Utilizing Threat Partitioning for More Practical Network
Anomaly Detection

Brian Ricks

The University of Texas at Dallas
Computer Science Department
Richardson, TX, USA
absolutefunk@utdallas.edu

Bhavani Thuraisingham
The University of Texas at Dallas
Computer Science Department
Richardson, TX, USA
bxt043000@utdallas.edu

ABSTRACT

Anomaly-based network intrusion detection would appear on the
surface to be ideal for detection of zero-day network threats. Yet
in practice, their often unacceptably high false positive rates keep
them on the sideline in favor of signature-based methods, which
typically detect known threats. We argue that an anomaly-based
network intrusion detection system should not only be special-
ized to a specific class of related threats, but characteristics of the
threat class itself should be utilized when designing both the de-
tection system and structuring the network data to use with the
system. To this end, we take two common network threat classes,
DDoS-as-a-Smokescreen (DaaSS) and SYN flood, and analyze their
characteristics for structure that we can use to specialize anomaly
detection. We partition these threat classes into known behavior
and unknown behavior, leaving the latter open-ended. Through
experimentation on multiple datasets, we show that our proposed
detection system based on this threat partitioning approach is ca-
pable of detecting DaaS$ attacks and zero-day SYN flood variants
with very low false positive rates, even in the face of concept drift,
and can do so without having to collect large amounts of benign
network traffic for training.

CCS CONCEPTS

« Security and privacy — Denial-of-service attacks; Intrusion
detection systems; « Networks — Network monitoring.

KEYWORDS

network intrusion detection, anomaly detection, threat partitioning,
DDoS, DaaSS, SYN flood, netflow

ACM Reference Format:

Brian Ricks, Patrick Tague, Bhavani Thuraisingham, and Sriraam Natarajan.
2024. Utilizing Threat Partitioning for More Practical Network Anomaly
Detection. In Proceedings of the 29th ACM Symposium on Access Control

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

SACMAT 2024, May 15-17, 2024, San Antonio, TX, USA
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0491-8/24/05
https://doi.org/10.1145/3649158.3657046

Patrick Tague
Carnegie Mellon University
Information Networking Institute
Moffett Field, CA, USA
tague@cmu.edu

Sriraam Natarajan
The University of Texas at Dallas
Computer Science Department
Richardson, TX, USA
Sriraam.Natarajan@utdallas.edu

Models and Technologies (SACMAT 2024), May 15-17, 2024, San Antonio, TX,
USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3649158.
3657046

1 INTRODUCTION

Network intrusion detection systems (IDS) have grown from modest
roots to an entire industry where network security vendors provide
intrusion detection as a service. These vendors deploy monitors on
their client networks which compare network traffic against known
threats, raising alarms if any traffic matches a threat. Known threats
are typically represented as signatures, leading to signature-based
IDS capable of threat detection with a zero false alarm rate, but
which are blind to unknown, or zero-day, threats. To protect their
clients from zero-day threats, security vendors attempt to discover
them in the wild before an attacker does.

On the surface it may seem appropriate to utilize anomaly-based
network intrusion detection systems to detect zero-day threats.
These IDS do not encompass knowledge of known threats, instead
considering as a potential threat any network traffic whose behavior
deviates from what the IDS considers ‘normal’, or benign. If an
anomaly is detected, the IDS will not know if the anomaly is actually
a zero-day threat or benign behavior which happened to deviate.

Due in large part to this unacceptably high false alarm rate,
anomaly-based network intrusion detection systems are rarely used
in practice [27]. Considering that false alarms may bring about a loss
of trust in the IDS, and also considering that large security vendors
can often push out new signatures very quickly after zero-day threat
discovery, there needs to be a strong case to use anomaly-based
IDS in the real-world.

We argue that real-world advancement of anomaly-based IDS is
hindered because they are asked to do too much in too broad of a
setting. Detecting threats in this setting is often like searching for a
needle in pile of haystacks. The IDS knows what hay looks like, but
not the needle, searching blindly through the pile, finding anything
that does not resemble hay. The haystack pile may also change over
time, perhaps with new types of hay introduced which the IDS does
not recognize. A signature-based IDS, on the other hand, does not
need to know what hay is, as it knows specific needles.

The haystack analogy brings to light key issues inherent with
anomaly-based methods which directly contribute to a high false

https://orcid.org/0000-0002-4089-5414
https://orcid.org/0000-0002-7561-6112
https://orcid.org/0000-0003-4653-2080
https://orcid.org/0000-0001-9889-6260
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3649158.3657046
https://doi.org/10.1145/3649158.3657046
https://doi.org/10.1145/3649158.3657046
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3649158.3657046&domain=pdf&date_stamp=2024-06-25

SACMAT 2024, May 15-17, 2024, San Antonio, TX, USA

alarm rate, namely a lack of scoping/direction in the threat search,
and inability to adapt as the benign traffic landscape changes over
time. Additionally, challenges in data procurement necessary for
anomaly detection model training and testing present another key
issue that may eliminate anomaly-based IDS from consideration.

We draw inspiration from the seminal work of Sommer and Pax-
son [27], in which limitations of anomaly-based network intrusion
detection systems are discussed. Sommer and Paxson argued that
for anomaly-based IDS to be practical, the IDS needs to have some
idea of the threats it is supposed to detect. Clearly, if the IDS knows
exactly the threats it should search for, then we can use signature-
based methods, but if we can incorporate partial knowledge of the
threats we want the IDS to detect, then we can perhaps guide the
IDS in the search.

To incorporate partial threat knowledge, we introduce a novel
approach called threat partitioning, which scopes the threat search
both in terms of what specific threats we search for and the time
periods in which we search for them. Threats are grouped into
classes based on known behavior common to them, and for a threat
class that we would like to detect, we only consider its common
behavior as known, leaving the rest as an anomaly detection task.
This constrains anomaly detection to only the time periods in which
a threat’s known behavior is observed.

Procurement of benign traffic required to train anomaly-based
IDS is often a challenge [22, 27]. By utilizing threat partitioning,
we greatly reduce the amount of benign traffic which we need to
collect to traffic occurring only in the presence of known threat
behavior. In other words, the IDS only needs to know what hay
looks like in the presence of a partial needle.

Lastly, hyper-parameters used for anomaly-based IDS sensitivity
tuning may be unintuitive to set. Unfortunately, we may not know
how well the IDS can detect threats with a specific tuning until the
network it is monitoring is attacked. By utilizing network traffic
data which captures concept drift, or variations in behavior over
time, we automatically set sensitivity hyper-parameters in a manner
conducive for maintaining IDS performance in the face of ever-
changing network traffic patterns.

