝑡) [L3T−1], is the
um of BWF, 𝑄𝐵𝑊 𝐹 ,𝑂(𝑡) [L3T−1], GWI, 𝑄𝐺𝑊 𝐼,𝑂(𝑡) [L3T−1], and RDII,
RDII,𝑂(𝑡) [L3T−1] components. Typically, infiltration processes extend
eyond the end of the rainfall event (US Environmental Protection
gency, 2014). Consequently, it is convenient to separate RDII into
ast (𝑄𝑅𝐷𝐼𝐼𝑓𝑎𝑠𝑡 ,𝑂(𝑡)) and slow (𝑄𝑅𝐷𝐼𝐼𝑠𝑙𝑜𝑤 ,𝑂(𝑡)) responses. Then, under
he SS-WFIUH framework, the total outflow, 𝑄𝑂(𝑡), is represented as
convolution over all flow inputs to the sewer network:

𝑂(𝑡) = 𝑄𝐵𝑊 𝐹 ,𝑂(𝑡) +𝑄𝐺𝑊 𝐼,𝑂(𝑡) +𝑄𝑅𝐷𝐼𝐼𝑓𝑎𝑠𝑡 ,𝑂(𝑡) +𝑄𝑅𝐷𝐼𝐼𝑠𝑙𝑜𝑤 ,𝑂(𝑡)

=
∑

𝑘
∫

𝑡

0
𝑄𝐼,𝑘(𝜏) 𝑔𝑂,𝑘(𝑡 − 𝜏) d𝜏

(1)

ere, 𝑘 = {BWF,GWI,RDII𝑓𝑎𝑠𝑡,RDII𝑠𝑙𝑜𝑤} corresponds to the type of
low, 𝑄𝐼,𝑘(𝑡) [L3T−1] is the time-varying input across all sources for the
th type of flow, and 𝑔𝑂,𝑘(𝑡) [T−1] is a transfer function that accounts
or the time the 𝑘th type of flow spends transiting from its point of
rigin in the sewer network to the outlet. The same framework can be
sed to estimate BWF, GWI, and RDII at any node in the sewer network
i.e., not just at the outlet node) by adjusting the input and transfer
unctions, 𝑄𝐼,𝑘(𝑡) and 𝑔𝑂,𝑘(𝑡), so that they include only flow entering the
etwork upstream of the node of interest; i.e., the set of all upstream
odes, 𝑛 ∈ 𝑂, draining to the outlet node of interest, 𝑂.
The transfer function, in turn, depends on the network’s width func-

ion, 𝑊𝑂,𝑘(𝑥), [L−1], which is a time-invariant probability distribution
f travel distances through the network, from all sources of the 𝑘th
ype of flow in the network to the outlet node 𝑂. The transfer function
3

ollows by convolving the width function with a transit time model of
low through the network. Two such models are considered here (Rigon
t al., 2016): (1) a kinematic wave model; and (2) a hydrodynamic
ispersion model. The corresponding transfer functions are as follows:

inematic Wave Model: 𝑔𝑂,𝑘(𝑡) = 𝑢𝑘 𝑊𝑂,𝑘(𝑢𝑘𝑡), (2)

ydrodynamic Dispersion Model: 𝑔𝑂,𝑘(𝑡)

= ∫

𝐿𝑂,𝑘,𝑚𝑎𝑥

0

𝑥𝑊𝑂,𝑘(𝑥)
√

4𝜋𝐷𝑘𝑡3
exp

[

−
(𝑥 − 𝑢𝑘𝑡)2

4𝐷𝑘𝑡

]

d𝑥,
(3)

New variables include the celerity of a flood wave 𝑢𝑘 [L T−1], the
coefficient of hydrodynamic dispersion 𝐷𝑘 [L2T−1], and the longest
flow path through the network to the outlet, 𝐿𝑂,𝑘,𝑚𝑎𝑥 [L].

Implementation of these equations requires the specification of a
width function specific to the network of interest. Mathematically,
the width function is a probability density function (PDF), defined
such that the quantity 𝑊𝑂,𝑘(𝑥)𝑑𝑥 represents the fraction of all sources
(for the 𝑘th flow type) upstream of the outlet node that are located
a flow path distance 𝑥 to 𝑥 + 𝑑𝑥 from the outlet. As noted above,
each node may have many individual sources (e.g., many residential
connections draining to a single leaf node). Thus, for a finite bin width,
𝛥𝑥, the width function for the 𝑘th flow type can be approximated as a
histogram with 𝑁𝑏 total bins, where the magnitude of the 𝑝th bin is
given as follows:

𝑊𝑂,𝑘(𝑥𝑝)

= 1
𝛥𝑥

∑

𝑛∈𝑂 ∩ 𝑥𝑛 ∈ [(𝑝−1)𝛥𝑥,𝑝𝛥𝑥)

number of type 𝑘 sources associated with the 𝑛th node
total number of type 𝑘 sources upstream of the outlet

(4)

The sum is taken over all nodes 𝑛 that are upstream of the outlet
(𝑛 ∈ 𝑂) and located a path length between 𝑥𝑛 = (𝑝 − 1)𝛥𝑥 and
𝑥𝑛 = 𝑝𝛥𝑥 from the outlet. The total number of bins in the histogram is
related to the maximum path length through the network to the outlet
as follows, 𝑁𝑏 = Floor[𝐿𝑂,𝑘,𝑚𝑎𝑥∕𝛥𝑥], where Floor[𝑎] is an operator that
computes the smallest integer that is greater than or equal to 𝑎. Next,
we outline the procedure to estimate varying inputs, 𝑄𝐼,𝑘(𝑡), and the
width functions, 𝑊𝑂,𝑘(𝑥𝑝) for BWF, GWI, and RDII.

2.2. Sewage inflow to the network

2.2.1. Base wastewater flow (BWF)
Given the nested nature of the main sewer lines and local drain

lines, it is reasonable to assume that most of the local sewer connections
discharge BWF to the outermost network nodes, referred to here as leaf
nodes (Fig. 1). With this assumption, the total input of BWF, 𝑄𝐼,𝐵𝑊 𝐹 ,
to the network upstream of the outlet node, 𝑂, can be calculated as
follows:

𝑄𝐼,𝐵𝑊 𝐹 (𝑡) = 𝑁𝑂𝐽𝐵𝑊 𝐹 (𝑡) (5)

where 𝐽𝐵𝑊 𝐹 (𝑡) is the per person wastewater input flow
[L3T−1person−1] and 𝑁𝑂 is the total number of people contributing
sewage to the network upstream of the outlet node. The time-varying
per capita wastewater input function, 𝐽𝐵𝑊 𝐹 (𝑡), can be inferred from
3 conventional strategies depending on data availability: (1) direct
measurements of household wastewater production, which is usu-
ally unavailable for large systems; (2) per capita water consumption
(e.g., Grant et al. (2020)) assuming that a fixed fraction (e.g., 0.9) be-
comes wastewater, which is the most common approach used by prac-
titioners (Capt et al., 2021; Butler et al., 2018; Jacobs and Haarhoff,
2004); and (3) wastewater production functions reported for similar
sewersheds, although this approach can introduce bias due to regional
variations in water use habits and climate (Dieter et al., 2018). We
proposed a different approach by taking advantage of sewer observa-
tions at the sewershed outlet and by splitting the sewage input into
the product of a dimensionless periodic function, called the ‘‘demand
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factor’’, that characterizes the diurnal and weekly variation of the
base wastewater flow, 𝐷𝐹 (𝑡), and the average per capita daily BWF
discharged from the network at node 𝑂, 𝑞𝐵𝑊 𝐹 [L3T−1person−1]. The
𝐽𝐵𝑊 𝐹 and 𝐷𝐹 (𝑡) is then calculated as:

