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Combining insights from distributed system security and game theory could effectively address security 
challenges. We present foundational concepts from both fields that can be integrated to better secure 
distributed systems and outline several research challenges for the community to tackle.

M any of our critical infrastructure systems and 
personal computing systems, which have a 

distributed structure, face increasing levels of attacks. 
There has been vast research on using both game theory 
and distributed system security to face these increasing 
attacks. Therefore, we feel it is time to bring in the rig-
orous reasoning from game theory advanced models to 
better secure such distributed systems. The distributed 
system security and the game theory technical commu-
nities can come together to effectively address this chal-
lenge of securing distributed systems. In this article, we 

lay out the foundations from each domain that we can 
build upon to achieve a successful integration of game 
theory and distributed system security for better secur-
ing large-scale distributed systems. We then describe a set 
of research challenges for the community, organized into 
three categories—analytical, systems, and integration 
challenges, each with “short-term” time horizon (two to 
three years) and “long-term” (five to 10 years) items.

Introduction
Today’s distributed systems face sophisticated attacks 
from external adversaries where the attacker aims to 
breach specific critical assets within these systems. 
Such attacks pose a serious danger to large-scale critical 

Game Theory in Distributed Systems 
Security: Foundations, Challenges, and 
Future Directions 
Mustafa Abdallah  | Indiana University-Purdue University Indianapolis
Saurabh Bagchi  | Purdue University
Shaunak D. Bopardikar  | Michigan State University
Kevin Chan | Army Research Lab 
Xing Gao  | University of Delaware
Murat Kantarcioglu  | University of Texas at Dallas 
Congmiao Li  | University of California at Irvine 
Peng Liu  | Pennsylvania State University 
Quanyan Zhu  | New York University

Digital Object Identifier 10.1109/MSEC.2024.3407593

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on September 09,2024 at 10:59:29 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-9554-9260
https://orcid.org/0000-0002-4239-5632
https://orcid.org/0000-0002-0813-7867
https://orcid.org/0009-0000-2574-029X
https://orcid.org/0000-0001-9795-9063
https://orcid.org/0000-0003-2969-4125
https://orcid.org/0000-0002-5091-8464
https://orcid.org/0000-0002-0008-2953


www.computer.org/security� 3

infrastructure, such as the massive supply chain attack 
on SolarWinds in 2020 and the Colonial Pipeline ran-
somware attack in 2021. Such attacks have motivated 
several attempts to improve the cybersecurity of these 
systems.7

In response to such attacks, there has been signifi-
cant work in understanding vulnerabilities in large-scale 
distributed systems and putting together technological 
patches to address specific classes of vulnerabilities. 
However, the works often lack an understanding of the 
impact of cascading attacks or of mitigation techniques 
on the security of the overall system. Due to the large 
legacy nature of many distributed infrastructures and 
budgetary constraints, a complete rearchitecting and 
strengthening of the system is often impossible. Rather, 
rational decisions must be made to strengthen parts of 
the system, taking into account the risks and the inter-
dependencies among the assets. In this context, sig-
nificant research has investigated how to better secure 
these systems, with game-theoretical models receiv-
ing increasing attention. Such models have shown the 
power to capture the interactions of different players 
(strategic attackers and defenders) in different settings 
(see the survey10)

While researchers have studied static game theory 
extensively for several decades, large-scale distributed 
systems present critical challenges that preclude the 
direct application of existing theory. Specifically, there 
is a need for new techniques to account for both the 
interdependencies and the dynamical nature of the sub-
systems. Furthermore, some of these dynamical subsys-
tems may be complex in their own right (for example, 
a perception system that employs multimodal sensors) 
and may have the limitation of being represented only by 
simulation models. Thus, advanced game theory mod-
els can be proposed to better model attacker/defender 
realistic scenarios, where such modeling should be con-
nected more to distributed system security to find new 
insights into securing distributed systems.

This problem context leads to four overarching 
questions that form a starting point for enhancing the 
usage of game theory for distributed system security.

1.	 Can the security community extend traditional 
game theory to develop tractable analysis and 
design techniques that can be applied to secur-
ing large-scale and interdependent distributed 
systems?

2.	 What are the main foundations in the game theory and 
distributed system security literature that can help us 
achieve such a goal of securing distributed systems?

3.	 What are the advantages and disadvantages of dif-
ferent game-theoretic models when applied to dis-
tributed systems security?

4.	 What are the main challenges and related research 
directions for integrating game theory for securing 
distributed systems?

In this article, we present a proposed vision for 
answering these questions. In particular, we organize 
our article as follows. We first lay out the foundations 
that the research community can build on when apply-
ing game theory concepts to enhance distributed system 
security. We then present the main challenges for such a 
synthesis, which we categorize into 1) analytical direc-
tions, 2) systems directions, and 3) integration direc-
tions. Figure 1 provides the main flow of this article.