Our key contributions are as follows:

o We address the real-world practicality of anomaly-based IDS
by scoping the threat search using an approach we call threat
partitioning.

e We design an IDS incorporating threat partitioning which
requires minimal benign network traffic to train, and no
sensitivity hyper-parameters to tune.

e We show through experimentation utilizing two real-world
threat classes that our proposed IDS can detect a wide range
of zero-day threats with few false alarms, and can do so in
the presence of concept drift.

The remaining sections are structured as follows. First we dis-
cuss preliminaries and related work in Section 2, including an in-
troduction of the DDoS-as-a-smokescreen and SYN flood threat
classes used as case studies. Section 3 introduces our approach
pipeline, starting with an introduction to threat partitioning in
Section 3.1, structuring of network packet data in Section 3.2, and
threat detection models in Section 3.3. Section 4 dives into our

84

Brian Ricks, Patrick Tague, Bhavani Thuraisingham, and Sriraam Natarajan

experiments, including a description of the datasets used and ex-
perimental methodology, with results given in Section 4.3. We then
discuss limitations of our approach in Section 5, and conclude our
work in Section 6.

2 PRELIMINARIES

In the following sections we discuss relevant background, namely
anomaly-based network intrusion detection methods, a network
data format useful for model training and testing, and two threat
classes we will use for experimentation.

2.1 Anomaly-Based Network Intrusion
Detection

Network intrusion detection systems have been discussed since at
least the 1980s [5], becoming commonplace in the early Internet
around the turn of the century [25]. One of the first IDS capable
of anomaly detection that saw widespread adoption was Bro [20],
now called Zeek. Zeek uses a set of rules to define benign network
behavior, taking deviations from the rules to be anomalous. As
machine learning methods gained in popularity, anomaly-based
IDS shifted to paradigms in which the representation of benign
network behavior was learned from network data [29]. For the
remainder of this work, we will consider an ‘anomaly-based IDS’ to
comprise a model or ensemble of models learned from data, using
machine learning methods.

Anomaly-based IDS utilizing machine learning methods typi-
cally fall into the category of one-class classifiers (OCC), in which
a single class representation is learned from benign traffic data.
Once trained, the model is capable of binary classification utilizing
a distance metric to determine if an example is benign or anoma-
lous [15].

Our prior work includes a generalization of OCC for multi-
class classification using hard-clustering [24]. Here, a k-Prototypes
model [11] is learned from multi-class network traffic data, with
the clusters bounded by a radius to induce a space for anomalous
classification. Masud et. al [18] also utilized a radius as a distance
metric in a k-Means model used for novelty detection.

Soft-clustering models supporting anomaly detection typically
use likelihood as a distance metric for anomalous classification.
Application domains where this type of approach has been used
for anomaly detection includes rocket engine diagnostics [17] and
web mining [16].

As previously discussed, a major limitation of anomaly-based
network intrusion detection systems is their false alarm rate. The
key issues we address in this work, among others, were brought to
light in 2010 by Sommer and Paxson [27], who also pointed out the
lack of industry adoption for such systems.

2.2 Network Flow Data

Traffic collected from networks are typically raw packet captures
(PCAP), which lack inter-packet structure needed for model train-
ing. To provide such structure, we utilize a data format which repre-
sents packet data as network flows, called netflows [10]. A netflow
(or simply flow) represents a sequence of packets to and from a pair
of network nodes, defined as a 5-tuple: source IP address, destina-
tion IP address, source port, destination port, and protocol (TCP for

Utilizing Threat Partitioning for More Practical Network Anomaly Detection

example). Netflows additionally comprise attributes representing
aggregates for characteristics such as the number of packets that
comprise a flow.

A flow begins when a packet with a unique 5-tuple arrives at a
network node, and ends when a timeout criteria is met, either due to
traffic inactivity or due to a maximum duration limit being reached.
The duration of a netflow is the time interval between the arrival
times of the first and last packet of the flow. The network node
which receives the first packet in a flow becomes the destination
for the flow. When a flow ends, subsequent packet arrivals with the
same 5-tuple will form a new flow. !

The resulting format is a propositional flat file in which each
row is a netflow, and each column is an attribute value. Netflow
datasets can be used directly for machine learning by mapping each
flow as an example, and each attribute as a feature [9]. Domains in
which netflow datasets have been used to train models include bot
detection on social networks [8], and bot command-and-control
(c&c) characterization [7].

2.3 Threat Class: DDoS-as-a-Smokescreen

A common threat class frequently observed in the wild is DDoS-
as-a-Smokescreen (DaaSS), an ensemble of two threats that occur
together. The first threat is a Distributed Denial-of-Service (DDoS),
designed to obfuscate a second threat, which may be a zero-day [24].
The earliest known DaaSS attack occurred in 2011 on the Sony
PlayStation Network, resulting in the exfiltration of personal data
from approximately 77 million users [30]. This data exfiltration was
not discovered until after the DDoS ceased, due in large part to
mitigation focused on the DDoS itself.

Since the Sony PlayStation Network attack, DaaSS attacks have
become more prevalent. According to the 2016 Kaspersky Lab Cor-
porate IT Security Risks survey, over half of the respondents (56%)
believed that DDoS attacks they had been subjected to were used
as a smokescreen [14]. StormWall’s H1 2023 DDoS attack report
noted that DaaSS attacks rose 26% from the previous year [28]. Re-
cent DaaSS$ attacks include the FlexBooker data breach [12], which
specifically involved the exfiltration of personal data.

One reason why DaaSS attacks are particularly effective is they
exploit limited IT resources who may be aware of the smokescreen
but have little choice in fighting the DDoS. They are also relatively
cheap to launch using third parties [13].

2.4 Threat Class: SYN Flood

A SYN flood is class of denial-of-service threats targeting the TCP
protocol’s three-way handshake connection initialization process.
In a client-server paradigm, the three-way handshake starts with
the client sending a SYN packet to the server. The server responds
with a SYN+ACK packet, and upon receipt of this SYN+ACK packet,
the client replies with an ACK packet back to the server.

This three-way handshake process is exploited during a SYN
flood, in which many SYN packets are sent to a server by one or
more clients. When the server replies with SYN+ACK packets, the
clients do not respond with ACKs, resulting in increased resource
usage at the server to keep track of the many potential connections.
Eventually the server may exhaust resources and be unable to

1For TCP flows, the arrival of a SYN packet triggers a new flow.

85

SACMAT 2024, May 15-17, 2024, San Antonio, TX, USA

Known Threat Traffic

i Constrains |
Y

Benign Traffic e

Anomaly Search Interval

Time

Duration of observed attack

Figure 1: Illustration of threat partitioning. Anomaly detec-
tion is reduced to the intervals in which the known threat
traffic is present. The behavioral characteristics of such traffic
may constrain benign traffic that is simultaneously present.

process new connection attempts. SYN floods can be executed using
a single client, spoofing the source address of each SYN packet
sent to make it seem as though the many connection attempts are
coming from different clients.

