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Abstract
The Private Aggregation of Teacher Ensembles
(PATE) is a machine learning framework that en-
ables the creation of private models through the
combination of multiple ”teacher” models and a
”student” model. The student model learns to pre-
dict an output based on the voting of the teachers,
and the resulting model satisfies differential pri-
vacy. PATE has been shown to be effective in cre-
ating private models in semi-supervised settings or
when protecting data labels is a priority. This pa-
per explores whether the use of PATE can result
in unfairness, and demonstrates that it can lead to
accuracy disparities among groups of individuals.
The paper also analyzes the algorithmic and data
properties that contribute to these disproportionate
impacts, why these aspects are affecting different
groups disproportionately, and offers recommenda-
tions for mitigating these effects.

1 Introduction
The widespread adoption of machine learning (ML) systems
in decision-making processes have raised concerns about bias
and discrimination, as well as the potential for these systems
to leak sensitive information about the individuals whose data
is used as input. These issues are particularly relevant in con-
texts where ML systems are used to assist in decisions pro-
cesses impacting individuals’ lives, such as criminal assess-
ment, lending, and hiring.

Differential Privacy (DP) [Dwork et al., 2006] is an al-
gorithmic property that bounds the risks of disclosing sen-
sitive information of individuals participating in a computa-
tion. In the context of machine learning, DP ensures that
algorithms can learn the relations between data and predic-
tions while preventing them from memorizing sensitive in-
formation about any specific individual in the training data.
While this property is appealing, it was recently observed
that DP systems may induce biased and unfair outcomes for
different groups of individuals [Bagdasaryan et al., 2019;
Tran et al., 2021a; Tran et al., 2021d]. The resulting out-
comes can have significant impacts on individuals with neg-
ative effects on financial, criminal, or job-hiring decisions
[Fioretto et al., 2021]. While these surprising observations

have become apparent in several contexts, their causes are
largely understudied.

This paper makes a step toward filling this important gap
and investigates the unequal impacts that can occur when
training a model using Private Aggregation of Teacher En-
sembles (PATE), a state-of-the-art privacy-preserving ML
framework [Papernot et al., 2018]. PATE involves combin-
ing multiple agnostic models, referred to as teachers, to cre-
ate a student model that is able to predict an output based on
noisy voting among the teachers. This approach satisfies dif-
ferential privacy and has been demonstrated to be effective for
learning high-quality private models in semi-supervised set-
tings. The paper examines which algorithmic and data prop-
erties contribute to disproportionate impacts, why these as-
pects are affecting different groups of individuals dispropor-
tionately, and proposes a solution for mitigating these effects.

In summary, the paper makes several key contributions: (1)
It introduces a fairness measure that extends beyond accuracy
parity and assesses the direct impact of privacy on model out-
puts for different groups. (2) It examines this fairness mea-
sure in the context of PATE, a leading privacy-focused ML
framework. (3) It identifies key components of model param-
eters and data properties that contribute to disproportionate
impacts on different groups during private training. (4) It in-
vestigates the circumstances under which these components
disproportionately affect different groups. (5) Finally, based
on these findings, the paper proposes a method for reducing
these unfair impacts while maintaining high accuracy.

The empirical advantages of privacy-preserving ensemble
models over other frameworks, such as DP-SGD [Abadi and
et al., 2016; Ghazi et al., 2021; Uniyal et al., 2021], make
this work a significant and widely relevant contribution to un-
derstanding and addressing the disproportionate impacts ob-
served in semi-supervised private learning systems. As far as
we are aware, this is the first study to examine the causes of
disparate impacts in privacy-preserving ensemble models.

Supplemental material. A privacy analysis, proofs of all
theorems, and additional experiments can be found in [Tran
and Fioretto, 2023].

