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Abstract 

There is a significant demand for multiplexed fluorescence sensing and detection across a 

range of applications. Yet, the development of portable and compact multiplexable systems 

remains a substantial challenge. This difficulty largely stems from the inherent need for spectrum 

separation, which typically requires sophisticated and expensive optical components. Here, we 

demonstrate a compact, lens-free, and cost-effective fluorescence sensing setup that incorporates 

machine learning for scalable multiplexed fluorescence detection. This method utilizes low-cost 

optical components and a pretrained machine learning (ML) model to enable multiplexed 

fluorescence sensing without optical adjustments. Its multiplexing capability can be easily scaled 

up through updates to the machine learning model without altering the hardware. We demonstrate 

its real-world application in a probe-based multiplexed Loop-Mediated Isothermal Amplification 

(LAMP) assay designed to simultaneously detect three common respiratory viruses within a single 

reaction. The effectiveness of this approach highlights the system’s potential for point-of-care 

applications that require cost-effective and scalable solutions. The machine learning-enabled 

multiplexed fluorescence sensing demonstrated in this work would pave the way for widespread 

adoption in diverse settings, from clinical labs to field diagnostics. 
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Fluorescence detection serves as a crucial readout method in a wide array of biochemical 

assays, including quantitative Polymerase Chain Reaction1, Enzyme-Linked Immunosorbent 

Assay2, and various microscopy and imaging techniques3,4. This prominence is attributed to the 

simplicity of visualizing targets once they are labeled with fluorescent tags or dyed. Traditional 

commercial instruments, characterized by their bulkiness and high cost, rely on interchangeable 

optical components like filters, dichroic mirrors, and lenses, rendering them impractical for 

portable applications. Nevertheless, such complex systems are not always necessary for 

conducting bulk fluorescence measurement assays, and more straightforward yet reliable solutions 

are being developed for portable use.  

Point-of-care testing (POCT) represents a versatile approach to diagnostics, capable of being 

conducted in diverse environments such as field locations, homes, ambulances, and hospitals. 

POCT circumvents the constraints of conventional laboratory settings by eliminating the need for 

specialized personnel and enabling the rapid delivery of results, making it particularly valuable for 

diagnostic applications5,6. The advantages of POCT have spurred the development of platforms 

designed for real-time, quantitative, and sensitive testing, and fluorescence (optical) detection 

emerges as a preferred detection strategy, rivaled by other technologies like electrochemical, 

surface plasmon resonance (SPR), and surface-enhanced Raman scattering (SERS)7. This 

preference underscores the need for further innovation in miniaturized fluorescence measurement 

devices, fostering advancements that could revolutionize point-of-care diagnostics8.  

Concurrently, there has been a focus on developing multiplexed diagnostics in point-of-care 

settings to conduct comprehensive analyses with minimal sample volume, aiming to significantly 

reduce cost and time, enhance decision-making accuracy and speed, improve patient outcomes, 

and streamline lab workflows9,10. Multiplexed testing is essential as it allows for the identification 

of multiple pathogens or disease indicators from a single sample and is being used in various areas. 

For example, the detection of renal biomarkers to indicate acute kidney damage11, cardiac 

biomarkers to identify patients with developing cardiovascular diseases12, cancer biomarkers for 

monitoring purposes13, and infectious disease diagnostics, wherein this capability is crucial for 

differentiating between diseases with similar symptoms14, confirming specific infections15, or 

identifying variants for epidemiological surveillance16. Given the effectiveness and simplicity of 

fluorescence-based readouts, there’s a pressing need to advance multiplexed fluorescence sensing 

capabilities for efficient multiplexed diagnostics. 
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One prevalent strategy for sample-to-answer multiplexed POCT for nucleic acid detection is 

to spatially parallelize the reactions and detect multiple targets separately17–23. However, 

multiplexing via parallel reactions has multiple disadvantages due to splitting a small sample 

volume into multiple channels or reaction zones, such as variability in analyte concentration, 

reduction in analyte concentration below detectable limits, and increased instrumentation 

complexity. The other strategy is to develop reporters specific to the analytes under consideration 

instead of universal dyes such that multiplexed detection can be enabled in one-pot or one reaction. 

