
Abstract— Quantization of synaptic weights using emerging non-
volatile memory devices has emerged as a promising solution to 
implement computationally efficient neural networks on resource 
constrained hardware. However, the practical implementation of 
such synaptic weights is hampered by the imperfect memory 
characteristics, specifically the availability of limited number of 
quantized states and the presence of large intrinsic device 
variation and stochasticity involved in writing the synaptic states. 
This article presents on-chip training and inference of a neural 
network using quantized magnetic domain wall (DW) based 
synaptic array and CMOS peripheral circuits. A rigorous model 
of the magnetic DW device considering stochasticity and process 
variations has been utilized for the synapse. To achieve stable 
quantized weights, DW pinning has been achieved by means of 
physical constrictions. Finally, VGG8 architecture for CIFAR-10 
image classification has been simulated by using the extracted 
synaptic device characteristics. The performance in terms of 
accuracy, energy, latency, and area consumption has been 
evaluated while considering the process variations and non-
idealities in the DW device as well as the peripheral circuits. The 
proposed quantized neural network architecture achieves efficient 
on-chip learning with 92.4% and 90.4 % training and inference 
accuracy, respectively. In comparison to pure CMOS based 
design, it demonstrates an overall improvement in area, energy, 
and latency by 13.8×, 9.6×, and 3.5×, respectively. 
 
Index Terms— Magnetic domain wall, neuromorphic computing, 
quantized neural network, synapse, spin orbit torque. 

I. INTRODUCTION 
Deep neural networks (DNNs) have proved to be successful 

in a number of applications ranging from image classification, 
speech recognition, time-series prediction, and spatiotemporal 
recognition tasks [1-2]. However, DNNs implemented in 
traditional von-Neumann computing platforms consume 
enormous energy [3] and incur high latency [4] because of 
separate memory and processing units as well as the need to 
shuttle data back and forth between these units. In-memory 
computing (IMC) [5-9] can obviate the need for data shuttling 
as the computation takes place in the memory itself and thus 
can be a solution for operating DNNs in resource constrained 
environments such as IoTs and edge devices. In IMC, non- 
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volatile memory (NVM) devices are arranged in a crossbar 
array and the weights are mapped into the conductance states of 
the devices to perform the most intensive energy load of the 
DNN, the matrix vector multiplications (MVM), in a single 
time step [6, 9] using Kirchhoff’s law. Towards this end, NVMs 
such as phase change memory (PCM) [7, 10-12], resistive 
random-access memory (RRAM) [13-15], ferroelectric 
memory (FeRAM) [16] and spintronic memory [17, 18] are 
shown to be area and energy-efficient solution for IMC and 
have been researched extensively. Among these devices, 
spintronic magnetic domain wall (DW) devices are very 
promising due to their higher energy efficiency, higher speed of 
operation, higher integration density, and CMOS compatibility 
[4, 18-24]. Such nanomagnetic memory devices can be 
controlled by voltage induced strain [25-31], voltage controlled 
magnetic anisotropy (VCMA) [32-34], current [35-36] and 
combination of voltage and current [37-39]. However, similar 
to other NVM devices, the DW devices suffer from non-linear, 
stochastic response and low resolution in the presence of 
practical constraints such as room temperature thermal noise, 
and lithographic imperfections [39, 40, 41]. Low resolution and 
stochastic responses of NVM devices are shown to significantly 
impact the DNN accuracy [42]. Several methods have been 
adopted in the literature to address these issues. Multiple 
devices per synapse have been used to increase the precision 
and address non-linearity of the conductance response [43-45]. 
Bit-slicing technique [46] is used to slice the input and weight 
matrices into several smaller bit slices. In [11], 3 transistors and 
1 capacitor (3T1C) module is used to accumulate the smaller 
conductance update in the linear-operating region of the 3T1C 
and then periodically transfer them to the non-volatile PCM 
devices. However, with the methods mentioned above, all the 
weights are updated during the weight (conductance) update 
stage by sending overlapping pulses into the crossbar rows and 
columns, which results in low device endurance and high 
training energy cost. Recently, mixed precision training [47-48] 
is proposed where the energy intensive MVM and weight 
updates are performed in analog domain in an imprecise manner 
and the weight update calculations (computing the weight 
gradients) are performed in high precision memory units. 

