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Abstract— Quantization of synaptic weights using emerging non-
volatile memory devices has emerged as a promising solution to
implement computationally efficient neural networks on resource
constrained hardware. However, the practical implementation of
such synaptic weights is hampered by the imperfect memory
characteristics, specifically the availability of limited number of
quantized states and the presence of large intrinsic device
variation and stochasticity involved in writing the synaptic states.
This article presents on-chip training and inference of a neural
network using quantized magnetic domain wall (DW) based
synaptic array and CMOS peripheral circuits. A rigorous model
of the magnetic DW device considering stochasticity and process
variations has been utilized for the synapse. To achieve stable
quantized weights, DW pinning has been achieved by means of
physical constrictions. Finally, VGG8 architecture for CIFAR-10
image classification has been simulated by using the extracted
synaptic device characteristics. The performance in terms of
accuracy, energy, latency, and area consumption has been
evaluated while considering the process variations and non-
idealities in the DW device as well as the peripheral circuits. The
proposed quantized neural network architecture achieves efficient
on-chip learning with 92.4% and 90.4 % training and inference
accuracy, respectively. In comparison to pure CMOS based
design, it demonstrates an overall improvement in area, energy,
and latency by 13.8%, 9.6%, and 3.5x, respectively.

Index Terms— Magnetic domain wall, neuromorphic computing,
quantized neural network, synapse, spin orbit torque.

[. INTRODUCTION

Deep neural networks (DNNs) have proved to be successful
in a number of applications ranging from image classification,
speech recognition, time-series prediction, and spatiotemporal
recognition tasks [1-2]. However, DNNs implemented in
traditional von-Neumann computing platforms consume
enormous energy [3] and incur high latency [4] because of
separate memory and processing units as well as the need to
shuttle data back and forth between these units. In-memory
computing (IMC) [5-9] can obviate the need for data shuttling
as the computation takes place in the memory itself and thus
can be a solution for operating DNNs in resource constrained
environments such as [oTs and edge devices. In IMC, non-
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volatile memory (NVM) devices are arranged in a crossbar
array and the weights are mapped into the conductance states of
the devices to perform the most intensive energy load of the
DNN, the matrix vector multiplications (MVM), in a single
time step [6, 9] using Kirchhoff’s law. Towards this end, NVMs
such as phase change memory (PCM) [7, 10-12], resistive
random-access memory (RRAM) [13-15], ferroelectric
memory (FERAM) [16] and spintronic memory [17, 18] are
shown to be area and energy-efficient solution for IMC and
have been researched extensively. Among these devices,
spintronic magnetic domain wall (DW) devices are very
promising due to their higher energy efficiency, higher speed of
operation, higher integration density, and CMOS compatibility
[4, 18-24]. Such nanomagnetic memory devices can be
controlled by voltage induced strain [25-31], voltage controlled
magnetic anisotropy (VCMA) [32-34], current [35-36] and
combination of voltage and current [37-39]. However, similar
to other NVM devices, the DW devices suffer from non-linear,
stochastic response and low resolution in the presence of
practical constraints such as room temperature thermal noise,
and lithographic imperfections [39, 40, 41]. Low resolution and
stochastic responses of NVM devices are shown to significantly
impact the DNN accuracy [42]. Several methods have been
adopted in the literature to address these issues. Multiple
devices per synapse have been used to increase the precision
and address non-linearity of the conductance response [43-45].
Bit-slicing technique [46] is used to slice the input and weight
matrices into several smaller bit slices. In [11], 3 transistors and
1 capacitor (3T1C) module is used to accumulate the smaller
conductance update in the linear-operating region of the 3T1C
and then periodically transfer them to the non-volatile PCM
devices. However, with the methods mentioned above, all the
weights are updated during the weight (conductance) update
stage by sending overlapping pulses into the crossbar rows and
columns, which results in low device endurance and high
training energy cost. Recently, mixed precision training [47-48]
is proposed where the energy intensive MVM and weight
updates are performed in analog domain in an imprecise manner
and the weight update calculations (computing the weight
gradients) are performed in high precision memory units.

