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A B S T R A C T   

Solar-induced chlorophyll fluorescence (SIF) is widely accepted as a proxy for gross primary productivity (GPP). 
Among the various SIF measurements, tower-based SIF measurements allow for continuous monitoring of SIF 
variation at a canopy scale with high temporal resolution, making it suitable for monitoring highly variable plant 
physiological responses to environmental changes. However, because of the strong and close relationship be-
tween SIF and absorbed photosynthetically active radiation (aPAR), it may be difficult to detect the influence of 
environmental drivers other than light conditions. Among the drivers, atmospheric dryness (vapor pressure 
deficit, VPD) is projected to increase as drought becomes more frequent and severe in the future, negatively 
impacting plants. In this study, we evaluated the tower-based high-frequency SIF measurement as a tool for 
detecting plant response to highly variable VPD. The study was performed in a mixed temperate forest in Vir-
ginia, USA, where a 40-m-tall flux tower has been measuring gas and energy exchanges and ancillary environ-
mental drivers, and the Fluospec 2 system has been measuring SIF. We show that a proper definition of light 
availability to vegetation can reproduce SIF response to changing VPD that is comparable to GPP response as 
estimated from eddy covariance measurement: GPP decreased with rising VPD regardless of how aPAR was 
defined, whereas SIF decreased only when aPAR was defined as the PAR absorbed by chlorophyll (aPARchl) or 
simulated by a model (Soil Canopy Observation, Photochemistry and Energy fluxes, SCOPE). We simulated the 
effect of VPD on SIF with two different simulation modes of fluorescence emission representing contrasting 
moisture conditions, ‘Moderate’ and ‘Soil Moisture (SM) Stress’ modes. The decreasing SIF to rising VPD was 
only found in the SM Stress mode, implying that the SIF-VPD relationship depends on soil moisture conditions. 
Furthermore, we observed a similar response of SIF to VPD at hourly and daily scales, indicating that satellite 
measurements can be used to study the effects of environmental drivers other than light conditions. Finally, the 
definition of aPAR emphasizes the importance of canopy structure research to interpret remote sensing obser-
vations properly.   

1. Introduction 

Solar-induced chlorophyll fluorescence (SIF) has been highlighted as 
a proxy for understanding plant physiology due to its strong relationship 
with gross primary production (GPP) across observational scales and 
direct ecophysiological connection with the light reactions in photo-
synthesis (Frankenberg et al., 2011; Guanter et al., 2014; Johnson and 
Berry, 2021; Kim et al., 2021; Porcar-Castell et al., 2014; Sun et al., 
2017; Yang et al., 2015; Zhang et al., 2016a, 2018). SIF is often retrieved 
from satellite measurements (space-based), which have a coarse 
spatiotemporal scale. While space-based SIF retrieval is beneficial for 

understanding plant carbon dynamics at large scales (regional to 
global), its low temporal frequency in measurements (once per multiple 
days) may not be well-suited to studying physiological responses to fast- 
changing environmental drivers, limiting its utility to improve our un-
derstanding of ecophysiological response to climate change. For 
example, vapor pressure deficit (VPD, the difference between saturation 
and actual vapor pressure) is a function of air temperature and relative 
humidity and is thus highly variable diurnally. Moreover, VPD has 
received growing attention as an important environmental driver for its 
potential to affect plant biology (e.g., by inducing stomatal closure and 
limiting carbon uptake) and intensify hydrological cycles (e.g., more 
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severe and frequent drought) due to the projected global warming in the 
future (Grossiord et al., 2020; López et al., 2021; McDowell et al., 2020, 
2022; Novick et al., 2016; Yi et al., 2019). For example, Wang et al. 
(2019) addressed the significant impact of increased VPD on the 
reduction of apparent SIF yield (defined as SIF divided by absorbed 
photosynthetically active radiation, aPAR) at a regional scale by 
leveraging the extreme drought and heatwave events in China. How-
ever, it is also essential to examine the SIF response over a range of VPD 
under moderate moisture conditions at a finer scale to elucidate the 
mechanisms of SIF response to changing VPD and its relationship with 
plant carbon uptake (e.g., GPP). Recent advances in automated tower- 
based SIF measurement techniques (Cogliati et al., 2015; Du et al., 
2019; Grossmann et al., 2018; Gu et al., 2019; Guanter et al., 2013; 
Magney et al., 2019; Yang et al., 2015, 2018) have enabled high- 
frequency SIF measurement (< hourly interval) at a canopy scale. 

However, it remains uncertain whether the effect of VPD on SIF can 
be confidently distinguished from SIF-aPAR at the canopy level. This is 
because SIF and aPAR are strongly correlated, and light intensity can 
indirectly influence VPD by increasing the temperature on sunny days 
since VPD is dependent on humidity and temperature (Chang et al., 
2020; He et al., 2020; Miao et al., 2018). Paul-Limoges et al. (2018), for 
example, investigated the impact of VPD on SIF at a canopy scale using 
tower-based SIF measurement in a mixed forest and cropland, but 
without clear decoupling of VPD from the effect of aPAR. Moreover, 
while the importance of the definition of light absorption has been 
widely emphasized for remote-sensing-based photosynthesis observa-
tions (Ogutu and Dash, 2013; Yang et al., 2015; Zhang et al., 2020), 
previous studies often use photosynthetic photon flux density (PPFD) 
that may not accurately represent the actual amount of light absorbed by 
foliage or chlorophyll and used for photosynthesis. This is because PPFD 
measures the amount of PAR that actually arrives at the plant but does 
not distinguish PAR absorbed by non-photosynthetic components (e.g., 
stem, branch, senescent foliage) from photosynthetic components. 