2 Related Work
The relationship between privacy and fairness has been a
topic of recent debate, as recently surveyed by [Fioretto et

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

510



Figure 1: Illustration of PATE and aspects contributing to fairness.

al., 2022], with several researchers raising questions about
the tradeoffs involved [Ekstrand et al., 2018]. [Cummings
et al., 2019] specifically studied the tradeoffs between dif-
ferential privacy and equal opportunity, a fairness criterion
that requires a classifier to have equal true positive rates for
different groups. They demonstrated that it is not possible
to simultaneously achieve (ϵ, 0)-differential privacy, satisfy
equal opportunity, and have accuracy better than a constant
classifier. Additionally, it has been proven that when training
data has a long-tailed distribution, it is impossible to develop
a private learning algorithm that has high accuracy for minor-
ity groups [Sanyal et al., 2022]. These findings led to asking
if fair models can be created while preserving sensitive in-
formation, and have spurred the development of various ap-
proaches such as those presented in [Jagielski et al., 2018;
Mozannar et al., 2020; Tran et al., 2021a; Tran et al., 2021c;
Tran et al., 2021b; Fioretto et al., 2020].

Pujol et al. [2020] were the first to show, empirically,
that decision tasks made using DP datasets may dispro-
portionately affect some groups of individuals over others.
These studies were complemented theoretically by Tran et al.
[2021d]. Similar observations were also made in the context
of model learning. Bagdasaryan et al. [2019] empirically
observed that the accuracy of a DP model trained using DP-
Stochastic Gradient Descent (DP-SGD) decreased dispropor-
tionately across groups causing larger negative impacts to the
underrepresented groups. Farrand et al. [2020] and Uniyal et
al. [2021] reached similar conclusions and showed that this
disparate impact was not limited to highly imbalanced data.

This paper builds on this body of work and their important
empirical observations. It provides an analysis of the causes
of unfairness in the context of private learning ensembles,
a significant privacy-enhancing ML system, and introduces
guidelines for mitigating these effects.

3 Preliminaries: Differential Privacy
Differential privacy (DP) is a strong privacy notion stating
that the probability of any output does not change much when
a record is added or removed from a dataset, limiting the
amount of information that the output reveals about any in-
dividual. The action of adding or removing a record from a
datasetD, resulting in a new datasetD′, defines the notion of
adjacency, denoted D ∼ D′.

Definition 1 ([Dwork et al., 2006]). A mechanism M :D→
R with domainD and rangeR satisfies (ϵ, δ)-differential pri-
vacy, if, for any two adjacent inputs D ∼ D′ ∈ D, and any
subset of output responses R ⊆ R:

Pr[M(D) ∈ R] ≤ eϵ Pr[M(D′) ∈ R] + δ.

Parameter ϵ > 0 describes the privacy loss of the algo-
rithm, with values close to 0 denoting strong privacy, while
parameter δ ∈ [0, 1) captures the probability of failure of
the algorithm to satisfy ϵ-DP. The global sensitivity ∆ℓ of
a real-valued function ℓ : D → R is defined as the max-
imum amount by which ℓ changes in two adjacent inputs:
∆ℓ = maxD∼D′ ∥ℓ(D) − ℓ(D′)∥. In particular, the Gaus-
sian mechanism, defined by M(D) = ℓ(D) +N (0,∆2

ℓ σ
2),

where N (0,∆2
ℓ σ

2) is the Gaussian distribution with 0 mean
and standard deviation ∆2

ℓ σ
2, satisfies (ϵ, δ)-DP for δ >

4
5 exp(−(σϵ)2/2) and ϵ<1 [Dwork et al., 2014].

4 Problem Settings and Goals
This paper considers a private dataset D consisting of n in-
dividuals’ data (xi, yi), with i∈ [n], drawn i.i.d. from an un-
known distribution Π. Therein, xi ∈X is a sensitive feature
vector containing a protected group attribute ai ∈ A ⊂ X ,
and yi ∈ Y = [C] is a C-class label. For example, consider
a classifier that needs to predict criminal defendants’ recidi-
vism. The data features xi may describe the individual’s de-
mographics, education, and crime committed, the protected
attribute ai may describe the individual’s gender or ethnicity,
and yi whether the individual has high risk to reoffend.

This paper studies the fairness implications arising when
training private semi-supervised transfer learning models.
The setting is depicted in Figure 1. We are given an ensem-
ble of teacher models T = {f j}kj=1, with each f j : X → Y
trained on a non-overlapping portionDi ofD. This ensemble
is used to transfer knowledge to a student model f̄θ :X →Y ,
where θ is a vector of real-valued parameters.