SYN flood attacks represent one of the oldest denial-of-service,
and are still common today. In 2020, a customer of security vendor
Imperva was hit with a zero-day SYN flood variant. According to
Imperva [2], the SYN packets comprising the flood contained pay-
loads, which is not recognized by RFC-793, the document describing
SYN packet structure [21]. Furthermore, this same attack comprised
spoofed ACK packets, perhaps in an attempt to fake completion of
the three-way handshake.

3 APPROACH PIPELINE

We formally define threat partitioning in Section 3.1, including
requirements we deem are necessary for a threat to be partitioned.
We then discuss network traffic structuring in Section 3.2, and the
detection models which comprise our proposed IDS in Section 3.3.

3.1 Threat Partitioning

Rather than treat a network attack as an atomic, unknown unit, as
is the case with general anomaly detection, we propose to partition
the attack into two components: the known behavior, and unknown
behavior (anomalies). This involves utilizing a model specialized to
detect the traffic which we expect to observe, and if such traffic is
detected, only then attempt to detect anomalies. Therefore, false
positives would be specific to either known threat traffic or anoma-
lous traffic. We expect our IDS to minimize known threat traffic
false positives due to such threat behavior often derived from bots
or malware, leading to more determinism in behavioral patterns.

In addition to this anomaly detection interval constraint, we
should consider how benign traffic may be affected by known threat
traffic, for example through bandwidth or resource exhaustion.
Consider a local-area network comprising one router that connects
it to the Internet, providing a single point for all network traffic
to flow. Suppose the local-area network is attacked with a high
bandwidth inbound DDoS. We would expect benign traffic to be
affected due to inbound bandwidth exhaustion, so anything odd,
such as a large outflow of traffic, may point to a DaaSS with data
exfiltration rather than a DDoS in isolation.

SACMAT 2024, May 15-17, 2024, San Antonio, TX, USA

By partitioning known threat behavior from the unknown, we
are also simplifying the anomalies to a subset of the overall threat
behavior. For example, to detect a zero-day SYN flood variant, we
would not need to consider known SYN flood behavior when search-
ing for anomalies, as this would already be detected. With general
anomaly detection, the SYN flood variant in its entirety would need
to be detected as anomalous, even though some of its behavior is
already known.

Figure 1 illustrates characteristics of threat partitioning. The
known threat traffic constraint on benign traffic is present only
during the interval in which known threat traffic itself is present.
Thus, we can consider benign traffic present outside this interval as
being independent of the benign traffic present inside. In addition
to reducing the false positive rate by constraining the anomaly
search interval, this independence assumption on benign traffic
implies that we do not need to collect benign traffic in the absence
of any known threat behavior, which we expect to be the vast ma-
jority of the time. This is a huge advantage, as in general collecting
representative benign traffic is a difficult problem [26, 27].

Without threat partitioning, if we wanted to detect data exfiltra-
tion using traditional anomaly detection methods, we could train
an OCC model for this detection task. In addition to the enormous
amount of benign traffic we would need to collect for model train-
ing, it may be difficult in the general case to separate a malignant
data exfiltration from benign data transfers, potentially resulting
in an unacceptable false positive rate. Threat partitioning induces
an interval of time in which to detect anomalies, while potentially
simplifying the benign traffic in which the anomalies should be
searched and potentially simplifying the anomalies themselves.

3.2 Network Packet Data Structuring

Data structuring involves the discovery of relationships and ab-
stractions within the raw packet data (PCAP), and encoding those
relationships in a manner conducive for propositional machine
learning. Using the netflow structure discussed in Section 2.2 as
a base, we would like to encode prior knowledge inherent to the
known threat traffic that we collect.

We observe that distributed threat traffic, for example bot gen-
erated DDoS traffic, comprise flows which will overlap in time as
they arrive at their target. 2 To explicitly represent this inter-flow
temporal relationship, named flow concurrency [23], we first create
a new netflow feature to represent the relationship. Then for any
flow, we count the number of similar flows arriving alongside it
and set this count as the value of the new netflow feature.

More formally, two flows i and j sharing a common destination
IP address, destination port, and protocol overlap in time if

min|ts (i) +d (i), t5(j) +d(j)] > max[ts (i), ts ()], 1

where ts represents a flow’s start time and d represents the duration
of a flow at the time of overlap calculation.

As bot generated traffic tends to exhibit similar, deterministic
behavioral patterns, if two flows overlap in time but exhibit wildly
different behavioral characteristics, those flows may be uncorre-
lated, simply by chance having arrived at the same place at a similar

2This characteristic also appears in single-bot SYN floods when source address spoofing
is utilized.

86

Brian Ricks, Patrick Tague, Bhavani Thuraisingham, and Sriraam Natarajan

time. To capture inter-flow behavioral similarity, we devise a met-
ric based on netflow aggregate features. We define this similarity
metric as

@)

Sim=1- Z

aca

a0 -atl_|
max|a(i), a(j), 1] ’

where a is an aggregate feature in the set of aggregates a, and |a| is
the number of aggregates in the set. We assume that aggregates are
non-negative. Equation 2 is a normalized L1 norm, and two flows
are considered similar if Sim > €, where € is a threshold value.

For each flow, an aggregate feature is added representing the
count of flows concurrent to it. Flow concurrency may be a useful
relation for many different threat and benign behavioral profiles.
In addition to DDoS traffic similarities, distributed attacks with
deterministic c&c may exhibit this determinism across all nodes
which participate in the attack [7].

While flow concurrency captures an inter-flow relationship,
there may also exist relationships within a single flow. Such intra-
flow relationships can be used to explicitly capture non-standard
behavior which may be observed in threat variants. For example, as
discussed in Section 2.4, SYN packets should not contain a payload,
but yet SYN flood variants may purposely include one to avoid
detection.

A SYN packet’s payload will manifest in the packet byte feature
of a netflow, which as an aggregate, the relationship to which packet
the payload belongs is lost. To explicitly represent the presence
of a SYN packet payload, we add a new feature to represent it. If
the flow’s SYN packet contains a payload, we first subtract the
payload’s size from the packet byte aggregate, then we set as the
new feature’s value the payload size. For SYN packets without a
payload, this new feature’s value will be 0.

Another intra-flow relationship we observe is that a TCP stream
should always begin with a SYN packet. To represent this relation-
ship, we create two additional features, representing a copy of the
netflow’s packet bytes and packet count, respectively. Then for any
TCP netflow which does not start with a SYN packet, the packet
byte and count values of the flow are copied to the two new fea-
tures. 3 Unlike the payload relationship given above, here we do
not modify the original features, as we do not know how large the
missing SYN packet should be. Non-zero values for these two new
features serve to ‘flag’ a TCP flow as being non-standard.