𝐽𝐵𝑊 𝐹 (𝑡) = 𝐷𝐹 (𝑡) 𝑞𝐵𝑊 𝐹 (6a)

𝐷𝐹 (𝑡) =
𝑄𝑂,dry(𝑡 − 𝑡𝑂,ℎ) −𝑄𝑂,dry,min + 𝐴1(𝑄𝑂,dry, ave −𝑄𝑂,dry,min)

(𝑄𝑂,dry, ave −𝑄𝑂,dry,min)(1 − 𝐴1)
(6b)

New variables here include the dry weather sewage outflow from
the network at node 𝑂, 𝑄𝑂,dry(𝑡 − 𝑡𝑂,ℎ) [L3T−1] where the time shift,
𝑡𝑂,ℎ [𝑇 ], represents an average hydraulic residence time for water in
the sewer network upstream of node 𝑂. We approximate the time shift
as, 𝑡𝑂,ℎ = 𝑡𝑂,peak − 𝑡𝐷𝐹 ,peak, where 𝑡𝑂,peak and 𝑡𝐷𝐹 ,peak [both 𝑇 ] are
the time of day when the measured outflow and the demand factor
peak, respectively. The flows 𝑄𝑂,dry, min and 𝑄𝑂,dry, ave [both L3T−1]
are the minimum and average dry weather flow measured at the outlet,
respectively. The parameter 𝐴1 is a calibration constant to ensure that
𝐷𝐹 (𝑡) has a mean daily value equal to 1 and a minimum value equal
to 𝐷𝐹𝑚𝑖𝑛. The supplemental material presents a step-by-step description
of the estimation of this diurnal function.

2.2.2. Groundwater infiltration (GWI)
While BWF enters the network at leaf nodes, GWI can enter the

network through any or all nodes upstream of the outlet. The magni-
tude of 𝑄𝐼,𝐺𝑊 𝐼 depends on both infrastructure health (e.g., the extent
of cracks and open joints that allow for the exchange of sewage with
the surrounding sediment) and the state of the shallow groundwater
(e.g., the hydraulic head gradient between the sewer conduit and the
surrounding aquifer, which is determined by the local hydrogeology
and climate). In the absence of geographically distributed (i.e., conduit-
by-conduit) information on these two factors, here we assumed that the
GWI attributed to each conduit is proportional to either (i) the drainage
area that contributes to each sewer conduit; or (ii) the conduit length:

𝑄𝐼,𝐺𝑊 𝐼 =

{

𝐴𝑂𝐽𝐺𝑊 𝐼,𝐴 if contributing area is used as a proxy for GWI
𝐿𝑂𝐽𝐺𝑊 𝐼,𝐿 if conduit length is used as a proxy for GWI

(7)

where 𝐴𝑂 [L2] and 𝐿𝑂 [L] are the total drainage area and total conduit
length that drains to the outlet node 𝑂, respectively, and 𝐽𝐺𝑊 𝐼,𝐴 [LT−1]
and 𝐽𝐺𝑊 𝐼,𝐿 [L2T−1] are the input groundwater flux per unit draining
area and per unit length of conduit, respectively. The input fluxes
𝐽𝐺𝑊 𝐼,𝐴 and 𝐽𝐺𝑊 𝐼,𝐿 are assumed to be fixed constants and inferred using
the parameter estimation approach described in Section 2.4.1.

2.2.3. Rainfall-derived infiltration and inflow (RDII)
RDII depends on rainfall characteristics (e.g., spatial distribution,

duration, and intensity), sewer network structural integrity (e.g., con-
duit cracks and illicit connections), surface imperviousness, and the
local terrain Beheshti et al. (2015). In our model, these features are
embedded in the function, 𝐽𝑅𝐷𝐼𝐼𝑓𝑎𝑠𝑡 and 𝐽𝑅𝐷𝐼𝐼𝑠𝑙𝑜𝑤 [LT−1], which rep-
resents the input of RDII𝑓𝑎𝑠𝑡 and RDII𝑠𝑙𝑜𝑤 to the sewer network per
unit drainage area, respectively. The total RDII𝑓𝑎𝑠𝑡 and RDII𝑠𝑙𝑜𝑤 inputs
re then equal to their respective 𝐽𝑅𝐷𝐼𝐼 and the sewer network’s
contributing area, 𝐴𝑂:

𝑄𝐼,RDII𝑓𝑎𝑠𝑡 (𝑡) = 𝐴𝑂𝐽RDII𝑓𝑎𝑠𝑡 (𝑡) (8a)

𝑄𝐼,RDII𝑠𝑙𝑜𝑤 (𝑡) = 𝐴𝑂𝐽RDII𝑠𝑙𝑜𝑤 (𝑡) (8b)

𝐽RDII𝑓𝑎𝑠𝑡 (𝑡) = 𝑅𝑓𝑎𝑠𝑡,𝑖 𝑃 (𝑡) (8c)

𝐽RDII𝑠𝑙𝑜𝑤 (𝑡) = 𝑅𝑠𝑙𝑜𝑤,𝑖 𝑃 (𝑡) (8d)

The RDII per unit area, in turn, is written as the product of the
4

fraction of precipitation that becomes RDII for the fast response, 𝑅𝑓𝑎𝑠𝑡,𝑖 n
[-], and the time-varying average precipitation over the contributing
area of the sewer network, 𝑃 (𝑡) [LT−1] for the 𝑖th rainfall event. A
similar result is obtained for the RDII slow response.

2.3. Width functions

2.3.1. Base wastewater flow
The 𝑝th bin of the width function for BWF can be written as follows

(compare with (4)):

𝑊𝑂,BWF(𝑥𝑝) =
1
𝛥𝑥

∑

𝑛𝑙∈𝑂 ∩ 𝑥𝑛𝑙 ∈ [(𝑝−1)𝛥𝑥,𝑝𝛥𝑥)

𝑁𝑛𝑙 ,𝑝

𝑁𝑂
(9)

Here, 𝑁𝑛𝑙 ,𝑝 is the total number of people contributing sewage to leaf
nodes upstream of the outlet (𝑛𝑙 ∈ 𝑂) and located at a flow path dis-
tance 𝑥𝑛𝑙 ∈ [(𝑝 − 1)𝛥𝑥, 𝑝𝛥𝑥) from the outlet. The number of residential
and non-residential connections to a given leaf node (i.e., 𝑁𝑛𝑙 ,𝑝) can
be estimated at the parcel scale from U.S. census data (Fig. 2A). In
the United States, coarser-grained information on current and future
population and commercial activity is frequently prepared by city
and county planning departments and then aggregated into so-called
Transportation Analysis Zones (TAZ, Clifton et al. (2008)). The TAZ
data can be used to estimate 𝑁𝑛𝑙 ,𝑝, both now and into the future, by
uniformly assigning users to each leaf node within a particular TAZ
polygon (Fig. 2B).

