This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Game Theory in Distributed Systems
Security: Foundations, Challenges, and
Future Directions

Mustafa Abdallah
Saurabh Bagchi
Shaunak D. Bopar

| Indiana University-Purdue University Indianapolis
| Purdue University
dikar'® | Michigan State University

Kevin Chan | Army Research Lab

Xing Gao

Murat Kantarcioglu

Congmiao Li®” | U
Peng Liu™® | Penns
Quanyan Zhu

| University of Delaware

| University of Texas at Dallas
niversity of California at Irvine
ylvania State University

| New York University

Combining insights from distributed system security and game theory could effectively address security
challenges. We present foundational concepts from both fields that can be integrated to better secure
distributed systems and outline several research challenges for the community to tackle.

M any of our critical infrastructure systems and

distributed structure, face increasing levels of attacks.

personal computing systems, which have a

There has been vast research on using both game theory
and distributed system security to face these increasing
attacks. Therefore, we feel it is time to bring in the rig-
orous reasoning from game theory advanced models to
better secure such distributed systems. The distributed
system security and the game theory technical commu-
nities can come together to effectively address this chal-
lenge of securing distributed systems. In this article, we
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lay out the foundations from each domain that we can
build upon to achieve a successful integration of game
theory and distributed system security for better secur-
inglarge-scale distributed systems. We then describe a set
of research challenges for the community, organized into
three categories—analytical, systems, and integration
challenges, each with “short-term” time horizon (two to
three years) and “long-term” (five to 10 years) items.

Introduction

Today’s distributed systems face sophisticated attacks
from external adversaries where the attacker aims to
breach specific critical assets within these systems.
Such attacks pose a serious danger to large-scale critical
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infrastructure, such as the massive supply chain attack
on SolarWinds in 2020 and the Colonial Pipeline ran-
somware attack in 2021. Such attacks have motivated
several attempts to improve the cybersecurity of these
systems.7

In response to such attacks, there has been signifi-
cant work in understanding vulnerabilities in large-scale
distributed systems and putting together technological
patches to address specific classes of vulnerabilities.
However, the works often lack an understanding of the
impact of cascading attacks or of mitigation techniques
on the security of the overall system. Due to the large
legacy nature of many distributed infrastructures and
budgetary constraints, a complete rearchitecting and
strengthening of the system is often impossible. Rather,
rational decisions must be made to strengthen parts of
the system, taking into account the risks and the inter-
dependencies among the assets. In this context, sig-
nificant research has investigated how to better secure
these systems, with game-theoretical models receiv-
ing increasing attention. Such models have shown the
power to capture the interactions of different players
(strategic attackers and defenders) in different settings
(see the survey'?)

While researchers have studied static game theory
extensively for several decades, large-scale distributed
systems present critical challenges that preclude the
direct application of existing theory. Specifically, there
is a need for new techniques to account for both the
interdependencies and the dynamical nature of the sub-
systems. Furthermore, some of these dynamical subsys-
tems may be complex in their own right (for example,
a perception system that employs multimodal sensors)
and may have the limitation of being represented only by
simulation models. Thus, advanced game theory mod-
els can be proposed to better model attacker/defender
realistic scenarios, where such modeling should be con-
nected more to distributed system security to find new
insights into securing distributed systems.

This problem context leads to four overarching
questions that form a starting point for enhancing the
usage of game theory for distributed system security.

1. Can the security community extend traditional
game theory to develop tractable analysis and
design techniques that can be applied to secur-
ing large-scale and interdependent distributed
systems?

2. What are the main foundations in the game theory and
distributed system security literature that can help us
achieve such a goal of securing distributed systems?

3. What are the advantages and disadvantages of dif-
ferent game-theoretic models when applied to dis-
tributed systems security?
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4. What are the main challenges and related research
directions for integrating game theory for securing
distributed systems?

In this article, we present a proposed vision for
answering these questions. In particular, we organize
our article as follows. We first lay out the foundations
that the research community can build on when apply-
ing game theory concepts to enhance distributed system
security. We then present the main challenges for such a
synthesis, which we categorize into 1) analytical direc-
tions, 2) systems directions, and 3) integration direc-
tions. Figure 1 provides the main flow of this article.

Foundations: Build on Them

‘We have significant foundations on the topics of distrib-
uted systems security and game-theoretic security that
we should build upon. Here, we survey the notable foun-
dations categorizing them into two—game-theoretic
security and distributed systems security.