Foundations: Build on Them
We have significant foundations on the topics of distrib-
uted systems security and game-theoretic security that 
we should build upon. Here, we survey the notable foun-
dations categorizing them into two—game-theoretic 
security and distributed systems security.

Game-Theoretic Security
There have been notable successes in developing and 
applying game theory for the security of distributed sys-
tems.1 This has been used in the context of proactive or 
reactive and fixed or adaptive schemes. The most com-
monplace game-theoretic model for security is that of 
two-player games, where a single attacker attempts to 
compromise a system controlled by a single defender. 
Game-theoretic models have been further used to study 
the interaction between (multiple) defenders and (mul-
tiple) attackers [for example, analyzing distributed denial 
of service attacks (DDoSs) and the security of cyberphys-
ical systems (CPSs)]. The literature on game-theoretic 
models (and their unique differences) for different secu-
rity scenarios can be categorized as follows. 

Static and Complete Information Games. The static and 
complete information two-player games are benchmark 
security models that capture the incentives or objectives of 
the players as well as their constraints. The game assumes 
that the players have a common knowledge of the game 
and that it does not change over time. The Nash equi-
librium of the game can be interpreted as the outcome 
of repeated plays between the two players or the conse-
quence of homogeneous pairwise interactions of a large 
population. The analysis of this class of games provides a 
quantitative approach to assess risks and to design mitigat-
ing mechanisms. FlipIt games and Blotto games11 are two 
notable games that have been widely used in understand-
ing the competitive scenarios of resource takeover and 
subjugation in CPSs and military applications. The Nash 
equilibrium is the traditional concept of capturing efficient 
solution(s) of complete information games. For instance, 
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the Nash equilibrium has helped researchers understand  
botnet defenses.4 In particular, this line of work has pro-
vided a comprehensive game-theoretical framework that 
models the interaction between the botnet herder and the 
defender group (network/computer users). 

The Nash equilibrium showed the effectiveness of 
available defense strategies and control/strategy switch-
ing thresholds, specified as rates of infection. The two 
Nash equilibria obtained are either 1) the defender 
group defends at a maximum level while the botnet 
herder exerts an intermediate constant intensity attack 
effort or 2) the defender group applies an intermedi-
ate constant intensity defense effort while the botnet 
herder attacks at full power. This model also showed 
that integrating game-theoretical analysis with suscep-
tible, infectious, or recovered epidemic models could 
be useful in understanding system behavior during bot-
net attacks. Overall, although complete information 
game-theoretic models for security games enable proac-
tive security planning and predicting worst-case attack 
scenarios on these distributed systems, actual conflicts 
are dynamic and involve incomplete information for 
one or both players, which are discussed next.

Imperfect/Incomplete Information Games. These are 
games in which at least one player (defender or 
attacker) does not have complete information. This 
may be due to lacking complete knowledge of the sys-
tem or to imprecise sensing. To analyze multistage 

multihost attacks that may be launched on networks, a 
defender needs to model long sequences of actions that 
can circumvent the system defenses.3 These actions 
lead to policy spaces that grow exponentially with the 
number of attack stages, especially under partial/imper-
fect information. Monte Carlo sampling can confine the 
search to a decision tree of reduced size by guessing the 
other player’s moves and then using a conventional min-
max search to determine the best strategy.12

One promising line of work for games with imper-
fect/partial information is the use of deception (see a 
recent survey20) The key idea is for one or both players 
to synthesize new actions/policies that leverage limita-
tions induced by the belief of the opponent. Notable 
classes of problems that fall within this class are signal-
ing games that model information corruption, Bayesian 
games that model uncertainty in an opponent’s type/
cost, and asymmetric constraints that enforce stealth and 
partially observable stochastic games. Akin to general 
imperfect information games, the complexity of solving 
deception problems grows exponentially with the num-
ber of stages, beliefs, and actions.

Drawing inspiration from robust optimization, 
the application of randomized sampling methods has 
proven effective in computing policies that are robust 
security measures against adversaries employing ran-
domized strategies.5 These methods utilize randomized 
sampling techniques to explore the strategy space to 
choose effective strategies with high confidence.