2.3.2. Groundwater infiltration (GWI)
Because GWI can enter the network at any node, the 𝑝th bin of the

GWI width function is summed over all nodes (i.e., not just the leaf
nodes, as in the width function for BWF above) upstream of the outlet
(compare with Eqs. (4) and (9)):

𝑊𝑂,GWI(𝑥𝑝) =
1
𝛥𝑥

∑

𝑛∈𝑂 ∩ 𝑥𝑛 ∈ [(𝑝−1)𝛥𝑥,𝑝𝛥𝑥)

×

⎧

⎪

⎨

⎪

⎩

𝐴𝑛
𝐴𝑂

if contributing area is used as a proxy for GWI
𝐿𝑛
𝐿𝑂

if conduit length is used as a proxy for GWI

(10)

where 𝐿𝑛 is the conduit length for link 𝑛 (Fig. 2C) and 𝐴𝑛 is the area
draining to the link 𝑛 (Fig. 2D). Our notation assumes that the index of
the link corresponds to the index of its upstream node.

2.3.3. Rainfall derived inflow and infiltration (RDII)
For RDII𝑓𝑎𝑠𝑡 and RDII𝑠𝑙𝑜𝑤, we adopt a width function that is identical

to the one adopted for GWI when contributing area is used as a proxy
for input to the sewer network:

𝑊𝑂,RDII𝑓𝑎𝑠𝑡 (𝑥𝑝) =
1
𝛥𝑥

∑

𝑛∈𝑂 ∩ 𝑥𝑛 ∈ [(𝑝−1)𝛥𝑥,𝑝𝛥𝑥)

𝐴𝑛
𝐴𝑂

(11)

The same equation is adopted for 𝑊𝑂,RDII𝑠𝑙𝑜𝑤 . In some cases, it may
be necessary to adopt more sophisticated width functions for RDII,
depending on local conditions. For example, Seo et al. (2013) used two
different width functions to model runoff generated by rainfall events
in impervious and pervious surfaces of storm sewer systems.

2.4. Model implementation

The SS-WFIUH formulation provides a way to hydrological interpret
each flow component throughout the convolution between transfer
functions and input functions that are easily modulated by a few
hydrodynamic (e.g., 𝑢 and 𝐷) and flow parameters (e.g. 𝑞𝐵𝑊 𝐹 , 𝑅𝑓𝑎𝑠𝑡
nd 𝑅𝑠𝑙𝑜𝑤). To illustrate this, Fig. 3 shows an example of transfer func-
ions (excluding the RDII for slow response), input functions, and the
esulting flow components GWI, BWF, and RDII at the outlet of a sewer

etwork. Below we describe the process we used to infer unknown
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Fig. 2. Sketch of a sewershed layout highlighting the spatial distribution of the variables used to weight node contributions and the resulting weighted width function for (A)
households from census data, (B) Transportation Analysis Zones (TAZ), (C) conduit length, and (D) contributing area to each sewer pipe and its corresponding weighted width
function.
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parameters from measured sewage flow, along with our methods for
hydrograph separation and RDII estimation.

2.4.1. Parameter estimation
In the SS-WFIUH framework, the transfer function is calculated from

the width function based on one of two models for sewage transit time
through the network, the kinematic wave model or the hydrodynamic
dispersion model (see Eqs. (2) and (3)). These two models require, in
urn, the specification of two key physical properties of the system,
amely, the celerity of a flood wave, 𝑢, and the coefficient of hydro-
ynamic dispersion 𝐷 (Naden et al., 1999). For a circular channel,
he celerity and dispersion coefficient can be estimated as (Seo and
chmidt, 2014)

=
[

𝑑0(1 − cos 𝜃𝐼 ) −
4𝑅𝐼

]

3𝑣𝐼𝑑0
2
; 𝐷 = 𝐶1

𝑄𝐼 (12)
5

3 4𝐵𝐼
2𝑆0𝐵𝐼
here the constant 𝐶1 is defined as follows:

1 = 1 −
𝐹 2
𝐼

16

[ 𝑑20
𝐵2
𝐼

(

1 − cos 𝜃𝐼 −
4𝑅𝐼
𝑑0

)]2
(13)

New variables appearing here include the diameter of the circular cross-
section 𝑑0 [L], the initial flow velocity 𝑣𝐼 [LT−1], the initial water
surface width 𝐵𝐼 [L], the initial slope of the water surface 𝜃𝐼 [-], the
initial hydraulic radius 𝑅𝐼 [L], the conduit slope 𝑆0 [-] and the Froude
number 𝐹 [-].

In the SS-WFIUH convolution framework (see (1) and discussion
thereof), a single transfer function is specified for the entire sewer
network, which implies that each network must be characterized by a
single set of values for 𝑢 and 𝐷. However, from the formulae provided
for these two parameters above, it is clear that these two parameters
will vary from conduit to conduit. Robinson et al. (1995) defined
effective values of 𝑢 and 𝐷 for an entire river system based on hydraulic
scaling relationships (Leopold and Maddock, 1953). Likewise, Naden
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Fig. 3. Flowchart showing the schematic structure of total groundwater infiltration flow, 𝑄𝐺𝑊 𝐼 (panel G) with transfer function 𝑔𝐺𝑊 𝐼 (panel A) and input function 𝐽𝐺𝑊 𝐼 (panel
B). Total Base wastewater flow, 𝑄𝐵𝑊 𝐹 (panel H) with transfer function 𝑔𝐵𝑊 𝐹 (panel C) and input function 𝐽𝐵𝑊 𝐹 (panel D). The total Rainfall Derived Infiltration and Inflow,

𝑅𝐷𝐼𝐼 (Panel I) with transfer function 𝑔𝑅𝐷𝐼𝐼 (Panel E) and input function 𝐽𝑅𝐷𝐼𝐼 (Panel F). This RDII component only considers fast flow response. Panel J shows the total sewage
low by adding each flow component.
t al. (1999) estimated the effective 𝑢 and 𝐷 for the Amazon, and
the Arkansas and Red River basins, by calculating the celerity using a
weighted harmonic mean of the celerity in all reaches, and the effective
dispersion coefficient was calculated using a weighted arithmetic mean.
In particular, the result of Naden et al. (1999) provides evidence that
the equivalent celerity and dispersion coefficient may be inferred from
the spatial distribution of the celerity and dispersion coefficients of
individual river reaches or, in our case, for individual sewer conduits.
Moreover, it is important to note that energy losses within the sewer
network, particularly in manholes, can occur due to various factors,
such as abrupt changes in flow at entrance points. Consequently, our
equivalent parameters, 𝑢 and 𝐷, implicitly incorporate these energy
losses into the modeling framework.

Here, we assumed that a single set of effective parameters (𝑢 and
𝐷) apply to the transport of BWF, GWI, and RDII𝑓𝑎𝑠𝑡 through the sewer
network. Because the local hydrogeology also influences RDII𝑠𝑙𝑜𝑤, and
following previous model conceptualizations (Seo and Schmidt, 2014;
Lai, 2008), this inflow was assumed to have a separate set of effective
transport parameters, 𝑢𝑠𝑙𝑜𝑤 and 𝐷𝑠𝑙𝑜𝑤.