Game-Theoretic Security

There have been notable successes in developing and
applying game theory for the security of distributed sys-
tems.! This has been used in the context of proactive or
reactive and fixed or adaptive schemes. The most com-
monplace game-theoretic model for security is that of
two-player games, where a single attacker attempts to
compromise a system controlled by a single defender.
Game-theoretic models have been further used to study
the interaction between (multiple) defenders and (mul-
tiple) attackers [for example, analyzing distributed denial
of service attacks (DDoSs) and the security of cyberphys-
ical systems (CPSs)]. The literature on game-theoretic
models (and their unique differences) for different secu-
rity scenarios can be categorized as follows.

Static and Complete Information Games. The static and
complete information two-player games are benchmark
security models that capture the incentives or objectives of
the players as well as their constraints. The game assumes
that the players have a common knowledge of the game
and that it does not change over time. The Nash equi-
librium of the game can be interpreted as the outcome
of repeated plays between the two players or the conse-
quence of homogeneous pairwise interactions of a large
population. The analysis of this class of games provides a
quantitative approach to assess risks and to design mitigat-

1 are two

ing mechanisms. FlipIt games and Blotto games
notable games that have been widely used in understand-
ing the competitive scenarios of resource takeover and
subjugation in CPSs and military applications. The Nash
equilibrium is the traditional concept of capturing efficient

solution(s) of complete information games. For instance,
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the Nash equilibrium has helped researchers understand
botnet defenses.* In particular, this line of work has pro-
vided a comprehensive game-theoretical framework that
models the interaction between the botnet herder and the
defender group (network/computer users).

The Nash equilibrium showed the effectiveness of
available defense strategies and control/strategy switch-
ing thresholds, specified as rates of infection. The two
Nash equilibria obtained are either 1) the defender
group defends at a maximum level while the botnet
herder exerts an intermediate constant intensity attack
effort or 2) the defender group applies an intermedi-
ate constant intensity defense effort while the botnet
herder attacks at full power. This model also showed
that integrating game-theoretical analysis with suscep-
tible, infectious, or recovered epidemic models could
be useful in understanding system behavior during bot-
net attacks. Overall, although complete information
game-theoretic models for security games enable proac-
tive security planning and predicting worst-case attack
scenarios on these distributed systems, actual conflicts
are dynamic and involve incomplete information for
one or both players, which are discussed next.

Imperfect/Incomplete Information Games. These are
games in which at least one player (defender or
attacker) does not have complete information. This
may be due to lacking complete knowledge of the sys-
tem or to imprecise sensing. To analyze multistage

multihost attacks that may be launched on networks, a
defender needs to model long sequences of actions that
can circumvent the system defenses.> These actions
lead to policy spaces that grow exponentially with the
number of attack stages, especially under partial/imper-
fect information. Monte Carlo sampling can confine the
search to a decision tree of reduced size by guessing the
other player’s moves and then using a conventional min-
max search to determine the best strategy.!?

One promising line of work for games with imper-
fect/partial information is the use of deception (see a
recent survey>®) The key idea is for one or both players
to synthesize new actions/policies that leverage limita-
tions induced by the belief of the opponent. Notable
classes of problems that fall within this class are signal-
ing games that model information corruption, Bayesian
games that model uncertainty in an opponent’s type/
cost, and asymmetric constraints that enforce stealth and
partially observable stochastic games. Akin to general
imperfect information games, the complexity of solving
deception problems grows exponentially with the num-
ber of stages, beliefs, and actions.

Drawing inspiration from robust optimization,
the application of randomized sampling methods has
proven effective in computing policies that are robust
security measures against adversaries employing ran-
domized strategies.’ These methods utilize randomized
sampling techniques to explore the strategy space to
choose effective strategies with high confidence.

,/"Game-Theoretic Modeling Foundations
Static and Complete Information Games
Imperfect/Incomplete Information Games
Dynamic Games

Sequential Games

Simultaneous Games

moow>

,,"'Distributed Systems Security Foundations
Detection

Diagnosis

Containment

Response

Real-World Applications

moow>

Challenges and Future Research Directions

I
I

L

1. Analytical Directions
A. Personalized Learning
B. Incorporating Biases
C. Scalability and Tractability
D. Integrating Machine Learning and Game
Theory to Tackle “Unknown-Unknowns”

2. Systems Directions
A. Resource-Aware Defenses
B. Security Guarantees as a Dynamic Function
C. Security Design in the Tradeoff Space

3. Integration Directions
A. Distributed Systems Security in CPS Domain
B. Continuous Verification
C. Secure Distributed Applications with
Partially Trusted Data Sources !
D. Integration of Game Theory and ML ;
E. Integrated Evaluation Environments

Figure 1. An overview of the flow of this article. We first show the main foundations for game theory modeling and
distributed systems security. We then outline the research challenges and future directions that will need the integration of
the advancements of the analytical side and systems side for securing distributed systems.