The student model f̄ is trained using a public dataset D̄=
{xi}mi=1 with samples drawn i.i.d. from the same distribu-
tion Π considered above but whose labels are unrevealed. We
focus on learning classifier f̄θ using knowledge transfer from
the teacher model ensemble T while guaranteeing the privacy
of each individual’s data (xi, yi) ∈D. The sought model is
learned by minimizing the regularized empirical risk function
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with loss ℓ :Y × Y→R+:

θ∗ = argmin
θ

L(θ; D̄,T ) + λ∥θ∥2 (1)

=
∑

x∈D̄

ℓ
(
f̄θ(x), v (T (x))

)
+ λ∥θ∥2, (2)

where v :Yk →Y is a voting scheme used to decide the pre-
diction label from the ensemble T , with T (x) used as a short-
hand for {f j(x)}kj=1, and λ > 0 is a regularization term.

We focus on DP classifiers that protect the disclosure of the
individual’s data and analyzes the fairness impact (as defined
below) of privacy on different groups of individuals.
Privacy. Privacy is achieved by using a DP version ṽ of the
voting function v:

ṽ(T (x))=argmaxc{#c(T (x))+N (0,σ2)} (3)

which perturbs the reported counts #c(T (x)) = |{j : j ∈
[k], f j(x)= c}| for class c∈C with zero-mean Gaussian and
standard deviation σ. The overall approach, called PATE [Pa-
pernot et al., 2018], guarantees (ϵ, δ)-DP, with privacy loss
scaling with the magnitude of the standard deviation σ and
the size of the public dataset D̄. A detailed review of the pri-
vacy analysis of PATE is reported in Appendix C of [Tran and
Fioretto, 2023]. Throughout the paper, the privacy-preserving
parameters of the model f̄ trained with noisy voting ṽ(T (x))
are denoted with θ̃.
Fairness. One widely used metric for measuring utility in
private learning is the excess risk [Zhang et al., 2017], which
is defined as the difference between the private and non-
private risk functions:

R(S,T )
def
= Eθ̃

[
L(θ̃;S,T )

]
− L(θ∗;S,T ), (4)

where the expectation is taken over the randomness of the
private mechanism, S is a subset of D̄, θ̃ is the private student
model’s parameters, and θ∗=argminθ L(θ; D̄,T ) + λ∥θ∥2.

In this paper, the unfairness introduced by privacy in the
learning task is measured using the difference in excess risks
of each protected subgroup. This notion is significant because
it captures the unintended impact of privacy on task accuracy
for a given group, and it relates to the concept of accuracy
parity, a standard metric in fair and private learning. More
specifically, the paper focuses on measuring the excess risk
R(D̄←a,T ) for groups a ∈ A, where D̄←a is the subset of
D̄ containing only samples from a group a. We use the short-
hand R(D̄←a) to refer to R(D̄←a,T ) and assume that the
private mechanisms are non-trivial, i.e., they minimize the
population-level excess risk R(D̄).
Definition 2. Fairness is measured as the highest excess risk
difference among all groups:

ξ(D̄) = max
a,a′∈A

R(D̄←a)−R(D̄←a′). (5)

Notice how this definition of fairness relates to the concept
of accuracy parity [Bagdasaryan et al., 2019], which mea-
sures the disparity of task accuracy across groups, when the
adopted loss ℓ is a 0/1-loss. All the experiments in the paper
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Figure 2: Factors impacting PATE fairness.

use, in fact, this 0/1-loss, while the theoretical analysis con-
siders general differentiable loss functions. Additional details
regarding this fairness definition and its relations with other
fairness notions can be found in Appendix A of [Tran and
Fioretto, 2023].

5 PATE Fairness Analysis: Roadmap
The objective of this paper is to identify the factors that cause
unfairness in PATE and understand why they have this ef-
fect. The following sections isolate these key factors, which
will be divided into two categories: algorithm parameters and
public student data characteristics. The theoretical analysis
assumes that, for a group a ∈ A, the group loss function
L(θ;D←a,T ) is convex and βa-smooth with respect to the
model parameters θ for some βa ≥ 0. However, the evalua-
tion does not impose any restrictions on the form of the loss
function. A detailed description of the experimental settings
can be found in Appendix D, and the proofs of all theorems
are included in Appendix A of [Tran and Fioretto, 2023].