In general, we can represent an intra-flow relationship by finding
the aggregate feature or features which implicitly captures it, creat-
ing a new feature or features to explicitly represent the relationship,
and then computing new values for the newly created feature or
features. While this technique has the potential to greatly increase
the number of features, our netflow structure with the additional
features mentioned here gives us 12 in total, which is still quite low.
Figure 2 illustrates the features in our netflow structure.

3.3 Detection Models

It has been long known in Al and ML literature that ensemble mod-
els routinely perform better than a single model on large tasks such
as recommendation or information retrieval [6, 19]. For example,

3For TCP streams comprising multiple flows, if the SYN packet is missing from the
first flow, all subsequent flows will also have their packet byte and count values copied.

Utilizing Threat Partitioning for More Practical Network Anomaly Detection

SACMAT 2024, May 15-17, 2024, San Antonio, TX, USA

Anomaly detection model features

Duration | Dest Port | Pkts Both|Pkts Up | Pkts Dn | Bytes Both| Bytes Up|Bytes Dn| Conc Flows | SYN PL Len|Pkts Bothl Bytes Both|

Known threat detection model features

Figure 2: Illustration of our netflow structure. ‘Dest Port’ is the netflow’s destination port number. The next six features
refer to the number of packets and total packet bytes which a flow comprises, representing these counts in the upstream and
downstream (‘Up’ and ‘Dn’), and bi-directional (‘Both’). ‘Conc Flows’ is a count representing flow concurrency. The intra-flow
features, ‘SYN PL Len’, ‘Pkts Both’, and ‘Bytes Both’ represent SYN packet payload, and the number of bi-directional packets
and bytes in a TCP stream which does not begin with a SYN packet, respectively.

I netflow i

i
intra-flow
features

- classify
omitted

known threat
detection

known 3

: threat; |
intra-flow] 4}
features activates detected |
added back /

anomaly
detection

AD())
[1..n]

Y
is_anomalyi

Figure 3: High-level illustration of our proposed intrusion
detection system, as a plate model. The known threat detec-
tion model can detect n known threat classes, where each
class maps to an anomaly detection model.

learning individual models for specific network traffic classes would
allow for learning expressive representations. Hence, we propose
an ensemble model to handle detection of known and anomalous
threat behavior, comprising one model for known threat detection
of n threat classes, and n models for anomaly detection.

Figure 3 illustrates our proposed IDS as a plate model, with a
1-to-many relationship between the known threat detection model
and [1..n] anomaly detection models. * Here, we have one anomaly
model for each threat class represented in the known threat model.
The steps are as follows: a netflow i is passed to the known threat
model with its intra-flow features omitted. If the classification of
netflow i is threat class j, the respective anomaly model AD(}) is
activated, and will classify netflow i with its intra-flow features
restored. If netflow i is not classified as an anomaly by the anomaly
model, then the known threat model’s classification is used.

We omit the intra-flow features from the known threat model as
these features represent behavior not common to a known threat
class. Detecting such behavior is the job of the anomaly model,

“We use the terms ‘known threat detection model’ and ‘known threat model’ inter-
changeably. Same with ‘anomaly detection model” and ‘anomaly model’.

87

hence these intra-flow features are added back to any netflow which
is passed to an anomaly model for classification.

For our proposed IDS, all detection models in the ensemble are
Gaussian Mixture Models (GMMs). A GMM is a soft-clustering
model which gives a probability that a netflow belongs to each of
the learned clusters. This is an unsupervised task, with the only
labeling required in the form of a small dataset of representative
netflows from each known threat class, so we can map each one to
the cluster that represents it in the known threat model.

A related model, variational Bayesian GMMs [3], learns the num-
ber of clusters using a Dirichlet process prior and upper bound on
cluster count. This introduces a hyper-parameter to control mix-
ture weights, which ultimately determines which clusters will be
included in the final model. Using a traditional GMM for the known
threat model, we learn one cluster for each threat class, avoiding
the need to blindly tune a hyper-parameter.

To support anomaly detection in a GMM model, we compute
the likelihood that a netflow was ‘generated’ from the model. This
is roughly analogous to bounding the clusters using a distance
metric to define an anomalous space. For spherical clusters (and
their hard-clustering analogue) the bound resembles a radius [24].
In our setting we use full covariance, providing variance per feature
and correlations between them, individually learned per cluster.

All GMM models in our ensemble support anomaly detection.
For each model, we compute a threshold 7, to determine if a netflow
should not be classified to any of the represented clusters by taking
the mean of log-likelihood values of netflow classifications from
an unlabeled validation dataset, and using the three-sigma rule, or
three deviations from the mean, to soften the threshold. As log-
likelihood values strictly decrease as netflows become less likely
to belong to any clusters in the model, we only need to represent
a single threshold value. More formally, a netflow i is classified as
not belonging to any cluster in the model if

®)

lli < Tp,

where

tp = p(dy) = 30(dy). 4)
In Equation 3, Il; is the log-likelihood of netflow i, and in Equa-
tion 4, p(dy) and o(d;) are the mean and standard deviation of
log-likelihood values from validation dataset d;, respectively.

The known threat detection model does not have a cluster rep-
resenting benign traffic, instead comprising n clusters where n is
the number of unique known threat classes (see Figure 3). Here,
anomaly detection is inverted, with benign traffic classified as the
‘anomalies’. As discussed in Section 3.1, benign traffic collection

SACMAT 2024, May 15-17, 2024, San Antonio, TX, USA

is often a difficult problem, and this approach alleviates having to
collect any benign traffic under nominal network conditions. Thus,
the known threat model is trained only on known threat traffic.

An anomaly detection model comprises clusters representing
known threat behavior also captured by the known threat detection
model, and benign traffic behavior in the presence of the detected
threat class. Therefore, we treat the model as a one-class classifier,
with a cluster count reasonable to capture known threat and benign
traffic behavior. While a cluster count of two is straightforward, we
can increase this to further capture more fine grained behavioral
nuances for both known threat and benign traffic. Each anomaly
model is trained using known threat traffic from a single threat
class along with benign traffic collected concurrently with it.

A validation dataset used for computing 7;, (Equation 4) for the
known threat model should be overly sensitive to benign traffic to
reduce known threat false positives. Netflows which have a high
likelihood of belonging to the model should give us this desired
characteristic. One such dataset is the training data itself, thus for
the known threat detection model, we use the training dataset as
the validation dataset for computing 7;,. Validation datasets for the
anomaly detection models should comprise relevant known threat
and benign behavior incorporating concept drift. Such behavioral
variations help to push 7, to a value in which these variations are
not considered anomalous, potentially resulting in a longer service
time before the model needs to be retrained.

Because classification is a discrete-time task, we need some way
to keep an anomaly detection model active when faced with a mix
of incoming known threat and benign traffic. We take a rolling-
window approach in which multiple netflows must classify as a
known threat of the same class within a set duration to keep the
respective anomaly model active. This type of rolling-window may
also help to prevent spurious known threat detection by smoothing
incorrect classifications.