Estimating parameters during dry weather periods: When there is
no RDII, the SS-WFIUH model depends only on the BWF and GWI
components. This means that the unknown parameters are 𝑢 and 𝐷,
along with values for the per capita daily BWF discharged at node 𝑂,
̄𝐵𝑊 𝐹 , and GWI component flow, 𝑄𝑂,GWI. Numerical values for these
parameters were inferred by optimizing the following model-predicted
6

outflow from the sewer network during dry weather periods:

𝑄̂𝑂,dry(𝑡 |𝐩) = 𝑄𝑂,GWI + 𝑞𝐵𝑊 𝐹 ∫

𝑡

0
𝐷𝐹 (𝜏) 𝑔𝑂,𝐵𝑊 𝐹 (𝑡 − 𝜏 |{𝑢,𝐷}) d𝜏 (14)

where 𝐩 = {𝑄𝑂,GWI, 𝑞BWF, 𝑢, 𝐷} is a vector of the model parameters. The
per unit area influx of GWI to the sewer network (see Section 2.2.2) was
assumed to be equal to the inferred efflux of GWI from the network:
𝑄𝐼,GWI = 𝑄𝑂,GWI. The parameters 𝐩 were inferred using Nelder–Mead
simplex algorithm (Lagarias et al., 1998, as implemented in MATLAB)
to minimize the sum of the square differences between sewage flow
observations during dry periods, 𝑄𝑂,dry(𝑡), and SS-WFIUH predictions,
𝑄̂𝑂,dry(𝑡 |𝐩), where the sum is taken over all flow measurements in the
dry weather window of interest:

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞 𝑍 =
𝑛𝑜𝑏𝑠
∑

𝑗=1

[

𝑄̂𝑂,dry(𝑡𝑗 |𝐩) −𝑄𝑂,dry(𝑡𝑗 )
]2

𝐒𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 𝑄𝑂,𝐺𝑊 𝐼 ≥ 0, 𝑞𝐵𝑊 𝐹 ≥ 0, 𝑢 ≥ 0, 𝐷 ≥ 0

(15)

Note that the per capita daily BWF, 𝑞BWF, may be known in some
localities (e.g., based on local wastewater generation studies). In such
an event, the number of parameters would be reduced from 4 (in the
present study) to 3.

Estimating parameters during wet weather periods: During wet
weather, several additional parameters come into play, including the
transport parameters 𝑢 and 𝐷 , and the rainfall fractions 𝑅
𝑠𝑙𝑜𝑤 𝑠𝑙𝑜𝑤 𝑓𝑎𝑠𝑡
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and 𝑅𝑠𝑙𝑜𝑤. These parameters were estimated by optimizing the fol-
lowing model-predicted RDII outflow from the sewer network during
specific rainfall events 𝑖:

𝑄̂𝑂,RDII𝑖 (𝑡 |𝐪) = 𝐴𝑂𝑅𝑓𝑎𝑠𝑡,𝑖 ∫

𝑡

0
𝑃 (𝜏) 𝑔𝑂,𝑅𝐷𝐼𝐼𝑓𝑎𝑠𝑡 (𝑡 − 𝜏 |{𝑢,𝐷}) d𝜏+

𝐴𝑂𝑅𝑠𝑙𝑜𝑤,𝑖 ∫

𝑡

0
𝑃 (𝜏) 𝑔𝑂,𝑅𝐷𝐼𝐼𝑠𝑙𝑜𝑤,𝑖

(𝑡 − 𝜏 |{𝑢𝑠𝑙𝑜𝑤,𝑖, 𝐷𝑠𝑙𝑜𝑤,𝑖}) d𝜏
(16)

here 𝐪𝑖 = {𝑢𝑠𝑙𝑜𝑤,𝑖, 𝐷𝑠𝑙𝑜𝑤,𝑖, 𝑅𝑓𝑎𝑠𝑡,𝑖, 𝑅𝑠𝑙𝑜𝑤,𝑖} is a vector of the model
arameters.
We inferred these parameters with the same Nelder–Mead simplex

lgorithm used for dry weather periods, but now by minimizing the
um of the square difference between observed and predicted RDII
bservations such as:

𝐌𝐢𝐧𝐢𝐦𝐢𝐳𝐞 𝑍 =
𝑛𝑜𝑏𝑠𝑖
∑

𝑗=1

[

𝑄̂𝑂,RDII(𝑡𝑗 |𝐪𝑖) −𝑄∗
𝑂,RDII(𝑡𝑗 )

]2

𝐮𝐛𝐣𝐞𝐜𝐭 𝐭𝐨 𝑢𝑠𝑙𝑜𝑤 > 0, 𝐷𝑠𝑙𝑜𝑤 > 0, 𝑅𝑓𝑎𝑠𝑡 ≥ 0, 𝑅𝑠𝑙𝑜𝑤 ≥ 0

(17)

The observed RDII, 𝑄∗
𝑂,RDII(𝑡), is obtained using the hydrograph

separation procedure presented in the following section, and 𝑛𝑜𝑏𝑠𝑖 is the
umber of flow observations during the 𝑖th rain event. For calibration,
he parameters 𝐪𝑖 are obtained for a set of events where the observed
DII is available. However, when predicting, and the RDII is not
bservable, the parameters 𝐪𝑖 are commonly inferred from a regression
nalysis between the parameters 𝐪𝑖 during the calibration period and
rainfall properties. Then, when observed RDII is not available, the
model parameters 𝐪𝑖, are estimated through a non-linear equation that
is fitted from rainfall volume, and the resulting vector parameters 𝐪𝑖
btained for the calibration dataset.

.4.2. Hydrograph separation
The flow components 𝑄𝑂,GWI and 𝑄𝑂,BWF estimated by the SS-
FIUH model can be used to conduct hydrograph separation of the
ewage flow observations at the outlet of the sewer system, 𝑄𝑜𝑏𝑠. This
nvolves extracting the flow components of 𝑄𝑜𝑏𝑠 one-by-one, using the
ollowing expressions in sequential order:

∗
𝑂,𝐺𝑊 𝐼 (𝑡) = 𝑄𝑂,𝐺𝑊 𝐼 (18)

∗
𝑂,𝐵𝑊 𝐹 (𝑡)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑄𝑂,𝐵𝑊 𝐹 (𝑡) + 𝛥𝑄𝑂,𝐵𝑊 𝐹 if (𝑄𝑂,𝐵𝑊 𝐹 (𝑡) + 𝛥𝑄𝑂,𝐵𝑊 𝐹 +𝑄𝑂,𝐺𝑊 𝐼 (𝑡))
−𝑄𝑜𝑏𝑠(𝑡) < 0

𝑄𝑜𝑏𝑠(𝑡) −𝑄𝑂,𝐺𝑊 𝐼 (𝑡) if (𝑄𝑂,𝐵𝑊 𝐹 (𝑡) + 𝛥𝑄𝑂,𝐵𝑊 𝐹 +𝑄𝑂,𝐺𝑊 𝐼 (𝑡))
−𝑄𝑜𝑏𝑠(𝑡) ≥ 0

(19)

∗
𝑂,𝑅𝐷𝐼𝐼 (𝑡)

=

⎧

⎪

⎨

⎪

⎩

𝑄𝑜𝑏𝑠(𝑡) −𝑄∗
𝑂,𝐵𝑊 𝐹 (𝑡)

−𝑄𝑂,𝐺𝑊 𝐼 (𝑡) if (𝑄∗
𝑂,𝐵𝑊 𝐹 (𝑡) +𝑄𝑂,𝐺𝑊 𝐼 (𝑡)) −𝑄𝑜𝑏𝑠(𝑡) < 0

0 if (𝑄∗
𝑂,𝐵𝑊 𝐹 (𝑡) +𝑄𝑂,𝐺𝑊 𝐼 (𝑡)) −𝑄𝑜𝑏𝑠(𝑡) ≥ 0

(20)

here the symbol * denotes the estimate of the hydrograph separation
omponent, and 𝛥𝑄𝐵𝑊 𝐹 represents the expected variation of the mean
ewage flow observations for dry weather periods. In practice, we sug-
est estimating 𝛥𝑄𝐵𝑊 𝐹 as the difference between the 95% prediction
ounds and the expected value of the sewage flow from dry weather
eriods. Note that since 𝑄𝑂,𝐺𝑊 𝐼 is estimated as a parameter during
he calibration process of 𝑄𝑂,𝐵𝑊 𝐹 , the application of the hydrograph
eparation procedure based on the SS-WFIUH only requires calibrating
he flow component 𝑄𝑂,𝐵𝑊 𝐹 and estimate 𝛥𝑄𝐵𝑊 𝐹 which can be easily
7

erived from the sewage flow observations during dry weather periods.
. Case study