We evaluate the tower-based high-frequency SIF measurement (i.e., 
< hourly) as a tool to detect plant response to highly variable VPD by 
decoupling its impact from light availability. We used GPP estimated 
from eddy covariance measurement as a reference and compared it with 
the SIF measurement to test whether SIF and GPP have divergent or 
convergent responses to changing VPD. We also simulated SIF, aPAR, 
and quantum yields using the SCOPE model V1.73 (van der Tol et al., 
2009) to compare with the SIF measurement. Our goal of the SCOPE 
simulation was to answer the following questions: 1) Does the pattern of 
the simulated SIF in response to VPD agree with the patterns of mea-
surements? 2) If so, what is driving the observed response? If not, what 
are the major reasons for the discrepancy? 

We further tested whether lower-frequency measurement of SIF (i.e., 
daily) is frequent enough to decouple the impact of VPD from aPAR by 
using the data collected around midday only. This test provides useful 
insight into the validity of low-frequency satellite measurements for 
studying the impact of highly variable VPD on SIF. Specifically, we 
defined the half-hourly measurement of SIF as ‘hourly scale’ data and 
the SIF measured between noon and 2 pm as ‘daily scale’ data and then 
compared these datasets. 

2. Materials and methods 

2.1. Site description 

The study site (Virginia Forest Research Facility) is located in a 
temperate mixed forest, within the footprint of a flux tower in central 
Virginia, USA (37◦ 55′N 78◦ 16′W). Long-term mean annual temperature 
and precipitation (from 1981 to 2010) are 14.0 ◦C and 1210 mm (over 
90% as rain), respectively. Canopy dominant tree species include white 
oak (Quercus alba L.), Virginia pine (Pinus virginiana Mill.), southern red 
oak (Q. falcata Michx.), red maple (Acer rubrum L.), and tulip poplar 
(Liriodendron tulipifera L.). The relative dominances (= basal area of a 

species / basal area of all trees × 100%) within a 500 m radius from the 
flux tower were 23.6%, 20.0%, 11.9%, 11.5%, and 10.3%, respectively 
(Chan, 2011). The range of diameter at breast height (DBH) was 2.5 to 
81.0 cm, with tree sizes of second and third quartiles ranging from 4.0 to 
15.1 cm. The study period was limited to the late growing season, from 
early July to mid-September in 2019, to minimize the effect of season-
ality and the potential effect of sun-sensor-canopy geometrical variation. 

2.2. SIF measured by Fluospec 2 

SIF was measured using an automated system, Fluospec 2. A detailed 
description of the system is documented in Yang et al. (2018). The key 
component of the system is a high spectral resolution spectrometer 
(QEPro, OceanOptics Inc., Dunedin, FL, USA) with a spectral resolution 
of 0.14 nm and a spectral range of 729.7–784.1 nm. The main compo-
nents of the system include a spectrometer, a computer for system 
operation (Raspberry Pi), and an optical shutter alternating the two 
optical cables that measure incoming solar radiation and upwelling ra-
diation from canopies, respectively (Fig. 1). For stability, the system is 
enclosed in a thermostatic box (25 ◦C) inside an air-conditioned hut built 
to accommodate various research tools. The optical cables for radiance 
measurements are installed on the top platform of a flux tower. 

We applied an O2A-based spectral fitting method (SFM) that uses a 
reduced fitting window from 759.5 to 761.5 nm (Chang et al., 2020), 
which is known to improve O2A retrieval accuracy compared to a con-
ventional SFM method using a wider fitting window (759–767.76 nm) 
(Fig. 2). The SIF was recorded every 10 min and averaged every 30 min. 

2.3. SIF simulated by SCOPE 

We simulated SIF, aPAR, and quantum yields for the four pathways 
used by leaves during photosynthesis (i.e., quantum yields of photo-
chemistry, ΦP, fluorescence, ΦF, non-photochemical quenching, ΦN, and 
non-radiative decay, ΦD) using the SCOPE model V1.73 (van der Tol 
et al., 2009). It is necessary to stress that the SCOPE simulations do not 
have to perfectly match the observations, and in fact, the mismatch 
between the observations and the model results is to be expected as 
several key parameters related to SIF (e.g., Vcmax: maximum carboxyl-
ation rate, FQE: fluorescence quantum yield efficiency at photosystem 
level) are prescribed. SCOPE model simulations were driven by meteo-
rological data collected by the sensors installed at the study site, 
including PAR, longwave radiation, temperature, vapor and atmo-
spheric pressure, and leaf area index from the Moderate Resolution 
Imaging spectroradiometer (MODIS, MCD15A2H Version 6; See Fig. S1 
in Supplementary Information for the variability of leaf area index). The 
model was modified to use the incident PAR measurements, instead of 
shortwave radiation, as input data for a more accurate aPAR simulation. 
The other inputs were set to default (See Table S1 in Supplementary 
Information for more details about the input data). We have compared 
two different fluorescence emission models (Moderate and Soil Moisture 
(SM) Stress models) incorporated in the SCOPE model, of which quan-
tum yield fractions were set differently based on the experiments con-
ducted under different soil moisture conditions (van der Tol et al., 
2014). More specifically, van der Tol et al. (2014) demonstrated how 
fluorescence yield was influenced by non-photochemical quenching 
(ΦN) using the results of previous studies that combined leaf gas ex-
change and pulse amplitude modulation (PAM) measurements. They 
compared multiple sets of experiments performed on different plants 
that were subject to different main environmental drivers, and devel-
oped two sets of parameters to model quantum yields for the SCOPE: one 
was based on the cotton dataset (Weis and Berry, 1987), concerned with 
light, CO2, and temperature variations (without water stress; hereafter, 
‘Moderate mode’). Another set was based on C3 species treated with 
daily irrigation and then progressively decreasing soil moisture avail-
ability (Flexas et al., 1999, 2002); hereafter, ‘Soil Moisture (SM) Stress 
mode’ (See Discussions and Fig. 10 for the comparison between two 
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simulation modes). Therefore, the results from the two simulation 
modes would inform how the relationship between SIF and VPD depends 
on soil moisture conditions. 