4 EXPERIMENTS

In discussing our experiments, we first describe the datasets used
and experimental methodology. We then present the results, pro-
viding analysis on detection performance for both DaaSS and SYN
flood threat classes.

4.1 Datasets

We curated four datasets for our experimentation, with each one
testing our proposed IDS in different ways. Finding relevant PCAP
data which captures DaaSS or SYN flood variants is inherently dif-
ficult, not to mention that externally curated datasets may contain
zero-days or other unknown anomalies which we may not be aware
of. Thus, all four datasets we curated in-house using a network data
generation framework we developed named EMEws [22], enabling
the creation of representative network traffic free from unknown
anomalies. Information about each dataset is given in Table 1.
Network traffic for all four datasets was captured on similar net-
work topology, with the targeted network consisting of an HTTPS
server, SSH server, and two workstations. Benign and threat traffic
originate from hosts which reside in various local-area networks
outside the targeted network. The DDoS attack used as the known
threat behavior for the first two datasets is a reflection attack on the

88

Brian Ricks, Patrick Tague, Bhavani Thuraisingham, and Sriraam Natarajan

Scenario Cap KT Cn #Bn #KT # An
Dur Dur | Drft | Flows | Flows Flows
NDP-Train 2h 2h - 4800 439358 -
NDP-DDoS-1 30m | 30m N 1101 111051 -
NDP-DDoS-2 | 30m | 30 m Y 1261 116206 -
NDP-DaaSS-1 | 30 m | 30 m N 1319 | 120419 7
NDP-DaaSS-2 | 30m | 30 m Y 1265 123854 21
TS2-Train 1h 20 m - 1505 2240 -
TS2-DDoS-1 30 m 10 m N 2343 1123 -
TS2-DDoS-2 30 m 10 m Y 2465 1120 -
TS2-DaaSS-1 30m | 10m N 2222 1120 5
SYN-Train 30m | 1.3m - 94 135251 -
SYN-Base-1 10m | 1.3m N 752 140652 -
SYN-Var-1 12m | 1.5m Y 731 135000 254
SYN-Var-2 12m | 1.5m Y 749 252 280800
5m 608
MT-Base-1 2h 0.8 Y 10101 31251 -

Table 1: Netflow scenarios used for experimentation. ‘Cap
Dur’ and ‘KT Dur’ refer to a scenario’s capture duration and
known threat duration, respectively. Duration is measured
in hours (h) or minutes (m). ‘Cn Drft’ refers to concept drift,
with scenarios labeled ‘Y’ incorporating varying network traf-
fic behavior compared to the training scenario. ‘# Bn Flows’,
‘4 KT Flows’, and ‘4 An Flows’ refer to the number of benign
netflows, the number of known threat netflows, and the num-
ber of anomaly netflows in a scenario, respectively.

HTTPS server of the targeted network. A reflection attack occurs
when an attacker, in this case a botnet, sends low volume traffic to a
target to induce a high volume outbound flood from the target. This
type of behavior was picked as it can resemble legitimate benign
HTTPS traffic, potentially resulting in a more difficult detection
task.

The first dataset, named NDP, was curated in 2018 and contains
scenarios comprising both DDoS and DaaSS$ attacks [24]. We define
a scenario as a set of netflows parsed from a single PCAP capture,
which comprise our training and testing sets. The underlying threat
of the DaaS$ attacks captured is an SSH-based insider data exfiltra-
tion, originating from one or more of the workstations within the
targeted network. NDP scenarios are unique in that the threat is
present throughout the entirety of each scenario.

The second dataset, named TS2, was curated in 2021 and also
captures DDoS and DaaSS attacks [23]. The HTTPS server in the
targeted network for TS2 scenarios is configured to utilize server-
side connection persistence, an often used option for web servers.
Unlike with the NDP dataset, the underlying threat of the DaaSS
attack captured in the TS2 dataset originates externally from the
targeted network. While the training scenario duration is 1 hour,
for training we only use the 20 minute duration in which the known
threat behavior is present, as the rest of the scenario is benign traffic
which we do not need for training. Table 1 lists flow counts within
the known threat duration for all training scenarios.

The third dataset, which we aptly named SYN, captures SYN
floods and variants. The first scenario is a SYN flood which re-
sembles a slightly more aggressive form of the SYN flood used for

Utilizing Threat Partitioning for More Practical Network Anomaly Detection

training. The other two are variants: a large payload SYN flood
(SYN-Var-1), and a large payload SYN flood with unsolicited TCP
packets (SYN-Var-2), similar to the SYN flood attack described by
Imperva [2]. The SYN training scenario duration is 30 minutes,
but for training we only use the 1.3 minute duration in which the
known threat behavior is present, as the rest of the scenario is
benign traffic which we do not need for training.

The fourth dataset comprises one scenario, MT-Base-1, which
captures two known threat behaviors: a DDoS of the type found in
the TS2 scenarios, and a SYN flood of the type found in SYN-Base-1.
The DDoS starts about 15 minutes into the scenario, and is present
for 5 minutes. Then, an hour into the scenario, the SYN flood starts,
and is present for 0.8 minutes.

4.2 Methodology

When parsing PCAP data to netflow scenarios, inactive and active
flow timeouts were set to 15 seconds and 60 seconds, respectively, to
match default values commonly used in industrial netflow systems.
Similarity epsilon e for flow concurrency was set to 0.99, based on an
expectation that DDoS flows will not vary much from one another.
Aggregates used to compute flow similarity were the unidirectional
packet count and bytes in the upstream and downstream.

Netflow scenarios NDP-DDoS-1, NDP-DDoS-2, TS2-DDoS-1, TS2-
DDoS-2, SYN-Base-1, SYN-Var-1, and MT-Base-1 were used to mea-
sure IDS performance in the absence of any underlying unknown
threat behavior. These scenarios can give insights into how well
our proposed IDS can discriminate between benign and known
threat traffic. Netflow scenarios NDP-DaaSS-1, NDP-DaaSS-2, TS2-
DaaSS-1, and SYN-Var-2 were used to give insights into detection
performance of unknown threat behavior.

Netflow scenario MT-Base-1 was used to test our proposed IDS
on multiple known threat classes in a single scenario. To train our
proposed IDS, we used both the TS2 and SYN training scenarios by
combining them into a single training scenario.

We set the rolling window of our proposed IDS to 17 seconds,
which will keep anomaly detection active 17 seconds beyond detec-
tion of known threat traffic (classification of known threat netflows).
We selected 17 seconds due to our netflow inactive timeout being
15 seconds, plus an additional 2 seconds to compensate for small
gaps in arrival time between consecutive netflows which time out
due to this inactive timeout.