Game-Theoretic Modeling Foundations 
A. Static and Complete Information Games
B. Imperfect/Incomplete Information Games
C. Dynamic Games
D. Sequential Games 
E. Simultaneous Games

Challenges and Future Research Directions
1. Analytical Directions  

A. Personalized Learning 
B. Incorporating Biases 
C. Scalability and Tractability 
D. Integrating Machine Learning and Game

Theory to Tackle “Unknown-Unknowns”

2. Systems Directions
A. Resource-Aware Defenses
B. Security Guarantees as a Dynamic Function
C. Security Design in the Tradeoff Space

3. Integration Directions
A. Distributed Systems Security in CPS Domain
B. Continuous Verification
C. Secure Distributed Applications with

Partially Trusted Data Sources
D. Integration of Game Theory and ML
E. Integrated Evaluation Environments

Distributed Systems Security Foundations
A. Detection
B. Diagnosis
C. Containment 
D. Response
E. Real-World Applications

Figure 1. An overview of the flow of this article. We first show the main foundations for game theory modeling and 
distributed systems security. We then outline the research challenges and future directions that will need the integration of 
the advancements of the analytical side and systems side for securing distributed systems. 
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Overall, leveraging incomplete information game- 
theoretic models for distributed systems security cap-
tures the uncertainty about the adversary’s actions and 
payoffs, along with the actions of other stakeholders, 
which can give a more accurate quantitative estimation 
of the security level of the distributed system. However, if 
the player’s information evolves over time, then they are 
more effectively modeled as dynamic games.

Dynamic Games. These are games in which the infor-
mation, the players’ actions, or the payoffs vary over 
time. One promising line of work has been in lever-
aging reinforcement learning (RL). Examples of such 
usage of RL are the malicious falsification of cost sig-
nals that are used to mislead agent policy.6 Another 
example is applying RL and the infinite-horizon 
semi-Markov decision process to characterize a sto-
chastic transition and the sojourn time of attackers in 
a honeynet. Another line of work is to model distrib-
uted systems using hybrid input–output automaton. 
This can help in characterizing the continuous time 
evolution of the security game.

In contrast to static game-theoretic models, these 
dynamic games capture the realistic evolution of vul-
nerabilities and adversary actions, which can lead to the 
effective usage of learning-based techniques for guiding 
human (or automated) decision making toward better 
security policies for securing current distributed sys-
tems that have such a dynamic nature. However, if there 
is a natural order in the conflicts that requires one player 
to play first or if the actions of both players are not vis-
ible to each other until a specified time, then such situ-
ations are more effective when modeled as sequential 
or simultaneous games, respectively, as discussed next.

Sequential Games. Game theory for security has been 
found to be tractable when considering sequential 
attacks, through Stackelberg security games. In these games, 
the defender moves first and allocates their resources to 
the assets under their ownership. Then, the attacker can 
observe the allocations made by the defender to each 
asset, after which the attacker targets part (or all) of the 
assets. Such games may incorporate real-time observa-
tions and consideration of nonmyopic players. In real-
ity, many such games may be partially observable as the 
actions of a player may not be visible to other players (for 
example, an attacker may conceal their steps).

There have been several applications that have ben-
efited from Stackelberg security games for distributed 
systems, as diverse as countering man-in-the-middle 
attacks and screening airport passengers through-
out the United States.15 The sequential order in these 
games also identifies realistic cases where adversar-
ies attack distributed systems (in firms or government 

infrastructure) after the security decision-makers invest 
in securing these systems.

Simultaneous Games. A particular class of simultaneous- 
move games involving attackers and defenders (where 
the players have to choose their strategies simultane-
ously, without first observing what the other player has 
done) has been studied in various contexts. For example, 
the Colonel Blotto game is a useful framework to model 
the allocation of a given number of resources on differ-
ent potential targets (for example, battlefields) between 
the attacker and the defender. Specifically, Schwartz et 
al.13 proposed a solution for the heterogeneous Colo-
nel Blotto game with asymmetric players (that is, with 
different resources) and with many battlefields that can 
have different values. While Colonel Blotto games typi-
cally involve deterministic success functions (where 
the player with the higher investment on a node wins 
that node), other work has studied cases where the win 
probability for each player is a probabilistic (and contin-
uous) function of the investments by each player. Over-
all, simultaneous-move games arise in military-based 
distributed system security applications. Furthermore, 
simultaneous-move games may be a better way to model 
real-world situations in which attackers may choose to act 
without acquiring costly information about the defense 
security strategy, particularly if the security measures are 
difficult to observe (for example, undercover officers, 
strong privacy measures, and nonavailable insiders).

Advanced Games Examples for the Security of Distrib-
uted Systems. Game-theoretic models have also been 
used to study DDoS attacks, critical infrastructure 
security, censorship-resilient proxy distribution, wire-
less network security, and protecting computer net-
works from cascade attacks (see the survey10) Further, 
Abdallah et al.2 studied mechanism design to incentiv-
ize defenders toward beneficial security investments in 
distributed systems.

Summary of Game Theory Literature on Distributed 
Security. Figure 2 provides an overview of the litera-
ture on game-theoretic models for distributed systems 
security. We highlight the advantages and disadvantages 
of different game-theoretic models when applied to 
distributed systems security and discuss the potential 
applications of each model in the various research direc-
tions outlined in our vision.