2.4. Eddy covariance and environmental drivers 

CO2, water, and energy fluxes and other environmental variables (e. 
g., air temperature, relative humidity, and VPD) were recorded at an 
eddy flux tower using a sonic anemometer (CSAT3, Campbell Scientific, 
Logan, Utah), gas analyzer (LI-7500, Li-Cor, Lincoln, Nebraska), and 
temperature and humidity probe (HMP45, Vaisala, Helsinki, Finland) at 
a height of 25 m, several meters above the characteristic vegetation 
height. NEE partitioning into GPP and ecosystem respiration (Reco) was 
done by using an R-based online eddy covariance processing tool, 
ReddyProc (Wutzler et al., 2018) and choosing the daytime partitioning 

algorithm. Compared to another partitioning option available in the 
ReddyProc (i.e., nighttime partitioning algorithm), the daytime parti-
tioning algorithm accounts for the temperature sensitivity of Reco and 
the effect of VPD on plant light response curve to enhance the reliability 
of Reco estimates (Lasslop et al., 2010). Only GPP >5 μmol m−2 s−1 was 
used for the analysis to avoid the poorly defined relationship between 
GPP and aPAR under the conditions of low GPP. The temporal resolution 
of GPP and ancillary data was 30 min. 

2.5. aPAR estimation 

Careful selection of aPAR definition is important because aPAR is 
often estimated in different ways based on the different assumptions of 
light absorption (Porcar-Castell et al., 2021). For example, an assump-
tion of a whole canopy as a light absorbent does not discern differences 

Fig. 1. The design of instrument setup (Fluospec 2) at the study site (Virginia Forest Research Facility, a) and a sample thermal image taken at 13:00 EST on August 
8, 2019 at the top platform of a flux tower near the SIF sensors (b). Fluospec 2 is composed of a SIF spectrometer, a computer for system operation (Raspberry Pi), and 
an optical shutter. The system is enclosed in a thermostatic box, with the temperature inside the enclosure set at 25 ◦C, and resides inside a research hut. The ends of 
optical cables measuring irradiance and canopy radiance are installed on the top platform of a flux tower (40 m tall). Note that the field of view (FOV) of the optical 
fibers (25◦) is smaller than the FOV of the thermal camera (45◦). Thus, SIF is observed for a smaller area than appears in the thermal image in panel b. 

Fig. 2. An example of data collected by Fluospec 2 at noon on June 14, 2019. Irradiance (orange in panel a) was collected by an upward-looking cosine corrector, 
and radiance (blue in panel a) was collected by an optical fiber pointing to the target tree canopy. Reflectance (b) was calculated by dividing radiance by irradiance 
and multiplying by π. The shaded area in green in panel b indicates the fitting window (759.5–761.5 nm) used for O2A retrieval (Chang et al., 2020). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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in light absorption between photosynthetic (i.e., functional leaves) and 
non-photosynthetic (i.e., stem, branches, and senescent leaves) compo-
nents, in contrast to the assumption of photosynthetically functional 
leaves as the only light absorbent. Furthermore, the close relationship 
between SIF and aPAR may have a significant influence when evaluating 
the impact of other environmental factors on SIF. We have compared 
four different approaches to estimate aPAR: PAR absorbed by the entire 
canopy, which is estimated by stand-scale measurement (aPARm), PAR 
absorbed by chlorophyll (aPARchl), reflected radiance in the far-red 
spectrum at 755 nm measured by Fluospec 2 (Rad755), and aPAR esti-
mated by SCOPE simulation (aPARsc) (Table 1). 

The aPARm was estimated by simultaneous in-situ measurements at 
different positions using quantum sensors (PQS-1, Kipp & Zonen B.V., 
Delft, Netherlands) as follows: 
aPARm = PARabove − PARunder −PARrefl (1)  

where PARabove is PAR measured above canopies, PARunder is an average 
of PAR measured at three different positions under canopies, and PARrefl 
is canopy-reflected PAR. The PAR components were measured every 
minute and averaged every 30 min to match its temporal resolution with 
GPP and SIF. The aPARm represents a conventional method to estimate 
site-level aPAR. 

The approach to estimating aPARchl was suggested by Ogutu and 
Dash (2013). According to their definition, aPARchl is PAR absorbed by 
photosynthetic components of canopies only (i.e., excluding PAR 
absorbed by branches, stem, and senescent foliage) and utilized for 
photosynthesis. Therefore, unlike aPARm, aPARchl represents aPAR at 
the level of organelles. The aPARchl can be estimated by using eddy 
covariance data from the following equation: 
aPARchl = incident PAR x faPARchl = (NEE−Reco)/αa (2)  

where faPARchl is the fraction of aPAR absorbed by photosynthetic el-
ements in the canopy, NEE is net ecosystem exchange (μmol m−2 s−1), αa 
is actual quantum yield (the number of moles of CO2 fixed per mole of 
PAR absorbed by photosynthetic elements in the canopy: mol mol−1), 

which is a function of maximum intrinsic quantum yield (0.08 mol 
mol−1 for C3 plants) (Collatz et al., 1991; Hanan et al., 2002), air tem-
perature, and VPD, and Reco is ecosystem respiration (μmol m−2 s−1) 
(Refer to Ogutu and Dash (2013) for more details about the derivation). 
While actual quantum yield is a function of VPD, we applied a constant 
VPD representing VPD in clear midday during the study period from 
July to September (2 kPa) to avoid the potential perplexing influence of 
both VPD and aPARchl on GPP and SIF (see Fig. S2 in Supplementary 
Information for the comparison between aPARchl estimated using con-
stant VPD and variable VPD). 

The radiance in the far-red spectrum reflected by canopies (Rad755) 
is often used to derive relative SIF (=SIF/Rad755). Relative SIF is the 
normalized SIF to correct the effect of heterogeneous vegetation struc-
ture (Magney et al., 2019; Parazoo et al., 2020) and is comparable to SIF 
yield (=SIF/aPAR). In principle, relative SIF is comparable to the near- 
infrared radiance of vegetation (NIRvR) when Normalized Difference 
Vegetation Index (NDVI) is stable, as NIRvR is approximately NDVI 
multiplied by observed NIR radiance (NIRrad), where NIRrad is linearly 
related with aPAR (Zeng et al., 2019). Therefore, although Rad755 may 
not represent aPAR in principle, we tested the possibility of Rad755 as a 
proxy of aPAR to address the impact of VPD on SIF. In addition, one 
benefit of using relative SIF is that the radiance at 755 nm was observed 
from the same footprint as the SIF measurements. 