With the recent advent of quantized neural networks 
(QNNs) and its success in a number of neural network 
architectures such as fully connected neural networks (FCNNs) 
[49] and convolutional neural networks (CNNs) [50] for a range 
of tasks, quantization aware training can be performed to 
address the low-resolution issue of the DW devices. However, 
with QNN training, weight gradients need to be preserved in 
full precision to retain accuracy [49,50]. Thus, mixed precision 
framework is suitable for quantization-aware training, where 
the weight gradients are computed and preserved in full 
precision in a separate digital memory unit. Recent studies [52] 
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shows that such quantized training with extremely low 
resolution (less than 3-bit) and stochastic DW devices can 
achieve near equivalent accuracies to the floating- point 
precision (32-bit) FCNN with significant amount of energy 
savings. Large inter-state intervals among the limited states of 
the device conductances contribute to the significantly lower 
number of device updates and associated reduction in write 
energy. Although quantized training is shown for simpler 
FCNN, a more rigorous study of such quantized training with 
complex neural networks such as convolutional neural 
networks (CNNs) with appropriate hardware is lacking. Apart 
from device resolution, process variations and non-idealities in 
the peripheral circuitry can impact neural networks’ accuracies. 
DW devices are typically accompanied with a magnetic tunnel 
junction (MTJ) to facilitate read operation that can be affected 
by process variation (i.e., tunnel barrier thickness) [53-54]. 
Moreover, peripheral circuits are used to convert analog read 
current sum to digital values (to be fed into the next layer 
neurons) and the digitally computed errors to analog values in 
forward and backward propagation, respectively. The low-

resolution converters are desirable for peripheral operation as 
high-resolution ADC (or DAC) incur prohibitive area and 
energy cost and compromise the benefits of IMC [46,55]. 
However, decreasing the converter resolution introduces 
quantization loss during the read and write of the device and 
thus impacts the neural network accuracy. To obtain the 
efficient design of IMC framework without compromising 
accuracies, the impact of all the system-level non-idealities on 
the QNN needs to be quantified and assessed carefully from the 
standpoint of overall training cost. In our study, we perform 
system-level study for on-chip training of the quantized CNN 
by considering stochasticity in device operation, process 
variations, and non-idealities stemmed from the peripheral 
circuits. In addition, we demonstrate off-chip learning of the 
quantized CNN with stochastic DW devices, where a precursor 
CNN is first trained off-line separately, and the trained weights 
are transferred to the crossbar arrays to perform the actual 
inference.    

The rest of the paper is organized as follows. Section II 
presents the micromagnetic and circuit implementation of the 

 
Fig. 1 SOT driven magnetic domain wall synapse (a) structure of notched domain wall device (b) micromagnetic simulations of notched 
constrictions in free layer where domain wall moves by means of SOT current (c) Circuit implementation of the notched DW synapse and 
its position corresponding to current pulse (d) Probability of DWs being pinned at locations after applying a fixed magnitude and duration 
current pulse when started from a particular notch position. The starting positions of the DWs are shown in the legends and the target pinning 
positions of the DWs are the subsequent notches. 
 



magnetic DW device based quantized synapses. In Section III, 
a quantized CNN is presented using the magnetic DW device 
based synaptic arrays. The performance analysis of CNN is 
explained in section IV. Further, the effect of various variations 
on the accuracy of the network is evaluated in section V. 
Finally, section VI draws the conclusion. 