A fairness bound. We start by introducing a bound on the
model disparity, which will be crucial for identifying the
algorithm and data characteristics that contribute to unfair-
ness in PATE. Throughout the paper, we refer to the quantity
∆θ̃

def
= ∥θ̃ − θ∗∥ as to model deviation due to privacy, or

simply model deviation, as it captures the effect of the private
teachers’ voting on the student learned model. Here, θ∗ and
θ̃ represent the parameters of student model f̄ learned using
a clean or noisy voting scheme, respectively.

Theorem 1. The model fairness is upper bounded as:

ξ(D̄) ≤ 2max
a

∥Ga∥ E
[
∆θ̃

]
+ 1/2max

a
βa E

[
∆2

θ̃

]
, (6)

where Ga = Ex∼D̄←a

[
∇θ∗ℓ(f̄θ∗(x), y)

]
is the gradient of

the group loss evaluated at θ∗, and ∆θ̃ and ∆2
θ̃
capture the

first and second order statistics of the model deviation.

The above illustrates that the model unfairness is propor-
tionally regulated by three direct factors: (1) the model devia-
tion∆θ̃ , (2) the maximum gradient normmaxa ∥Ga∥ among
all groups, and (3) the largest smoothness parametermaxa βa

among all groups.
The paper delves into which Algorithms’ parameters and

Data characteristics affect the factors that contribute to model
unfairness. Within the Algorithm’s parameters, in addition
to the privacy variable ϵ (captured by the noise parameter σ),
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the paper identifies two factors having a direct impact on fair-
ness: (A1) the regularization term λ associated with the stu-
dent risk function and (A2) the size k of the teachers’ en-
semble. Regarding the public student Data’s characteristics,
the paper shows that (D1) the magnitude of the sample input
norms ∥x∥ and (D2) the distance of a sample to the decision
boundary (denoted s(x)) are key factors that can exacerbate
the excess risks induced by the student model. The relation-
ships between these factors and how they impact model fair-
ness are illustrated in Figure 2. Several aspects of the analysis
in this paper rely on the following definition.

Definition 3. Given a data sample (x, y)∈D, for an ensem-
ble T and voting scheme v, the flipping probability is:

p↔x
def
= Pr [ṽ(T (x)) ̸= v(T (x))] .

It connects the voting confidence of the teacher ensemble with
the perturbation induced by the private voting scheme and
will be useful in the fairness analysis introduced below.

The theoretical results presented in the following sections
are supported and corroborated by empirical evidence from
tabular datasets (UCI Adults, Credit card, Bank, and Parkin-
sons) and an image dataset (UTKFace). These results were
obtained using feed-forward networks with two hidden lay-
ers and nonlinear ReLU activations for both the ensemble and
student models for tabular data, and CNNs for image data.
All reported metrics are the average of 100 repetitions used to
compute empirical expectations and report 0/1 losses, which
capture the concept of accuracy parity. While the paper pro-
vides a brief overview of the empirical results to support the
theoretical claims, extended experiments and more detailed
descriptions of the datasets can be found in Appendix D of
[Tran and Fioretto, 2023].

6 Algorithm’s Parameters
This section analyzes the algorithm’s parameters that affect
the disparate impact of the student model outputs. The fair-
ness analysis reported in this section assumes that the student
model loss ℓ(·) is convex and decomposable:

Definition 4. A function ℓ(·) is decomposable if there exists
a parametric function hθ :X →R, a constant real number c,
and a function z :R→R, such that, for x∈X , and y∈Y:

ℓ(fθ(x), y) = z(hθ(x)) + c y hθ(x). (7)

A number of loss functions commonly adopted in ML, in-
cluding the logistic loss (used in our experiments) or the least
square loss function, are decomposable [Patrini et al., 2014].
Additionally, while restrictions are commonly imposed on the
loss functions to render the analysis tractable, our findings are
empirically validated on non-linear models.

