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ABSTRACT

Solar-induced chlorophyll fluorescence (SIF) is widely accepted as a proxy for gross primary productivity (GPP).
Among the various SIF measurements, tower-based SIF measurements allow for continuous monitoring of SIF
variation at a canopy scale with high temporal resolution, making it suitable for monitoring highly variable plant
physiological responses to environmental changes. However, because of the strong and close relationship be-
tween SIF and absorbed photosynthetically active radiation (aPAR), it may be difficult to detect the influence of
environmental drivers other than light conditions. Among the drivers, atmospheric dryness (vapor pressure
deficit, VPD) is projected to increase as drought becomes more frequent and severe in the future, negatively
impacting plants. In this study, we evaluated the tower-based high-frequency SIF measurement as a tool for
detecting plant response to highly variable VPD. The study was performed in a mixed temperate forest in Vir-
ginia, USA, where a 40-m-tall flux tower has been measuring gas and energy exchanges and ancillary environ-
mental drivers, and the Fluospec 2 system has been measuring SIF. We show that a proper definition of light
availability to vegetation can reproduce SIF response to changing VPD that is comparable to GPP response as
estimated from eddy covariance measurement: GPP decreased with rising VPD regardless of how aPAR was
defined, whereas SIF decreased only when aPAR was defined as the PAR absorbed by chlorophyll (aPARy;) or
simulated by a model (Soil Canopy Observation, Photochemistry and Energy fluxes, SCOPE). We simulated the
effect of VPD on SIF with two different simulation modes of fluorescence emission representing contrasting
moisture conditions, ‘Moderate’ and ‘Soil Moisture (SM) Stress’ modes. The decreasing SIF to rising VPD was
only found in the SM Stress mode, implying that the SIF-VPD relationship depends on soil moisture conditions.
Furthermore, we observed a similar response of SIF to VPD at hourly and daily scales, indicating that satellite
measurements can be used to study the effects of environmental drivers other than light conditions. Finally, the
definition of aPAR emphasizes the importance of canopy structure research to interpret remote sensing obser-
vations properly.

1. Introduction

understanding plant carbon dynamics at large scales (regional to
global), its low temporal frequency in measurements (once per multiple

Solar-induced chlorophyll fluorescence (SIF) has been highlighted as
a proxy for understanding plant physiology due to its strong relationship
with gross primary production (GPP) across observational scales and
direct ecophysiological connection with the light reactions in photo-
synthesis (Frankenberg et al., 2011; Guanter et al., 2014; Johnson and
Berry, 2021; Kim et al., 2021; Porcar-Castell et al., 2014; Sun et al.,
2017; Yang et al., 2015; Zhang et al., 2016a, 2018). SIF is often retrieved
from satellite measurements (space-based), which have a coarse
spatiotemporal scale. While space-based SIF retrieval is beneficial for
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days) may not be well-suited to studying physiological responses to fast-
changing environmental drivers, limiting its utility to improve our un-
derstanding of ecophysiological response to climate change. For
example, vapor pressure deficit (VPD, the difference between saturation
and actual vapor pressure) is a function of air temperature and relative
humidity and is thus highly variable diurnally. Moreover, VPD has
received growing attention as an important environmental driver for its
potential to affect plant biology (e.g., by inducing stomatal closure and
limiting carbon uptake) and intensify hydrological cycles (e.g., more
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severe and frequent drought) due to the projected global warming in the
future (Grossiord et al., 2020; Lopez et al., 2021; McDowell et al., 2020,
2022; Novick et al., 2016; Yi et al., 2019). For example, Wang et al.
(2019) addressed the significant impact of increased VPD on the
reduction of apparent SIF yield (defined as SIF divided by absorbed
photosynthetically active radiation, aPAR) at a regional scale by
leveraging the extreme drought and heatwave events in China. How-
ever, it is also essential to examine the SIF response over a range of VPD
under moderate moisture conditions at a finer scale to elucidate the
mechanisms of SIF response to changing VPD and its relationship with
plant carbon uptake (e.g., GPP). Recent advances in automated tower-
based SIF measurement techniques (Cogliati et al., 2015; Du et al.,
2019; Grossmann et al., 2018; Gu et al., 2019; Guanter et al., 2013;
Magney et al., 2019; Yang et al., 2015, 2018) have enabled high-
frequency SIF measurement (< hourly interval) at a canopy scale.

However, it remains uncertain whether the effect of VPD on SIF can
be confidently distinguished from SIF-aPAR at the canopy level. This is
because SIF and aPAR are strongly correlated, and light intensity can
indirectly influence VPD by increasing the temperature on sunny days
since VPD is dependent on humidity and temperature (Chang et al.,
2020; He et al., 2020; Miao et al., 2018). Paul-Limoges et al. (2018), for
example, investigated the impact of VPD on SIF at a canopy scale using
tower-based SIF measurement in a mixed forest and cropland, but
without clear decoupling of VPD from the effect of aPAR. Moreover,
while the importance of the definition of light absorption has been
widely emphasized for remote-sensing-based photosynthesis observa-
tions (Ogutu and Dash, 2013; Yang et al., 2015; Zhang et al., 2020),
previous studies often use photosynthetic photon flux density (PPFD)
that may not accurately represent the actual amount of light absorbed by
foliage or chlorophyll and used for photosynthesis. This is because PPFD
measures the amount of PAR that actually arrives at the plant but does
not distinguish PAR absorbed by non-photosynthetic components (e.g.,
stem, branch, senescent foliage) from photosynthetic components.