Privacy
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Opverall, leveraging incomplete information game-
theoretic models for distributed systems security cap-
tures the uncertainty about the adversary’s actions and
payoffs, along with the actions of other stakeholders,
which can give a more accurate quantitative estimation
of the security level of the distributed system. However, if
the player’s information evolves over time, then they are
more effectively modeled as dynamic games.

Dynamic Games. These are games in which the infor-
mation, the players’ actions, or the payoffs vary over
time. One promising line of work has been in lever-
aging reinforcement learning (RL). Examples of such
usage of RL are the malicious falsification of cost sig-
nals that are used to mislead agent policy.® Another
example is applying RL and the infinite-horizon
semi-Markov decision process to characterize a sto-
chastic transition and the sojourn time of attackers in
a honeynet. Another line of work is to model distrib-
uted systems using hybrid input-output automaton.
This can help in characterizing the continuous time
evolution of the security game.

In contrast to static game-theoretic models, these
dynamic games capture the realistic evolution of vul-
nerabilities and adversary actions, which can lead to the
effective usage of learning-based techniques for guiding
human (or automated) decision making toward better
security policies for securing current distributed sys-
tems that have such a dynamic nature. However, if there
is a natural order in the conflicts that requires one player
to play first or if the actions of both players are not vis-
ible to each other until a specified time, then such situ-
ations are more effective when modeled as sequential
or simultaneous games, respectively, as discussed next.

Sequential Games. Game theory for security has been
found to be tractable when considering sequential
attacks, through Stackelberg security games. In these games,
the defender moves first and allocates their resources to
the assets under their ownership. Then, the attacker can
observe the allocations made by the defender to each
asset, after which the attacker targets part (or all) of the
assets. Such games may incorporate real-time observa-
tions and consideration of nonmyopic players. In real-
ity, many such games may be partially observable as the
actions of a player may not be visible to other players (for
example, an attacker may conceal their steps).

There have been several applications that have ben-
efited from Stackelberg security games for distributed
systems, as diverse as countering man-in-the-middle
attacks and screening airport passengers through-
out the United States.!® The sequential order in these
games also identifies realistic cases where adversar-
ies attack distributed systems (in firms or government
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infrastructure) after the security decision-makers invest
in securing these systems.

Simultaneous Games. A particular class of simultaneous-
move games involving attackers and defenders (where
the players have to choose their strategies simultane-
ously, without first observing what the other player has
done) has been studied in various contexts. For example,
the Colonel Blotto game is a useful framework to model
the allocation of a given number of resources on differ-
ent potential targets (for example, battlefields) between
the attacker and the defender. Specifically, Schwartz et
al.!3 proposed a solution for the heterogeneous Colo-
nel Blotto game with asymmetric players (that is, with
different resources) and with many battlefields that can
have different values. While Colonel Blotto games typi-
cally involve deterministic success functions (where
the player with the higher investment on a node wins
that node), other work has studied cases where the win
probability for each player is a probabilistic (and contin-
uous) function of the investments by each player. Over-
all, simultaneous-move games arise in military-based
distributed system security applications. Furthermore,
simultaneous-move games may be a better way to model
real-world situations in which attackers may choose to act
without acquiring costly information about the defense
security strategy, particularly if the security measures are
difficult to observe (for example, undercover officers,
strong privacy measures, and nonavailable insiders).

Advanced Games Examples for the Security of Distrib-
uted Systems. Game-theoretic models have also been
used to study DDoS attacks, critical infrastructure
security, censorship-resilient proxy distribution, wire-
less network security, and protecting computer net-
works from cascade attacks (see the survey!?) Further,
Abdallah et al.? studied mechanism design to incentiv-
ize defenders toward beneficial security investments in
distributed systems.

Summary of Game Theory Literature on Distributed
Security. Figure 2 provides an overview of the litera-
ture on game-theoretic models for distributed systems
security. We highlight the advantages and disadvantages
of different game-theoretic models when applied to
distributed systems security and discuss the potential
applications of each model in the various research direc-
tions outlined in our vision.