Distributed Systems Security
One way to organize the foundations that have been 
developed here is through each step of the workflow for 
distributed systems security, namely, detection, diagno-
sis, and containment and response.
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Detection. This is a mature area of work in which there 
is influential work on collaborative intrusion detection 
using multiple sensors placed in a distributed system. 
This line of work has contributed algorithms to determine 
where to place the sensors and how to integrate outputs 
from multiple sensors to devise an integrated decision on 
the detection of an attack. A survey work on this topic 
is by Vasilomanolakis et al.16 This area saw some of the 
early applications of machine learning (ML) to security. 
In the context of game theory, game-theoretic analysis 
has helped develop various intrusion detection systems 
for distributed systems to increase detection accuracy 
with reduced cost. The game-theoretical approach has 
also been used for mitigating edge DDoS attacks.10

Diagnosis. This has contributed algorithms to identify 
the root cause of the attack. This was initially substan-
tially rule based, of the form if metric A > threshold τ1 
and B < threshold τ2, then A is the root cause.9 Later, 
foundational work was done on this topic by using ML, 
such as causal theory.17 One significant challenge that 
has been successfully addressed is how to maintain effec-
tive diagnosis capabilities in security algorithms when 
the interactions and connections between elements 
within a distributed system are constantly changing.

Containment and Response. This concept has had nota-
ble success in the topic of moving target defense, which 
seeks to change some parameters of the defended sys-
tem, such as using IP addresses to thwart an adversary. 
This can be done proactively as a preventive measure in 
response to a detected threat.14

The integration of game analysis for critical infra-
structure protection has proven highly successful, 
effectively encompassing containment, response, and 
recovery measures.

Applications: CPS and Critical 
Infrastructure
Security games have played a crucial role in address-
ing the resilience and interdependence of critical 
infrastructures, including our nation’s legacy CPSs, 
such as power grids,2 transportation,3 and manu-
facturing systems. With the increasing connectivity 
of these systems, they face a larger attack surface. 
The application of game-theoretic methods is vital 
in developing strategic mechanisms for detection, 
diagnosis, containment, and response, ensuring 
their resilience. Having outlined the foundational 
aspects of game-theoretic models and distributed 
systems security, we now turn our attention to the 

Game Theory for Distributed Security Literature Game Model Pros (+) Cons (-) Directions

(a) Interdependent Security Games  [Ref. no. 37 in Laszka et. al. 15]
(b) Insurance-based Games [Ref. no. 37 in Abdallah et. al. 2022] 
(c) Informa�on Security Games [Ref. no. 25 in Laszka et. al. 2015]
(d) Blo�o games for CPS [Robinson 2013, Laszka et. al. 2015]
(e) Botnet Defenses using Game Theory [Bensoussan et. al. 2013]
(f) Mechanism-based Security Games [Abdallah et. al. 2022] 

Sta�c and Complete 
Informa�on Games

- Equilibrium rigor analysis   
of costs of security risks

- Mechanism design for  
op�mal defense method 

- Explora�on of effec�ve   
defense/control strategy

- Lack of dynamic interac�ons  
- Limited learning by players   

and lack of adapta�on
- Non-unique equilibrium
- Ignoring private informa�on
- Limited real-world scenarios

- Personalized 
learning

- Evalua�on     
environments

- Security of   
distributed CPS

(a) Incomplete Informa�on Security Games [Alpcan & Basar 2009]
(b) Large Incomplete-informa�on Games [Sandholom 2015]
(c) Decep�on in Incomplete Inform. Games [Zhu et. al. 2021] 
(d) Random Sampling in Zero-sum Games [Shaunak et. al. 2013]
(e) Probabilis�c Security Games [Chapter 5 in Alpcan and Basar

2010] 

Imperfect/Incomplete 
Informa�on Games

- Bayesian equilibrium    
analysis  of all defenses

- Real-world scenarios for  
different a�ack strategies 

- Diverse sampling method  
for exploring strategies

- Higher solu�on complexity
- Lack of proper coordina�on 

among different defenders   
- No guarantee of equilibrium
- High uncertainty levels
- Limited learning scenarios

- Incorpora�ng    
a�ack biases

- Scalability and 
tractability

- Integra�ng ML      
and game-theory

(a) Dynamic Security Games [Chapter 3 in Alpcan and Basar 2010] 
(b) Selfish investments in dynamic network security Games 

[Ref. no. 11 in Laszka et. al. 2015]
(c) Reinforcement learning in Security Games [Yunhan et. al. 2019]
(d) Moving Target Defense [Ref. no. 61 in Sengupta et. al. 2020]
(e) Learning A�acks in Distributed Systems [Reference no. 25 in   

Abdallah  et. al. 2022]