We evaluate the tower-based high-frequency SIF measurement (i.e.,
< hourly) as a tool to detect plant response to highly variable VPD by
decoupling its impact from light availability. We used GPP estimated
from eddy covariance measurement as a reference and compared it with
the SIF measurement to test whether SIF and GPP have divergent or
convergent responses to changing VPD. We also simulated SIF, aPAR,
and quantum yields using the SCOPE model V1.73 (van der Tol et al.,
2009) to compare with the SIF measurement. Our goal of the SCOPE
simulation was to answer the following questions: 1) Does the pattern of
the simulated SIF in response to VPD agree with the patterns of mea-
surements? 2) If so, what is driving the observed response? If not, what
are the major reasons for the discrepancy?

We further tested whether lower-frequency measurement of SIF (i.e.,
daily) is frequent enough to decouple the impact of VPD from aPAR by
using the data collected around midday only. This test provides useful
insight into the validity of low-frequency satellite measurements for
studying the impact of highly variable VPD on SIF. Specifically, we
defined the half-hourly measurement of SIF as ‘hourly scale’ data and
the SIF measured between noon and 2 pm as ‘daily scale’ data and then
compared these datasets.

2. Materials and methods
2.1. Site description

The study site (Virginia Forest Research Facility) is located in a
temperate mixed forest, within the footprint of a flux tower in central
Virginia, USA (37° 55'N 78° 16'W). Long-term mean annual temperature
and precipitation (from 1981 to 2010) are 14.0 °C and 1210 mm (over
90% as rain), respectively. Canopy dominant tree species include white
oak (Quercus alba L.), Virginia pine (Pinus virginiana Mill.), southern red
oak (Q. falcata Michx.), red maple (Acer rubrum L.), and tulip poplar
(Liriodendron tulipifera L.). The relative dominances (= basal area of a
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species / basal area of all trees x 100%) within a 500 m radius from the
flux tower were 23.6%, 20.0%, 11.9%, 11.5%, and 10.3%, respectively
(Chan, 2011). The range of diameter at breast height (DBH) was 2.5 to
81.0 cm, with tree sizes of second and third quartiles ranging from 4.0 to
15.1 cm. The study period was limited to the late growing season, from
early July to mid-September in 2019, to minimize the effect of season-
ality and the potential effect of sun-sensor-canopy geometrical variation.

2.2. SIF measured by Fluospec 2

SIF was measured using an automated system, Fluospec 2. A detailed
description of the system is documented in Yang et al. (2018). The key
component of the system is a high spectral resolution spectrometer
(QEPro, OceanOptics Inc., Dunedin, FL, USA) with a spectral resolution
of 0.14 nm and a spectral range of 729.7-784.1 nm. The main compo-
nents of the system include a spectrometer, a computer for system
operation (Raspberry Pi), and an optical shutter alternating the two
optical cables that measure incoming solar radiation and upwelling ra-
diation from canopies, respectively (Fig. 1). For stability, the system is
enclosed in a thermostatic box (25 °C) inside an air-conditioned hut built
to accommodate various research tools. The optical cables for radiance
measurements are installed on the top platform of a flux tower.

We applied an O3A-based spectral fitting method (SFM) that uses a
reduced fitting window from 759.5 to 761.5 nm (Chang et al., 2020),
which is known to improve O5A retrieval accuracy compared to a con-
ventional SFM method using a wider fitting window (759-767.76 nm)
(Fig. 2). The SIF was recorded every 10 min and averaged every 30 min.

2.3. SIF simulated by SCOPE

We simulated SIF, aPAR, and quantum yields for the four pathways
used by leaves during photosynthesis (i.e., quantum yields of photo-
chemistry, ®@p, fluorescence, @r, non-photochemical quenching, @y, and
non-radiative decay, ®p) using the SCOPE model V1.73 (van der Tol
et al., 2009). It is necessary to stress that the SCOPE simulations do not
have to perfectly match the observations, and in fact, the mismatch
between the observations and the model results is to be expected as
several key parameters related to SIF (e.8., Vemax: maximum carboxyl-
ation rate, FQE: fluorescence quantum yield efficiency at photosystem
level) are prescribed. SCOPE model simulations were driven by meteo-
rological data collected by the sensors installed at the study site,
including PAR, longwave radiation, temperature, vapor and atmo-
spheric pressure, and leaf area index from the Moderate Resolution
Imaging spectroradiometer (MODIS, MCD15A2H Version 6; See Fig. S1
in Supplementary Information for the variability of leaf area index). The
model was modified to use the incident PAR measurements, instead of
shortwave radiation, as input data for a more accurate aPAR simulation.
The other inputs were set to default (See Table S1 in Supplementary
Information for more details about the input data). We have compared
two different fluorescence emission models (Moderate and Soil Moisture
(SM) Stress models) incorporated in the SCOPE model, of which quan-
tum yield fractions were set differently based on the experiments con-
ducted under different soil moisture conditions (van der Tol et al.,
2014). More specifically, van der Tol et al. (2014) demonstrated how
fluorescence yield was influenced by non-photochemical quenching
(®y) using the results of previous studies that combined leaf gas ex-
change and pulse amplitude modulation (PAM) measurements. They
compared multiple sets of experiments performed on different plants
that were subject to different main environmental drivers, and devel-
oped two sets of parameters to model quantum yields for the SCOPE: one
was based on the cotton dataset (Weis and Berry, 1987), concerned with
light, CO,, and temperature variations (without water stress; hereafter,
‘Moderate mode’). Another set was based on C3 species treated with
daily irrigation and then progressively decreasing soil moisture avail-
ability (Flexas et al., 1999, 2002); hereafter, ‘Soil Moisture (SM) Stress
mode’ (See Discussions and Fig. 10 for the comparison between two
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Fig. 1. The design of instrument setup (Fluospec 2) at the study site (Virginia Forest Research Facility, a) and a sample thermal image taken at 13:00 EST on August
8, 2019 at the top platform of a flux tower near the SIF sensors (b). Fluospec 2 is composed of a SIF spectrometer, a computer for system operation (Raspberry Pi), and
an optical shutter. The system is enclosed in a thermostatic box, with the temperature inside the enclosure set at 25 °C, and resides inside a research hut. The ends of
optical cables measuring irradiance and canopy radiance are installed on the top platform of a flux tower (40 m tall). Note that the field of view (FOV) of the optical
fibers (25°) is smaller than the FOV of the thermal camera (45°). Thus, SIF is observed for a smaller area than appears in the thermal image in panel b.
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Fig. 2. An example of data collected by Fluospec 2 at noon on June 14, 2019. Irradiance (orange in panel a) was collected by an upward-looking cosine corrector,
and radiance (blue in panel a) was collected by an optical fiber pointing to the target tree canopy. Reflectance (b) was calculated by dividing radiance by irradiance
and multiplying by . The shaded area in green in panel b indicates the fitting window (759.5-761.5 nm) used for O,A retrieval (Chang et al., 2020). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