Distributed Systems Security
One way to organize the foundations that have been
developed here is through each step of the workflow for
distributed systems security, namely, detection, diagno-
sis, and containment and response.
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Detection. This is a mature area of work in which there
is influential work on collaborative intrusion detection
using multiple sensors placed in a distributed system.
This line of work has contributed algorithms to determine
where to place the sensors and how to integrate outputs
from multiple sensors to devise an integrated decision on
the detection of an attack. A survey work on this topic
is by Vasilomanolakis et al.'® This area saw some of the
early applications of machine learning (ML) to security.
In the context of game theory, game-theoretic analysis
has helped develop various intrusion detection systems
for distributed systems to increase detection accuracy
with reduced cost. The game-theoretical approach has
also been used for mitigating edge DDoS attacks.'?

Diagnosis. This has contributed algorithms to identify
the root cause of the attack. This was initially substan-
tially rule based, of the form if metric A > threshold 7,
and B < threshold 7,, then A is the root cause.? Later,
foundational work was done on this topic by using ML,
such as causal theory.!” One significant challenge that
has been successfully addressed is how to maintain effec-
tive diagnosis capabilities in security algorithms when
the interactions and connections between elements
within a distributed system are constantly changing.

Containment and Response. This concept has had nota-
ble success in the topic of moving target defense, which
seeks to change some parameters of the defended sys-
tem, such as using IP addresses to thwart an adversary.
This can be done proactively as a preventive measure in
response to a detected threat.!#

The integration of game analysis for critical infra-
structure protection has proven highly successful,
effectively encompassing containment, response, and
recovery measures.

Applications: CPS and Critical
Infrastructure

Security games have played a crucial role in address-
ing the resilience and interdependence of critical
infrastructures, including our nation’s legacy CPSs,
such as power grids,? transportation,® and manu-
facturing systems. With the increasing connectivity
of these systems, they face a larger attack surface.
The application of game-theoretic methods is vital
in developing strategic mechanisms for detection,
diagnosis, containment, and response, ensuring
their resilience. Having outlined the foundational
aspects of game-theoretic models and distributed
systems security, we now turn our attention to the

Game Theory for Distributed Security Literature

Game Model

Pros (+)

Cons (-)

Directions

(a) Interdependent Security Games [Ref. no. 37 in Laszka et. al. 15]
(b) Insurance-based Games [Ref. no. 37 in Abdallah et. al. 2022]

(c) Information Security Games [Ref. no. 25 in Laszka et. al. 2015]
(d) Blotto games for CPS [Robinson 2013, Laszka et. al. 2015]

(e) Botnet Defenses using Game Theory [Bensoussan et. al. 2013]
(f) Mechanism-based Security Games [Abdallah et. al. 2022]

Static and Complete
Information Games

- Equilibrium rigor analysis
of costs of security risks

- Mechanism design for
optimal defense method

- Exploration of effective
defense/control strategy

- Lack of dynamic interactions

- Limited learning by players
and lack of adaptation

- Non-unique equilibrium

- Ignoring private information

- Limited real-world scenarios

- Personalized
learning

- Evaluation
environments

- Security of
distributed CPS

(a) Incomplete Information Security Games [Alpcan & Basar 2009]

(b) Large Incomplete-information Games [Sandholom 2015]

(c) Deception in Incomplete Inform. Games [Zhu et. al. 2021]

(d) Random Sampling in Zero-sum Games [Shaunak et. al. 2013]

(e) Probabilistic Security Games [Chapter 5 in Alpcan and Basar
2010]

Imperfect/Incomplete
Information Games

- Bayesian equilibrium
analysis of all defenses

- Real-world scenarios for
different attack strategies

- Diverse sampling method
for exploring strategies

- Higher solution complexity
- Lack of proper coordination
among different defenders
- No guarantee of equilibrium

- High uncertainty levels
- Limited learning scenarios

- Incorporating
attack biases

- Scalability and
tractability

- Integrating ML
and game-theory

(a) Dynamic Security Games [Chapter 3 in Alpcan and Basar 2010]
(b) Selfish investments in dynamic network security Games
[Ref. no. 11 in Laszka et. al. 2015]
(c) Reinforcement learning in Security Games [Yunhan et. al. 2019]
(d) Moving Target Defense [Ref. no. 61 in Sengupta et. al. 2020]
(e) Learning Attacks in Distributed Systems [Reference no. 25 in
Abdallah et. al. 2022]