II. MAGNETIC DOMAIN WALL AS SYNAPSE 
We propose a synapse with a magnetic racetrack that hosts a 

DW, as shown in Fig. 1a. A fixed amplitude and duration 
current pulse applied through the heavy metal layer that exerts 
spin orbit torque (SOT) in the adjacent magnetic racetrack and 
sets the DW into motion. The DWs are translated to different 
distances by applying different numbers of current pulses. The 
magnetization information of the racetrack is read by MTJs, 
where the MgO tunneling layer is sandwiched between the 
bottom racetrack free layer and the top reference layer. 
Magnetic regions pinned up and down are positioned at both 
ends of the free layer to prevent DW from being annihilated 
from the racetrack. The free layer including the heavy metal 
layer for injecting current is considered to be Pt/Co/Ni. This is 
motivated from the higher DW velocities exhibited in racetrack 
including Pt/Co due to higher interfacial Dzyaloshinskii-
Moriya interaction (DMI) and SOT coupling [56-59]. The 
racetrack dimension is considered to be 520 nm × 60 nm × 1nm. 
Engineered notches are placed at regular intervals in the 
racetrack to arrest the DWs in stable locations. The notch pitch 
is selected to be 80 nm with left-most notch placed at 60 nm. 
Prototype MTJ with 250 nm wide and 500 nm long racetrack is 
reported [60]. We chose a 60 nm wide racetrack as it offers low 
area and decreases the likelihood of MTJ breakdown with 
pinholes and defects. Feature size less than ~ 50 nm is feasible 
and demonstrated for MTJs with perpendicular magnetic 
anisotropy [61]. Racetrack with trapezoidal shape geometry 
[60] and meander segments [62] are explored. However, linear 
conductance update is not possible in those racetracks which 
could incur additional operation during neural network learning 
to accommodate non-linear weight update. In contrast, 
rectangular shape racetrack offers linear conductance update 
when the artificial pinning sites are regularly placed.  Artificial 
pinning sites with nonmagnetic metal diffusion [63], non-
magnetic ion implantation [64], interfacial DMI modulation 
[65] and engineered notches [66] are investigated. Pinning site 
with engineered notches are more practical to implement as it 
can be done in one-step lithography. We use triangular shape 
notches with side length of ~ 23 nm × 8 nm × 8 nm. The 
physical DW width in our racetrack is calculated to be ~𝜋𝜋∆=

𝜋𝜋�
𝐴𝐴𝑒𝑒𝑒𝑒

𝐾𝐾𝑢𝑢−
𝜇𝜇0𝑀𝑀𝑠𝑠2

2

 ≈ 32 nm (see simulation parameter in Table I). We 

want to capture a larger portion of the DWs within the notch. 
Larger notch side lengths are possible; however, they can 
increase the depinning current. Notch pitch could be set to 𝜋𝜋∆~ 
32 nm to get distinct pinning locations along the racetrack. 
However, due to the presence of DMI (from heavy 
metal/ferromagnet interface such as in Pt/Co interface in the 
Pt/Co/Ni racetrack) in the system, the DW undergoes 
significant titling [67] and could therefore escape from the 
pinning sites. To counter the effect of DW titling we set the  

 

 
notch pitch ~ 80 nm which is higher than the physical DW 
width. Notch pitch could be further increased; however, it can 
increase the footprint of the device.  