With the recent advent of quantized neural networks
(QNNs) and its success in a number of neural network
architectures such as fully connected neural networks (FCNNs)
[49] and convolutional neural networks (CNNs) [50] for a range
of tasks, quantization aware training can be performed to
address the low-resolution issue of the DW devices. However,
with QNN training, weight gradients need to be preserved in
full precision to retain accuracy [49,50]. Thus, mixed precision
framework is suitable for quantization-aware training, where
the weight gradients are computed and preserved in full
precision in a separate digital memory unit. Recent studies [52]
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shows that such quantized training with extremely low
resolution (less than 3-bit) and stochastic DW devices can
achieve near equivalent accuracies to the floating- point
precision (32-bit) FCNN with significant amount of energy
savings. Large inter-state intervals among the limited states of
the device conductances contribute to the significantly lower
number of device updates and associated reduction in write
energy. Although quantized training is shown for simpler
FCNN, a more rigorous study of such quantized training with
complex neural networks such as convolutional neural
networks (CNNss) with appropriate hardware is lacking. Apart
from device resolution, process variations and non-idealities in
the peripheral circuitry can impact neural networks’ accuracies.
DW devices are typically accompanied with a magnetic tunnel
junction (MT]J) to facilitate read operation that can be affected
by process variation (i.e., tunnel barrier thickness) [53-54].
Moreover, peripheral circuits are used to convert analog read
current sum to digital values (to be fed into the next layer
neurons) and the digitally computed errors to analog values in
forward and backward propagation, respectively. The low-

T3

a. Domain wall

Pinned up
domain

resolution converters are desirable for peripheral operation as
high-resolution ADC (or DAC) incur prohibitive area and
energy cost and compromise the benefits of IMC [46,55].
However, decreasing the converter resolution introduces
quantization loss during the read and write of the device and
thus impacts the neural network accuracy. To obtain the
efficient design of IMC framework without compromising
accuracies, the impact of all the system-level non-idealities on
the QNN needs to be quantified and assessed carefully from the
standpoint of overall training cost. In our study, we perform
system-level study for on-chip training of the quantized CNN
by considering stochasticity in device operation, process
variations, and non-idealities stemmed from the peripheral
circuits. In addition, we demonstrate off-chip learning of the
quantized CNN with stochastic DW devices, where a precursor
CNN is first trained off-line separately, and the trained weights
are transferred to the crossbar arrays to perform the actual
inference.

The rest of the paper is organized as follows. Section II
presents the micromagnetic and circuit implementation of the
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Fig. 1 SOT driven magnetic domain wall synapse (a) structure of notched domain wall device (b) micromagnetic simulations of notched
constrictions in free layer where domain wall moves by means of SOT current (c) Circuit implementation of the notched DW synapse and
its position corresponding to current pulse (d) Probability of DWs being pinned at locations after applying a fixed magnitude and duration
current pulse when started from a particular notch position. The starting positions of the DWs are shown in the legends and the target pinning

positions of the DWs are the subsequent notches.



magnetic DW device based quantized synapses. In Section III,
a quantized CNN is presented using the magnetic DW device
based synaptic arrays. The performance analysis of CNN is
explained in section I'V. Further, the effect of various variations
on the accuracy of the network is evaluated in section V.
Finally, section VI draws the conclusion.