simulation modes). Therefore, the results from the two simulation
modes would inform how the relationship between SIF and VPD depends
on soil moisture conditions.

2.4. Eddy covariance and environmental drivers

COo, water, and energy fluxes and other environmental variables (e.
g., air temperature, relative humidity, and VPD) were recorded at an
eddy flux tower using a sonic anemometer (CSAT3, Campbell Scientific,
Logan, Utah), gas analyzer (LI-7500, Li-Cor, Lincoln, Nebraska), and
temperature and humidity probe (HMP45, Vaisala, Helsinki, Finland) at
a height of 25 m, several meters above the characteristic vegetation
height. NEE partitioning into GPP and ecosystem respiration (Reco) Was
done by using an R-based online eddy covariance processing tool,
ReddyProc (Wutzler et al., 2018) and choosing the daytime partitioning

algorithm. Compared to another partitioning option available in the
ReddyProc (i.e., nighttime partitioning algorithm), the daytime parti-
tioning algorithm accounts for the temperature sensitivity of Rec, and
the effect of VPD on plant light response curve to enhance the reliability
of Reco estimates (Lasslop et al., 2010). Only GPP >5 pmol m 257! was
used for the analysis to avoid the poorly defined relationship between
GPP and aPAR under the conditions of low GPP. The temporal resolution

of GPP and ancillary data was 30 min.

2.5. aPAR estimation

Careful selection of aPAR definition is important because aPAR is
often estimated in different ways based on the different assumptions of
light absorption (Porcar-Castell et al., 2021). For example, an assump-
tion of a whole canopy as a light absorbent does not discern differences
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in light absorption between photosynthetic (i.e., functional leaves) and
non-photosynthetic (i.e., stem, branches, and senescent leaves) compo-
nents, in contrast to the assumption of photosynthetically functional
leaves as the only light absorbent. Furthermore, the close relationship
between SIF and aPAR may have a significant influence when evaluating
the impact of other environmental factors on SIF. We have compared
four different approaches to estimate aPAR: PAR absorbed by the entire
canopy, which is estimated by stand-scale measurement (aPARy,), PAR
absorbed by chlorophyll (aPAR.yy), reflected radiance in the far-red
spectrum at 755 nm measured by Fluospec 2 (Rad755), and aPAR esti-
mated by SCOPE simulation (aPARg.) (Table 1).

The aPAR,, was estimated by simultaneous in-situ measurements at
different positions using quantum sensors (PQS-1, Kipp & Zonen B.V.,
Delft, Netherlands) as follows:

aPAR;, = PARuove — PARupger — PARen (1)

where PARgpove is PAR measured above canopies, PARnder is an average
of PAR measured at three different positions under canopies, and PAR .
is canopy-reflected PAR. The PAR components were measured every
minute and averaged every 30 min to match its temporal resolution with
GPP and SIF. The aPARy, represents a conventional method to estimate
site-level aPAR.

The approach to estimating aPAR.y was suggested by Ogutu and
Dash (2013). According to their definition, aPAR.y; is PAR absorbed by
photosynthetic components of canopies only (i.e., excluding PAR
absorbed by branches, stem, and senescent foliage) and utilized for
photosynthesis. Therefore, unlike aPARy,, aPAR.y represents aPAR at
the level of organelles. The aPARy can be estimated by using eddy
covariance data from the following equation:

aPAR., = incident PAR x faPARy; = (NEE —R,.,)/a, 2)

where faPARy is the fraction of aPAR absorbed by photosynthetic el-
ements in the canopy, NEE is net ecosystem exchange (pmol m 2 s71), a,
is actual quantum yield (the number of moles of CO; fixed per mole of
PAR absorbed by photosynthetic elements in the canopy: mol mol™1),

Table 1
Definitions of aPAR metrics used in this study.
aPAR Description
metrics
aPAR,, aPAR estimated by simultaneous in-situ measurements of PAR at

different positions using quantum sensors.