Recall that the model deviation proportionally controls the
unfairness of PATE (Theorem 1). In the following, we pro-
vide a useful bound on the model deviation and highlight its
relationship with key algorithm parameters.

Theorem 2. Consider a student model f̄θ trained with a con-
vex and decomposable loss function ℓ(·). Then, the first order

Figure 3: Credit card dataset with σ=50, k=150 (top) and λ=100
(bottom). Expected model deviation (left), excess risk (middle), and
model accuracy (right) as a function of the regularization term (top)
and ensemble size (bottom).

statistics of the model deviation is upper bounded as:

E
[
∆θ̃

]
≤ |c|

mλ

⎡

⎣
∑

x∈D̄

p↔x ∥Gmax
x ∥

⎤

⎦ , (8)

where c is a real constant and Gmax
x = maxθ ∥∇θhθ(x)∥

represents the maximum gradient norm distortion introduced
by a sample x. Both c and h are defined as in Equation 7.
The proof relies on λ-strong convexity of the loss function
L(·)+λ∥θ∥ (see Appendix B of of [Tran and Fioretto, 2023])
and its tightness is demonstrated empirically in Appendix
D.2 of [Tran and Fioretto, 2023]. Theorem 2 reveals how
the student model changes due to privacy and relates it with
two mechanism-dependent components: (1) the regulariza-
tion term λ of the empirical risk function L(θ, D̄,T ) (see
Equation 1), and (2) the flipping probability p↔x , which, as it
will be shown later, is heavily controlled by the size k of the
teacher ensemble. These mechanisms-dependent components
and the focus of this section, while data-dependent compo-
nents, including those related to the maximum gradient norm
distortion Gmax

x are discussed to Section 7.
A1: The impact of the regularization term λ. The first
immediate observation of Theorem 2 is that variations of the
regularization term λ can increase or decrease the difference
between the private and non-private student model parame-
ters. Since the model deviation E[∆θ̃] has adirect relation-
ship with the fairness goal (see the first term of RHS of Equa-
tion 6 in Theorem 1) the regularization term affects the dis-
parate impact of the privacy-preserving student model. These
effects are further illustrated in Figure 3 (top). The figure
shows how increasing λ reduces the expected difference be-
tween the privacy-preserving and original model parameters
E[∆θ̃] (left), as well as the excess risk R(D̄←a) difference
between groups a = 0 and a = 1 (middle). Note, however,
that while larger λ values may reduce the model unfairness,
they can hurt the model’s accuracy, as shown in the right plot.
The latter is an intuitive and recognized effect of large regu-
larizers [Mahjoubfar et al., 2017].
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Figure 4: Credit-card: Average flipping probability p↔x for samples
x ∈ D̄ as a function of the ensemble size k (left) and the relation
between gradient and input norms (right).

A2: The impact of the teachers ensemble size k. Next,
we consider the relationship between the ensemble size k and
the resulting private model’s fairness. The following result
relates the size of the ensemble with its voting confidence.

Theorem 3. For a sample x∈ D̄ let the teacher models out-
puts f i(x) be in agreement, ∀i ∈ [k]. The flipping probability
p↔x is given by p↔x = 1−Φ( k√

2σ
), where Φ(·) is the CDF of

the standard Normal distribution and σ is the standard devi-
ation in the Gaussian mechanism.

The proof is based on the properties of independent Gaus-
sian random variables. This analysis shows that the ensemble
size k (as well as the privacy parameter σ) directly affects the
outcome of the teacher voting and, therefore, the model devi-
ation and its disparate impact. The theorem shows that larger
k values correspond to smaller flipping probability p↔x . In
conjunction with Theorem 1, this suggests that the model de-
viation due to privacy and the excess risks for various groups
are inversely proportional to the ensemble size k.