Dynamic Games

- Varying strategies and
players payoffs over time
- High prospect of guiding
security decision-makers
- Usage of diverse set of
learning methods(RL, ML)
- Risk analysis simulations

- Computational complexity

- Changing equilibrium(s)

- Accurate modeling of the
evolution of attack actions

- Quantifying learning levels

- Limited-realistic application

- Real security losses of trials

- Personalized
learning

- Integrating ML
and game-theory

- RL defenses

- Partially trusted
data sources

(a) Stackelberg Security Games [Sinha et. al. 2018]

(b) Sequential Games for Cyber-physical Systems Security
[Ref. no. 170 in Humayed et. al. 2017]

(c) Sequential one-defender-n-attacker Games [Ref. no. 66 in

Sequential Games

- Capturing observations

- Non-myopic players

- An accurate modeling of
maximum attack gains

- Concealing actions problem

- Information assumptions

- Lack of assumed strategic
commitment by the follower

- Security of
distributed CPS

- Scalability and

Abdallah et. al. 2022] - Realistic sequential order | - Stackelberg Equilibria issues tractability
(d) Sequential Security Games [Chapter 2 in Alpcan & Basar 2010] in security applications - Complex analytical solutions
(a) Heterogeneous Colonel Blotto Game for Network Security Simultaneous Games | - Military-based security - Mapping of all possible - Incorporating

[Schwartz et. al. 2014]
(b) System Reliability and Free Riding [Last Ref. in Laszka et. al. 15]
(c) Behavioral Interdep. Security Games [Abdallah et. al. 2020]

- Asymmetric resources
- No need for observing the
actions (lower costs)

equilibria to real scenarios
- Lack of defender’s control
- Possible colluding attackers

defense biases
- Resource aware
defenses

Figure 2. A summary of the relevant literature on game-theoretic models for distributed systems security. We show the pros and cons of various
game-theoretic models as applied to distributed systems security and the prospective usage of each model in the different research directions

outlined in our vision.
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key challenges faced by the research community and
provide prospective research directions.

Challenges Ahead

Here, we summarize the technical challenges to improve
the security landscape of distributed systems. We struc-
ture our discussion into challenges that are on the analyti-
cal directions and systems directions and those that involve a
combination of the two, called integration directions. The
orthogonal dimension on which we structure these chal-
lenges is the time horizon to solve them, with the short

term indicating two to three years and the long term indi-
cating five to 10 years. Figure 3 summarizes the main chal-
lenges and future research directions for such integration.

Analytical Directions

Personalized Learning (Short Time Horizon). Different
actors (let’s say different defenders and adversaries)
learn differently (as in stochastic learning) and at differ-
ent rates. The learning happens for human actors as well
as for machines (in an ML context). This learning can
build on the literature on dynamic games, discussed in

1. Game Theory for Distributed Systems Security (Analytical Directions)
A. Personalized Learning (Short Term) T: Different Learning Rates of Defenders and Adversaries
\Asymmetric Hardware Capabilities Among the Players
Cooperation (Defenders) and Collusion (Adversaries) Modes
) :

B. Incorporating Biases (Short Term) Different Human Cognitive Biases (Behavioral Economics)

Information Sharing and Human Errors

C. Scalability and Tractability (Long Term Different Scales of Systems and Volumes of Vulnerabilities

Handling Realistic Attack Models or Realistic Incidents

T: Incorporating Stochastic Behavior of Attacks
Predicting Zero-Day Attacks and Black-Swan Events
2. Game Theory for Distributed Systems Security (Systems Directions)

T: Different Attributes and Capabilities of Systems’ Nodes
Different Costs of Different (Real-Time) Attacks

T: Capturing System State and Security Guarantees
Level of Collusion Among Different Attackers

D. Integrating ML and Game Theory (Long Term)

A. Resource-Aware Defenses (Short Term)
B. Security Guarantees Dynamic Function (Short Term)

C. Security Design Trade-off Space (Long term) T: Security Versus Performance and Resource Usage

XAl for End-User Understanding

_________________________________________________________________________________________________

3. Game Theory for Distributed Systems Security (Integration Directions)

A. Distributed Systems Security in CPS (Short Term) T: Multiple Stakeholders and Interdependency
Difference Between Physical and Cyber Nodes
Y: Validation of Results Under Attacks and Perturbations
Different Testing Modes (For Example, Incremental Versus Batch)