In this section, we present a proof-of-concept application where
he SS-WFIUH model is used for (i) hydrograph separation and (ii)
rediction of RDII during observed rainfall events. As a testbed, we use
he sanitary sewer network serving the Cub Run sewershed in Fairfax
ounty in Virginia, US (Fig. 4A). This sewershed services residents
n Centreville and Chantilly, two census-designated regions in Fairfax
ounty, Virginia (U.S.A.) (red sewer conduits in Fig. 4B). Wastewater
rom this sewage network discharges to the Upper Occoquan Service
uthority (UOSA) water reclamation facility, which, in turn, discharges
o the Occoquan Reservoir, a raw water supply for up to 1 million
eople in Northern Virginia. Rising sodium ion concentrations in the
ccoquan Reservoir has prompted interest in developing bottom-up
stakeholder-driven) approaches for controlling sodium ion inputs to
he Occoquan Reservoir, including from UOSA’s reclaimed water (Bhide
t al. (2021), Grant et al. (2022)). The SS-WFIUH model was developed
to assist with that effort, as will be described in future publications.

The model was calibrated to hourly sewage flow observations at the
outlet of the Cub Run sewershed over a 16-year period from January
2004 to December 2020. The sewer network has over 10,000 sewer
conduits, with a total sewer conduit length of 574 km, an average slope
of 2% (standard deviation of 2.5%), and an average sewer conduit
diameter of 0.23 m (standard deviation of 0.11 m). Demographic in-
formation on water users within the sewershed was obtained from U.S.
Census data and the Metropolitan Washington Council of Government
TAZ attributes (Fig. 4C, D). According to the TAZ dataset, as of 2020,
the Cub Run sewershed served 119,905 people from households and
109,617 employees from businesses.

Parcel scale data on drinking water consumption and wastewater
generation were unavailable for this sewershed. Typically, we expect
these user categories to have different water use cycles (Chin et al.,
2000), especially given the diversity of activities encapsulated in the
employee category, ranging from coffee shops to retail stores. How-
ever, for simplicity and to illustrate the potential of the SS-WFIUH,
we assumed a common daily wastewater cycle for employees and
residential users. Following recommendations from the local water
utility company, the average daily sewage contribution per employee
was assumed as 30% of the average daily sewage contribution per
residential user (personal communication).

In the absence of measured BWF input fluxes, we used the back-
calculation procedure described in Section 2.2.1 to infer the diur-
nal sewage flow cycle per residential user. To this end, we estimate
the minimum demand factor, 𝐷𝐹𝑚𝑖𝑛, and the time of the morning
peak for water consumption, 𝑡𝐷𝐹 ,𝑝𝑒𝑎𝑘, using flow observations at the
Cub Run pump station. In particular, we identify the effects of the
COVID-19 pandemic on the records and subdivide the data accordingly.
Recent observations highlight the notable changes in diurnal water
consumption cycles due to stay-at-home orders caused by the COVID-19
pandemic (Juela Quintuña, 2020; Abu-Bakar et al., 2021). In particular,
the Fairfax county water utility company identified a lag in morning
routines caused by the stay-at-home order imposed by Virginia on
March 2020, where the morning peak of water consumption shifted
from around 6:30 am on pre-COVID weekdays to about 8:00 am on
COVID weekdays (personal communication). As a result, two different
wastewater cycles must be established to represent water use habits
during pre-COVID and COVID conditions. In the present analysis, we
separated the Cub Run observations into a pre-COVID dataset (January
2004–February 2020) and a COVID dataset (March 2020–December
2020).

Regarding the system’s minimum demand factor, the literature re-
ports that 𝐷𝐹𝑚𝑖𝑛 ranges from 0.2 to 0.6 (Balacco et al., 2018; Cole and
Stewart, 2013; Lopez Farias et al., 2018; Liu et al., 2010; Anele et al.,
2018) with an expected value of 0.3 (Chin et al., 2000). Here, we used

the expected 𝐷𝐹𝑚𝑖𝑛 = 0.3 to represent the diurnal wastewater cycle for
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Fig. 4. (A) The Cub Run sewer network is located in Fairfax County, Virginia, U.S.A. (B) The sewershed is comprised of ≈10,000 sewer conduits (red lines), and its outlet (red
star) drains to the UOSA wastewater treatment plant. Other sewage networks that drain to the UOSA water reclamation facility (including the adjacent network indicated here
by black lines) were excluded from this analysis. (C) Location of the census data within the sewershed (orange points). (D) Location of the Transportation Analysis Zones (TAZ)
within the sewershed (polygons). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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pre-COVID periods. However, for COVID periods, the residential water
increased and modified the diurnal pattern, including the minimum
demand factor. Based on the observations at the outlet of the Cub Run
sewershed and using reference values from different studies (Abu-Bakar
et al., 2021; Lüdtke et al., 2021), we prescribed 𝐷𝐹𝑚𝑖𝑛 = 0.4 for COVID
conditions.

In our analysis, we define a dry period as a period with less than
3 mm of accumulated rainfall during four consecutive days. Rainfall
radar data from the Stage-IV dataset (Du, 2011) was used to define dry
nd wet weather periods within the system. This dataset is available
rom January 2004 to December 2020 with a temporal resolution of
ne hour and spatial resolution of roughly 4 km by 4 km. We assess
he performance of the SS-WFIUH by conducting two analyses. First,
e used the EPA’s SWMM model as a reference model to compare
he SS-WFIUH flow predictions during dry weather periods at the
ewershed outlet and internal locations within the sewershed. The
WMM model is a higher fidelity model that incorporates the solution
f the one-dimensional Saint Venant flow equation, resulting in a non-
inear parameterization with significantly higher computational cost.
n this case, we injected BWF and GWI flow at each node element in
he SWMM model. The BWF was estimated using the census data, and
he daily average sewage flow per residential user was calculated from
he back-calculation procedure presented for 𝐽𝐵𝑊 𝐹 . The GWI injected
t each node was proportional to the downstream conduit length, and
he sum of all the GWI input was equal to the GWI estimated from the
S-WFIUH model.
Second, we assessed the performance of the SS-WFIUH in predicting

DII at the Cub Run pump station for wet weather periods. To this
nd, We used the RTK unit hydrograph method as our reference model.
his method is widely used by practitioners and is implemented in the
WMM model under the SSOAP toolbox (Vallabhaneni et al., 2012).
n the 𝑅𝑇𝐾 method, the RDII is decoupled and later aggregated into
hree triangular unit hydrographs related to a fast, medium, and slow
8

C

esponse. Each triangular unit hydrograph is determined by three pa-
ameters 𝑅, 𝑇 , and 𝐾, for a total of nine parameters, wherein 𝑅 denotes
he fraction of rainfall falling on the sewershed that enters sewer pipes
s RDII, 𝑇 is the time to the peak value of RDII in hours, and 𝐾 is the
atio of recession time of RDII to 𝑇 (Vallabhaneni et al., 2008). We used
00 wet weather events from 2004 to 2016 for calibration and 30 wet
eather events from 2017 to 2020 for validation. For the validation, we
stimated the model parameters for both the RTK and SS-WFIUH mod-
ls using a regional regression model using the parameters obtained
uring the calibration process and the total accumulated precipitation
uring the wet weather period.