Lastly, PAR absorbed by chlorophyll a and b simulated by SCOPE 
(aPARsc) was used against simulated SIF. The simulation of aPARsc is 
based on in-situ measurement of incident PAR, radiative transfer, and 
chlorophyll absorption spectrum. 

2.6. Data analyses 

Our primary interest in this study is to understand the impact of VPD 
on SIF. However, SIF is known to have a strong linear relationship with 
aPAR. Therefore, we must confidently decouple the impact of VPD from 
the relationship between SIF and aPAR. We used the Johnson-Neyman 
technique (Bauer and Curran, 2005; Johnson and Fay, 1950) to eval-
uate the interaction between aPAR and VPD and its influence on SIF or 
GPP. We then compared linear regressions of SIF (or GPP) and aPAR at 
different levels of VPD by performing simple slopes analysis (Aiken and 
West, 1991). While the one-way analysis of covariance (ANCOVA) is 
often performed for this type of situation, our cases violate the 
assumption of homogeneity of the regression slopes; in other words, we 
have non-parallel regression slopes of SIF-aPAR across different levels of 
VPD. The Johnson-Neyman technique addresses this issue by identifying 
the interval of aPAR in which the influence of VPD on SIF-aPAR 
regression (∂SIF/∂VPD) is significant or insignificant (at a level of 0.05 
in our case). 

In the results, we illustrate 1) the range of aPAR values where VPD 
has a significant influence on SIF-aPAR regression and 2) how SIF-aPAR 
regressions differ at three separate VPD levels (at mean VPD, mean VPD 
plus 1.5 times standard deviation, and mean VPD minus 1.5 times 
standard deviation). We hypothesized that the response of SIF is mainly 
attributable to the variability of ΦF, given negligible variations in the 
canopy structure and thus fesc during the growing season when the 
canopy is closed (He et al., 2020). Based on our SCOPE simulation, only 
up to 3% of the variability in fesc was found throughout the study period. 

In order to meet the assumption of linearity between SIF and aPAR, 
both variables were log-transformed using natural log, such that the 
non-linear power function for the SIF-aPAR relationship (i.e., SIF =
a⋅aPARb) was transformed into the linear function between ln(SIF) and 
ln(aPAR) (i.e., ln(SIF) = ln a + b⋅ln(aPAR), where b is the slope and ln a 
is the intercept in the transformed relationships, Fig. 3). We performed 
the same analysis for GPP by log-transforming both GPP and aPAR (i.e., 
GPP = a⋅aPARb) as a reference. 

Lastly, we further tested the response of SIF using the data collected 
during the midday only (12–2 pm), which represents low-frequency 
observations such as satellite or airborne measurements, to find out 

Table 1 
Definitions of aPAR metrics used in this study.  

aPAR 
metrics 

Description 

aPARm aPAR estimated by simultaneous in-situ measurements of PAR at 
different positions using quantum sensors.  

aPARm = PARabove – PARunder – PARrefl    

• PARabove: PAR measured above canopies  
• PARunder: average of PAR measured at three different positions 

under canopies  
• PARrefl: canopy-reflected PAR 

aPARchl PAR absorbed by photosynthetic components of canopies only (i.e., 
excluding PAR absorbed by branches, stem, and senescent foliage) 
and utilized for photosynthesis (Ogutu and Dash, 2013).  

aPARchl = incident PAR × faPARchl = (NEE− Reco) / αa    

• faPARchl: the fraction of aPAR absorbed by photosynthetic elements 
in the canopy  

• NEE: net ecosystem exchange (μmol m−2 s−1)  
• αa: actual quantum yield (the number of moles of CO2 fixed per 

mole of PAR absorbed by photosynthetic elements in the canopy: 
mol mol−1)  

• Reco: ecosystem respiration (μmol m−2 s−1) 
Rad755 The radiance in the far-red spectrum reflected by canopies, which is 

often used to derive relative SIF (= SIF/Rad755). 
aPARsc PAR absorbed by chlorophyll a and b simulated by SCOPE.  

K. Yi et al.                                                                                                                                                                                                                                        



Remote Sensing of Environment 306 (2024) 114106

5

Fig. 3. Example of data transformation of SIF, GPP, and aPAR for different levels of VPD (grouped based on the quartiles of the VPD distribution, Q1: 0.0–1.3 kPa, 
Q2: 1.3–1.9 kPa, Q3: 1.9–2.5 kPa, and Q4: 2.5–3.7 kPa). The non-linear power functions for the SIF-aPAR (SIF = a⋅aPARb) and GPP-aPAR relationships (GPP =
a⋅aPARb) were transformed by applying natural log to both sides of the equation (e.g., ln (SIF) = ln a + b⋅ln(aPAR), where b is the slope, and ln a is the intercept in the 
transformed relationships.) 

Fig. 4. Monthly mean diurnal patterns of GPP estimated from the eddy covariance method, SIF measured by Fluospec 2 (SIFFS2), SIF simulated by SCOPE (SIFSC), and 
environmental variables including incident PAR (iPAR), vapor pressure deficit (VPD), and air temperature (Ta), and their monthly mean between 10 am to 2 pm. 
Error bars represent standard deviations. 
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whether we could find a similar response compared to full-day SIF 
response and/or GPP response. 