Dynamic Games - Varying strategies and  
players payoffs over �me 

- High prospect of guiding    
security decision-makers 

- Usage of diverse set of    
learning methods(RL, ML)

- Risk analysis simula�ons 

- Computa�onal complexity
- Changing equilibrium(s)
- Accurate modeling of the  

evolu�on of a�ack ac�ons
- Quan�fying learning levels
- Limited-realis�c applica�on
- Real security losses of trials

- Personalized  
learning

- Integra�ng ML      
and game-theory

- RL defenses
- Par�ally trusted 

data sources

(a) Stackelberg Security Games [Sinha et. al. 2018]
(b) Sequen�al Games for Cyber-physical Systems Security 

[Ref. no. 170 in Humayed et. al. 2017] 
(c) Sequen�al one-defender-n-a�acker Games [Ref. no. 66 in 

Abdallah et. al. 2022]
(d) Sequen�al Security Games [Chapter 2 in Alpcan & Basar 2010] 

Sequen�al Games - Capturing observa�ons 
- Non-myopic players
- An accurate modeling of

maximum a�ack gains
- Realis�c sequen�al order   

in security applica�ons

- Concealing ac�ons problem
- Informa�on assump�ons
- Lack of assumed strategic   

commitment by the follower
- Stackelberg Equilibria issues
- Complex analy�cal solu�ons

- Security of 
distributed CPS

- Scalability and 
tractability

(a) Heterogeneous Colonel Blo�o Game for Network Security  
[Schwartz et. al. 2014]

(b) System Reliability and Free Riding [Last Ref. in Laszka et. al. 15]
(c) Behavioral Interdep. Security Games [Abdallah et. al. 2020]

Simultaneous Games - Military-based security
- Asymmetric resources
- No need for observing the 

ac�ons (lower costs)

- Mapping of all possible
equilibria to real scenarios

- Lack of defender’s control
- Possible colluding a�ackers 

- Incorpora�ng    
defense biases

- Resource aware
defenses

Figure 2. A summary of the relevant literature on game-theoretic models for distributed systems security. We show the pros and cons of various 
game-theoretic models as applied to distributed systems security and the prospective usage of each model in the different research directions 
outlined in our vision. 
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key challenges faced by the research community and 
provide prospective research directions.

Challenges Ahead
Here, we summarize the technical challenges to improve 
the security landscape of distributed systems. We struc-
ture our discussion into challenges that are on the analyti-
cal directions and systems directions and those that involve a 
combination of the two, called integration directions. The 
orthogonal dimension on which we structure these chal-
lenges is the time horizon to solve them, with the short 

term indicating two to three years and the long term indi-
cating five to 10 years. Figure 3 summarizes the main chal-
lenges and future research directions for such integration.

Analytical Directions
Personalized Learning (Short Time Horizon). Different 
actors (let’s say different defenders and adversaries) 
learn differently (as in stochastic learning) and at differ-
ent rates. The learning happens for human actors as well 
as for machines (in an ML context). This learning can 
build on the literature on dynamic games, discussed in 

1. Analy�cal Direc�ons
A. Personalized Learning (Short term) Different Learning Rates of Defenders and Adversaries

Asymmetric Hardware Capabili�es among the Players
Coopera�on (defenders) and Collusion (adversaries) Modes

B.     Incorpora�ng Biases (Short term)                 Different Human Cogni�ve Biases (Behavioral Economics)
Informa�on Sharing and Human Errors

C. Scalability & Tractability (Long term)              Different Scales of Systems and Volumes of Vulnerabili�es
Handling realis�c a�ack models or realis�c incidents

D.     Integra�ng ML and Game Theory (Long term)              Incorpora�ng stochas�c behavior of a�acks
Predic�ng Zero-day a�acks and black

2.   Systems Direc�ons
A. Resource-aware Defenses (Short term) Different a�ributes and capabili�es of systems’ nodes

Different costs of different (real-�me) a�acks

B.    Security Guarantees as Dynamic Function (Short term) Capturing system state and security guarantees
Level of collusion among different a�ackers

C. Security Design Trade-off Space (Long term) Security versus performance and resource usage
Explainable AI (XAI) for end-user understanding

A. Personalized Learning (Short Term)

Incorporating Biases (Short Term)

Different Learning Rates of Defenders and Adversaries 
Asymmetric Hardware Capabilities Among the Players
Cooperation (Defenders) and Collusion (Adversaries) Modes

B. Different Human Cognitive Biases (Behavioral Economics)
Information Sharing and Human Errors

C. Scalability and Tractability (Long Term) Different Scales of Systems and Volumes of Vulnerabilities
Handling Realistic Attack Models or Realistic Incidents

D.     Integrating ML and Game Theory (Long Term) Incorporating Stochastic Behavior of Attacks
Predicting Zero-Day Attacks and Black-Swan Events