Initial cluster weights and means for our GMM-based detection
models were computed using k-Means++ [1]. Each learned cluster
in the GMM utilized its own covariance matrix, representing per-
feature variance and inter-feature correlation. For the known threat
detection model, we set the number of clusters to learn to match
the count of known threat classes represented in our scenarios for
each dataset. For the anomaly detection models, the number of
clusters to learn was set to 15, based on an upper bound of expected
behavioral variations within the known threat and benign traffic.

Comparing our proposed IDS against another IDS required the
other IDS to support both multi-class threat detection with anomaly
detection, and netflow data to represent the inter-flow and intra-
flow relationships. The only IDS we are aware of which meets these
constraints comes from our prior work in DaaSS detection [24]. This
IDS, which we will call N1, comprises a single hard-clustering model

89

SACMAT 2024, May 15-17, 2024, San Antonio, TX, USA

capable of multi-class threat detection with anomaly detection, and
supports netflow data.

N1 was initialized with 2 cluster centroids to represent the known
threat and benign behavior, using the initialization method intro-
duced by Cao et. al. [4]. A scaling hyper-parameter, «;, is used
to adjust sensitivity to anomalies by scaling the radius learned to
bound each cluster. We set , = 1.5, the value which gave the best
results from our prior work [24].

We tested both IDS through all the test scenarios in both datasets
multiple times, taking as the result the best run. The performance
metrics we focused on were those which illustrated a model’s ability
to limit false positives.

4.3 Experimental Results and Discussion

For all scenarios, our rolling window approach kept anomaly de-
tection active in our proposed IDS during the periods of known
threat activity, without any deactivation of anomaly detection dur-
ing those periods. Furthermore, our proposed IDS did not produce
any known threat false positives in the absence of known threat
traffic, implying that it can operate for long periods of time without
false alarms.

Using validation scenarios to automatically set model sensitivity
seemed to work well for keeping false positives down, both in terms
of known threat and anomaly false positives. We further elaborate
on our known threat detection results in the next section, then
discuss anomaly detection results.

4.3.1
detection results in Table 2, our proposed IDS produced no known
threat false positives for all TS2, SYN, and MT scenarios, which is
important as any false alarms here would unnecessarily activate
underlying anomaly detection.

For the TS2 scenarios, our proposed IDS performed similarly to
N1, with N1’s known threat recall slightly higher. In the precision vs
recall tradeoff, we would prefer to miss some known threat traffic
rather than produce false alarms. Specifically in regard to TS2-
DaaSS-1, N1’s benign accuracy dropped below 100%, misclassifying
a benign netflow as an anomaly. This misclassified benign netflow
arrived about 28 seconds after the last known threat netflow, but
N1 cannot constrain when it searches for anomalies, hence the false
alarm.

Known Threat Behavior Detection. Referring to our threat

For the SYN scenarios, our proposed IDS showed strong per-
formance, with zero known threat false positives for all scenarios.
Here, N1 struggled to discriminate between benign and known
threat traffic, manifesting in hundreds of false alarms per scenario
and benign accuracy in the 30% range. Experimenting with different
values for N1’s a; scaling hyper-parameter did not help improve the
benign accuracy of the trained model. We also experimented with
using N1 as an OCC model for known threat detection, treating
benign traffic as anomalous in much the same way as our GMM
known threat detection model does. N1 did not show any improve-
ment, suggesting that using a GMM for known threat detection
leads to better discrimination between benign and known threat
traffic.

Focusing on scenario MT-Base-1, our proposed IDS had zero
known threat false positives throughout the scenario, which con-
sidering there were two attacks present, shows that our proposed

SACMAT 2024, May 15-17, 2024, San Antonio, TX, USA

Brian Ricks, Patrick Tague, Bhavani Thuraisingham, and Sriraam Natarajan

Proposed IDS N1 (ay = 1.5)
Known Threat Underlying Anomaly Known Threat Underlying Anomaly
Scenario #FP | Bn Acc Prc Recall | # FP Prc [Recall | #FP | Bn Acc Prc Recall | # FP Prc [Recall
NDP-DDoS-1 170 | 84.56% | 99.85% | 99.32% 0 338 69.3% 99.7% | 99.82% 0
NDP-DDoS-2 167 | 86.76% | 99.86% 99.4% 6 370 70.58% | 99.68% | 99.79% 1
NDP-DaaSS-1 205 | 84.54% | 99.83% | 98.64% 9 43.75% 100% 404 69.29% | 99.66% | 99.73% 1 87.5% 100%
NDP-DaaSS-2 178 | 86.16% | 99.85% | 98.48% 10 58.33% | 66.67% 390 69.09% | 99.68% | 99.65% 1| 94.44% | 80.95%
TS2-DDoS-1 0 100% 100% | 97.06% 0 0 100% 100% | 99.73% 0
TS2-DDoS-2 0 100% 100% | 97.05% 0 0 100% 100% 100% 0
TS2-DaaSS-1 0 100% 100% | 96.79% 1 75% 60% 0 99.95% 100% 100% 1 75% 60%
SYN-Base-1 0 100% 100% | 99.46% 1 521 29.26% | 99.63% 100% 11
SYN-Var-1 0 100% 100% | 99.44% 0 100% 100% 501 30.78% | 99.63% 100% 5 0% 0%
SYN-Var-2 0 100% 100% | 99.45% 2 | 99.99% 100% 513 31.11% | 99.64% 100% 3 0% 0%
[MT-Base-1 | 0] 100% | 100% [99.21% | 0/1 | [7185 | 28.87% [91.93% | 100% [0]]

Table 2: Performance of our proposed IDS compared to the N1 hard-clustering model. For scenarios not containing anomalies,
underlying anomaly precision and recall are not applicable. ‘# FP’ represents false positive counts, ‘Bn Acc’ represents benign

accuracy, and ‘Prc’ represents precision.

IDS can keep the known threat false positives at zero in the face
of multiple threats. N1 performed the worst here of any scenario.
While N1 classified all the DDoS threat traffic correctly, 71.13% of
benign traffic was classified as a SYN flood, and suggests that N1
will consistently give false alarms of SYN flood attacks if trained to
detect them.

For the NDP scenarios, while our proposed IDS had a signifi-
cantly lower number of false positives and a significantly higher
benign accuracy than N1, our IDS still produced hundreds of false
alarms. This again suggests that a GMM may be better suited for
known threat detection when compared to hard clustering.

Interestingly, our proposed IDS showed slightly better benign
accuracy on NDP scenarios with concept drift compared to NDP
scenarios without. The known threat detection model may be natu-
rally suited to handling concept drift in benign traffic, as the model
does not know what benign traffic looks like in general. This ties
into model sensitivity, which our approach to automatically set at
training time seems to work well.

4.3.2 Underlying Anomaly Detection Results. For the TS2 scenarios,
both our proposed IDS and N1 performed well with only 1 anomaly
false positive occurring for each IDS in TS2-DaaSS-1. However, N1’s
false positive occurred about 2 minutes after the DDoS had ceased,
which would result in a false alarm. Because our proposed IDS
only searches for anomalies during the presence of known threat
behavior, for this scenario no change in classification would occur
as anomalies are already present.