I

I

I

I

I

I

I

i

B. Continuous Verification (Short Term) 1
i
I
T: Stochastic and Adversarial Input Data E
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Streaming Nature of Data

D. Integration of Game Theory and ML (Long Term) Y: Learning Evolving Interactions and Actions of Players
Modeling of Different Factors (For Example,

Information, Biases)

E. Integrated Evaluation Environments (Long Term) T:Availability of an Integrated Evaluation Testbed

Educating Policymakers and Demonstrating Artifacts

1
1
1
I
I
I
1
1
1
I
I
I
1
1
:
I
: C. Distributed Applications with Partially Trusted Data (Long Term)
1
1
I
I
I
1
1
1
I
I
I
1
1
1
I
I
1

Figure 3. A timeline overview of research challenges and future research directions for both the analytical side and systems side (upper part)
along with possible research directions for integrating both sides (lower part). XAl: Explainable Al.
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the “Dynamic Games” section. Another form of hetero-
geneity that comes in is asymmetric capabilities among
the various players; for example, some defenders have
access to assets with a trusted hardware environment,
like ARM’s TrustZone or Intel's SGX. The personal-
ization of the learning must also be able to accommo-
date partial cooperation (among defenders) or partial
collusion (among adversaries) (building on literature
on incomplete information games, discussed in the
“Imperfect/Incomplete Information Games” section.)
in addition to the formulation of complete coopera-
tion or collusion (building on the “Static and Complete
Information Games” section).

Incorporating Biases and Incomplete Information (Short
Time Horizon). For the learning, one has to incorpo-
rate incomplete information sharing among the actors
(building on prior literature on incomplete informa-
tion games, discussed in the “Imperfect/Incomplete
Information Games” section.). For human learning,
one must also incorporate cognitive biases among the
human players. Behavioral economics has shown that
humans consistently deviate from these classical mod-
els of decision making; for example, humans perceive
gains, losses, and probabilities in a skewed and non-
linear manner.® We have done some nascent work
applying behavioral game theory to the security of dis-
tributed interdependent systems.? The main point here
is to explore the effects of such behavioral biases on the
security policies of human decision-makers and their
effect on securing distributed systems. One example
in the related literature is that behavioral human secu-
rity decision-makers may allocate part of their limited
security resources to noncritical parts of the distrib-
uted system. The key insight is that one can provide the
appropriate incentives to reduce the biases and encour-
age cooperation among even biased defenders. Such
bias incorporation would build on prior simultaneous
security games for distributed systems security dis-
cussed in the “Distributed Systems Security” section.
Such cooperation is in general a more secure strategy
than independent decision making. A related theme
here is trust building among human agents in multia-
gent learning. This is to counter the natural tendency
for each player to explore and exploit their own strat-
egy spaces (for example, see (a) in “Dynamic Games”
in Figure 2).

Scalability and Tractability (Long Time Horizon). A
well-known challenge with applying game-theoretic
formulation to the security of distributed systems is
the scalability and the tractability of the solution (par-
ticularly for imperfect information games and sequen-
tial games discussed in the “Imperfect/Incomplete

Privacy

Information Games” section.). Scalability implies scal-
ing to large numbers of actors, large amounts of data,
or large volumes of interaction among the actors. Trac-
tability implies being able to handle realistic attack
models or realistic workload incidents on the protected
system. To ease this challenge, we must develop sound
approximations of the game-theoretic formulation, for
example, leveraging sampling techniques discussed in
the “Imperfect/Incomplete Information Games” sec-
tion. This should allow one to produce bounds for
best-case/worst-case outcomes. As an example, one can
use scalable techniques from epidemic theory to ana-
lyze the effect of cascading attacks while accommodat-
ing the case of large numbers of players.

Integrating ML and Game Theory to Tackle “Unknown-
Unknowns” (Long Time Horizon). The game-theoretic
formulations are often rigidly deterministic in nature;
for example, a specific deterministic action is coded in
for a particular state. The open question is: Can ML
be integrated with game theory and thus incorporate
stochastic behavior? The best candidate game for that
direction is dynamic games, discussed in the “Dynamic
Games” section. This is important as failures and
attacks are inherently stochastic in nature. The core
challenge here is that ML methods can achieve accurate
predictions only if they have been trained with the right
set of examples. Security problems such as zero-day
attacks remain extremely challenging because of the
lack of the appropriate types and numbers of examples
until recently. The key question to ask here is: How can
a defense scheme be resilient to unanticipated attacks
(also known as black-swan events)?