Such one-pot detection can be facilitated using various readout methods, such as a smartphone24–

27, which has uniformity issues when the phone is changed, discrete Complementary Metal-Oxide-

Semiconductor (CMOS) or Charge-Coupled Device (CCD) based detectors along with LED or 

Laser for excitation28–30, which is emerging as the preferred methodology. However, the pending 

challenge for highly multiplexed fluorophore detection in one pot is the overlap of the respective 

emission spectra. This issue typically necessitates using filters, collimating lenses, or dichroic 

mirrors in the optical paths, increasing the complexity and restricting the combinability of 

fluorophores. It may also demand hardware reconfiguration if deviating from a particular 

combination. Consequently, there is a critical need for an easily assembled, simple-to-adjust or 

universally applicable, highly multiplexable, and sensitive fluorescence detection setup for point-

of-care devices. 

Recent advancements in ML and AI have substantially improved biochemical sensing 

technologies, especially in the detection of multiplexed biomarkers through medical imaging and 

fluorescence analysis31. For instance, digital immunoassays now utilize computer vision-based AI 

to decode complex signals from microspheres, varying in color, size, and number, facilitating 

precise and straightforward multiplexed detection. Additionally, a deep learning-assisted 

programmable chip has been developed for colorimetric sweat biomarker detection. This chip uses 

enzyme/indicator-immobilized capsules to achieve perfect accuracy in quantifying substances like 

glucose and lactate32. Furthermore, gold nanoparticles exhibit distinct aggregation behaviors in 

response to various buffering conditions, which can be analyzed through machine learning to 

accurately classify and quantify neurotransmitters33. These developments underscore the 

transformative impact of AI and ML in refining diagnostic methodologies and improving clinical 

outcomes. 

In this study, we developed a highly compact, lens-free, affordable fluorescence sensing setup 
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that enables scalable multiplexity through machine learning methods. With a fixed set of hardware, 

the setup can analyze a mixture of fluorophores with the pretrained model, significantly reducing 

the complexity of traditional multiplexed fluorescence sensing, which often requires 

reconfiguration of the optical components. We first formulated the problem of multiplexed 

fluorophore detection, introduced and modeled our sensing approach, and studied the ability of 

this setup to detect multiplexed fluorophores by establishing the single optimized detection 

channel for each fluorophore based on the theoretical spectra. Further, we evaluated three distinct 

machine learning algorithms that leverage calibration data acquired over multiple channels to 

accurately predict the concentrations of these multiplexed fluorophores without considering the 

spectral information and demonstrated enhanced performance and scalability. Conclusively, we 

applied our optical assembly and machine learning algorithm in the specific and real-time 

monitoring of three targets within a multiplexed, isothermal nucleic acid amplification assay, 

showcasing the practical application of our developments in a complex biological context. 

 

Problem formulation, experimental setup, and modeling 

To create a device capable of compact, affordable fluorescence detection with scalable 

multiplexity using fixed universal hardware while addressing critical challenges, including the 

overlap of fluorophores’ emission spectra, excitation light spillover into the detection sensors, and 

spatial signal loss from bypassing a collimating lens, we set out to first formulate and model an 

innovative fluorescence sensing approach. The task of multiplexed fluorescence detection involves 

analyzing a mixture with n distinct fluorophores (F1, F2, F3, …, Fn) at unknown concentrations (C1, 

C2, C3, …, Cn), with the aim to determine each fluorophore’s concentration.  

Our strategy involves exciting the fluorophore mixture using three sources and recording the 

emissions by multiple wavelength channels of a spectral sensor. This is an improvement over our 

previous approaches, which consisted of a single blue excitation source along with a three-channel 

color sensor, designed for sensing a single fluorescence34–36. In the development of our setup, 

significant emphasis was placed on achieving a lens-free design. Traditional fluorescence 

detection systems often employ collimating lenses to focus or direct light, enhancing the detection 

capabilities, especially at lower concentrations. These lenses are critical for minimizing signal loss 

and improving the signal-to-noise ratio. However, lenses add complexity, cost, and mechanical 
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alignment requirements to the device assembly. Our design omits the lens, simplifying the 

construction and significantly reducing the need for precise optical alignment. This simplification 

is particularly advantageous in resource-limited settings.  