A. Resource-Aware Defenses (Short Term) Different Attributes and Capabilities of Systems’ Nodes
Different Costs of Different (Real-Time) Attacks

B.    Security Guarantees Dynamic Function (Short Term) Capturing System State and Security Guarantees
Level of Collusion Among Different Attackers

C. Security Design Trade-off Space (Long term) Security Versus Performance and Resource Usage
XAI for End-User Understanding

3.   Game Theory for Distributed Systems Security (Integration Directions)

A.   Distributed Systems Security in CPS (Short Term)  Multiple Stakeholders and Interdependency 
Difference Between Physical and Cyber Nodes

B.   Continuous Verification (Short Term) Validation of Results Under Attacks and Perturbations 
Different Testing Modes (For Example, Incremental Versus Batch)

C.   Distributed Applications with Partially Trusted Data (Long Term)             Stochastic and Adversarial Input Data  
Streaming Nature of Data

D.   Integration of Game Theory and ML (Long Term)             Learning Evolving Interactions and Actions of Players
Modeling of Different Factors (For Example,
Information, Biases)

E.   Integrated Evaluation Environments (Long Term)             Availability of an Integrated Evaluation Testbed
Educating Policymakers and Demonstrating Artifacts

1.   Game Theory for Distributed Systems Security (Analytical Directions)  

2.   Game Theory for Distributed Systems Security (Systems Directions)

Figure 3. A timeline overview of research challenges and future research directions for both the analytical side and systems side (upper part) 
along with possible research directions for integrating both sides (lower part). XAI: Explainable AI. 
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the “Dynamic Games” section. Another form of hetero-
geneity that comes in is asymmetric capabilities among 
the various players; for example, some defenders have 
access to assets with a trusted hardware environment, 
like ARM’s TrustZone or Intel’s SGX. The personal-
ization of the learning must also be able to accommo-
date partial cooperation (among defenders) or partial 
collusion (among adversaries) (building on literature 
on incomplete information games, discussed in the 
“Imperfect/Incomplete Information Games” section.) 
in addition to the formulation of complete coopera-
tion or collusion (building on the “Static and Complete 
Information Games” section). 

Incorporating Biases and Incomplete Information (Short 
Time Horizon). For the learning, one has to incorpo-
rate incomplete information sharing among the actors 
(building on prior literature on incomplete informa-
tion games, discussed in the “Imperfect/Incomplete 
Information Games” section.). For human learning, 
one must also incorporate cognitive biases among the 
human players. Behavioral economics has shown that 
humans consistently deviate from these classical mod-
els of decision making; for example, humans perceive 
gains, losses, and probabilities in a skewed and non-
linear manner.8 We have done some nascent work 
applying behavioral game theory to the security of dis-
tributed interdependent systems.2 The main point here 
is to explore the effects of such behavioral biases on the 
security policies of human decision-makers and their 
effect on securing distributed systems. One example 
in the related literature is that behavioral human secu-
rity decision-makers may allocate part of their limited 
security resources to noncritical parts of the distrib-
uted system. The key insight is that one can provide the 
appropriate incentives to reduce the biases and encour-
age cooperation among even biased defenders. Such 
bias incorporation would build on prior simultaneous 
security games for distributed systems security dis-
cussed in the “Distributed Systems Security” section.  
Such cooperation is in general a more secure strategy 
than independent decision making. A related theme 
here is trust building among human agents in multia-
gent learning. This is to counter the natural tendency 
for each player to explore and exploit their own strat-
egy spaces (for example, see (a) in “Dynamic Games” 
in Figure 2).

Scalability and Tractability (Long Time Horizon). A 
well-known challenge with applying game-theoretic 
formulation to the security of distributed systems is 
the scalability and the tractability of the solution (par-
ticularly for imperfect information games and sequen-
tial games discussed in the “Imperfect/Incomplete 

Information Games” section.). Scalability implies scal-
ing to large numbers of actors, large amounts of data, 
or large volumes of interaction among the actors. Trac-
tability implies being able to handle realistic attack 
models or realistic workload incidents on the protected 
system. To ease this challenge, we must develop sound 
approximations of the game-theoretic formulation, for 
example, leveraging sampling techniques discussed in 
the “Imperfect/Incomplete Information Games” sec-
tion. This should allow one to produce bounds for 
best-case/worst-case outcomes. As an example, one can 
use scalable techniques from epidemic theory to ana-
lyze the effect of cascading attacks while accommodat-
ing the case of large numbers of players.