Systems Directions
Resource-Aware Defenses (Short Time Horizon). Dif-
ferent nodes have different capabilities and available
resources, and the system should be able to calibrate
the defense mechanism using node-specific attributes.
Some of these node-specific attributes will be static and
unchanging, such as the intrinsic hardware capability
of the node (which can be captured efficiently using
static and complete information games discussed in the
“Static and Complete Information Games” section.). In
contrast, some attributes will be dynamic, such as the
current battery level on the node (which is better cap-
tured using dynamic games, discussed in the “Dynamic
Games” section.). The cost of an attack may also vary;
for example, the cost to corrupt data may be higher if
there is some security protection overlaid on the data.
Compared with traditional defense mechanisms,
which could be slow due to the lack of awareness of the
available resources and capabilities for different nodes,
game-theoretic approaches can better allocate the
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limited resources of each node to balance the defense
tasks and take timely action. This is particularly impor-
tant for critical infrastructure security.

Security Guarantees as a Dynamic Function (Short Time
Horizon). The security guarantees may, under certain
situations, be a function of the current system state. As
an example, under this regime, the guarantees could be
a function of the number and the capability of attack-
ers and defenders rather than an absolute. Thus, the
security guarantees that the system can provide are a
dynamic property varying with the system state. For
example, hardware degrades, and the software ecosys-
tem changes over time. The guarantees could also be a
function of the level of collusion among attackers, for
example, non-Byzantine or Byzantine attackers (which
can be modeled by imperfect information games dis-
cussed in the “Imperfect/Incomplete Information
Games” section. ).

Designing for Security in the Tradeoff Space (Long Time
Horizon). A radical design principle would be to design
for security in the tradeoff space between security on
the one hand and performance and resource usage on
the other. For example, the security design may use
hardware-level virtualization, when available, rather
than (software) containers, the former providing stron-
ger isolation and greater protection against side-channel
attacks. This direction can build on the literature on
containment and response, discussed in the “Contain-
ment and Response” section. Suppose one can design
specialized functions, for example, specialized to the
resource available at a node. In that case, this has the
added benefit of reducing the attack surface, making
debugging easier and reducing consumed resources.

The security guarantees must be clearly delineated
as a function of the performance and the resource
usage so that the end user can understand the guaran-
tees they are getting. Alternately, in the case of auto-
matic composition with other software packages, it
becomes clear what security guarantees are in effect in
the composed system.

Integration Directions

Security of Distributed Systems in CPS Domain (Short
Time Horizon). To secure CPSs, there are several unique
aspects that we need to consider. These are prototypical
interdependent distributed systems, often with multiple
stakeholders as owners. The nodes are embedded in the
physical environment and are subject to environmen-
tal effects, which contribute to the difficulty of secur-
ing them. For example, it is often difficult to tell apart
a node malfunction due to the environmental effects of
a node compromise. Further, some parts of the system
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are opaque to defenders as they are developed by an
external party. Consequently, security mechanisms that
rely on the (fine-grained) observability of the events
happening in the software stack are out of bounds. In
this context, sequential games and complete informa-
tion games have a strong foundation to build on for
these challenges (see related works in Figure 2).

Continuous Verification (Short Time Horizon). This
topic needs to answer the question: Are our models and
practical software instantiations generating valid results
even under attacks and perturbations? This should hap-
pen continually rather than in batch mode as is typically
done today, when verification is used at all. The contin-
uous verification should happen as the system processes
inputs and generates outputs during its operation. This
could use sparse human feedback online, that is, with-
out putting undue cognitive burden on the user. Exist-
ing methods for incremental verification/testing would
be useful for this challenge,'® as would be recent prog-
ress on the verification of highly nonlinear ML mod-
els.!? This continuous verification would be based on
dynamic games that can efficiently model this progres-
sive verification setup.

Secure Distributed Applications With Partially Trusted
Data Sources (Long Time Horizon). The overarching
question that we need to answer is whether we can build
secure distributed applications when the input data are
only partially trusted. This is particularly important for
the significant class of systems that are stochastic and
data dependent in nature. The data may be streaming,
rather than at rest, adding to the challenge of verify-
ing the data. The nodes comprising the distributed
system are heterogeneous (as argued in the “Simulta-
neous Games” section) in terms of resources, includ-
ing secure hardware and access to trustworthy data
sources. Finally, trust in data is a dynamic property,
increasing, for example, when there has been success-
ful validation of data and decreasing when there is a
detected attack. This challenge can benefit from work
on causal reasoning in dynamic systems, as outlined in
the “Dynamic Games” section.