aPARy = PARapove — PARunder — PAR(en

e PARgpove: PAR measured above canopies

o PARypder: average of PAR measured at three different positions
under canopies

e PAR,.q: canopy-reflected PAR

aPAR PAR absorbed by photosynthetic components of canopies only (i.e.,
excluding PAR absorbed by branches, stem, and senescent foliage)

and utilized for photosynthesis (Ogutu and Dash, 2013).

aPAR., = incident PAR x faPAR . = (NEE— Re) / @q

faPAR.p: the fraction of aPAR absorbed by photosynthetic elements
in the canopy

NEE: net ecosystem exchange (ymol m2 s~ 1)

ag: actual quantum yield (the number of moles of CO, fixed per
mole of PAR absorbed by photosynthetic elements in the canopy:
mol mol 1)

Reco: €cosystem respiration (umol m~2 s’l)

Rad755 The radiance in the far-red spectrum reflected by canopies, which is

often used to derive relative SIF (= SIF/Rad755).

aPAR,c PAR absorbed by chlorophyll a and b simulated by SCOPE.
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which is a function of maximum intrinsic quantum yield (0.08 mol
mol~! for C3 plants) (Collatz et al., 1991; Hanan et al., 2002), air tem-
perature, and VPD, and Reco is ecosystem respiration (umol m 2 s™1)
(Refer to Ogutu and Dash (2013) for more details about the derivation).
While actual quantum yield is a function of VPD, we applied a constant
VPD representing VPD in clear midday during the study period from
July to September (2 kPa) to avoid the potential perplexing influence of
both VPD and aPAR on GPP and SIF (see Fig. S2 in Supplementary
Information for the comparison between aPAR estimated using con-
stant VPD and variable VPD).

The radiance in the far-red spectrum reflected by canopies (Rad755)
is often used to derive relative SIF (=SIF/Rad755). Relative SIF is the
normalized SIF to correct the effect of heterogeneous vegetation struc-
ture (Magney et al., 2019; Parazoo et al., 2020) and is comparable to SIF
yield (=SIF/aPAR). In principle, relative SIF is comparable to the near-
infrared radiance of vegetation (NIRvVR) when Normalized Difference
Vegetation Index (NDVI) is stable, as NIRvVR is approximately NDVI
multiplied by observed NIR radiance (NIRrad), where NIRrad is linearly
related with aPAR (Zeng et al., 2019). Therefore, although Rad755 may
not represent aPAR in principle, we tested the possibility of Rad755 as a
proxy of aPAR to address the impact of VPD on SIF. In addition, one
benefit of using relative SIF is that the radiance at 755 nm was observed
from the same footprint as the SIF measurements.

Lastly, PAR absorbed by chlorophyll a and b simulated by SCOPE
(aPARy.) was used against simulated SIF. The simulation of aPAR. is
based on in-situ measurement of incident PAR, radiative transfer, and
chlorophyll absorption spectrum.

2.6. Data analyses

Our primary interest in this study is to understand the impact of VPD
on SIF. However, SIF is known to have a strong linear relationship with
aPAR. Therefore, we must confidently decouple the impact of VPD from
the relationship between SIF and aPAR. We used the Johnson-Neyman
technique (Bauer and Curran, 2005; Johnson and Fay, 1950) to eval-
uate the interaction between aPAR and VPD and its influence on SIF or
GPP. We then compared linear regressions of SIF (or GPP) and aPAR at
different levels of VPD by performing simple slopes analysis (Aiken and
West, 1991). While the one-way analysis of covariance (ANCOVA) is
often performed for this type of situation, our cases violate the
assumption of homogeneity of the regression slopes; in other words, we
have non-parallel regression slopes of SIF-aPAR across different levels of
VPD. The Johnson-Neyman technique addresses this issue by identifying
the interval of aPAR in which the influence of VPD on SIF-aPAR
regression (dSIF/dVPD) is significant or insignificant (at a level of 0.05
in our case).

In the results, we illustrate 1) the range of aPAR values where VPD
has a significant influence on SIF-aPAR regression and 2) how SIF-aPAR
regressions differ at three separate VPD levels (at mean VPD, mean VPD
plus 1.5 times standard deviation, and mean VPD minus 1.5 times
standard deviation). We hypothesized that the response of SIF is mainly
attributable to the variability of &5, given negligible variations in the
canopy structure and thus fes. during the growing season when the
canopy is closed (He et al., 2020). Based on our SCOPE simulation, only
up to 3% of the variability in fes. was found throughout the study period.

In order to meet the assumption of linearity between SIF and aPAR,
both variables were log-transformed using natural log, such that the
non-linear power function for the SIF-aPAR relationship (i.e., SIF =
a~aPARb) was transformed into the linear function between In(SIF) and
In(aPAR) (i.e., In(SIF) = In a + b-In(aPAR), where b is the slope and In a
is the intercept in the transformed relationships, Fig. 3). We performed
the same analysis for GPP by log-transforming both GPP and aPAR (i.e.,
GPP = a-aPARb) as a reference.

Lastly, we further tested the response of SIF using the data collected
during the midday only (12-2 pm), which represents low-frequency
observations such as satellite or airborne measurements, to find out
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whether we could find a similar response compared to full-day SIF
response and/or GPP response.