We simulated the evolution of DW position in the racetrack 
in the presence of room temperature (T=300K) thermal noise 
using the micromagnetic simulation tool MuMAX3 [68] and 
the set of parameters listed in Table I derived from experimental 
studies [59, 69-73]. The cell size for the simulation is assumed 
to be 2nm × 2nm × 1nm which is well within the ferromagnetic 
exchange length. The micromagnetic configuration of the 
racetrack-free layer is shown in Fig. 1b when the DW is pinned 
at second notch position. The simulation details are presented 
in supplementary section S4. Initially, the DWs are assumed to 
be pinned at different notch locations. A current pulse of 
amplitude 90× 1010 A/m2 (effective spin current is 90× 109 
A/m2 assuming spin hall angle of Pt to be 0.1) and duration 0.5 
ns is applied to the heavy metal which is sufficient to depin the 
DW and drive it to the next notch locations. We note that the 
DW velocities in our racetrack for different current densities are 
computed and compared with fabricated devices [59]. A 
qualitive match is observed in the trend of DW velocity (see 
supplementary section S5). Without stochastic behavior, the 
DW movement with the current pulse would be as illustrated in 
Fig. 1c.  However, thermal noise and DW titling due to DMI 
[67] results in stochastic DW motion and consequently the DWs 
are pinned at different notch locations instead of being pinned 
at the intended notch when they start from a particular notch 
position as can be seen in Fig. 1d. We note, the DMI moves the 
DW in the presence of SOT current as it helps to stabilize the 
Neel domain wall [74]. Without the DMI, the DW becomes 
Bloch wall, where the centre (mid-plane) magnetization of the 
DW is parallel to the polarization of the current (direction of the 
spins). Spins aligned parallel to the DW magnetization do not 
exert any torque, thus barely move the DW with SOT current. 
In contrast, in Neel wall, the DW magnetization aligns 
perpendicular to the spins, thus maximum torque is exerted due 
to SOT, which helps to move the DW. Once the equilibrium end 
positions of the DWs are known, the conductances of the MTJ 
can be derived from average magnetization of the racetrack 
using the following equation: 

𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚

2 +
𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚

2 < 𝑚𝑚𝑧𝑧 >      (1) 
 
where, < 𝑚𝑚𝑧𝑧 > is the average magnetization moment of 
ferromagnetic racetrack along z-direction and reference 
ferromagnetic layer magnetization is assumed to point 
downward. 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚  and 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 are the maximum and minimum 
conductance of the synapse, respectively (see supplementary 
section S7 for details). We note that, apart from thermal noise, 

Table I 
DEVICE PARAMETERS OF THE PROPOSED MODEL 

Parameter Description Value 

𝛼𝛼 Damping parameter  0.015 [69] 
𝑀𝑀𝑠𝑠 Saturation magnetization 1×106𝐴𝐴/𝑚𝑚 [70] 
𝐾𝐾𝑢𝑢 Anisotropy constant 8.2×105𝐽𝐽/𝑚𝑚3 [70] 
A Exchange constant 2×10-11 𝐽𝐽/𝑚𝑚 [71, 72] 
D DMI parameter 0.6×10-3 J/m2 [73] 

 



 
 
defects can exist in the racetrack which can also influence the 
distribution of the equilibrium DW positions. To analyze the 
role of defects, we use Voronoi tessellation and change the 
anisotropy constant in different regions of the racetrack. The 
results are presented in supplementary section S6. The 
distribution of equilibrium DW positions in racetrack with 
defects is similar to racetrack without defects as long as the 
anisotropy variation is low which is expected in a small-scale 
device.  
 

III. DEEP NEURAL NETWORK USING DW SYNAPSE 
The IMC architecture speeds up CNN processing by 

performing MVM within the memory crossbar array itself. The 
primary principle of analog IMC is to store the weights in the 
form of conductance states of a memory cell to perform the 
functionality of a synapse. In this manuscript, a notched 
magnetic DW device is used as a synapse to store 5 conductance 
states, as shown in Fig. 1(b), and enable the network to learn 
and classify at the circuit level. The hardware architecture to 
implement on-chip learning of the network is shown in Fig. 2. 
It is composed of crossbar arrays aided with peripheral read and 
write circuits, ADCs, MUX, and adders to form a transposable 
synaptic array (TSA). Multiple TSAs are arranged in H-routing 
manner with integrated buffers to form processing elements 
(PEs) that are further arranged in the form of tiles. The top-level 
architecture has multiple tiles with separate units for weight 
gradient, global buffer, accumulation, activation and pooling 
computations. The weight update is performed in row-by-row 
manner sequentially, whereas the inference is performed in 
parallel mode by activating all the columns simultaneously. 
Write and read word lines (WWL/RWL) control the access 
transistors to select a particular synaptic device for its write and 
read operations. The column multiplexer employs column 
sharing because of the energy and area overheads of ADC. 
Here, one ADC is shared by eight columns. Along each column, 
the output vectors are produced as the analog partial current 
sum that is converted to digital values by the ADC. To get the 
final sum values from the multistate weights and input 
multiplication, shift-and-add digital modules are used. 