For the SYN scenarios, our proposed IDS performed very well,
with perfect anomaly classification on SYN-Var-1. The N1 model
struggled on all scenarios, not only with a higher count of anomaly
false positives, but N1 could not actually detect any anomalies.
For scenarios SYN-Var-1, and SYN-Var-2 in which the variants are
represented as intra-flow features, these features do not seem to
have an effect on N1’s classification, rendering it blind to SYN
flood variants. Furthermore, for all SYN scenarios, all anomaly false
positives from N1 occurred when the SYN flood was not active,
resulting in false alarms.

90

Focusing on scenario MT-Base-1, our proposed IDS had zero
anomaly false positives when the DDoS was present, and one false
positive when the SYN flood was present. This seems to align with
our results for the TS2 and SYN scenarios which did not contain
anomalies, even though MT-Base-1 was curated separately. N1 has
one anomaly representation for all known threat classes it repre-
sents, which here was not an issue as N1 produced no anomaly
false positives.

Our proposed IDS did not perform as well on the NDP scenarios,
with between 6 - 10 anomaly false positives in all but NDP-DDoS-1,
which had zero. Our IDS was able to detect the unknown threat
behavior in NDP-DaaSS-1 and NDP-DaaSS-2, with NDP-DaaSS-1
having perfect recall. Overall N1 performed well with the NDP
scenarios, out-performing our IDS in three out of four scenarios.

Concept drift did not seem to have much effect on our proposed
IDS in terms of anomaly false positives. Also interesting to note is
the duration in which the anomaly detection models were active
did not seem to affect the anomaly false positive counts. In other
words, longer duration of anomaly detection does not appear to
correlate with more false positives. This may suggest that anomaly
false positives tend to originate at the fringes of anomaly detection,
either at the beginning of activation or at the end.

5 LIMITATIONS AND FUTURE WORK

A key point brought up by Sommer and Paxson [27] was the lack
of relevant datasets for anomaly model training and testing, and
difficulty in curating or creating them. This includes issues with
benchmark datasets, such as their age and curation methods. While
there are efforts to develop realistic network data generation meth-
ods specifically to address these issues [22, 26], generating represen-
tative benign traffic is in general a difficult task, hence our approach
of minimizing the amount we need to collect.

The NDP dataset was difficult due to benign and known threat
traffic exhibiting very similar behavioral characteristics. An in-
teresting direction for future work involves additional inter-flow
feature engineering to explicitly represent subtle differences in be-
havior between the known threat class and benign traffic. Ideally,

Utilizing Threat Partitioning for More Practical Network Anomaly Detection

any additional inter-flow features should be useful for a wide range
of threat classes.

As the number of threat classes represented in the known threat
model increases, the number of anomaly detection models also
increases. If considering multiple concurrent attacks from threats
belonging to different classes, we would need additional anomaly
detection models to represent the different combinations, possibly
resulting in combinatorial explosion regarding the datasets we
would need to curate. Using network traffic generation techniques
such as EMEwWs may help to make this task more scalable [22].

Our proposed IDS is designed to detect zero-day threats as long
as the zero-day encompasses some known threat behavior. If mali-
cious traffic does not first match any known threat class, it will go
undetected by design. While this is a limitation when compared to
purely anomaly-based IDS, we point out that threat partitioning
provides context to the anomalies detected due to the known behav-
ior observed. With a purely anomaly-based IDS, detected anomalies
may need inspection to determine if they are actually threats. With
our proposed IDS, anomaly false negatives result in the known
threat behavior being incorrectly classified as a base threat class,
when in reality it is a zero-day variant.

6 CONCLUSION

In this work, we developed and demonstrated through experimenta-
tion an anomaly-based network intrusion detection system which
utilizes a method we call threat partitioning to scope the search
for threats, both in terms of the threats being searched for, and the
time intervals in which the IDS searches for them. Our detection
results on two threat classes show promise that our IDS may be
practical for industrial adoption and deployment.

ACKNOWLEDGMENTS

SN acknowledges the support by ARO award W911NF2010224.
This material is also based upon the work partially supported by
the National Science Foundation under Award No. (FAIN): DGE-
1723602. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do
not necessarily reflect the views of the ARO or National Science
Foundation.

REFERENCES

[1] David Arthur and Sergei Vassilvitskii. 2007. K-Means++: The Advantages of
Careful Seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium
on Discrete Algorithms (New Orleans, Louisiana) (SODA *07). Society for Industrial
and Applied Mathematics, USA, 1027-1035.

[2] Johnathan Azaria. 2020. DDoS Attacks Grow More Sophisticated as Imperva
Mitigates Largest Attack. https://www.imperva.com/blog/ddos-attacks-grow-
more-sophisticated-as-imperva-mitigates-largest-attack/

[3] David M. Blei and Michael I. Jordan. 2006. Variational inference for Dirichlet
process mixtures. Bayesian Analysis 1,1 (2006), 121 — 143.

[4] Fuyuan Cao, Jiye Liang, and Liang Bai. 2009. A New Initialization Method for
Categorical Data Clustering. Expert Syst. Appl. 36, 7 (Sept. 2009), 10223-10228.

[5] D.E.Denning. 1987. An Intrusion-Detection Model. IEEE Transactions on Software
Engineering SE-13, 2 (Feb 1987), 222-232.

[6] Devendra Singh Dhami, Siwen Yan, Gautam Kunapuli, and Sriraam Natarajan.

2022. Non-parametric Learning of Embeddings for Relational Data Using Gaif-

man Locality Theorem. In Inductive Logic Programming, Nikos Katzouris and

Alexander Artikis (Eds.). Springer International Publishing, Cham, 95-110.

Christian J. Dietrich, Christian Rossow, and Norbert Pohlmann. 2013. CoCoSpot:

Clustering and Recognizing Botnet Command and Control Channels Using Traffic

Analysis. Comput. Netw. 57, 2 (Feb. 2013), 475-486.

=

91

[8

—_
)

[12

(13]

[14

=
&

[16

(17

(18]

=
)

[20]

[21

[22

[23

™
=)

[25

[26

[27]

[28

[29

[30

SACMAT 2024, May 15-17, 2024, San Antonio, TX, USA

Yebo Feng, Jun Li, Lei Jiao, and Xintao Wu. 2019. BotFlowMon: Learning-based,
Content-Agnostic Identification of Social Bot Traffic Flows. In 2019 IEEE Confer-
ence on Communications and Network Security (CNS). IEEE, Washington, D.C.,
169-177.

Sebastian Garcia, Martin Grill, Jan Stiborek, and Alejandro Zunino. 2014. An
Empirical Comparison of Botnet Detection Methods. Computers & Security 45
(2014), 100-123.