Figure 1a provides a detailed view of the optical setup developed to analyze an unknown 

mixture of multiple fluorophores that comprises an RGB LED (SK6812) as the tri-wavelength 

excitation source and a CMOS spectral sensor (AS7341) as the emission detector, mounted 

perpendicular to each other. The LED package consists of three separate sources and the required 

driver circuit in a package. It can be controlled by a microprocessor such as a Raspberry Pi via 

non-return to zero (NRZ) communication protocol. The sensor has an adjustable integration time 

and detects incident light using eight optical channels in the visible spectral range. It communicates 

with a microprocessor via inter-integrated circuit (I2C) communication protocol. An overview of 

the electronic system is given in Figure 1b. This spectral measurement is feasible due to the 

integration of high-precision monolithic filters onto standard CMOS silicon via nano-optic 

deposited interference filter technology. The sensor has a photodiode array behind the monolithic 

filters, and the raw measurements are fed to a 16-bit six-channel analog-to-digital converter (ADC) 

via a multiplexer to provide digital relative fluorescence units (RFUs). Although our system is not 

entirely filter-free, the integrated filters furnish it with the ingenuity to detect fluorescent emissions 

across various wavelength ranges without the need for any hardware reconfiguration, unlike 

devices that use separate glass or acrylic filters. Figure 1c illustrates this backend operation of the 

spectral sensor along with the schematic representation of using the three sources within the tri-

wavelength LED one by one in a time-divided manner to probe the fluorophore mixture and record 

the resulting collective emission across eight different channels of the sensor. As a result, this setup 

may be used to measure the emissions of different fluorophores and corresponding LED 

excitations simultaneously without the need for any additional lenses, filters, or dichroic beam 

splitters that not only complicate the assembly by requiring precise alignment of components but 

also limit the number of fluorophores that can be detected without hardware reconfiguration. 

To better understand the complex relationship between the concentration of each fluorophore 

in each mixture and the emission measured by each detection channel for each excitation source, 

we set up a mathematical model37. Consider there are m excitation sources (I1 to Im), n fluorophores 

with their respective concentrations in the mixture and d detection channels of the sensor, then for 

each excitation i, we can try to write the interaction of the excitation source Ii, fluorophore emission 
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coefficients [Ei], fluorophore concentrations [C], and coupling of the n fluorophores’ emissions 

(due to an excitation) to the detection channels [βi] as below. 

First, we determine the contribution of each fluorophore to the emission under excitation i, 

weighted by its concentration: 

ሾ𝐸𝑀ଵ 𝐸𝑀ଶ 𝐸𝑀ଷ ⋯ 𝐸𝑀௡ሿ ൌ  ሾ𝐸ଵ 𝐸ଶ 𝐸ଷ ⋯ 𝐸௡ሿ ⨀ ሾ𝐶ଵ 𝐶ଶ 𝐶ଷ ⋯ 𝐶௡ሿ      (1) 

Or 

ሾ𝐸𝑀௜ሿ௡௑ଵ ൌ  ሾ𝐸௜ሿ௡௑ଵ ⨀ ሾ𝐶ሿ௡௑ଵ  (2) 

where, ⨀ represents element-wise matrix multiplication. Thus, ሾ𝐸𝑀௜ሿ represents the emission 

response of each fluorophore to the ith excitation, weighted by its concentration.  

Next, we distribute these emission responses to the d detection channels, considering the 

coupling factors in [βi]:  

⎣
⎢
⎢
⎡
𝛽ଵ,ଵ 𝛽ଵ,ଶ ⋯ 𝛽ଵ,ௗ

𝛽ଶ,ଵ 𝛽ଶ,ଶ ⋯ 𝛽ଶ,ௗ

⋮ ⋮ ⋱ ⋮
𝛽௡,ଵ 𝛽௡,ଶ ⋯ 𝛽௡,ௗ⎦

⎥
⎥
⎤
்

. ሾ𝐸𝑀ଵ 𝐸𝑀ଶ 𝐸𝑀ଷ ⋯ 𝐸𝑀௡ሿ ൌ  ሾ𝛽௜ሿ்௡௑ௗ. ሾ𝐸𝑀௜ሿ௡௑ଵ (3) 

which is equal to the detected signals, as shown below, 

ሾ𝑆௜ሿௗ௑ଵ ൌ  ሾ𝑆ଵ 𝑆ଶ ⋯ 𝑆ௗሿ   (4) 

The time-varying Sd can be written as follows, which we have previously reported34, 

 𝑆ௗሺ𝑡ሻ ൌ
ூ೔ఉ೙,೏

௛஝
ሾ𝛼ሾ𝐶ሺ𝑡ሻሿ𝜙ி ൅  𝑁஻௜𝜙஻ሿ ∗ 𝐼𝑇   (5) 

where hν is the emitted photon’s energy, α is the absorption coefficient, C is the fluorophore 

concentration, ϕF is the fluorescence quantum yield, NBi is the background signal, ϕB is the 

background signal quantum yield, and IT is the sensor’s integration time. 