3. Results
3.1. Diurnal and seasonal patterns of GPP and SIF

As has been widely observed in many studies, GPP, measured SIF
(SIFgs), and simulated SIF (SIFgc) all had unimodal diurnal patterns
that increased in the morning, peaked around noon, and gradually
decreased in the afternoon (Fig. 4). As expected, diurnal patterns of GPP
and SIF corresponded well to the pattern of incident PAR (iPAR).
Meanwhile, VPD and T, showed delayed peaks around 3 pm compared
to GPP, SIF, and iPAR. Compared to the diurnal patterns of SIF, the
decreasing rate of GPP in the afternoon was slower. For instance, SIF
started with a low value at 6 am and returned to a similar level at or
before 6 pm. On the other hand, GPP did not return to a similar level
observed at 6 am by 6 pm.

The seasonal trends of GPP and SIFgsy; were similar to each other
(Fig. 4). Specifically, both GPP and SIFgsy were highest during the early
growing season (May) and gradually decreased for the rest of the season.
However, the seasonal pattern of SIFsc was different compared to the
GPP or SIFgs. The SIFgc gradually increased during the early growing
season, remained high during the summer (June to August), and
decreased afterward. This pattern coincided with the seasonal pattern of
iPAR.

3.2. Comparison between aPAR metrics

All aPAR metrics were linearly related to the iPAR but with different
slopes and variances (Fig. 5). Among the metrics, aPAR, had the least
deviation from iPAR (slope = 0.94) with a very high R? of the regression
(= 0.995). The aPAR simulated by SCOPE (aPARy.) was also propor-
tional to the iPAR and had a very high R? of the regression (=0.999) but
with appreciable deviation (slope = 0.72) from iPAR. On the other hand,
aPARy deviated from iPAR appreciably (slope = 0.66) with lower R? of
the regression (=0.755) than aPARy, and aPARgc. This reflects a char-
acteristic of aPAR.,;, which assumes variable aPAR utilization for
photosynthesis depending on environmental conditions (Ogutu and
Dash, 2013) and thus requires additional environmental variables, other
than iPAR, to better predict its variation. Similarly, Rad755 also had a
lower R? of the regression (=0.849) than aPARy, or aPAR,., implying its
susceptibility to environmental variables other than light conditions.

3.3. Response of GPP and SIF to changing aPAR and VPD

According to the Johnson-Neyman technique results, the influence of
VPD on the GPP-aPAR regression was significant regardless of the aPAR
metrics during most of the daylight conditions (Fig. 6a—d). Specifically,
VPD had a significant impact when log-transformed aPAR;,, aPARy,
Rad755, and aPARg. were >5.42, 4.93, 2.88, and 5.29, respectively.
These values correspond to 225.9, 138.4, 17.8, and 198.3 pmol m 2571,

(a) Measured (aPAR))
2500 2500

(b) Ogutu & Dash (aPAR)

(c) Radiance @ 755nm (Rad755)
50 2500
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respectively, before transformation (see Fig. 4 for the daily variation of
iPAR over the growing season and Fig. 5 for the relationships between
iPAR and aPAR metrics). In all cases, GPP decreased with rising VPD
(Fig. 6i-1). The impact of VPD on GPP was more evident under higher
aPAR.

Unlike GPP, we found inconsistent results depending on the aPAR
metrics or SIF estimation method (Fig. 7). The influence of VPD on the
SIF was significant for the wide range of aPAR values when aPAR. was
used (Fig. 7b) or SIF and aPAR were simulated with SCOPE (Fig. 7d, e).
On the other hand, the influence of VPD was insignificant over the entire
range of observed aPAR;, (Fig. 7a) and over more than half of the
observed range of Rad755 (Fig. 7c¢).

SIF decreased with rising VPD - the pattern consistent with GPP —
only when aPAR.y was used (Fig. 71) or when SIF and aPAR were
simulated using the SM Stress mode (Fig. 70). In the case where SIF and
aPAR were simulated using the Moderate mode (Fig. 7n), VPD influ-
enced SIF negatively when In(aPARg.) was <6.50 (i.e., aPARg, = 665
pmol m2s 1) but positively when In(aPAR.) was >6.78 (i.e., aPARg. =
880 pmol m~2s™1). When Rad755 was used, VPD had a positive effect on
hourly SIF under high Rad755 conditions, which was the opposite of
VPD’s effect on GPP (Fig. 7m).

The daily scale relationships between log-transformed SIF and aPAR
(Fig. 8) were similar to the hourly scale relationship (Fig. 7). VPD had a
negative influence on daily SIF when aPAR.; was used (Fig. 81) or when
SIF and aPAR were simulated with SCOPE using the SM Stress mode
(Fig. 80). Although the range of aPAR where VPD significantly in-
fluences daily-scale SIF was smaller (Fig. 8b, e) compared to the hourly-
scale results (Fig. 7b, e), the aPAR conditions still represent a wide range
of daylight conditions enabling active photosynthesis. For example, VPD
had a negative effect on SIF when In(aPARcy)) was higher than 5.50 (i.e.,
aPAR.y > 245 pmol m 2 s_l, Fig. 81) or when SIF and aPAR were
simulated using the SM Stress mode and In(aPARs.) was higher than 5.95
(i.e., aPARg. > 384 pmol m2 s’l, Fig. 80). When using aPAR,, however,
the effect of VPD on SIF was significant when In(aPAR,) was between
5.94 and 6.64 (i.e., aPARy, is between 380 and 765 pmol m 2 s’l,
Fig. 8a), which represents relatively low daylight conditions. When
Rad755 was used, VPD influenced daily SIF positively under low Rad755
conditions, which was opposite to the impact of VPD on GPP (Fig. 8m).