. Results and discussion

.1. Estimation of the wastewater diurnal cycle

During dry weather periods, sewage flow observations at the Cub
un sewershed outlet are characterized by an average daily flow dur-
ng weekdays and weekends of approximately 0.4m3s−1 (standard
eviation of approximately 0.12m3s−1) for the pre-COVID period and
.41m3s−1 (standard deviation of 0.12m3s−1) for the COVID period.
verall, during the stay-at-home mandate, the wastewater contribu-
ion from commercial and business activities is expected to decrease;
owever, the differences between pre-COVID and COVID periods are
elatively minor. This persistence in flow patterns can be explained
y an increase in wastewater production from residential users that
ompensates for the reduction from industrial users. Similar behavior
as been observed in other sewershed systems (Li et al., 2021). We
bserved that although the average daily sewage only increased by
.5%, the minimum sewage flow increased by 10% during COVID
onditions, going from 0.18m3s−1 for pre-COVID to 0.20m3s−1 for

OVID periods.
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Fig. 5. Average diurnal wastewater flow from observations in dry weather periods at the Cub Run pump station. Two distinctive diurnal patterns are detected: (A) Before and (B)
After the first COVID-19 lockdown that was put in place in March 2020. Panels (C) and (D) show the respective Diurnal Factors estimated by re-scaling and shifting the observed
average diurnal cycles using the procedure presented in Section 2.2.1.
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A Fourier spectral decomposition of the sewage flow observations at
he Cub Run outlet shows that there are distinctive diurnal cycles for
eekdays and weekends and also for pre-COVID and COVID conditions
Fig. 5A,B). First, let us focus on the two daily peaks of sewage flow.
or pre-COVID periods (Fig. 5A), the peaks occur at 9 am and 9pm on
eekdays and at 2 pm and 10pm on weekends. On the other hand,
or COVID conditions (Fig. 5B), the diel cycle changes, resulting in a
ater morning peak for weekdays (it shifts to 11 am) and an earlier
ight peak for the weekends (it shifts to 9 pm). The timing for the other
eaks remains the same. These differences between the pre-COVID and
OVID sewage patterns can be explained by a delayed routine, where
ypical practices of personal and domestic hygiene changed during stay-
t-home orders. Based on the back-calculation procedure presented in
ection 2.2.1, our estimate of the average hydraulic response time
for the sewershed is 𝑡ℎ = 3h. This time scale is estimated as the
ifference between the first peak of the sewage observations (11:00 am)
nd the first peak of water consumption (8:00 am) on weekdays during
OVID conditions. Similar results are obtained by using weekends or
re-COVID conditions. With this information, we calculate the typical
iurnal variation of the demand factor for pre-COVID (Fig. 5C) and
OVID (Fig. 5D) periods.

.2. Estimation of model parameters and transfer functions

We estimated SS-WFIUH parameters for dry weather periods for
oth pre-COVID and COVID periods using the procedure presented in
ection 2.4 and by using as ’’observation’’ the diurnal cycle obtained
rom the Fourier spectral decomposition of the sewage flow observa-
ions at the Cub Run. For pre-COVID periods: 𝑢 = 0.93ms−1, 𝐷 =
1.2m2s−1, 𝑄𝐺𝑊 𝐼 = 0.037m3s−1, and 𝑞𝐵𝑊 𝐹 = 54 gal day−1person−1. For
COVID periods: 𝑢 = 0.92ms−1, 𝐷 = 1.5m2s−1, 𝑄𝐺𝑊 𝐼 = 0.032m3s−1, and
̄𝐵𝑊 𝐹 = 56 gal day−1person−1. Because the uncertainty of the parameter
estimation approach depends on the number of unknown parameters,
the use of local information to constrain 𝑞𝐵𝑊 𝐹 can potentially improve
the parameter estimates, especially the one for 𝑄𝐺𝑊 𝐼 .

We performed a sensitivity analysis for the parameters 𝑢, 𝐷, 𝑄𝐺𝑊 𝐼
nd 𝑞𝐵𝑊 𝐹 by repeating the calibration process for the ten driest
eather periods observed in pre-COVID conditions. The selection of
he events was based on the lowest observed rainfall accumulation
9

p

uring two consecutive weeks. The estimated parameters for the ten
ry-weather events are shown in Fig. 6. Note that the 𝑄𝐺𝑊 𝐼 in Fig. 6A
s presented as the proportion of the total sewage flow contribution.
n general, the four parameters display low variability between the
en driest events and the diurnal cycle obtained from the Fourier
pectral decomposition of sewage flow observations, demonstrating
he calibration process’s robustness and stability. From this sensitivity
nalysis, we can also infer that the average contribution of GWI for
he ten driest weather events is around 8.2% of the total sewage flow
bserved at the Cub Run sewershed outlet.
Overall, all parameters are very similar between the pre-COVID

nd COVID periods. However, some differences are worth highlighting.
irst, during dry-weather periods, groundwater contributions (𝑄𝐺𝑊 𝐼 )
re consistently significant, representing approximately 9.4% and 7.8%
f the total sewage flow contribution for pre-COVID and COVID peri-
ds, respectively. When the average of the sensitivity analysis results
s used (from the ten driest weather events), this percentage is about
.2% for pre-COVID conditions. This statistic is vital to assess the
tructural condition of the sewer network and serves as a guide for
otential interventions to minimize extraneous groundwater flows into
he sanitary sewer system. Furthermore, this estimate of 𝑄𝐺𝑊 𝐼 provides
unique physics-based perspective by including hydrodynamics (𝑢 and
) and sewer network connectivity factors in the parameter estimation
pproach, a more robust approach than the empirical methods com-
only used in the literature (Neshaei et al., 2017; Crawford et al.,
999; Mitchell et al., 2007; Hey, Gerly and Jönsson and Mattsson,
016). For instance, it is common practice to assume that sewage
low observations during the nighttime of dry-weather periods are
ostly groundwater (US Environmental Protection Agency, 2014) or to
stimate it from natural tracers or pollutant load mass balances (Hey,
erly and Jönsson and Mattsson, 2016). The latter approach can incur
n significantly higher technical challenges and financial costs.
Second, we estimate that the proportion of average daily wastewater

er residential user is 𝑞𝐵𝑊 𝐹 = 54 gal day−1person−1 during pre-COVID
onditions. This flux increased by 3.2% during COVID conditions,
onsistent with the 2.5% increase observed for the sewage flow at
ub Run. Because we assumed that employees contribute 30% of
̄𝐵𝑊 𝐹 , the average daily sewage contribution for employees is ap-

−1 −1
roximately 16.2 gal day person . Putting this into the context of
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Fig. 6. Estimation of SS-WFIUH model parameters for the ten driest weather periods observed from 2004 to 2020. Panel (A) shows the proportion of GWI with respect to total
sewage flow, panel (B) the celerity coefficient 𝑢, panel (C) the diffusion coefficient 𝐷, and panel (D) the average daily sewage flow per residential user 𝑞𝐵𝑊 𝐹 .
o
w

national and local wastewater contribution statistics is important. We
can calculate the effective daily sewage flow per residential user within
the system by allocating the employees’ contributions to the over-
all flow being delivered to the network. In other words, this is the
flux of an equivalent system with only residential users. Given that
the system services 119,908 residential users from households and
109,617 employees (who likely contribute flux during their work hours
but do not live in the area), we can infer that on average person
living in the Cub Run sewershed contributes (54 gal day−1person−1 ×
119, 902 people+16.2 gal day−1person−1 ×109, 617 people)∕(119, 902 people)
= 68.8 gal day−1. Assuming that the proportion of water use that be-
comes wastewater is 90% (return factor of 0.9) the average wastew-
ater contribution for the US is 82 gal day−1 (Dieter et al., 2018), for
Virginia is 72 gal day−1 (Dieter et al., 2018), and for Fairfax county
is 69 gal day−1 (https://www.fairfaxva.gov/home/showdocument?id=
424, http://www.virginiaplaces.org/watersheds/WaterPlantFactSheet.
pdf, accessed 14 June 2022). The SS-WFIUH estimate of 68.8 gal day−1
is very similar when compared with the county estimate of 69 gal day−1.