To summarize, for each excitation i ranging between 1 to m, we can write m different equations 

with the following form, 

ሾ𝛽௜ሿ் . ሺሾ𝐸௜ሿ ⨀ ሾ𝐶ሿሻ  ൌ  ሾ𝑆௜ሿ  (6) 

and all the detected values can be arranged in another matrix as follows, 

ሾ𝑆ሿ ൌ  

⎣
⎢
⎢
⎡
𝑆ଵ,ଵ 𝑆ଵ,ଶ ⋯ 𝑆ଵ,ௗ

𝑆ଶ,ଵ ⋱ ⬚ ⋮
⋮ ⬚ ⋱ ⋮

𝑆௠,ଵ ⋯ ⋯ 𝑆௠,ௗ⎦
⎥
⎥
⎤
   (7) 

Thus, we have established a relationship between the detected values and corresponding 

fluorophore concentrations, which will be used in non-machine learning and machine learning-
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based analyses.  

 

Results and discussion 

Traditional analytical method 

To explore the use of a conventional approach along the lines of previously reported 

instruments34,35,38,39, where a single excitation and detection channel of a sensor is used for a single 

fluorophore, we utilized the experimental setup described earlier. This setup detects multiple 

fluorophores in a mixture by choosing the optimal excitation and detection channel combination 

per fluorophore based on the information about each fluorophore’s excitation and emission spectra. 

Figure 2a shows the excitation and emission spectra of the three chosen fluorophores (FAM, 

ATTO550, and Cy5), along with the spectra of the excitation sources chosen for each fluorophore 

and their alignment with the discrete detection channels of the sensor. We can see that the blue, 

green, and red excitations align with FAM, ATTO550, and Cy5 excitation spectra, respectively, 

and we use each source one by one to excite the corresponding fluorophore that constitutes the 

mixture.  

However, before testing a fluorophore mixture, we first need to determine which of the spectral 

sensor’s detection channels is best for detecting each fluorophore under consideration. The 

alignment of the sensor’s discrete detection channels with the spectral signatures of the 

fluorophores indicates that the highest readings captured for specific channels may stem from 

leakage of the LED source’s incident light; this effect must be mitigated to determine the optimal 

detection channel for each fluorophore accurately. For this, we tested dilutions of each fluorophore 

individually, and the response for each detection channel is given in Supplementary Figure S1. 

Briefly, the plots correlating adjusted sensor responses with concentrations for FAM, ATTO550, 

and Cy5, when excited by blue, green, and red light, respectively, show that the channels 4, 6, and 

8 centered at 510 nm, 583 nm, and 670 nm respectively exhibit optimal responsiveness for each 

dye. 

After identifying the optimal detection channels for each fluorophore, we examined how one 

fluorophore’s presence affects the others’ detectability in a mixed fluorophore scenario. To test 

this, we prepared a sample space comprising four concentrations (0.00, 0.25, 0.50, and 1.00 µM) 

of each fluorophore, resulting in 64 unique combinations. These combinations and the normalized 
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RFUs for each fluorophore’s previously selected optimum channels are depicted in Figure 2b. 

While there is an observable upward trend in the RFUs with rising fluorophore concentrations, for 

a precise linear fit, we independently plot the RFUs against the concentration for each fluorophore, 

disregarding the concentrations of the other two in the mixture to present the data in a clear, two-

dimensional format. Figure 2c shows only moderate linearity for FAM and ATTO550, suggesting 

that this detection scheme may not be sufficient for accurate measurements of these fluorophores 

in the sub-micromolar range. However, the strong linearity between RFU and Cy5 concentration 

may be attributed to either the better alignment of Cy5’s peak excitation spectra with the source or 

the clearer separation of Cy5’s emission spectra from those of FAM and ATTO550. The higher 

overlap of FAM’s and ATTO550’s spectra could complicate their distinct resolution, making it 

challenging to attribute Cy5’s better linearity to one specific cause definitively. 

 

Machine learning-based methods 

To leverage the full potential of the spectral sensor, we utilized its ability to capture emissions 

across multiple detection channels for the three excitation sources and simultaneously employed 

all the data instead of relying on optimized sources and detection channels for a particular 

fluorophore. By utilizing machine learning (ML), we identified patterns within the data, as 

multiple studies have demonstrated ML’s effectiveness in demixing combinatorial emissions in 

biological fluorescence detection and imaging40–42. Figure 3a depicts the implementation process 

of a supervised ML model initiated by collecting calibration data from 125 fluorophore mixtures. 