3. Results 

3.1. Diurnal and seasonal patterns of GPP and SIF 

As has been widely observed in many studies, GPP, measured SIF 
(SIFFS2), and simulated SIF (SIFSC) all had unimodal diurnal patterns 
that increased in the morning, peaked around noon, and gradually 
decreased in the afternoon (Fig. 4). As expected, diurnal patterns of GPP 
and SIF corresponded well to the pattern of incident PAR (iPAR). 
Meanwhile, VPD and Ta showed delayed peaks around 3 pm compared 
to GPP, SIF, and iPAR. Compared to the diurnal patterns of SIF, the 
decreasing rate of GPP in the afternoon was slower. For instance, SIF 
started with a low value at 6 am and returned to a similar level at or 
before 6 pm. On the other hand, GPP did not return to a similar level 
observed at 6 am by 6 pm. 

The seasonal trends of GPP and SIFFS2 were similar to each other 
(Fig. 4). Specifically, both GPP and SIFFS2 were highest during the early 
growing season (May) and gradually decreased for the rest of the season. 
However, the seasonal pattern of SIFSC was different compared to the 
GPP or SIFFS2. The SIFSC gradually increased during the early growing 
season, remained high during the summer (June to August), and 
decreased afterward. This pattern coincided with the seasonal pattern of 
iPAR. 

3.2. Comparison between aPAR metrics 

All aPAR metrics were linearly related to the iPAR but with different 
slopes and variances (Fig. 5). Among the metrics, aPARm had the least 
deviation from iPAR (slope = 0.94) with a very high R2 of the regression 
(= 0.995). The aPAR simulated by SCOPE (aPARsc) was also propor-
tional to the iPAR and had a very high R2 of the regression (=0.999) but 
with appreciable deviation (slope = 0.72) from iPAR. On the other hand, 
aPARchl deviated from iPAR appreciably (slope = 0.66) with lower R2 of 
the regression (=0.755) than aPARm and aPARSC. This reflects a char-
acteristic of aPARchl, which assumes variable aPAR utilization for 
photosynthesis depending on environmental conditions (Ogutu and 
Dash, 2013) and thus requires additional environmental variables, other 
than iPAR, to better predict its variation. Similarly, Rad755 also had a 
lower R2 of the regression (=0.849) than aPARm or aPARsc, implying its 
susceptibility to environmental variables other than light conditions. 

3.3. Response of GPP and SIF to changing aPAR and VPD 

According to the Johnson-Neyman technique results, the influence of 
VPD on the GPP-aPAR regression was significant regardless of the aPAR 
metrics during most of the daylight conditions (Fig. 6a–d). Specifically, 
VPD had a significant impact when log-transformed aPARm, aPARchl, 
Rad755, and aPARsc were >5.42, 4.93, 2.88, and 5.29, respectively. 
These values correspond to 225.9, 138.4, 17.8, and 198.3 μmol m−2 s−1, 

respectively, before transformation (see Fig. 4 for the daily variation of 
iPAR over the growing season and Fig. 5 for the relationships between 
iPAR and aPAR metrics). In all cases, GPP decreased with rising VPD 
(Fig. 6i–l). The impact of VPD on GPP was more evident under higher 
aPAR. 

Unlike GPP, we found inconsistent results depending on the aPAR 
metrics or SIF estimation method (Fig. 7). The influence of VPD on the 
SIF was significant for the wide range of aPAR values when aPARchl was 
used (Fig. 7b) or SIF and aPAR were simulated with SCOPE (Fig. 7d, e). 
On the other hand, the influence of VPD was insignificant over the entire 
range of observed aPARm (Fig. 7a) and over more than half of the 
observed range of Rad755 (Fig. 7c). 

SIF decreased with rising VPD – the pattern consistent with GPP – 

only when aPARchl was used (Fig. 7l) or when SIF and aPAR were 
simulated using the SM Stress mode (Fig. 7o). In the case where SIF and 
aPAR were simulated using the Moderate mode (Fig. 7n), VPD influ-
enced SIF negatively when ln(aPARsc) was <6.50 (i.e., aPARsc = 665 
μmol m−2 s−1) but positively when ln(aPARsc) was >6.78 (i.e., aPARsc =
880 μmol m−2 s−1). When Rad755 was used, VPD had a positive effect on 
hourly SIF under high Rad755 conditions, which was the opposite of 
VPD’s effect on GPP (Fig. 7m). 

The daily scale relationships between log-transformed SIF and aPAR 
(Fig. 8) were similar to the hourly scale relationship (Fig. 7). VPD had a 
negative influence on daily SIF when aPARchl was used (Fig. 8l) or when 
SIF and aPAR were simulated with SCOPE using the SM Stress mode 
(Fig. 8o). Although the range of aPAR where VPD significantly in-
fluences daily-scale SIF was smaller (Fig. 8b, e) compared to the hourly- 
scale results (Fig. 7b, e), the aPAR conditions still represent a wide range 
of daylight conditions enabling active photosynthesis. For example, VPD 
had a negative effect on SIF when ln(aPARchl) was higher than 5.50 (i.e., 
aPARchl > 245 μmol m−2 s−1, Fig. 8l) or when SIF and aPAR were 
simulated using the SM Stress mode and ln(aPARsc) was higher than 5.95 
(i.e., aPARsc > 384 μmol m−2 s−1, Fig. 8o). When using aPARm, however, 
the effect of VPD on SIF was significant when ln(aPARm) was between 
5.94 and 6.64 (i.e., aPARm is between 380 and 765 μmol m−2 s−1, 
Fig. 8a), which represents relatively low daylight conditions. When 
Rad755 was used, VPD influenced daily SIF positively under low Rad755 
conditions, which was opposite to the impact of VPD on GPP (Fig. 8m). 

The relationship between GPP and SIF was non-linear at both hourly 
and daily scales due to the steeper slope at low GPP and SIF (Fig. 9). 
However, the relationship was strongly linear for most SIF and GPP 
ranges once SIF or GPP exceeded a certain level. Although daily scale 
observations had a lower coefficient of determination than hourly scale 
observations, we found similar variability in the GPP-SIF relationship 
with changing VPD at both temporal scales. When the GPP-SIF rela-
tionship was fitted using a power function (i.e., GPP = k × SIFa) at either 
scale, the coefficient k decreased with rising VPD (Fig. 9b, e). However, 
the exponent a did not vary significantly (Fig. 9c & f). 