Integrating ML and Game Theory to Tackle “Unknown- 
Unknowns” (Long Time Horizon). The game-theoretic 
formulations are often rigidly deterministic in nature; 
for example, a specific deterministic action is coded in 
for a particular state. The open question is: Can ML 
be integrated with game theory and thus incorporate 
stochastic behavior? The best candidate game for that 
direction is dynamic games, discussed in the “Dynamic 
Games” section.  This is important as failures and 
attacks are inherently stochastic in nature. The core 
challenge here is that ML methods can achieve accurate 
predictions only if they have been trained with the right 
set of examples. Security problems such as zero-day 
attacks remain extremely challenging because of the 
lack of the appropriate types and numbers of examples 
until recently. The key question to ask here is: How can 
a defense scheme be resilient to unanticipated attacks 
(also known as black-swan events)?

Systems Directions
Resource-Aware Defenses (Short Time Horizon). Dif-
ferent nodes have different capabilities and available 
resources, and the system should be able to calibrate 
the defense mechanism using node-specific attributes. 
Some of these node-specific attributes will be static and 
unchanging, such as the intrinsic hardware capability 
of the node (which can be captured efficiently using 
static and complete information games discussed in the 
“Static and Complete Information Games” section.). In 
contrast, some attributes will be dynamic, such as the 
current battery level on the node (which is better cap-
tured using dynamic games, discussed in the “Dynamic 
Games” section.). The cost of an attack may also vary; 
for example, the cost to corrupt data may be higher if 
there is some security protection overlaid on the data.

Compared with traditional defense mechanisms, 
which could be slow due to the lack of awareness of the 
available resources and capabilities for different nodes, 
game-theoretic approaches can better allocate the 
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limited resources of each node to balance the defense 
tasks and take timely action. This is particularly impor-
tant for critical infrastructure security.

Security Guarantees as a Dynamic Function (Short Time 
Horizon). The security guarantees may, under certain 
situations, be a function of the current system state. As 
an example, under this regime, the guarantees could be 
a function of the number and the capability of attack-
ers and defenders rather than an absolute. Thus, the 
security guarantees that the system can provide are a 
dynamic property varying with the system state. For 
example, hardware degrades, and the software ecosys-
tem changes over time. The guarantees could also be a 
function of the level of collusion among attackers, for 
example, non-Byzantine or Byzantine attackers (which 
can be modeled by imperfect information games dis-
cussed in the “Imperfect/Incomplete Information 
Games” section.).

Designing for Security in the Tradeoff Space (Long Time 
Horizon). A radical design principle would be to design 
for security in the tradeoff space between security on 
the one hand and performance and resource usage on 
the other. For example, the security design may use 
hardware-level virtualization, when available, rather 
than (software) containers, the former providing stron-
ger isolation and greater protection against side-channel 
attacks. This direction can build on the literature on 
containment and response, discussed in the “Contain-
ment and Response” section. Suppose one can design 
specialized functions, for example, specialized to the 
resource available at a node. In that case, this has the 
added benefit of reducing the attack surface, making 
debugging easier and reducing consumed resources.

The security guarantees must be clearly delineated 
as a function of the performance and the resource 
usage so that the end user can understand the guaran-
tees they are getting. Alternately, in the case of auto-
matic composition with other software packages, it 
becomes clear what security guarantees are in effect in 
the composed system.

Integration Directions
Security of Distributed Systems in CPS Domain (Short 
Time Horizon). To secure CPSs, there are several unique 
aspects that we need to consider. These are prototypical 
interdependent distributed systems, often with multiple 
stakeholders as owners. The nodes are embedded in the 
physical environment and are subject to environmen-
tal effects, which contribute to the difficulty of secur-
ing them. For example, it is often difficult to tell apart 
a node malfunction due to the environmental effects of 
a node compromise. Further, some parts of the system 

are opaque to defenders as they are developed by an 
external party. Consequently, security mechanisms that 
rely on the (fine-grained) observability of the events 
happening in the software stack are out of bounds. In 
this context, sequential games and complete informa-
tion games have a strong foundation to build on for 
these challenges (see related works in Figure 2).

Continuous Verification (Short Time Horizon). This 
topic needs to answer the question: Are our models and 
practical software instantiations generating valid results 
even under attacks and perturbations? This should hap-
pen continually rather than in batch mode as is typically 
done today, when verification is used at all. The contin-
uous verification should happen as the system processes 
inputs and generates outputs during its operation. This 
could use sparse human feedback online, that is, with-
out putting undue cognitive burden on the user. Exist-
ing methods for incremental verification/testing would 
be useful for this challenge,19 as would be recent prog-
ress on the verification of highly nonlinear ML mod-
els.19 This continuous verification would be based on 
dynamic games that can efficiently model this progres-
sive verification setup.