Regarding the system’s transfer functions, we found that due to the
high residential density in the Cub Run sewershed, the two transfer
functions, 𝑔𝐵𝑊 𝐹 and 𝑔𝐺𝑊 𝐼 (or 𝑔𝑅𝐷𝐼𝐼 for fast response), are only slightly
different. The main difference is observed for the first peak, which
occurs around 1h for 𝑔𝐵𝑊 𝐹 and 1.5 h for 𝑔𝐺𝑊 𝐼 (Fig. 7). In general,
however, these functions can be significantly different depending on
the spatial distribution of residential users and network layout, which
is dictated by the urban planning design.

4.3. Model validation for dry periods and application of hydrograph sepa-
ration

We compared the SS-WFIUH output predictions for dry weather
events by using the Kling–Gupta efficiency (KGE), which is a measure of
the distance away from the point of the ideal model (i.e., higher-fidelity
SWMM model) performance (Gupta et al., 2009). For this comparison,
we used the SS-WFIUH to calculate the total sewage flow for all the
nodes comprising the 10,000 sewer conduits within the Cub Run sewer
10
network. To this end, for the SS-WFIUH, we adjusted the input and
transfer functions so that they include only flow entering the network
upstream of the node of interest and by keeping the model parameters
estimated using the observations at the Cub Run sewer outlet. Overall,
the SS-WFIUH model reproduces the SWMM results with KGE statistics
typically of 0.95 (Fig. 8) – a KGE of 1 indicates that the SS-WFIUH
perfectly reproduces the SWMM outputs. We hypothesize that the lower
KGEs (around 0.8) observed for some conduits (Fig. 8A,B) can be
explained by noting that in our lumped model we have represented the
hydraulics of the entire system with the two hydrodynamic parameters
𝑢 and 𝐷. The errors resulting from this simplified conceptualization
f the system will likely be most pronounced in smaller conduits
ith flow lower than 5 L s−1. Indeed an interesting topic for future

research would involve characterizing the relationship between these
‘‘equivalent parameters’’ in the lumped model and the actual spatial
variability of local hydraulic parameters such as slope, diameter, and
pipe material.

Recall that the SS-WFIUH model for dry periods only uses two effec-
tive hydrodynamic parameters (𝑢 and 𝐷) calibrated with information
at the outlet of the system. These parameters result in synchronicity
between the SS-WFIUH and SWMM results (Fig. 8C-F) and corroborate
our estimate of a 3-hr mean hydraulic response time. If this time
scale were incorrect, the model signals would have a noticeable phase
lag. Furthermore, the SS-WFIUH model reproduces the response of
the SWMM model for the internal conduits, increasing our confidence
in the spatially distributed estimates of sewage flow components. In
general, the ability of the SS-WFIUH to reproduce a significantly more
complex model with a simple linear conceptualization makes it an
appealing tool for systematic analyses of sewershed dynamics with a
minimal computational burden. This is a major benefit when compared
with models such as EPA SWMM, which are constrained by a de-
tailed description of individual sewer conduit geometry (e.g., elevation,
slope, material, and diameter), resulting in significant computational
requirements.

From the spectral analysis of dry weather periods during pre-COVID

conditions, the range between the expected hourly sewage observations

https://www.fairfaxva.gov/home/showdocument?id=424
https://www.fairfaxva.gov/home/showdocument?id=424
https://www.fairfaxva.gov/home/showdocument?id=424
http://www.virginiaplaces.org/watersheds/WaterPlantFactSheet.pdf
http://www.virginiaplaces.org/watersheds/WaterPlantFactSheet.pdf
http://www.virginiaplaces.org/watersheds/WaterPlantFactSheet.pdf
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Fig. 7. (A) Transfer function, 𝑔𝐵𝑊 𝐹 , calculated with the TAZ dataset. (B) Transfer function, 𝑔𝐺𝑊 𝐼 (or 𝑔𝑅𝐷𝐼𝐼 for fast response). The colored areas within the transfer functions
highlight the sewage contribution from the locations shown in the sewer network insets. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
and the 95% confidence interval was estimated to be 0.035 m3 s−1.
We used this value to define the magnitude of 𝛥𝑄𝐵𝑊 𝐹 for the hydro-
graph separation procedure. For illustration purposes, we performed a
hydrograph separation for three significant wet weather events (Fig. 9).
This procedure is an efficient and simple approach to identifying both
the RDII and GWI components based on a more physical representation
than traditional approaches (Neshaei et al., 2017; Crawford et al., 1999;
Mitchell et al., 2007; Hey, Gerly and Jönsson and Mattsson, 2016).

4.4. Model validation for RDII predictions

The calibration results of the SS-WFIUH model to predict RDII shows
that this model is able to satisfactory capture the RDII signature with
an average KGE of 0.66 (standard deviation of 0.2). This is significantly
better than the RTK method performance, which has an average KGE
of 0.49 (standard deviation of 0.34) (Fig. 10 Panel I). In particular, the
SS-WFIUH model has only two events with a KGE less than 0, while the
RTK method has nine events. The SS-WFIUH model outperformed the
RTK method, demonstrating that it is possible to create a more accurate
model of sewage flow dynamics in a system by considering the sewer
network and the spatial distribution of water inputs when constructing
the transfer function. This contrasts with the RTK method, which uses
an ad-hoc synthetic approach with more parameters (9 parameters)
than the used for the SS-WFIUH model (6 parameters), (𝑢𝑓𝑎𝑠𝑡, 𝐷𝑓𝑎𝑠𝑡,
𝑢𝑠𝑙𝑜𝑤, 𝐷𝑠𝑙𝑜𝑤, 𝑅𝑓𝑎𝑠𝑡, and 𝑅𝑠𝑙𝑜𝑤).

For the validation dataset, the SS-WFIUH model still outperforms
the KGE method by showing a mean KGE of 0.33 (standard deviation
of 0.3) for the SS-WFIUH model, while the RTK method has a mean
KGE of 0.13 (standard deviation of 0.44). Overall, the performance
of the models decreased on the validation datasets. This difficulty
in predicting RDII stems from various factors, including changes in
11
climate patterns over time, structural damage in sewage collection
systems, and the presence of illegal connections between storm drains
and sanitary sewers. Consequently, estimating model parameters for
RDII prediction becomes a daunting task, as they are often contingent
on uncertain variables and unknown quantities. Based on the regression
analysis to estimate model parameters for wet weather events during
the validation period, it was observed that only the parameters 𝑢𝑠𝑙𝑜𝑤,
𝑅𝑓𝑎𝑠𝑡, and 𝑅𝑠𝑙𝑜𝑤 showed a significant correlation with total rainfall
volumes (see Figures S1-S2 and corresponding text in the SI). Notably,
the parameter 𝑅𝑠𝑙𝑜𝑤 exhibited a statistically significant positive trend
over the calibration period (see SI), which may indicate that the
contribution of RDII inflow within the Cub Run sewershed is increasing
over time. The underlying causes for this result are not clear, but
could include deliberate changes in the storm and sanitary sewer infras-
tructure (e.g., related to the discharge of contaminated stormwater to
the sanitary sewer system following storm events), rising groundwater
levels in the region, and possibly infrastructure deterioration (e.g., pipe
cracks), although the sanitary sewer system is quite well maintained in
this region.