The relationship between GPP and SIF was non-linear at both hourly
and daily scales due to the steeper slope at low GPP and SIF (Fig. 9).
However, the relationship was strongly linear for most SIF and GPP
ranges once SIF or GPP exceeded a certain level. Although daily scale
observations had a lower coefficient of determination than hourly scale
observations, we found similar variability in the GPP-SIF relationship
with changing VPD at both temporal scales. When the GPP-SIF rela-
tionship was fitted using a power function (i.e., GPP = k x SIF?) at either
scale, the coefficient k decreased with rising VPD (Fig. 9b, e). However,
the exponent a did not vary significantly (Fig. 9c & f).

4. Discussions

We investigated SIF variations in response to changing VPD at a

(d) SCOPE (aPAR,) (e) aPARgy vs. aPAR,,
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Fig. 5. Relationships between incident PAR (iPAR) and different absorbed PAR (aPAR) metrics. Gray dashed lines indicate a 1:1 line. Red solid lines indicate linear
regression fit. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Effect of VPD on GPP-aPAR relationship at hourly scale. The top row (a-d) shows the results of Johnson-Neyman analysis, identifying the range of aPAR
metrics where the influence of VPD on GPP-aPAR regression is significant (P < 0.05, shaded in green). The thicker horizontal lines at 0 in Johnson-Neyman plots
indicate the observed range of aPAR metrics. The middle row (e-h) shows scatter plots of log-transformed and GPP and aPAR metrics. The bottom row (i-1) shows the
results of simple slopes analysis, illustrating GPP-aPAR regressions held at three VPD levels: mean VPD, mean VPD plus 1.5 times standard deviation, and mean VPD
minus 1.5 times standard deviation. Note that confidence intervals are illustrated in gray around the fitted lines (i-1) but are barely visible because they are very
narrow, especially under high aPAR. Slope and standard error (SE) values are presented (i-1), and the text colors match the colors of the fitted lines. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

canopy scale using tower-based SIF measurements in a temperate forest.
Specifically, we tested if using different definitions for aPAR and tem-
poral scales (i.e., hourly vs. daily) would influence SIF response to
changing VPD.

SIF is considered a remotely sensed proxy for GPP because of its good
relationship with GPP across various observational scales. However,
while GPP represents the carbon assimilated as a result of photosyn-
thesis, SIF is the energy re-emitted after light absorption by leaf chlo-
rophyll molecules (a different pathway than the pathway routed for
photosynthesis). Despite the close link of SIF to plant photochemistry,
SIF is not equivalent to photosynthetic carbon uptake and GPP. There-
fore, the interaction of SIF with environmental variables may not
necessarily be the same as GPP.

We found a SIF response to VPD that corresponded to the GPP

response to VPD when PAR absorbed by chlorophyll (aPAR.y)) was used
or when SIF and aPAR were simulated by SCOPE model that was
parameterized to account for the effects of soil moisture stress (i.e., SM
Stress mode). Our findings suggest that tower-based SIF measurement
has the potential to address the impact of water stress on ecosystem
function.

The definition of aPAR was critical for SIF to emulate GPP response
to VPD. SIF was negatively related to VPD only when aPAR.y was used
or SIF and aPAR were simulated by SCOPE on the SM Stress mode. This
emphasizes the importance of carefully defining and evaluating light
conditions, or more precisely, light availability to vegetation, especially
when addressing the impact of environmental drivers other than light
conditions on SIF.

Among the aPAR metrics, aPAR.p was defined as the PAR absorbed



K. Yietal Remote Sensing of Environment 306 (2024) 114106
(a) (b) (c) (d) (e)
0.14 0.0 0.104 0.054 0.000
Y n
- [%]
Not Significant _— 0.05 _ Nt o 2 00254
00 - 01 Significant 5 i 7 =
) < 28 £[2 0.00 - 2 =
gle > zle & = = 9 -0.050
HE i E|E god E|E P s Sla
® o -0.1 2 ® o T ® | —0.05 & £ 0054 28
gl 3|2 -0.075+
-0.10 =le HE
~034 N
-0.2 , " : , y ————r—————— ~0.104+ v . : . 0100, . , : :
4 5 6 7 5 6 7 25 30 35 40 45 50 4 5 6 7 8 4 5 6 7 8
In(aPAR ) In(@PARg) In(Rad755) In(aPAR) In(aPAR)
® () (h) (0] 0]
1 1 1 1 1
el © 2
0 e 0 0 e © 4 8
2] S o p » o
[ L © ™ ™ S 2 =
o -1 oo [ [ . < &
-1 y -,?ﬂ' . = e == 5 p = 4
2 oo 2 n oo :"Q % N e wo- re
2 s, @, é a d
E L] E L]
-3 -3 -3 z) -2
4 5 6 7 5 6 7 25 30 35 40 45 50 5 6 7 8 5 6 7 8
In(aPAR;,) In(aPAR ) In(Rad755) In(aPARg.) In(aPARs)
(k) 0] (m) (n) (0)
Slope: ,1.251,1.292 Slope: ,1.231, 1.276 Slope: , 1.453, 1.494 Slope: , 1.032, 1.068 Slope: ,0.855, 0.864
1 SE: , 0.016, 0.031 1 SE: ,0.016, 0.031 1 SE: ,0.013, 0.024 1 SE: , 0.004, 0.007 1 SE: ,0.004, 0.008
0 3
0 0 0 ® 3
i, — — % 0 & 0
L w w
g - g - g - = 3
£ £ £ 3 =
3 4 8 -
L [
-2 =2 -2 @ &
£ E
-3 3 -3 K -2
4 5 6 7 4 5 6 7 25 30 35 40 45 50 4 5 6 7 8 5 6 7 8
In(aPAR,) In(aPAR ) In(Rad755) In(aPAR) In(aPARs)
VPD
== 158D == Mean -1.58SD