Figure 4 (top) illustrates the relationship between the num-
ber k of teachers and the flipping probability p↔x of the en-
semble, indicating that larger ensembles result in smaller flip-
ping probabilities. It is worth noting that in these experi-
ments, different teachers may have different agreements on
each sample, thus this result generalizes the one presented
in Theorem 3. Additionally, Figure 3 (bottom) shows that
increasing k reduces the expected model deviation (left), re-
duces the group excess risk difference (middle), and increases
the accuracy of the model f̄ (right). Similar to theregulariza-
tion term λ, large values k can decrease the accuracy of the
(private and non-private) models. This behavior is related to
the bias-variance tradeoff imposed on the growing ensemble
with less training data available to each teacher.
This section concludes with a useful corollary of Theorem 2.

Corollary 1 (Theorem 2). For a logistic regression classifier
f̄θ , the model deviation is upper bounded as:

E
[
∆θ̃

]
≤ 1

mλ

⎡

⎣
∑

x∈D̄

p↔x ∥x∥

⎤

⎦ . (9)

This result highlights the presence of a relationship be-
tween gradient norms and input norms, which is further illus-
trated in Figure 4 (bottom). The plot shows a strong correla-
tion between inputs and their associated gradient norms. The

result also shows that samples with large norms can signif-
icantly impact fairness, emphasizing the importance of con-
sidering the characteristics of the student data, which are the
subject of study in the next section.

In summary, the regularization parameter λ and the ensem-
ble size k are two key algorithmic parameters that, by bound-
ing the model deviation∆θ̃, can control the disparate impacts
of the student model. These relations are further illustrated in
the causal graph in Figure 1.

7 Student’s Data Properties
Having examined the algorithmic properties of PATE affect-
ing fairness, this section turns on analyzing the role of certain
characteristics of the student data in regulating the dispropor-
tionate impacts of of the algorithm. The results below will
show that the norms of the student’s data samples and their
distance to the decision boundary can significantly impact the
excess risk in PATE. This is particularly interesting as it dis-
pels the notion that unfairness in these models is solely due
to imbalanced training data. The following is a second corol-
lary of Theorem 2 and bounds the second order statistics of
the model deviation to privacy.
Corollary 2 (Theorem 2). Given the same settings and as-
sumption of Theorem 2, it follows:

E
[
∆2

θ̃

]
≤ |c|2

mλ2

⎡

⎣
∑

x∈D̄

p↔2
x ∥Gmax

x ∥2
⎤

⎦ . (10)

Note that, similarly to what shown by Corollary 1, when f̄θ is
a logistic regression model, the gradient norm ∥Gmax

x ∥ above
can be substituted with the input norm ∥x∥.

The rest of the section focuses on logistic regression mod-
els, however, as our experimental results illustrate, the obser-
vations extend to complex nonlinear models as well.
(D1): The impact of the data input norms. First no-
tice that the norm ∥x∥ of a sample x strongly influences the
model deviation controlling quantity ∆θ̃ as already observed
by Corollaries 1 and 2. This aspect is further highlighted in
Figure 5 (top), which illustrates that samples with high input
norms have a significant impact on the model deviation. As a
result, these samples may contribute to the unfairness of the
model, as per Theorem 1.

Next, recall that the group gradient norms Ga have a pro-
portional effect on the upper bound of the model unfairness,
as shown in Theorem 1. These norms also have an effect on
the excess risk R(D̄←a), as shown in Lemma 1, Appendix
B of [Tran and Fioretto, 2023] The following results reveal a
connection between the gradient norm for a sample x ∈ D̄
and its associated input norm, and how these factors relate to
the unfairness observed in the student model.
Proposition 1. Consider a logistic regression binary classi-
fier f̄θ with cross entropy loss function ℓ. For a given sample
(x, a, y) ∈ D̄, the gradient∇θ∗ℓ(f̄θ∗(x), y) is given by:

∇θ∗ℓ(f̄θ∗(x), y) = (f̄θ∗(x)− y
)
⊗ x,

where ⊗ expresses the Kronecker product.
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Figure 5: Credit: Relation between input norms and model devia-
tion (top) and excess risk (bottom).

Thus, the relation above suggests that the input norm of data
samples play a key role in controlling their associated excess
risk, and, thus, that of the group in which they belong to. This
aspect can be appreciated in Figure 5 (bottom), which shows
a strong correlation between the input norms and excess risk.
This observation is significant because it challenges the com-
mon belief that unfairness is solely caused by imbalances in
group sizes. Instead, it suggests that the properties of the data
itself directly contribute to unfairness.