5. Limitations and future work

We focused on the parameterization of 𝐽𝐺𝑊 𝐼 and 𝐽𝑅𝐷𝐼𝐼 as a func-
tion of pipe length or contributing area; however, we envision future
implementations where other sewer conduit characteristics such as con-
duit age and material in addition to groundwater dynamics information
can be used as predictors. Furthermore, it is feasible to conceptualize
the hydrodynamic parameters 𝑢 and 𝐷 as a function of 𝑄𝐵𝑊 𝐹 , 𝑄𝐺𝑊 𝐼 ,
and 𝑄𝑅𝐷𝐼𝐼 . These could allow further improvements in the description
of the system’s residence time distribution, which is a key control in
the evolution of biochemical processes and solute concentrations within
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Fig. 8. Comparison of sewage flow outputs between the SS-WFIUH model and SWMM model for dry weather periods. Panel (A) shows the KGE of the estimated sewage flow
series at each sewer pipe by assuming the SWMM output as the reference sewage flow and the SS-WFIUH as the estimated sewage flow. Panel B shows violin plots with the KGE
aggregated into four distinctive sewage flow scales, 𝑄̄ < 5 L∕s, 5 < 𝑄̄ < 50, 50 < 𝑄̄ < 100, and 𝑄̄ > 100 L∕s. The sewage flow time series from the SS-WFIUH and SWMM at the
sewershed outlet and three other locations representing the distinctive aggregation of sewage flow within the sewer network are shown in Panels C, D, E, and F. Note that Panel
F also shows the observations from the Cub Run pump station.
Fig. 9. Hydrograph separation at the Cub Run sewershed outlet for three events (Panel
A, B, and C) by using the SS-WFIUH.
12
urban systems (Kaushal and Belt, 2012). Future efforts must explore the
correlation between flow components and the parameters 𝑢 and 𝐷.

In our testbed, we focused on hydrograph separation as a useful
application of the SS-WFIUH model. To this end, we estimated 𝑢
and 𝐷 based on sewage flow observations; however, as pointed out
by Naden et al. (1999), these parameters may be inferred from the
spatial distribution of the celerity and diffusion coefficients of indi-
vidual links (sewer conduits). The inference of equivalent parameters
from distributed parameters is imperative to bridge the convergence
from distributed models to lumped models. In particular, the use of the
SS-WFIUH may provide insights in this direction by conducting future
research in investigating the relation between lumped parameters in SS-
WFIUH and the individual parameters at each sewer conduit extracted
from distributed models such as the SWMM model.

The transfer function in the SS-WFIUH model is time-invariant, im-
plying that the spatial distribution of water users remains constant over
the domain. This is a reasonable assumption over a few years; however,
significant demographic changes can occur at the scale of decades,
resulting in substantial changes in the transfer functions. For instance,
the transfer functions for population projections (e.g., for 2100 in the
Virginia TAZ) should be adjusted to reflect the spatial patterns of
water users. This adjustment can be approximated by recalculating
the weighted width function based on the spatial distribution for the
projected water users. This is particularly interesting for urban plan-
ning purposes in light of accelerated urban growth and gentrification.
Furthermore, leveraging descriptors of the width function, (Moussa,
2008; Perez et al., 2018, 2019) could provide valuable insights into
understanding changes in sewage fluxes, especially when dealing with
the preliminary evaluation of different sewer system configurations.
Finally, future applications on the SS-WFIUH for RDII prediction should
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Fig. 10. Calibration and validation results for the SS-WFIUH model and the RTK model. Panels A, B, C, and D show 4 examples of the RDII estimations for the calibration dataset
nd Panels E, F, G, and H for the validation dataset. Panel I shows the KGE for 100 wet weather events in the calibration dataset and Panel J for 30 wet weather events for the
alidation dataset.
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xplore more explanatory variables, and not only the total rainfall
olume, to better estimate model parameters.

. Conclusions

This study presents the formulation of the Width Function In-
tantaneous Unit Hydrograph (WFIUH) to model Sanitary Sewer (SS)
ystems: the SS-WFIUH model. This is a physics-based model that
ncorporates the solution of the diffusion approximations to the Saint
enant Equations to conduct sewage flow routing within a lumped con-
eptualization of the sewershed system. The use of the SS-WFIUH model
equires the definition of the input fluxes related to Groundwater Infil-
ration (𝐽𝐺𝑊 𝐼 ), Base Wastewater Flow (𝐽𝐵𝑊 𝐹 ), and Rainfall-Derived
nfiltration and Inflow (𝐽𝑅𝐷𝐼𝐼𝑓𝑎𝑠𝑡 and 𝐽𝑅𝐷𝐼𝐼𝑠𝑙𝑜𝑤 ), the sewer network
opology and geometry. The SS-WFIUH for dry weather events only
equires two parameters to encapsulate the hydrodynamics of sewage
low, the flow celerity 𝑢, and the dispersion coefficient 𝐷. For wet
eather events, the SS-WFIUH requires four additional parameters
𝑠𝑙𝑜𝑤, 𝐷𝑠𝑙𝑜𝑤, 𝑅𝑓𝑎𝑠𝑡, and 𝑅𝑠𝑙𝑜𝑤. Using a real testbed, we showed that
he SS-WFIUH reproduces the results of the EPA SWMM model for
ry weather events with significantly less computation burden. For
et weather events, we showed the SS-WFIUH outperforms the RTK
nit hydrograph method, widely used by practitioners. Overall, we can
ummarize the main characteristics and contributions of the SS-WFIUH
odel as follows:

1. The SS-WFIUH model incorporates individual transfer functions
to represent the flow components from the Groundwater Infiltra-
tion (GWI), Base Wastewater Flow (BWF), and Rainfall-Derived
Infiltration and Inflow (RDII), with the latter divided into a ‘‘fast
response’’ and ‘‘slow response’’.
13
2. The SS-WFIUH model uses the concept of weighted width func-
tion to capture the spatial distribution of input fluxes 𝐽𝐺𝑊 𝐼 ,
𝐽𝐵𝑊 𝐹 , 𝐽𝑅𝐷𝐼𝐼𝑓𝑎𝑠𝑡 and 𝐽𝑅𝐷𝐼𝐼𝑠𝑙𝑜𝑤 within the sewershed system.

3. The SS-WFIUH for the BWF component can be easily used to
conduct hydrograph separation of sewage flow observations and
provide a robust physics-based estimation of groundwater infil-
tration in sanitary sewer systems.

We envision this model as a generic tool to understand and predict
he dynamics of sewer systems. Furthermore, it can be used as an
ngineering tool for the design of new networks and the assessment of
ew urban developments on the sewage flow dynamics. It can also serve
s a learning tool to identify sampling locations to characterize different
low components (BWF, GWI, and RDII) and contributions from water
sers (e.g., residential and non-residential), which ultimately is critical
o mitigating sanitary sewer overflows and the fate and transport of
olutes and contaminants within wastewater systems.
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