Fig. 7. Effect of VPD on SIF-aPAR relationship at hourly scale. The top row (a—e) shows the results of Johnson-Neyman analysis, identifying the range of aPAR
metrics where the influence of VPD on SIF-aPAR regression is significant (P < 0.05, shaded in green). The thicker horizontal lines at 0 in Johnson-Neyman plots
indicate the observed range of aPAR metrics. The middle row (f—j) shows scatter plots of log-transformed and SIF and aPAR metrics. The bottom row (k-o0) shows the
results of simple slopes analysis, illustrating SIF-aPAR regressions held at three VPD levels: mean VPD, mean VPD plus 1.5 times standard deviation, and mean VPD
minus 1.5 times standard deviation. Note that confidence intervals are illustrated in gray around the fitted lines (k-o) but are barely visible because they are very
narrow, especially under high aPAR. Slope and standard error (SE) values are presented (k—o), and the text colors match the colors of the fitted lines. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

by the photosynthetic component of the canopy (i.e., green foliage). In
other words, aPAR., represents aPAR at the foliage or organelle
(chlorophyll) level, which agrees with the SIF emission level (Zhang
et al., 2016b). Therefore, aPAR.y is expected to account for the effects of
environmental drivers on photosynthesis (e.g., air temperature, mois-
ture condition, and nutrient availability), while the other aPAR metrics
don’t. Indeed, in the algorithm of aPAR.y estimation, the process of
estimating actual quantum yield (i.e., the number of moles of CO, fixed
per mole of PAR absorbed by photosynthetic elements in the canopy) is
an empirical function of air temperature. As a result, the relationship
between aPAR.y, and iPAR has a low R? when compared to the other
aPAR metrics (Fig. 5). Although the rigorous verification of aPARy is
difficult, the similarity between aPAR.y and aPAR simulated by SCOPE
supported the legitimacy of aPAR.y (Fig. 5e). Furthermore, we found a
negative effect of VPD on SIF when aPAR.y was used (Figs. 7 and 8),
which is consistent with the effect on GPP (Fig. 6). It is important to note
that we applied a constant VPD to estimate the actual quantum yield for
aPARp), which had a lower variance than the aPAR.y; estimated using a
variable VPD (See Fig. S2 in Supplementary Information). In our pre-
liminary analysis, we found similar trends in SIF in response to changing
VPD whether constant or variable VPD was used for aPAR ) estimation.
The only difference was that SIF variability in response to changing VPD

was greater when aPAR. was estimated by using variable VPD rather
than constant VPD (See Fig. S3 for the hourly-scale result and Fig. S4 for
the daily-scale result in Supplementary Information). Overall, we
confirm that aPARy is likely to reflect the actual amount and variability
of PAR absorbed by the foliage and used for photosynthesis, and that the
impact of aPAR. on SIF demonstrated in our study (i.e., aPARy esti-
mated by using a constant VPD) is likely to be conservative.

Meanwhile, aPARy, is the PAR absorbed by any components of the
canopy, including non-photosynthetic components (e.g., branches,
stems, and senescent foliage) that are irrelevant to SIF emission. Because
it accounts for insensitive non-photosynthetic components, using aPAR
may result in a less sensitive photosynthetic response than expected. For
example, a very small variance was found in the relationship between
aPARy, and iPAR (Fig. 5a), implying that environmental drivers other
than iPAR had a negligible effect on the aPARp,. Therefore, the disparity
in scope of measurement between SIF and aPARy, (i.e., photosynthetic
component only vs. photosynthetic and non-photosynthetic compo-
nents) should have contributed to the ambiguous effect of VPD on the
SIF-aPARy, relationship (Fig. 7).

In contrast to the GPP-VPD relationship, we found a positive effect of
VPD on SIF when Rad755 was used as a proxy of aPAR although there is
no theoretical basis for describing the opposite pattern. Therefore, while
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Fig. 8. Effect of VPD on SIF-aPAR relationship at daily scale. The top row (a-e) shows the results of Johnson-Neyman analysis, identifying the range of aPAR metrics
where the influence of VPD on SIF-aPAR regression is significant (P < 0.05, shaded in green). The thicker horizontal lines at 0 in Johnson-Neyman plots indicate the
observed range of aPAR metrics. The middle row (f-j) shows scatter plots of log-transformed and SIF and aPAR metrics. The bottom row (k-0) shows the results of the
simple slopes analysis, illustrating SIF-aPAR regressions held at three VPD levels: mean VPD, mean VPD plus 1.5 times standard deviation, and mean VPD minus 1.5
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Rad755 may be useful as a proxy of aPAR to approximate GPP and SIF
due to its strong relationship with iPAR, it is less useful when the effect
of environmental drivers other than light conditions must be considered.

Although we suggest using an aPAR definition that can be estimated
from eddy covariance data (i.e., aPARp)) among the tested metrics, it
may be preferable to use aPAR metrics that can be estimated more easily
for larger-scale observations. Zhang et al. (2020), for example,
compared the fraction of PAR absorbed by chlorophyll (faPAR) obtained
from six different satellite products. Further research into how different
definitions of the faPAR affect SIF and its response to changing envi-
ronmental drivers is needed to improve the utility of SIF as a proxy for
GPP because faPAR is heavily influenced by the canopy structure,
including leaf-angle distributions (Stovall et al., 2021; Yang et al.,
2023). Future research into leaf-angle distribution and its temporal
variations, for instance, using recent terrestrial light detection and
ranging (lidar) techniques, would help improve our understanding of
the impact of canopy structure on faPAR and SIF.