Secure Distributed Applications With Partially Trusted 
Data Sources (Long Time Horizon). The overarching 
question that we need to answer is whether we can build 
secure distributed applications when the input data are 
only partially trusted. This is particularly important for 
the significant class of systems that are stochastic and 
data dependent in nature. The data may be streaming, 
rather than at rest, adding to the challenge of verify-
ing the data. The nodes comprising the distributed 
system are heterogeneous (as argued in the “Simulta-
neous Games” section) in terms of resources, includ-
ing secure hardware and access to trustworthy data 
sources. Finally, trust in data is a dynamic property, 
increasing, for example, when there has been success-
ful validation of data and decreasing when there is a 
detected attack. This challenge can benefit from work 
on causal reasoning in dynamic systems, as outlined in 
the “Dynamic Games” section. 

Integration of Game Theory and ML (Long Time Horizon). 
The grand open question here is: Can we, in a princi-
pled manner, integrate game theory and ML to secure 
distributed systems? In such integration, we must be 
cognizant that there can be multiple players (tens to 
hundreds) in terms of attackers and defenders. The 
interactions and actions may evolve over time,20 neces-
sitating learning rather than static spaces for actions and 
rewards, as is typical today. Dynamic games are the best 
candidates to tackle such integration challenges.
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There may also be partial information sharing 
among defenders, asymmetric information between 
attackers and defenders (captured by imperfect infor-
mation games discussed in the “Imperfect/Incomplete 
Information Games” section), and cognitive biases 
among players. A subset of these factors may be relevant 
in a specific application context, but the framework and 
the algorithms should be able to encompass them. One 
direction could be to leverage ML models to learn the 
approximate utility functions of the participants by ana-
lyzing the past behavior data. ML models can also be 
used to learn approximate best response strategies when 
solving the game-theoretical model is intractable (for 
example, Wu et al.18)

Using Game Theory to Gain a Better Understanding of RL 
Defenses (Long Time Horizon). RL techniques are being 
increasingly used to respond to continuous probes (for 
example, heartbeat requests) to exploit some vulnerabil-
ity, like the HeartBleed OpenSSL vulnerability and lat-
eral movement attempts. Hence, the following research 
questions become important: Do the “game plays” 
between the attacker and the corresponding RL agent 
converge to a certain notion of equilibrium? And if so, 
how soon? A clear answer to these questions, which will 
build on dynamic games from game theory foundations 
and detection from distributed systems security litera-
ture, helps system defenders discover better RL-based 
defenses against attacks.

Integrated Evaluation Environments (Long Time Horizon). 
The availability of an integrated evaluation environ-
ment (synonymous with a testbed) would be important 
for the community to evaluate if we are making progress 
toward the hard security goals. These testbeds across 
application domains will have two parts; one will pro-
vide application-generic functionality, and the other 
will be specific to the application domain. The desider-
ata for testbeds will be that they will allow for the injec-
tion of various types of attacks, the creation of different 
kinds of players (with the heterogeneous characteris-
tics mentioned earlier in the “Analytical Directions” 
section), and the measurement of a diversity of metrics 
of interest. Such testbeds would be important for edu-
cating policymakers in addition to their value in dem-
onstrating research artifacts. The acquired education 
may help policymakers inform what kinds and degrees 
of security investments should be made to different 
parts of an interconnected system to reach a desired 
level of security. This will make our critical infrastruc-
ture more secure.

In summary, our suggested research directions for 
each side (game theory side and distributed systems 
security side), along with the integration of both sides, 

can help in the better development of tractable and 
practical methods for securing distributed systems, 
which would represent a consequential advancement 
for our technical community and our society broadly.

M any of the critical infrastructure systems that 
we rely on as well as personal computing sys-

tems are structured as distributed systems. Take, for 
example, from the large end of the spectrum—trans-
portation, power grid, and financial infrastructures—to 
the personal end of the spectrum—cooperating per-
sonal computing and Internet of Things devices. As 
the attack surfaces for such systems become larger and 
the sophistication and the incentives for attacks against 
them increase, it is time to usher in rigorous reasoning 
to secure such systems. At the same time, the rigorous 
analytical foundations need to be made scalable and 
tractable to apply to these real-world large-scale appli-
cations under realistic resource and timing constraints.

In this context, the technical themes of the security 
of distributed systems and game theory applied to secu-
rity have much to contribute to each other. We trust that 
the two vibrant communities will continue the process 
of working together for better securing distributed sys-
tems. In this article, we have laid out a set of foundations 
that will serve as useful starting points for our journey 
plus a set of open research challenges that the commu-
nity will hopefully take up.

The challenges and research directions outlined in 
this vision article will help toward the ultimate goal of 
practical and secure distributed systems. Our broad 
vision is twofold and applies to distributed systems 
both at work and in our personal lives. First, we will 
have a clear understanding of their security properties 
so that we can decide the level of trust that is warranted 
in each. Second, such reasoning can be done in a sys-
tematic manner, without having to perform one-off rea-
soning for each system. 
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