4. Discussions 

We investigated SIF variations in response to changing VPD at a 

Fig. 5. Relationships between incident PAR (iPAR) and different absorbed PAR (aPAR) metrics. Gray dashed lines indicate a 1:1 line. Red solid lines indicate linear 
regression fit. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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canopy scale using tower-based SIF measurements in a temperate forest. 
Specifically, we tested if using different definitions for aPAR and tem-
poral scales (i.e., hourly vs. daily) would influence SIF response to 
changing VPD. 

SIF is considered a remotely sensed proxy for GPP because of its good 
relationship with GPP across various observational scales. However, 
while GPP represents the carbon assimilated as a result of photosyn-
thesis, SIF is the energy re-emitted after light absorption by leaf chlo-
rophyll molecules (a different pathway than the pathway routed for 
photosynthesis). Despite the close link of SIF to plant photochemistry, 
SIF is not equivalent to photosynthetic carbon uptake and GPP. There-
fore, the interaction of SIF with environmental variables may not 
necessarily be the same as GPP. 

We found a SIF response to VPD that corresponded to the GPP 

response to VPD when PAR absorbed by chlorophyll (aPARchl) was used 
or when SIF and aPAR were simulated by SCOPE model that was 
parameterized to account for the effects of soil moisture stress (i.e., SM 
Stress mode). Our findings suggest that tower-based SIF measurement 
has the potential to address the impact of water stress on ecosystem 
function. 

The definition of aPAR was critical for SIF to emulate GPP response 
to VPD. SIF was negatively related to VPD only when aPARchl was used 
or SIF and aPAR were simulated by SCOPE on the SM Stress mode. This 
emphasizes the importance of carefully defining and evaluating light 
conditions, or more precisely, light availability to vegetation, especially 
when addressing the impact of environmental drivers other than light 
conditions on SIF. 

Among the aPAR metrics, aPARchl was defined as the PAR absorbed 

Fig. 6. Effect of VPD on GPP-aPAR relationship at hourly scale. The top row (a–d) shows the results of Johnson-Neyman analysis, identifying the range of aPAR 
metrics where the influence of VPD on GPP-aPAR regression is significant (P < 0.05, shaded in green). The thicker horizontal lines at 0 in Johnson-Neyman plots 
indicate the observed range of aPAR metrics. The middle row (e–h) shows scatter plots of log-transformed and GPP and aPAR metrics. The bottom row (i–l) shows the 
results of simple slopes analysis, illustrating GPP-aPAR regressions held at three VPD levels: mean VPD, mean VPD plus 1.5 times standard deviation, and mean VPD 
minus 1.5 times standard deviation. Note that confidence intervals are illustrated in gray around the fitted lines (i–l) but are barely visible because they are very 
narrow, especially under high aPAR. Slope and standard error (SE) values are presented (i-l), and the text colors match the colors of the fitted lines. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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by the photosynthetic component of the canopy (i.e., green foliage). In 
other words, aPARchl represents aPAR at the foliage or organelle 
(chlorophyll) level, which agrees with the SIF emission level (Zhang 
et al., 2016b). Therefore, aPARchl is expected to account for the effects of 
environmental drivers on photosynthesis (e.g., air temperature, mois-
ture condition, and nutrient availability), while the other aPAR metrics 
don’t. Indeed, in the algorithm of aPARchl estimation, the process of 
estimating actual quantum yield (i.e., the number of moles of CO2 fixed 
per mole of PAR absorbed by photosynthetic elements in the canopy) is 
an empirical function of air temperature. As a result, the relationship 
between aPARchl and iPAR has a low R2 when compared to the other 
aPAR metrics (Fig. 5). Although the rigorous verification of aPARchl is 
difficult, the similarity between aPARchl and aPAR simulated by SCOPE 
supported the legitimacy of aPARchl (Fig. 5e). Furthermore, we found a 
negative effect of VPD on SIF when aPARchl was used (Figs. 7 and 8), 
which is consistent with the effect on GPP (Fig. 6). It is important to note 
that we applied a constant VPD to estimate the actual quantum yield for 
aPARchl, which had a lower variance than the aPARchl estimated using a 
variable VPD (See Fig. S2 in Supplementary Information). In our pre-
liminary analysis, we found similar trends in SIF in response to changing 
VPD whether constant or variable VPD was used for aPARchl estimation. 
The only difference was that SIF variability in response to changing VPD 

was greater when aPARchl was estimated by using variable VPD rather 
than constant VPD (See Fig. S3 for the hourly-scale result and Fig. S4 for 
the daily-scale result in Supplementary Information). Overall, we 
confirm that aPARchl is likely to reflect the actual amount and variability 
of PAR absorbed by the foliage and used for photosynthesis, and that the 
impact of aPARchl on SIF demonstrated in our study (i.e., aPARchl esti-
mated by using a constant VPD) is likely to be conservative. 

Meanwhile, aPARm is the PAR absorbed by any components of the 
canopy, including non-photosynthetic components (e.g., branches, 
stems, and senescent foliage) that are irrelevant to SIF emission. Because 
it accounts for insensitive non-photosynthetic components, using aPARm 
may result in a less sensitive photosynthetic response than expected. For 
example, a very small variance was found in the relationship between 
aPARm and iPAR (Fig. 5a), implying that environmental drivers other 
than iPAR had a negligible effect on the aPARm. Therefore, the disparity 
in scope of measurement between SIF and aPARm (i.e., photosynthetic 
component only vs. photosynthetic and non-photosynthetic compo-
nents) should have contributed to the ambiguous effect of VPD on the 
SIF-aPARm relationship (Fig. 7). 