Rick Hofstede, Pavel Celeda, Brian Trammell, Idilio Drago, Ramin Sadre, Anna
Sperotto, and Aiko Pras. 2014. Flow Monitoring Explained: From Packet Capture
to Data Analysis With NetFlow and IPFIX. IEEE Communications Surveys Tutorials
16, 4 (2014), 2037-2064.

Zhexue Huang. 1997. Clustering Large Data Sets with Mixed Numeric and
Categorical Values. In The First Pacific-Asia Conference on Knowledge Discovery
and Data Mining. World Scientific, Singapore, 21-34.

Scott Tkeda. 2022. 3.7 Million FlexBooker Accounts Leaked to Hacker Forum
After DDoS Attack. CPO Magazine (2022). https://www.cpomagazine.com/cyber-
security/3-7-million- flexbooker-accounts-leaked-to-hacker-forum-after-ddos-
attack/

Mohammad Karami and Damon McCoy. 2013. Understanding the emerging
threat of DDoS-As-a-service. In Proceedings of the 6th USENIX Conference on
Large-Scale Exploits and Emergent Threats (Washington, D.C.) (LEET’13). USENIX
Association, USA, 8.

Kaspersky Lab. 2016. Corporate IT Security Risks Survey. Technical Report.
Kaspersky Lab.

Tushar Khot, Sriraam Natarajan, and Jude Shavlik. 2014. Relational one-class
classification: a non-parametric approach. In Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence (AAAI'14). AAAI Press, Québec City,
Québec, Canada, 2453-2459.

Jan Larsen, Lars Kai Hansen, Anna Szymkowiak Have, Torben Christiansen, and
Thomas Kolenda. 2002. Webmining: Learning from the World Wide Web. Comput.
Stat. Data Anal. 38, 4 (feb 2002), 517-532.

Rodney A. Martin. 2007. Unsupervised Anomaly Detection and Diagnosis for
Liquid Rocket Engine Propulsion. In 2007 IEEE Aerospace Conference. IEEE, Big
Sky, MT, USA, 1-15.

Mohammad Masud, Jing Gao, Latifur Khan, Jiawei Han, and Bhavani M. Thu-
raisingham. 2011. Classification and Novel Class Detection in Concept-Drifting
Data Streams Under Time Constraints. IEEE Trans. on Knowl. and Data Eng. 23, 6
(June 2011), 859-874.

Sriraam Natarajan, Tushar Khot, Kristian Kersting, Bernd Gutmann, and Jude
Shavlik. 2012. Gradient-Based Boosting for Statistical Relational Learning: The
Relational Dependency Network Case. Machine Learning 86, 1 (01 Jan 2012),
25-56.

Vern Paxson. 1999. Bro: A System for Detecting Network Intruders in Real-Time.
Comput. Netw. 31, 23-24 (Dec 1999), 2435-2463.

J. Postel. 1981. Transmission Control Protocol. RFC 793.
editor.org/info/rfc793

Brian Ricks, Patrick Tague, and Bhavani Thuraisingham. 2018. Large-Scale
Realistic Network Data Generation on a Budget. In 19th International Conference
on Information Reuse and Integration (IRI). IEEE, Salt Lake City, Utah, USA, 23-30.
Brian Ricks, Patrick Tague, and Bhavani Thuraisingham. 2021. DDoS-as-a-
Smokescreen: Leveraging Netflow Concurrency and Segmentation for Faster
Detection. In 2021 Third IEEE International Conference on Trust, Privacy and Se-
curity in Intelligent Systems and Applications (TPS-ISA). IEEE, Los Alamitos, CA,
USA, 217-224.

Brian Ricks, Bhavani Thuraisingham, and Patrick Tague. 2018. Lifting the Smoke-
screen: Detecting Underlying Anomalies During a DDoS Attack. In 2018 IEEE
International Conference on Intelligence and Security Informatics (ISI). IEEE, Miami,
FL, USA, 130-135.

Martin Roesch. 1999. Snort - Lightweight Intrusion Detection for Networks. In
Proceedings of the 13th USENIX Conference on System Administration (Seattle,
Washington) (LISA *99). USENIX Association, USA, 229-238.

Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A. Ghorbani. 2012. Toward
developing a systematic approach to generate benchmark datasets for intrusion
detection. Computers & Security 31, 3 (2012), 357 — 374.

Robin Sommer and Vern Paxson. 2010. Outside the Closed World: On Using
Machine Learning for Network Intrusion Detection. In Proceedings of the 2010 IEEE
Symposium on Security and Privacy (SP '10). IEEE Computer Society, Washington,
DC, USA, 305-316.

StormWall. 2023. H1 2023 in Review: DDoS Attacks Report by StormWall. https:
//stormwall.network/ddos-report-stormwall-h1-2023

Chih-Fong Tsai, Yu-Feng Hsu, Chia-Ying Lin, and Wei-Yang Lin. 2009. Intrusion
Detection by Machine Learning: A Review. Expert Systems with Applications 36,
10 (2009), 11994-12000.

Paul Wagenseil. 2011. Sony Blames Anonymous for PlayStation Network
Attack. http://www.nbcnews.com/id/42909386/ns/technology_and_science-
security/t/sony-blames-anonymous-playstation- network-attack/.

https://www.rfc-

https://www.imperva.com/blog/ddos-attacks-grow-more-sophisticated-as-imperva-mitigates-largest-attack/
https://www.imperva.com/blog/ddos-attacks-grow-more-sophisticated-as-imperva-mitigates-largest-attack/
https://www.cpomagazine.com/cyber-security/3-7-million-flexbooker-accounts-leaked-to-hacker-forum-after-ddos-attack/
https://www.cpomagazine.com/cyber-security/3-7-million-flexbooker-accounts-leaked-to-hacker-forum-after-ddos-attack/
https://www.cpomagazine.com/cyber-security/3-7-million-flexbooker-accounts-leaked-to-hacker-forum-after-ddos-attack/
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc793
https://stormwall.network/ddos-report-stormwall-h1-2023
https://stormwall.network/ddos-report-stormwall-h1-2023
http://www.nbcnews.com/id/42909386/ns/technology_and_science-security/t/sony-blames-anonymous-playstation-network-attack/
http://www.nbcnews.com/id/42909386/ns/technology_and_science-security/t/sony-blames-anonymous-playstation-network-attack/

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Anomaly-Based Network Intrusion Detection
	2.2 Network Flow Data
	2.3 Threat Class: DDoS-as-a-Smokescreen
	2.4 Threat Class: SYN Flood

	3 Approach Pipeline
	3.1 Threat Partitioning
	3.2 Network Packet Data Structuring
	3.3 Detection Models

	4 Experiments
	4.1 Datasets
	4.2 Methodology
	4.3 Experimental Results and Discussion

	5 Limitations and Future Work
	6 Conclusion
	Acknowledgments
	References