VGG-8 architecture is used to classify 32×32-coloured 
images from CIFAR-10 dataset as shown in Fig. 3. It consists 
of 6 convolution layers appended by 2 fully connected layers to 
perform CIFAR-10 image classification. The architecture uses 
maximum pooling layers with kernel of 2×2 after each 
convolution layer. Input voltages proportional to 1024 input 
features converted from a 32 × 32 image, are applied to the 
crossbar. Read currents, corresponding to the product of each 
input element and synaptic weight of the bit cell, add up using 
Kirchhoff’s current law and feed to the activation function  

  

 
 

 

 
Fig. 2 Architecture level representation of on-chip learning 

hardware 

 
Fig. 3 Schematic of the VGG-8 model used for image 

classification from CIFAR-10 dataset. 
 

Table II 
Mapping algorithm 

1. Unrolling: Input feature map (IFM) [W x W x D], output feature map 
(OFM) [W x W x N] with 3D kernels unrolled column wise [1: N]. 
Kernels of [K x K x D x N] arranged in [K x K] sub-matrices each with 
D rows and N columns. The sub-matrices of K x K are computed in 
parallel for generating OFMs. 

2. In first cycle, first element in every OFM is generated with respect to 
1 x 1 x N by sum of dot products. After W x W cycles, complete OFM 
of layer <n> is generated when IFM slides for all kernels. 

3. Loss function (L) is defined as L = || (T – Y) ||2 where, T and Y represent 
desired and achieved output, respectively. 

4. Perform feed-forward operation, the input [I] is fed into the network 
arranged in crossbars (weight matrix [X]). 
Output vector (Ih) from crossbar after MAC operation = X.I + bias is 
passed through activation and read peripherals to give input for 
subsequent layer.  

5. Perform backpropagation: 
   Weight updating by SGD:  
𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑊𝑊𝑜𝑜𝑜𝑜𝑜𝑜 −  𝜂𝜂. 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 = clip (update with stochastic rounding (Wold, 

𝜂𝜂 , g), -1, 1). 
a. Clip function [75]: The floating-point number n is quantized into 

B bit signed integer representation bounded in range of [-1+σ(B), 
1-σ(B)] by: 
Q (n, B) = clip �σ(B). round � 𝑛𝑛

σ(B)
� ,−1 +  σ(B), 1 −  σ(B)� 

where σ(B) = 21−𝐵𝐵, B∈ ℕ+ 
b. Stochastic rounding function is described as: 

�
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� 𝑛𝑛 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑛𝑛)� = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(|𝑛𝑛|) − |𝑛𝑛| 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃� 𝑛𝑛 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑛𝑛)� = |𝑛𝑛| − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(|𝑛𝑛|)

 

6. Quantization is performed on weight (W) and activation (a) 
corresponding to synaptic weight states both in feed forward and 
backpropagation as: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥, 𝑎𝑎,𝑏𝑏) = min(𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑎𝑎) , 𝑏𝑏) 
      ∆= 𝑏𝑏−𝑎𝑎

𝑛𝑛−1
 

    𝑞𝑞 =  �𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑎𝑎,𝑏𝑏)−𝑎𝑎
∆

�� × ∆ + 𝑎𝑎                     

 
 



 
circuit at each output node. Hence, the MVM is performed 
within the crossbar array. Furthermore, the stochastic gradient 
descent (SGD) approach is employed to calculate the weight 
update at each output node using a weight update circuit. The 
weight change calculated at each output node is then multiplied 
by the inputs using the multiplier circuit. A current 
corresponding to the multiplier’s output acts as a writing current 
on the DW synapse and modifies its conductance. Furthermore, 
a mapping algorithm, as shown in Table II, has been developed 
to map hardware architecture. The proposed DW device 
provides synaptic weight states, therefore, we adopted weight 
and activation quantization in our training algorithm. To 
accomplish this, the following set of functions as reported in 
[49] are used: 
 