We used SCOPE to simulate SIF with two different modes of fluo-
rescence emission, Moderate and SM Stress, to compare with measured
SIF and infer the mechanism of SIF response to VPD and soil moisture.
The expected negative effect of VPD on SIF emerged when the SM Stress
mode was used. When the response of quantum yields to aPAR was

compared between the simulation modes, the response of fluorescence
yield (&F) was found to be the most different (Fig. 10; also refer to van
der Tol et al. (2014) and Verrelst et al. (2015)). Specifically, in the case
of the Moderate mode, @ decreased rapidly with increasing aPAR under
low aPAR, but there was little change under moderate to high aPAR
(Fig. 10b). In the SM Stress mode, on the other hand, a negative rela-
tionship between &y and aPAR was found across the entire range of
aPAR (Fig. 10f). The patterns of @ found in both simulation modes were
consistent with the descriptions in van der Tol et al. (2014), which
suggested decreasing & as an indication of water stress. Moreover, with
the SM Stress mode, we found a reduction of @y across the entire range
of aPAR with rising VPD (Fig. 10). Considering the variability of &f in
the SCOPE is mainly driven by aPAR and carboxylation capacity (van
der Tol et al., 2014), the results of SIF simulation should be mainly
reflective of the negative impact of VPD, temperature (due to VPD being
a function of temperature), and/or soil moisture, on the non-stomatal
processes.

The simulation results of quantum yields (Fig. 10), as well as in-
teractions between SIFg., aPAR., and VPD (Figs. 7 and 8), indicate that
the SIF-VPD relationship is dependent on soil moisture conditions. This
implies that the negative effect of VPD on SIF observed when using
aPARy (Figs. 7 and 8) may be driven by both VPD and soil moisture
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conditions. This is consistent with previous research (Liu et al., 2020),
which investigated the relative effect of VPD and soil moisture on
satellite-based SIF. Our study site is a mesic temperate forest with plenty
of rainfall (long-term mean annual precipitation = 1210 mm), a mod-
erate level of soil moisture (i.e., volumetric water content over the study
period (mean =+ standard deviation) = 0.33 + 0.05 m°® m™3), and a low
correlation between soil moisture and VPD (0.17 at the hourly scale and
0.12 at the daily scale). We note that the impact of soil moisture on SIF
was only implied by the SCOPE simulation and was not evaluated by in-
situ data in our study, due to the limited amount of data to decouple the
effect of soil moisture, VPD and aPAR. Long-term, high-frequency data
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collection will aid in decoupling the impact of multiple environmental
drivers on SIF, which is a significant advantage of tower-based SIF
measurements over other methods.

Finally, similarity in the seasonal patterns between the measured SIF
(SIFgs2) and GPP indicates the robustness of tower-based SIF measure-
ment for tracking the seasonal variability of carbon assimilation (Fig. 4).
SIFgsy and GPP levels were highest during the early growing season
(May) and gradually decreased over time. On the other hand, the
simulated SIF (SIFgc) was highest during the summer, which coincided
with the pattern of iPAR. The discrepancy in the seasonal patterns is
likely to be determined by whether the SIF or GPP reflects seasonal
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variability in photosynthetic capacity (i.e., Vemax)- Vemax iS positively
related to fluorescence yield under moderate to high light conditions
(Frankenberg and Berry, 2018; van der Tol et al., 2014), and seasonally,
the highest Vimax is often reported during the early growing season
(around May) for deciduous trees growing in temperate forests (Grassi
et al., 2005; Wilson et al., 2000). Therefore, we presume that the
observed seasonal patterns of SIFgso and GPP are more reliable than the
seasonal pattern of SIFgc, because V.max Was set as a constant for the
simulation (60 ymol m 2 s~1) and light conditions would have a greater
impact on SIFsc than they would on SIFggy. This is demonstrated by a
greater similarity in the seasonal pattern between SIFsc and iPAR than
between SIFgsy and iPAR (Fig. 4). Therefore, our findings suggest that
prescribing Vemax and its seasonality in the model is important for
improving simulation accuracy.

5. Conclusion

SIF is widely accepted as a proxy for GPP due to its strong relation-
ship with GPP observed from the field, airborne, and spaceborne mea-
surements. Among these, tower-based SIF measurement enables
continuous monitoring of SIF variation at a canopy or stand scale.
Continuous measurement is particularly well suited to addressing
physiological responses to rapidly changing environmental drivers, such
as VPD (i.e., atmospheric dryness), which is highly variable during the
day and is expected to increase with climate change. However, there is a
potential challenge when using SIF to address the impact of environ-
mental drivers. Because of the strong and close relationship between SIF
and aPAR, the response of SIF to environmental drivers might not be as
evident as what we can learn from GPP. Our findings show that the SIF
response to changing VPD, which is comparable to the response of GPP,
can be replicated not only with high-frequency measurements (<
hourly) but also with low-frequency measurements (> daily), if a proper
definition of aPAR with a corresponding observational scale (canopy),
such as aPARy, is used. We also emphasize the importance of further
research into methods for evaluating the fraction of aPAR at various
observational scales to clarify the relationships between SIF, light con-
ditions, and other environmental drivers.
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