In contrast to the GPP-VPD relationship, we found a positive effect of 
VPD on SIF when Rad755 was used as a proxy of aPAR although there is 
no theoretical basis for describing the opposite pattern. Therefore, while 

Fig. 7. Effect of VPD on SIF-aPAR relationship at hourly scale. The top row (a–e) shows the results of Johnson-Neyman analysis, identifying the range of aPAR 
metrics where the influence of VPD on SIF-aPAR regression is significant (P < 0.05, shaded in green). The thicker horizontal lines at 0 in Johnson-Neyman plots 
indicate the observed range of aPAR metrics. The middle row (f–j) shows scatter plots of log-transformed and SIF and aPAR metrics. The bottom row (k–o) shows the 
results of simple slopes analysis, illustrating SIF-aPAR regressions held at three VPD levels: mean VPD, mean VPD plus 1.5 times standard deviation, and mean VPD 
minus 1.5 times standard deviation. Note that confidence intervals are illustrated in gray around the fitted lines (k–o) but are barely visible because they are very 
narrow, especially under high aPAR. Slope and standard error (SE) values are presented (k–o), and the text colors match the colors of the fitted lines. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Rad755 may be useful as a proxy of aPAR to approximate GPP and SIF 
due to its strong relationship with iPAR, it is less useful when the effect 
of environmental drivers other than light conditions must be considered. 

Although we suggest using an aPAR definition that can be estimated 
from eddy covariance data (i.e., aPARchl) among the tested metrics, it 
may be preferable to use aPAR metrics that can be estimated more easily 
for larger-scale observations. Zhang et al. (2020), for example, 
compared the fraction of PAR absorbed by chlorophyll (faPAR) obtained 
from six different satellite products. Further research into how different 
definitions of the faPAR affect SIF and its response to changing envi-
ronmental drivers is needed to improve the utility of SIF as a proxy for 
GPP because faPAR is heavily influenced by the canopy structure, 
including leaf-angle distributions (Stovall et al., 2021; Yang et al., 
2023). Future research into leaf-angle distribution and its temporal 
variations, for instance, using recent terrestrial light detection and 
ranging (lidar) techniques, would help improve our understanding of 
the impact of canopy structure on faPAR and SIF. 

We used SCOPE to simulate SIF with two different modes of fluo-
rescence emission, Moderate and SM Stress, to compare with measured 
SIF and infer the mechanism of SIF response to VPD and soil moisture. 
The expected negative effect of VPD on SIF emerged when the SM Stress 
mode was used. When the response of quantum yields to aPAR was 

compared between the simulation modes, the response of fluorescence 
yield (ΦF) was found to be the most different (Fig. 10; also refer to van 
der Tol et al. (2014) and Verrelst et al. (2015)). Specifically, in the case 
of the Moderate mode, ΦF decreased rapidly with increasing aPAR under 
low aPAR, but there was little change under moderate to high aPAR 
(Fig. 10b). In the SM Stress mode, on the other hand, a negative rela-
tionship between ΦF and aPAR was found across the entire range of 
aPAR (Fig. 10f). The patterns of ΦF found in both simulation modes were 
consistent with the descriptions in van der Tol et al. (2014), which 
suggested decreasing ΦF as an indication of water stress. Moreover, with 
the SM Stress mode, we found a reduction of ΦF across the entire range 
of aPAR with rising VPD (Fig. 10). Considering the variability of ΦF in 
the SCOPE is mainly driven by aPAR and carboxylation capacity (van 
der Tol et al., 2014), the results of SIF simulation should be mainly 
reflective of the negative impact of VPD, temperature (due to VPD being 
a function of temperature), and/or soil moisture, on the non-stomatal 
processes. 

The simulation results of quantum yields (Fig. 10), as well as in-
teractions between SIFsc, aPARsc, and VPD (Figs. 7 and 8), indicate that 
the SIF-VPD relationship is dependent on soil moisture conditions. This 
implies that the negative effect of VPD on SIF observed when using 
aPARchl (Figs. 7 and 8) may be driven by both VPD and soil moisture 

Fig. 8. Effect of VPD on SIF-aPAR relationship at daily scale. The top row (a–e) shows the results of Johnson-Neyman analysis, identifying the range of aPAR metrics 
where the influence of VPD on SIF-aPAR regression is significant (P < 0.05, shaded in green). The thicker horizontal lines at 0 in Johnson-Neyman plots indicate the 
observed range of aPAR metrics. The middle row (f–j) shows scatter plots of log-transformed and SIF and aPAR metrics. The bottom row (k–o) shows the results of the 
simple slopes analysis, illustrating SIF-aPAR regressions held at three VPD levels: mean VPD, mean VPD plus 1.5 times standard deviation, and mean VPD minus 1.5 
times standard deviation. Note that confidence intervals are illustrated in gray around the fitted lines (k–o) but are barely visible because they are very narrow, 
especially under high aPAR. Slope and standard error (SE) values are presented (k–o), and the text colors match the colors of the fitted lines. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

K. Yi et al.                                                                                                                                                                                                                                        



Remote Sensing of Environment 306 (2024) 114106

10

conditions. This is consistent with previous research (Liu et al., 2020), 
which investigated the relative effect of VPD and soil moisture on 
satellite-based SIF. Our study site is a mesic temperate forest with plenty 
of rainfall (long-term mean annual precipitation = 1210 mm), a mod-
erate level of soil moisture (i.e., volumetric water content over the study 
period (mean ± standard deviation) = 0.33 ± 0.05 m3 m−3), and a low 
correlation between soil moisture and VPD (0.17 at the hourly scale and 
0.12 at the daily scale). We note that the impact of soil moisture on SIF 
was only implied by the SCOPE simulation and was not evaluated by in- 
situ data in our study, due to the limited amount of data to decouple the 
effect of soil moisture, VPD and aPAR. Long-term, high-frequency data 

collection will aid in decoupling the impact of multiple environmental 
drivers on SIF, which is a significant advantage of tower-based SIF 
measurements over other methods. 