 𝑞𝑞 =  �𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥,𝑎𝑎,𝑏𝑏)−𝑎𝑎

∆
�� × ∆ + 𝑎𝑎                     (2) 

 
Where 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥, 𝑎𝑎, 𝑏𝑏) = min(𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑎𝑎) , 𝑏𝑏),  𝒒𝒒 is the quantized 
value of the real valued number 𝒙𝒙, [𝒂𝒂; 𝒃𝒃] is the quantization 
range and 𝒏𝒏 is the level of quantization. ∆= 𝑏𝑏−𝑎𝑎

𝑛𝑛−1
, is the scaling  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
factor that essentially divides a given range of real values into 
a number of partitions. The weights are initialized with random 
distribution of quantized states. The weights are updated using 
the stochastic gradient descent (SGD) algorithm which 
computes the weight gradient and losses. The error is computed 
by gradient of loss function (root mean square) with respect to 
activation and then this error is back propagated from (n+1)th 
layer to nth layer. During backpropagation, the error is encoded 
into input voltage pulses and then MAC operation is performed 
with prior stored kernels. The error in the corresponding layer 
is propagated to each of the sub-array matrices according to the 
spatial location of kernels and each crossbar considers the 
encoded error as its input. The details of the algorithms are 
presented in section S3 of supplementary material. 
 

IV. PERFORMANCE OF CNN 
Micromagnetic simulations of notched DW device have been 

carried out using Mumax3. Furthermore, a Verilog-A based 
SPICE model of the notched DW device has been developed 
for performing circuit level simulations. Then, synaptic 
crossbar array of size 128×128 has been implemented on circuit 

Table III 
 Latency consumption for CNN 

Layer ADC latency(s) Accumulation latency(s) Synaptic array latency(s) Weight gradient latency(s) Weight update latency (s) 

1 0.129774 0.0329325 0.201507 1.18366 9.54E-06 
2 1.070640 1.76489 0.967181 9.32001 1.85E-05 
3 0.233162 0.384354 0.211583 6.21413 2.65E-05 
4 0.466323 0.480683 0.421276 6.21281 4.15E-05 
5 0.085651 0.088286 0.077722 5.32607 13.28E-05 
6 0.171302 0.130426 0.1548 5.32651 10.53E-05 
7 0.004758 2.04022 0.004322 0.00810 1.86E-05 
8 0.000594 0.000623 0.000542 0.00084 1.40E-07 

Total 2.16221 4.92242 2.03893 33.5922 3.53E-04 
Total/image 2.89E-07 6.56E-07 2.72E-07 4.47E-06 4.7E-11 

 
Table IV 

 Energy consumption for CNN 
Layer ADC energy (J) Accumulation energy (J) Synaptic Array energy(J) Weight gradient energy (J) Weight update energy(J) 

1 0.0174728 0.00817203 0.00456215 0.0487068 6.38E-08 

2 0.289625 0.180987 0.0701857 1.76747 5.51E-08 

3 0.115211 0.0788298 0.030202 0.737181 1.02E-07 

4 0.214977 0.153347 0.0598064 1.43143 1.87E-07 

5 0.0789722 0.05518 0.021961 0.529648 4.31E-07 

6 0.1543 0.109247 0.0437938 1.0542 7.13E-07 

7 0.0145854 0.0595865 0.00431061 0.15844 1.41E-06 

8 5.37E-05 6.10E-05 2.27E-05 0.000193544 7.66E-09 

Total 0.885197 0.64541 0.234844 5.72727 2.97E-06 

Total/
image 

1.18E-07 8.60E-08 3.13E-08 7.6E-07 3.96E-13 

 
Table V 

 Area consumption for CNN 

Device Total 
Area(m2) 

Total IMC 
Area (m2) 

Routing 
Area(m2) 

ADC 
Area(m2) 

Accumulation 
Area(m2) 

Other Logic & 
Storage Area(m2) 

Weight Gradient 
Area(m2) 

DW 17.28 E-05 7.44E-06 2.86E-05 3.88E-05 3.69E-05 3.39E-05 2.72E-05 
SRAM 239.77E-05 16.82E-05 22.2E-05 42.1E-05 130.4E-05 26.03E-05 2.04E-05 

 
 



simulator for each layer separately. The output of each column 
of crossbar array is connected to an output neuron. After every 
iteration, the outputs generated by the circuit simulator are then 
passed to an in-house script that performs digital operations 
(ReLU activation function,) in the forward computation as well 
as the weight-update calculation in back-propagation. 