II. MAGNETIC DOMAIN WALL AS SYNAPSE

We propose a synapse with a magnetic racetrack that hosts a
DW, as shown in Fig. la. A fixed amplitude and duration
current pulse applied through the heavy metal layer that exerts
spin orbit torque (SOT) in the adjacent magnetic racetrack and
sets the DW into motion. The DWs are translated to different
distances by applying different numbers of current pulses. The
magnetization information of the racetrack is read by MTIJs,
where the MgO tunneling layer is sandwiched between the
bottom racetrack free layer and the top reference layer.
Magnetic regions pinned up and down are positioned at both
ends of the free layer to prevent DW from being annihilated
from the racetrack. The free layer including the heavy metal
layer for injecting current is considered to be Pt/Co/Ni. This is
motivated from the higher DW velocities exhibited in racetrack
including Pt/Co due to higher interfacial Dzyaloshinskii-
Moriya interaction (DMI) and SOT coupling [56-59]. The
racetrack dimension is considered to be 520 nm x 60 nm x lnm.
Engineered notches are placed at regular intervals in the
racetrack to arrest the DWs in stable locations. The notch pitch
is selected to be 80 nm with left-most notch placed at 60 nm.
Prototype MTJ with 250 nm wide and 500 nm long racetrack is
reported [60]. We chose a 60 nm wide racetrack as it offers low
area and decreases the likelihood of MTJ breakdown with
pinholes and defects. Feature size less than ~ 50 nm is feasible
and demonstrated for MTJs with perpendicular magnetic
anisotropy [61]. Racetrack with trapezoidal shape geometry
[60] and meander segments [62] are explored. However, linear
conductance update is not possible in those racetracks which
could incur additional operation during neural network learning
to accommodate non-linear weight update. In contrast,
rectangular shape racetrack offers linear conductance update
when the artificial pinning sites are regularly placed. Artificial
pinning sites with nonmagnetic metal diffusion [63], non-
magnetic ion implantation [64], interfacial DMI modulation
[65] and engineered notches [66] are investigated. Pinning site
with engineered notches are more practical to implement as it
can be done in one-step lithography. We use triangular shape
notches with side length of ~ 23 nm x 8 nm x 8 nm. The
physical DW width in our racetrack is calculated to be ~mA=

Aex

K HoM?
uTT

T ~ 32 nm (see simulation parameter in Table I). We

want to capture a larger portion of the DWs within the notch.
Larger notch side lengths are possible; however, they can
increase the depinning current. Notch pitch could be set to A~
32 nm to get distinct pinning locations along the racetrack.
However, due to the presence of DMI (from heavy
metal/ferromagnet interface such as in Pt/Co interface in the
Pt/Co/Ni racetrack) in the system, the DW undergoes
significant titling [67] and could therefore escape from the
pinning sites. To counter the effect of DW titling we set the

Table I
DEVICE PARAMETERS OF THE PROPOSED MODEL

Parameter Description Value

a Damping parameter 0.015 [69]

M Saturation magnetization 1X10°A/m [70]

K, Anisotropy constant 8.2x10% /m® [70]

A Exchange constant 2x10" J/m[71, 72]

D DMI parameter 0.6x107 J/m?[73]

notch pitch ~ 80 nm which is higher than the physical DW
width. Notch pitch could be further increased; however, it can
increase the footprint of the device.

We simulated the evolution of DW position in the racetrack
in the presence of room temperature (T=300K) thermal noise
using the micromagnetic simulation tool MuMAX3 [68] and
the set of parameters listed in Table I derived from experimental
studies [59, 69-73]. The cell size for the simulation is assumed
to be 2nm x 2nm % 1nm which is well within the ferromagnetic
exchange length. The micromagnetic configuration of the
racetrack-free layer is shown in Fig. 1b when the DW is pinned
at second notch position. The simulation details are presented
in supplementary section S4. Initially, the DWs are assumed to
be pinned at different notch locations. A current pulse of
amplitude 90x 101° A/m? (effective spin current is 90x 10°
A/m? assuming spin hall angle of Pt to be 0.1) and duration 0.5
ns is applied to the heavy metal which is sufficient to depin the
DW and drive it to the next notch locations. We note that the
DW velocities in our racetrack for different current densities are
computed and compared with fabricated devices [59]. A
qualitive match is observed in the trend of DW velocity (see
supplementary section S5). Without stochastic behavior, the
DW movement with the current pulse would be as illustrated in
Fig. lc. However, thermal noise and DW titling due to DMI
[67] results in stochastic DW motion and consequently the DWs
are pinned at different notch locations instead of being pinned
at the intended notch when they start from a particular notch
position as can be seen in Fig. 1d. We note, the DMI moves the
DW in the presence of SOT current as it helps to stabilize the
Neel domain wall [74]. Without the DMI, the DW becomes
Bloch wall, where the centre (mid-plane) magnetization of the
DW is parallel to the polarization of the current (direction of the
spins). Spins aligned parallel to the DW magnetization do not
exert any torque, thus barely move the DW with SOT current.
In contrast, in Neel wall, the DW magnetization aligns
perpendicular to the spins, thus maximum torque is exerted due
to SOT, which helps to move the DW. Once the equilibrium end
positions of the DWs are known, the conductances of the MTJ
can be derived from average magnetization of the racetrack
using the following equation:

Gsynapse — Gmax + Gmin + Gnax = Gmin

2 2

<m,> (1)

where, < m, > is the average magnetization moment of
ferromagnetic racetrack along z-direction and reference
ferromagnetic layer magnetization is assumed to point
downward. G4, and G,,;, are the maximum and minimum
conductance of the synapse, respectively (see supplementary
section S7 for details). We note that, apart from thermal noise,
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defects can exist in the racetrack which can also influence the
distribution of the equilibrium DW positions. To analyze the
role of defects, we use Voronoi tessellation and change the
anisotropy constant in different regions of the racetrack. The
results are presented in supplementary section S6. The
distribution of equilibrium DW positions in racetrack with
defects is similar to racetrack without defects as long as the
anisotropy variation is low which is expected in a small-scale
device.

III. DEEP NEURAL NETWORK USING DW SYNAPSE

The IMC architecture speeds up CNN processing by
performing MVM within the memory crossbar array itself. The
primary principle of analog IMC is to store the weights in the
form of conductance states of a memory cell to perform the
functionality of a synapse. In this manuscript, a notched
magnetic DW device is used as a synapse to store 5 conductance
states, as shown in Fig. 1(b), and enable the network to learn
and classify at the circuit level. The hardware architecture to
implement on-chip learning of the network is shown in Fig. 2.
It is composed of crossbar arrays aided with peripheral read and
write circuits, ADCs, MUX, and adders to form a transposable
synaptic array (TSA). Multiple TSAs are arranged in H-routing
manner with integrated buffers to form processing elements
(PEs) that are further arranged in the form of tiles. The top-level
architecture has multiple tiles with separate units for weight
gradient, global buffer, accumulation, activation and pooling
computations. The weight update is performed in row-by-row
manner sequentially, whereas the inference is performed in
parallel mode by activating all the columns simultaneously.
Write and read word lines (WWL/RWL) control the access
transistors to select a particular synaptic device for its write and
read operations. The column multiplexer employs column
sharing because of the energy and area overheads of ADC.
Here, one ADC is shared by eight columns. Along each column,
the output vectors are produced as the analog partial current
sum that is converted to digital values by the ADC. To get the
final sum values from the multistate weights and input
multiplication, shift-and-add digital modules are used.

VGG-8 architecture is used to classify 32%32-coloured
images from CIFAR-10 dataset as shown in Fig. 3. It consists
of 6 convolution layers appended by 2 fully connected layers to
perform CIFAR-10 image classification. The architecture uses
maximum pooling layers with kernel of 2x2 after each
convolution layer. Input voltages proportional to 1024 input
features converted from a 32 x 32 image, are applied to the
crossbar. Read currents, corresponding to the product of each
input element and synaptic weight of the bit cell, add up using
Kirchhoff’s current law and feed to the activation function

128x128x6

64x64x16 8192 1024

FC1 FC2

Fig. 3 Schematic of the VGG-8 model used for image
classification from CIFAR-10 dataset.

Table 11
Mapping algorithm

1. Unrolling: Input feature map (IFM) [W x W x D], output feature map
(OFM) [W x W x N] with 3D kernels unrolled column wise [1: N].
Kernels of [K x K x D x N] arranged in [K x K] sub-matrices each with
D rows and N columns. The sub-matrices of K x K are computed in
parallel for generating OFMs.

2.1In first cycle, first element in every OFM is generated with respect to
1 x 1 x N by sum of dot products. After W x W cycles, complete OFM
of layer <n> is generated when IFM slides for all kernels.

3. Loss function (L) is defined as L=|| (T - Y) |? where, T and Y represent
desired and achieved output, respectively.

4.Perform feed-forward operation, the input [I] is fed into the network
arranged in crossbars (weight matrix [X]).
Output vector (I;) from crossbar after MAC operation = X.1 + bias is
passed through activation and read peripherals to give input for
subsequent layer.