Finally, similarity in the seasonal patterns between the measured SIF 
(SIFFS2) and GPP indicates the robustness of tower-based SIF measure-
ment for tracking the seasonal variability of carbon assimilation (Fig. 4). 
SIFFS2 and GPP levels were highest during the early growing season 
(May) and gradually decreased over time. On the other hand, the 
simulated SIF (SIFSC) was highest during the summer, which coincided 
with the pattern of iPAR. The discrepancy in the seasonal patterns is 
likely to be determined by whether the SIF or GPP reflects seasonal 

Fig. 9. Non-linear relationships between GPP and SIF measured by Fluospec 2 at different levels of VPD (grouped based on the quartiles of the VPD distribution, Q1: 
0.0–1.3 kPa, Q2: 1.3–1.9 kPa, Q3: 1.9–2.5 kPa, and Q4: 2.5–3.7 kPa) at hourly (a, b, c) and daily scales (d, e, f). The GPP-SIF relationships were fitted using a power 
function (i.e., GPP = k × SIFa). Error bars represent standard errors of means (95% confidence). Coefficient k (b & e) or exponent a (c, f) marked with different letters 
are significantly different (p < 0.05). 

Fig. 10. Variations of quantum yields (ΦP: photochemistry, ΦF : fluorescence, ΦN : non-photochemical quenching, ΦD: non-radiative decay) with changing aPAR 
simulated by SCOPE using two different modes (i.e., Moderate and SM Stress modes) across different VPD levels (grouped based on the quartiles of the VPD dis-
tribution, Q1: 0.0–1.3 kPa, Q2: 1.3–1.9 kPa, Q3: 1.9–2.5 kPa, and Q4: 2.5–3.7 kPa). 
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variability in photosynthetic capacity (i.e., Vcmax). Vcmax is positively 
related to fluorescence yield under moderate to high light conditions 
(Frankenberg and Berry, 2018; van der Tol et al., 2014), and seasonally, 
the highest Vcmax is often reported during the early growing season 
(around May) for deciduous trees growing in temperate forests (Grassi 
et al., 2005; Wilson et al., 2000). Therefore, we presume that the 
observed seasonal patterns of SIFFS2 and GPP are more reliable than the 
seasonal pattern of SIFSC, because Vcmax was set as a constant for the 
simulation (60 μmol m−2 s−1) and light conditions would have a greater 
impact on SIFSC than they would on SIFFS2. This is demonstrated by a 
greater similarity in the seasonal pattern between SIFSC and iPAR than 
between SIFFS2 and iPAR (Fig. 4). Therefore, our findings suggest that 
prescribing Vcmax and its seasonality in the model is important for 
improving simulation accuracy. 

5. Conclusion 

SIF is widely accepted as a proxy for GPP due to its strong relation-
ship with GPP observed from the field, airborne, and spaceborne mea-
surements. Among these, tower-based SIF measurement enables 
continuous monitoring of SIF variation at a canopy or stand scale. 
Continuous measurement is particularly well suited to addressing 
physiological responses to rapidly changing environmental drivers, such 
as VPD (i.e., atmospheric dryness), which is highly variable during the 
day and is expected to increase with climate change. However, there is a 
potential challenge when using SIF to address the impact of environ-
mental drivers. Because of the strong and close relationship between SIF 
and aPAR, the response of SIF to environmental drivers might not be as 
evident as what we can learn from GPP. Our findings show that the SIF 
response to changing VPD, which is comparable to the response of GPP, 
can be replicated not only with high-frequency measurements (<
hourly) but also with low-frequency measurements (> daily), if a proper 
definition of aPAR with a corresponding observational scale (canopy), 
such as aPARchl, is used. We also emphasize the importance of further 
research into methods for evaluating the fraction of aPAR at various 
observational scales to clarify the relationships between SIF, light con-
ditions, and other environmental drivers. 
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Yuen, K., 2017. OCO-2 advances photosynthesis observation from space via solar- 
induced chlorophyll fluorescence. Science 358 (6360), eaam5747. https://doi.org/ 
10.1126/science.aam5747. 

van der Tol, C., Verhoef, W., Rosema, A., 2009. A model for chlorophyll fluorescence and 
photosynthesis at leaf scale. Agric. For. Meteorol. 149 (1), 96–105. https://doi.org/ 
10.1016/j.agrformet.2008.07.007. 

van der Tol, C., Berry, J.A., Campbell, P.K.E., Rascher, U., 2014. Models of fluorescence 
and photosynthesis for interpreting measurements of solar-induced chlorophyll 
fluorescence. J. Geophys. Res. Biogeo. 119 (12), 2312–2327. https://doi.org/ 
10.1002/2014JG002713. 

Verrelst, J., Rivera, J.P., van der Tol, C., Magnani, F., Mohammed, G., Moreno, J., 2015. 
Global sensitivity analysis of the SCOPE model: what drives simulated canopy- 
leaving sun-induced fluorescence? Remote Sens. Environ. 166, 8–21. https://doi. 
org/10.1016/j.rse.2015.06.002. 

Wang, X., Qiu, B., Li, W., Zhang, Q., 2019. Impacts of drought and heatwave on the 
terrestrial ecosystem in China as revealed by satellite solar-induced chlorophyll 
fluorescence. Sci. Total Environ. 693, 133627 https://doi.org/10.1016/j. 
scitotenv.2019.133627. 

Weis, E., Berry, J.A., 1987. Quantum efficiency of photosystem II in relation to ‘energy’- 
dependent quenching of chlorophyll fluorescence. Biochim. Biophys. Acta (BBA) 
Bioenerg. 894 (2), 198–208. https://doi.org/10.1016/0005-2728(87)90190-3. 

Wilson, K.B., Baldocchi, D.D., Hanson, P.J., 2000. Spatial and seasonal variability of 
photosynthetic parameters and their relationship to leaf nitrogen in a deciduous 
forest. Tree Physiol. 20 (9), 565–578. https://doi.org/10.1093/treephys/20.9.565. 

Wutzler, T., Lucas-Moffat, A., Migliavacca, M., Knauer, J., Sickel, K., Šigut, L., 
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