The complete set of performance metrics is achieved for 125 
epochs. Table III and IV show the layer wise latency and energy 
consumption, respectively, for various CNN 
modules/operations such as ADC, accumulation, synaptic 
array, weight gradient calculation, and weight update. Four 
operations: feedforward, error computation, gradient 
computation, and weight update, mainly contribute to the total 
energy and latency. The weight gradient computation 
dominates in the total latency and energy because of the 
repeated write and read operations of activation functions and 
errors to compute weight gradients. It is observed that the 
energy and latency utilized in weight updates is very less 
compared to other units. The reason for this is that weight 
update operations are performed only once per batch. Table V 
presents the area breakdown incurred by crossbar array, 
routing, ADCs, accumulation module, weight gradient storage 
array, and other peripheral circuitry in case of both DW and 
CMOS based CNNs. From the table, we can see that ADC and 
weight gradient computation units occupy large area as these 
are built up by conventional technology arrays that are separate 
from CIM arrays. Other logic and storage circuits also consume 
large areas as these provide data transfer during each operation. 
The accumulation area comprises PE- and tile-level adder trees 
for weight gradient unit and transposable synaptic-arrays. In 
order to access number of quantized DW states on the CNN 
performance, the proposed DW based CNN has been compared 
with CMOS based CNN utilizing same simulation approach. 
Fig. 4 shows the relation between the number of training epochs 
and accuracy of 5-state DW weight precision-based CNN and 
32-bit CMOS weight precision-based network. It is observed 
that 5-state DW based NN achieves comparable accuracy as 
that of 32-bit CMOS based design. However, the DW based 
CNN is 13.8×, 9.6×, and 3.5× more efficient in terms of area, 
energy, and latency, respectively, in contrast to 32-bit CMOS 
based CNN, as shown in Table VI. For having a fair 
comparison, the proposed 5-state DW based CNN is also 
compared with 3-bit CMOS based design. The results show that 
DW based CNN is 2.5×, 1.8×, and 

 

 

 
Fig. 4 Accuracy achieved in 125 epochs for 5-state and 32-bit DW 

device precision 
 
2.9× more efficient in terms of energy, latency, and area, 
respectively without affecting the accuracy. Also, to evaluate 
the effect of ADC precision on accuracy, the training and 
inference of the proposed CNN has been performed for varying 
number of ADC precision bits as shown in Table VII. The 
results show that 8-bit ADC precision is sufficient to achieve 
90.9% accuracy in the proposed DW based CNN.  
 
V. PROCESS DEVICE-TO-DEVICE VARIATIONS ON ACCURACY  

In order to implement CNN in hardware, the input vector 
[V1……..Vm] is fed into the network arranged in crossbars 
architecture of the domain wall based synaptic devices as 
shown in Fig. 5. Weights are represented by the conductance of 
the notched DW device (𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠). The notched DW synapse 
offers linear and exclusively positive weight changes. This is 
because the weight change depends upon the conductance 
associated with the position of the DW, and the corresponding 
conductance values can only be positive. As a result, the 
synaptic weight modification is limited to positive values 
ranging from Gmin to Gmax. However, we require weights to be 
updated in both directions (positive and negative). Therefore, to 
implement both the positive and negative linear weight update, 
an extra conductance (Gparallel) is added in parallel to each of the 
synapses and a negative of the input voltage is applied on the 
𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  [22]. The synapse conductance can be derived using 
Kirchhoff’s current law for one column as shown in the 
following:  