Finally, note that the smoothness parameter βa reflects the
local flatness of the loss function in relation to samples from
a group a. An extension of the results from [Shi et al., 2023]
is provided to derive βa for logistic regression classifiers, fur-
ther illustrating the connection between the input norms ∥x∥
of a group a ∈ A and the smoothness parameters βa.
Proposition 2. Consider again a binary logistic regression as
in Proposition 1. The smoothness parameter βa for a group
a ∈ A is given by: βa = 0.25maxx∈Da ∥x∥2.
Therefore, Propositions 1 and 2 show that groups with large
(small) inputs’ norms tend to have large (small) gradient
norms and smoothness parameters. Since these factors in-
fluence the model deviation, they also affect the associated
excess risk, leading to larger disparate impacts. An extended
analysis of the above claim is provided in Appendix D.7 of
[Tran and Fioretto, 2023].
(D2): The impact of the distance to decision boundary.
As mentioned in Theorem 2, the flipping probability p↔x of
a sample x ∈ D̄ directly controls the model deviation ∆θ̃ .
Intuitively, samples close to the decision boundary are asso-
ciated to small ensemble voting confidence and vice-versa.
Thus, groups with samples close to the decision boundary
will be more sensitive to the noise induced by the private vot-
ing process. To illustrate this intuition the paper reports the
concept of closeness to boundary.
Definition 5 ([Tran et al., 2021b]). Let fθ be a C-classes
classifier trained using data D̄ with its true labels. The close-
ness to the decision boundary s(x) is defined as: s(x)

def
=

Figure 6: Credit: Spearman correlation between closeness to bound-
ary s(x) and flipping probability p↔x (top) and relation between in-
put norms and excess risk (bottom).

1−
∑C

c=1 fθ∗,c(x)
2, where fθ,c is the softmax of class c.

The above discussion relates large (small) values of s(x) to
projections of point x that are close (distant) to the model de-
cision boundary. The concept of closeness to decision bound-
ary provides a way to indirectly quantify the flipping prob-
ability of a sample. Empirically, the correlation between the
distance of sample x to the decision boundary and its flipping
probability p↔x is illustrated in Figure 6 (top). The plots are
once again generated using a neural network with nonlinear
objective and the relation holds for all datasets analyzed. The
plot indicates that the samples that are close to the decision
boundary have a higher probability of “flipping” their label,
leading to a worse excess risk and unfairness. Finally, Figure
6 (bottom) further illustrates the strong proportional effect of
the flipping probability on the excess risk.

To summarize, the norms ∥x∥ of a group’s samples and
their associated distance to boundary s(x) are two key char-
acteristics of the student data that influence fairness through
their control of the model deviation ∆θ̃, the smoothness pa-
rameters βa, and the group gradients Ga, (see Figure 2 for a
schematic representation).

8 Mitigation Solution
The previous sections have identified a number of algorith-
mic and data-related factors that can influence the disparate
impact of the student model. These factors often affect the
model deviation∆θ̃ , which is related to the excess risk of dif-
ferent groups (as shown in Theorem 1), whose difference we
would like to minimize. With this in mind, this section pro-
poses a strategy to reduce the deviation of the private model
parameters. To do so, we exploit the idea of soft labels instead
of traditional hard labels in the voting process. Hard labels
may be significantly affected by small perturbations due to
noise, especially when the teachers have low confidence in
their votes. For example, consider a binary classifier where
for a sample x, k/2 + 1 teachers vote label 0 and k/2 − 1,
label 1, for some even ensemble size k. If perturbations are
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Figure 7: Training privately PATE with hard and soft labels: Model deviation at varying of the privacy loss (left) on Credit dataset and excess
risk at varying of the privacy loss for Credit (middle) and UTKFace (right) datasets.

introduced to these counts to esnure privacy, the process may
incorrectly report label (ŷ = 1) with high probability, caus-
ing causing the student model’s private parameters to deviate
significantly from the non-private ones. This issue can be par-
tially addressed by the introduction of soft labels:
Definition 6. The soft label of a sample x is α(x) =

(#c(T (x))/k)Cc=1 and its private counterpart α̃(x) adds Gaus-
sian noise N (0,σ2) in the numerator of α(x).