5. Perform backpropagation:

Weight updating by SGD:
Woew = Wy — 1. :—:/ = clip (update with stochastic rounding (W,
n,8),-1, 1.

a. Clip function [75]: The floating-point number 7 is quantized into
B bit signed integer representation bounded in range of [-1+c(B),
1-0(B)] by:

=cli L —
Q (n, B) =clip {G(B). round [G(B)] ,—1+ o(B),1 G(B)}
where 6(B) = 2178, BE N,

b. Stochastic rounding function is described as:

Prob( n= floor(n)) = ceil(|n]) — |n|
Prob(n = ceil(n)) = In| — floor(|n|)

6. Quantization is performed on weight (W) and activation (a)
corresponding to synaptic weight states both in feed forward and
backpropagation as:

clip(x,a,b) = min(max(x,a),b)
A=D2

q= [rournld (—C”p(xf'b)_a)] xA+a




Table 111
Latency consumption for CNN

Layer ADC latency(s)  Accumulation latency(s) Synaptic array latency(s) Weight gradient latency(s) Weight update latency (s)
1 0.129774 0.0329325 0.201507 1.18366 9.54E-06
2 1.070640 1.76489 0.967181 9.32001 1.85E-05
3 0.233162 0.384354 0.211583 6.21413 2.65E-05
4 0.466323 0.480683 0.421276 6.21281 4.15E-05
5 0.085651 0.088286 0.077722 5.32607 13.28E-05
6 0.171302 0.130426 0.1548 5.32651 10.53E-05
7 0.004758 2.04022 0.004322 0.00810 1.86E-05
8 0.000594 0.000623 0.000542 0.00084 1.40E-07
Total 2.16221 4.92242 2.03893 33.5922 3.53E-04
Total/image 2.89E-07 6.56E-07 2.72E-07 4.47E-06 4.7E-11
Table IV
Energy consumption for CNN
Layer ADC energy (J) Accumulation energy (J)  Synaptic Array energy(J) Weight gradient energy (J) Weight update energy(J)
1 0.0174728 0.00817203 0.00456215 0.0487068 6.38E-08
2 0.289625 0.180987 0.0701857 1.76747 5.51E-08
3 0.115211 0.0788298 0.030202 0.737181 1.02E-07
4 0.214977 0.153347 0.0598064 1.43143 1.87E-07
5 0.0789722 0.05518 0.021961 0.529648 4.31E-07
6 0.1543 0.109247 0.0437938 1.0542 7.13E-07
7 0.0145854 0.0595865 0.00431061 0.15844 1.41E-06
8 5.37E-05 6.10E-05 2.27E-05 0.000193544 7.66E-09
Total 0.885197 0.64541 0.234844 5.72727 2.97E-06
Total/ 1.18E-07 8.60E-08 3.13E-08 7.6E-07 3.96E-13
image
Table V
Area consumption for CNN
Device Total Total IMC Routing ADC Accumulation Other Logic & Weight Gradient
Area(m?) Area (m?) Area(m?) Area(m?) Area(m?) Storage Area(m?) Area(m?)
DW 17.28 E-05 7.44E-06 2.86E-05 3.88E-05 3.69E-05 3.39E-05 2.72E-05
SRAM 239.77E-05 16.82E-05  22.2E-05 42.1E-05 130.4E-05 26.03E-05 2.04E-05

circuit at each output node. Hence, the MVM is performed
within the crossbar array. Furthermore, the stochastic gradient
descent (SGD) approach is employed to calculate the weight
update at each output node using a weight update circuit. The
weight change calculated at each output node is then multiplied
by the inputs using the multiplier circuit. A current
corresponding to the multiplier’s output acts as a writing current
on the DW synapse and modifies its conductance. Furthermore,
a mapping algorithm, as shown in Table II, has been developed
to map hardware architecture. The proposed DW device
provides synaptic weight states, therefore, we adopted weight
and activation quantization in our training algorithm. To
accomplish this, the following set of functions as reported in
[49] are used:

q= [round (—C”p(xf’b)_a)] XA+a (2)

Where clip(x,a, b) = min(max(x,a),b), q is the quantized
value of the real valued number x, [a; b] is the quantization

. o b-a . .
range and n is the level of quantization. A= n—_‘i, is the scaling

factor that essentially divides a given range of real values into
a number of partitions. The weights are initialized with random
distribution of quantized states. The weights are updated using
the stochastic gradient descent (SGD) algorithm which
computes the weight gradient and losses. The error is computed
by gradient of loss function (root mean square) with respect to
activation and then this error is back propagated from (n+1)"
layer to n™ layer. During backpropagation, the error is encoded
into input voltage pulses and then MAC operation is performed
with prior stored kernels. The error in the corresponding layer
is propagated to each of the sub-array matrices according to the
spatial location of kernels and each crossbar considers the
encoded error as its input. The details of the algorithms are
presented in section S3 of supplementary material.