𝐼𝐼𝑒𝑒𝑒𝑒 = −𝑉𝑉1𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑉𝑉1𝑊𝑊1,1 … … …− 𝑉𝑉𝑚𝑚𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
+ 𝑉𝑉𝑚𝑚𝑊𝑊𝑚𝑚,1                                                        (3) 

where, 𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = (𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚)/2 is the average of 
maximum and minimum conductance achieved by the DW 
device. To solve it for single synapse: 

𝐼𝐼𝑒𝑒𝑒𝑒,1 = −𝑉𝑉1𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑉𝑉1𝑊𝑊1,1                        (4) 
𝐼𝐼𝑒𝑒𝑒𝑒,1
𝑉𝑉1

= 𝐺𝐺1
𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = −𝐺𝐺𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑊𝑊1,1                   (5) 

𝑊𝑊1,1 is 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠corresponding to the position of the DW (as 
shown in Eq. 1). Hence, 
 𝐺𝐺1

𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = −𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚+𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚
2

+ 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                      (6) 
Equivalent resistance can be expresses as: 
 
𝑅𝑅𝑒𝑒𝑒𝑒,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

=
2𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

2𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚
                      (7) 

Table VI 
Performance comparison of proposed DW based CNN with SRAM 

based design 
Synaptic 
Device 

Total Area 
(×10-5 m2) 

Total latency (s) Total energy (J) 

DW 17.28  43.716 7.492 
SRAM 239.8 154.79 71.80 

 
Table VII 

 Impact on accuracy due to ADC precision 
ADC precision (bits) Accuracy (%) 

10 90.9 
8 90.4 
6 86.0 
4 10.0 

 
 



Where, 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒 is the DW device resistance corresponding to 
the position of the DW i.e., 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑅𝑅𝑃𝑃𝑅𝑅𝐴𝐴𝐴𝐴 𝑅𝑅𝑃𝑃 + 𝑅𝑅𝐴𝐴𝐴𝐴⁄ . 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 
and 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚  are corresponding to 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚  and 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚, respectively. 
Hence, linear weights in both directions (positive and negative 
weights) are achieved as shown in Table VIII. 
 There are two main reasons that result in stochastic behavior 
in DW conductance state, therefore affecting the NN accuracy; 
1. Thermal noise and DW tilting as discussed in section II. 2. 
Variation in notched DW device parameters such as free layer, 
fixed layer, heavy metal layer, and oxide layer dimensions and 
transistor width and length. To assess the effect of conductance 
variation of synaptic devices, 1000 Monte Carlo simulations 
have been performed with the variation in TMR, oxide 
thickness, MTJ area, width and length of the transistor as shown 
in Table IX. The statistical distributions of 5 linear conductance 
change states of the proposed synapse are shown in Fig. 6. 
Furthermore, deviation from the 5 conductance distributions is 
obtained and its effect on the DNN accuracy is evaluated. It is 
observed that the deviation in the conductance below 20% is 
enough to achieve the accuracy of 88.6% as shown in Table X. 

 

 
Fig. 5 Circuit to achieve linear weight updates. 

 

 

 

 
Fig. 6 Statistical distribution of synapse conductance considering 

process variations. 
 

 
 

VI. CONCLUSION 
A quantized neural network using a magnetic domain wall 

(DW) synaptic array and CMOS peripheral circuits has been 
implemented. The magnetic domain wall model is rigorously 
studied by considering stochasticity and process variation to 
implement the synapse. By using extracted synaptic device 
characteristics, a VGG8 neural network architecture has been 
implemented for CIFAR-10 data classification. The proposed 
neural network architecture achieves efficient on-chip learning 
with 90.4% inference accuracy. The algorithmic level 
quantization and optimization shows the efficiency of the 
presented work for next-generation hardware implementations. 
In comparison to pure CMOS 32-bit based design it shows an 
overall improvement in area, energy, and latency by 13.8×, 
9.6×, and 3.5×, respectively. 
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