Integration of Game Theory and ML (Long Time Horizon).
The grand open question here is: Can we, in a princi-
pled manner, integrate game theory and ML to secure
distributed systems? In such integration, we must be
cognizant that there can be multiple players (tens to
hundreds) in terms of attackers and defenders. The
interactions and actions may evolve over time,2? neces-
sitating learning rather than static spaces for actions and
rewards, as is typical today. Dynamic games are the best
candidates to tackle such integration challenges.
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There may also be partial information sharing
among defenders, asymmetric information between
attackers and defenders (captured by imperfect infor-
mation games discussed in the “Imperfect/Incomplete
Information Games” section), and cognitive biases
among players. A subset of these factors may be relevant
in a specific application context, but the framework and
the algorithms should be able to encompass them. One
direction could be to leverage ML models to learn the
approximate utility functions of the participants by ana-
lyzing the past behavior data. ML models can also be
used to learn approximate best response strategies when
solving the game-theoretical model is intractable (for
example, Wu et al.'$)

Using Game Theory to Gain a Better Understanding of RL
Defenses (Long Time Horizon). RL techniques are being
increasingly used to respond to continuous probes (for
example, heartbeat requests) to exploit some vulnerabil-
ity, like the HeartBleed OpenSSL vulnerability and lat-
eral movement attempts. Hence, the following research
questions become important: Do the “game plays”
between the attacker and the corresponding RL agent
converge to a certain notion of equilibrium? And if so,
how soon? A clear answer to these questions, which will
build on dynamic games from game theory foundations
and detection from distributed systems security litera-
ture, helps system defenders discover better RL-based
defenses against attacks.

Integrated Evaluation Environments (Long Time Horizon).
The availability of an integrated evaluation environ-
ment (synonymous with a testbed) would be important
for the community to evaluate if we are making progress
toward the hard security goals. These testbeds across
application domains will have two parts; one will pro-
vide application-generic functionality, and the other
will be specific to the application domain. The desider-
ata for testbeds will be that they will allow for the injec-
tion of various types of attacks, the creation of different
kinds of players (with the heterogeneous characteris-
tics mentioned earlier in the “Analytical Directions”
section), and the measurement of a diversity of metrics
of interest. Such testbeds would be important for edu-
cating policymakers in addition to their value in dem-
onstrating research artifacts. The acquired education
may help policymakers inform what kinds and degrees
of security investments should be made to different
parts of an interconnected system to reach a desired
level of security. This will make our critical infrastruc-
ture more secure.

In summary, our suggested research directions for
each side (game theory side and distributed systems
security side), along with the integration of both sides,

Privacy

can help in the better development of tractable and
practical methods for securing distributed systems,
which would represent a consequential advancement
for our technical community and our society broadly.

M any of the critical infrastructure systems that

we rely on as well as personal computing sys-
tems are structured as distributed systems. Take, for
example, from the large end of the spectrum—trans-
portation, power grid, and financial infrastructures—to
the personal end of the spectrum—cooperating per-
sonal computing and Internet of Things devices. As
the attack surfaces for such systems become larger and
the sophistication and the incentives for attacks against
them increase, it is time to usher in rigorous reasoning
to secure such systems. At the same time, the rigorous
analytical foundations need to be made scalable and
tractable to apply to these real-world large-scale appli-
cations under realistic resource and timing constraints.

In this context, the technical themes of the security
of distributed systems and game theory applied to secu-
rity have much to contribute to each other. We trust that
the two vibrant communities will continue the process
of working together for better securing distributed sys-
tems. In this article, we have laid out a set of foundations
that will serve as useful starting points for our journey
plus a set of open research challenges that the commu-
nity will hopefully take up.

The challenges and research directions outlined in
this vision article will help toward the ultimate goal of
practical and secure distributed systems. Our broad
vision is twofold and applies to distributed systems
both at work and in our personal lives. First, we will
have a clear understanding of their security properties
so that we can decide the level of trust that is warranted
in each. Second, such reasoning can be done in a sys-
tematic manner, without having to perform one-off rea-
soning for each system. m
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