IV. PERFORMANCE OF CNN

Micromagnetic simulations of notched DW device have been
carried out using Mumax3. Furthermore, a Verilog-A based
SPICE model of the notched DW device has been developed
for performing circuit level simulations. Then, synaptic
crossbar array of size 128x128 has been implemented on circuit



simulator for each layer separately. The output of each column
of crossbar array is connected to an output neuron. After every
iteration, the outputs generated by the circuit simulator are then
passed to an in-house script that performs digital operations
(ReLU activation function,) in the forward computation as well
as the weight-update calculation in back-propagation.

The complete set of performance metrics is achieved for 125
epochs. Table IIT and IV show the layer wise latency and energy
consumption, respectively, for various CNN
modules/operations such as ADC, accumulation, synaptic
array, weight gradient calculation, and weight update. Four
operations:  feedforward, error computation, gradient
computation, and weight update, mainly contribute to the total
energy and latency. The weight gradient computation
dominates in the total latency and energy because of the
repeated write and read operations of activation functions and
errors to compute weight gradients. It is observed that the
energy and latency utilized in weight updates is very less
compared to other units. The reason for this is that weight
update operations are performed only once per batch. Table V
presents the area breakdown incurred by crossbar array,
routing, ADCs, accumulation module, weight gradient storage
array, and other peripheral circuitry in case of both DW and
CMOS based CNNs. From the table, we can see that ADC and
weight gradient computation units occupy large area as these
are built up by conventional technology arrays that are separate
from CIM arrays. Other logic and storage circuits also consume
large areas as these provide data transfer during each operation.
The accumulation area comprises PE- and tile-level adder trees
for weight gradient unit and transposable synaptic-arrays. In
order to access number of quantized DW states on the CNN
performance, the proposed DW based CNN has been compared
with CMOS based CNN utilizing same simulation approach.
Fig. 4 shows the relation between the number of training epochs
and accuracy of 5-state DW weight precision-based CNN and
32-bit CMOS weight precision-based network. It is observed
that 5-state DW based NN achieves comparable accuracy as
that of 32-bit CMOS based design. However, the DW based
CNN is 13.8x%, 9.6x, and 3.5x more efficient in terms of area,
energy, and latency, respectively, in contrast to 32-bit CMOS
based CNN, as shown in Table VI. For having a fair
comparison, the proposed 5-state DW based CNN is also
compared with 3-bit CMOS based design. The results show that
DW based CNN is 2.5%, 1.8%, and

Table VI

Performance comparison of proposed DW based CNN with SRAM
based design

Synaptic Total Area Total latency (s)  Total energy (J)
Device (x10° m?)
DW 17.28 43.716 7.492
SRAM 239.8 154.79 71.80
Table VII
Impact on accuracy due to ADC precision
ADC precision (bits) Accuracy (%)
10 90.9
8 90.4
6 86.0
4 10.0
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Fig. 4 Accuracy achieved in 125 epochs for 5-state and 32-bit DW
device precision

2.9x more efficient in terms of energy, latency, and area,
respectively without affecting the accuracy. Also, to evaluate
the effect of ADC precision on accuracy, the training and
inference of the proposed CNN has been performed for varying
number of ADC precision bits as shown in Table VII. The
results show that 8-bit ADC precision is sufficient to achieve
90.9% accuracy in the proposed DW based CNN.