To exploit soft labels, the training step of the student model
uses loss ℓ′(f̄θ(x), α̃) =

∑C
c=1 α̃cℓ(fθ(x), c), which can be

considered as a weighted version of the original loss function
ℓ(f̄θ(x), c) on class label c, whose weight is its confidence
α̃c. Note that ℓ′(f̄θ(x), α̃) = ℓ(f̄θ(x)) when all teachers in
the ensemble chose the same label. The privacy loss for this
model is equivalent to that of classical PATE. The analysis is
reported in Appendix C of [Tran and Fioretto, 2023].

The effectiveness of this scheme is demonstrated in Figure
7. The experiment settings are reported in detail in [Tran and
Fioretto, 2023] (Appendix) and reflect those described in Sec-
tion 5. The left subplot shows the relation between the model
deviation E

[
∆θ̃

]
at varying of the privacy loss ϵ (dictated

by the noise level σ). Notice how the student models trained
using soft labels reduce their model deviation (E[∆θ̃]) when
compared to the counterparts that use hard labels.

The middle and right plots of Figure 7 show the impact of
the proposed solution on the private student model in terms
of the utility/fairness tradeoff. The top subplots illustrate
the group excess risks R(D̄←a) associated with each group
a ∈ A for Credit (left) and UTKFace (right) datasets, re-
spectively. The bottom subplots shows the accuracy of the
models, which include a simple ReLU network for the tabular
data and a CNN for the image dataset. Recall that the fairness
goal ξ(D̄) is captured by the gap between excess risk curves
in the figures. Notice how soft labels can reduce the disparate
impacts in private training (top). Notice also that while fair-
ness is improved there is seemingly no cost in accuracy. On
the contrary, using soft labels produces comparable or better
models than the counterparts produced with hard labels.

Additional experiments, including illustrating the behavior
of the mitigating solution at varying of the number of teachers

are reported in [Tran and Fioretto, 2023] (Appendix D). Note
also that the proposed solution preserves the original privacy
budget. In contrast, mitigating solutions that would consider
explicitly the number of teachers K or the smoothness pa-
rameter λ will inevitably introduce further privacy/fairness
tradeoffs as would require costly privacy-preserving hyper-
parameter optimization [Papernot and Steinke, 2021].

Finally, an important benefit of this solution is that it does
not uses the protected group information (a∈A) during train-
ing. Thus, it is applicable in situations when it is not feasible
to collect or use protected features (e.g., under the General
Data Protection Regulation (GDPR) [Lahoti et al., 2020]).
These results are significant. They suggest that this mitigating
solution can be effective for improving the disparate impact
of private model ensembles without sacrificing accuracy.

9 Discussion, Limitations, and Conclusions
This study highlights two key messages. First, the pro-
posed mitigating solution relates to concepts in robust ma-
chine learning. In particular, Papernot et al. [2016] showed
that training a classifier with soft labels can increase its ro-
bustness against adversarial samples. This connection is not
coincidental, as the deviation of the model is influenced by
the voting outcomes of the teacher ensemble (as demonstrated
in Theorems 1 and 2). In the same way that robust ML mod-
els are insensitive to input perturbations, an ensemble that
strongly agrees will be less sensitive to noise and vice versa.
This raises the question of the relationship between robust-
ness and fairness in private models, which is an important
open question. Second, we also note that more advanced vot-
ing schemes, such as interactive GNMAX [Papernot et al.,
2018], may produce different fairness results. While this is
an interesting area for further analysis, these sophisticated
voting schemes may introduce sampling bias (e.g., interac-
tive GNMAX may exclude samples with low ensemble vot-
ing agreement), which could create its own fairness issues.

Given the growing use of privacy-preserving learning tasks
in consequential decisions, this work represents a significant
and widely applicable step towards understanding the causes
of disparate impacts in differentially private learning systems.
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