V. PROCESS DEVICE-TO-DEVICE VARIATIONS ON ACCURACY

In order to implement CNN in hardware, the input vector
[Vio....... V] is fed into the network arranged in crossbars
architecture of the domain wall based synaptic devices as
shown in Fig. 5. Weights are represented by the conductance of
the notched DW device (G5Y™?P%¢). The notched DW synapse
offers linear and exclusively positive weight changes. This is
because the weight change depends upon the conductance
associated with the position of the DW, and the corresponding
conductance values can only be positive. As a result, the
synaptic weight modification is limited to positive values
ranging from G, t0 Gumar. However, we require weights to be
updated in both directions (positive and negative). Therefore, to
implement both the positive and negative linear weight update,
an extra conductance (Gparaier) is added in parallel to each of the
synapses and a negative of the input voltage is applied on the
Gparauer [22]. The synapse conductance can be derived using
Kirchhoff’s current law for one column as shown in the
following:

leg = _Vlearallel +ViWig o= VmGparallel
+ Vme,l (3)
where,  Gparaner = (Gmax + Gmin)/2 is the average of
maximum and minimum conductance achieved by the DW
device. To solve it for single synapse:
legy = —ViGparaner + ViWia 4)
L = G = —Gprauier + Wi (5)
Wi 1 is G¥™%¢corresponding to the position of the DW (as
shown in Eq. 1). Hence,
GEvSImapse — _ GmaxtGmin 4 =synapse (6)
2
Equivalent resistance can be expresses as:

Red.synapse
2R ax Rinin R

= )

synapse synapse
2Rmamein — RYnep Rmax — Rnap Rmin




Where, RSY™aPs¢ is the DW device resistance corresponding to
the position of the DW i.e., RSY"%%¢ = RpRp/Rp + Ryp. Rinax
and R,,;, are corresponding to G4, and G, respectively.
Hence, linear weights in both directions (positive and negative
weights) are achieved as shown in Table VIII.

There are two main reasons that result in stochastic behavior
in DW conductance state, therefore affecting the NN accuracy;
1. Thermal noise and DW tilting as discussed in section II. 2.
Variation in notched DW device parameters such as free layer,
fixed layer, heavy metal layer, and oxide layer dimensions and
transistor width and length. To assess the effect of conductance
variation of synaptic devices, 1000 Monte Carlo simulations
have been performed with the variation in TMR, oxide
thickness, MTJ area, width and length of the transistor as shown
in Table IX. The statistical distributions of 5 linear conductance
change states of the proposed synapse are shown in Fig. 6.
Furthermore, deviation from the 5 conductance distributions is
obtained and its effect on the DNN accuracy is evaluated. It is
observed that the deviation in the conductance below 20% is
enough to achieve the accuracy of 88.6% as shown in Table X.
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Fig. 5 Circuit to achieve linear weight updates.

Table VIII
Synapse conductance corresponding to DW position
DwW MTIJ Conductance Conductance
Position Resistance corresponding to MTJ update in both
(nm) (kQ) resistance (107 S) directions (x103S)
60 29.8 33 -8.99
140 12.7 7.8 -4.51
220 8.1 12.3 -0.02
300 59 16.9 4.60
380 4.7 21.2 9.11
Table IX

Percentage variations in process parameters
Variation (%)

MT]J parameters References

Free layer thickness 5 [76],[771,[78]
Oxide barrier thickness 2 [76],[771,[79]
TMR 2 [80]
Width of the transistor 5 [76], [81]
Length of the transistor 5 [76], [81]
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Fig. 6 Statistical distribution of synapse conductance considering
process variations.

Table X

Change in accuracy due to device conductance variation.
Device conductance variation (%) Accuracy (%)

0 90.4

10 89.4

20 88.6

30 86.6

40 85.7

50 80.4

VI. CONCLUSION

A quantized neural network using a magnetic domain wall
(DW) synaptic array and CMOS peripheral circuits has been
implemented. The magnetic domain wall model is rigorously
studied by considering stochasticity and process variation to
implement the synapse. By using extracted synaptic device
characteristics, a VGGS8 neural network architecture has been
implemented for CIFAR-10 data classification. The proposed
neural network architecture achieves efficient on-chip learning
with 90.4% inference accuracy. The algorithmic level
quantization and optimization shows the efficiency of the
presented work for next-generation hardware implementations.
In comparison to pure CMOS 32-bit based design it shows an
overall improvement in area, energy, and latency by 13.8%,
9.6x, and 3.5x%, respectively.
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