These mixtures were prepared at five specific concentrations (0.00, 0.25, 0.50, 0.75, and 1.00 µM) 

of FAM, ATTO550, and Cy5. For accuracy, each mixture was subjected to seven measurements 

under three different excitation sources, blue, green, and red, with each measurement capturing 

data across all eight detection channels, generating 24 RFU values. These values were then used 

as input features for the ML model, designed to predict the concentrations of the three distinct 

fluorophores concurrently. We allocated 80% of the data for training each model, while the 

remaining 20% was used for model validation and testing. We evaluated three types of models, 

multivariate linear regression (MLR), support vector regression (SVR), and a multilayer 

perceptron neural network (NN), to determine the most effective method for accurate prediction. 

Multivariate Linear Regression. To explore how each fluorophore concentration influences 
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the emission values and ultimately predict these concentrations, we utilized the multivariate linear 

regression (MLR) model, as it is a foundational regression technique. Within MLR, we applied 

linear algebra principles to calculate the weights and biases associated with each of the 24 RFU 

values serving as inputs. Inspired by the previously proposed model, Equation 8 below illustrates 

the MLR model tailored for predicting the concentration of the FAM fluorophore, utilizing 24 

RFU values as inputs when there are i excitations and d detection channels. In this equation, each 

w coefficient signifies the weight assigned to the regression parameters corresponding to each RFU 

input, while ε denotes the error or bias inherent in the model. 

ሾ𝐶ሿி஺ெ ൌ  𝑤଴ ൅  𝑤௜ୀଵ,ௗୀଵ𝑅𝐹𝑈௜ୀଵ,ௗୀଵ ൅ 𝑤௜ୀଵ,ௗୀଶ𝑅𝐹𝑈௜ୀଵ,ௗୀଶ ൅⋯൅  𝑤௜ୀଷ,ௗୀ଼𝑅𝐹𝑈௜ୀଷ,ௗୀ଼ ൅∈ி஺ெ   (8) 

Similarly, two more equations can be written for ATTO550 and Cy5 to get, 

቎
𝐶ி஺ெ

𝐶஺்்ைହହ଴
𝐶஼௬ହ

቏ ൌ  ቎
1 𝑅𝐹𝑈௜ୀଵ,ௗୀଵ ⋯ 𝑅𝐹𝑈௜ୀଷ,ௗୀ଼

1 𝑅𝐹𝑈௜ୀଵ,ௗୀଵ … 𝑅𝐹𝑈௜ୀଷ,ௗୀ଼

1 𝑅𝐹𝑈௜ୀଵ,ௗୀଵ … 𝑅𝐹𝑈௜ୀଷ,ௗୀ଼

቏ . ൦

𝑤଴
𝑤௜ୀଵ,ௗୀଵ

⋮
𝑤௜ୀଷ,ௗୀ଼

൪ ൅ ൥
∈ி஺ெ

∈஺்்ைହହ଴
∈஼௬ହ

൩   (9) 

For clarity and efficiency, tackling a multivariate regression challenge involves decomposing 

it into several single-variable linear regression models. In this approach, we created three distinct 

models, each dedicated to one of the three fluorophores, with the predictive outcomes showcased 

in Figure 3b. The linear correlations between predicted and actual fluorophore concentrations 

demonstrate a good linear relationship and proficient predictive capabilities for static 

concentrations. Additionally, residual analysis for each fluorophore, detailed in Supplementary 

Figure S2, reveals a normal distribution of residuals, affirming our model’s assumption of 

homoscedasticity - constant variance around a zero mean. Despite these promising indicators, the 

concentration-specific mean absolute errors (MAE) unveil pronounced inaccuracies at the lowest 

and highest concentration levels (0 and 1 µM). This observation indicates the model’s difficulty 

in effectively handling the entire concentration range, potentially due to nonlinearities like 

overlapping emission spectra and secondary excitations. Thus, we were motivated to explore more 

advanced machine learning models capable of addressing nonlinear relationships to improve 

predictive accuracy across all concentrations. 

Support Vector Regression. Support vector machines (SVM) perform the nonlinear mapping 

of input vectors into a high-dimensional feature space and use a linear decision surface within this 

feature space primarily for binary classification43,44. Given the potential nonlinearities mentioned 

in the previous section, SVM could perhaps be a better candidate for predicting the fluorophore 
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concentrations in a mixture. Here, a hyperplane within the feature space acts as the optimal 

boundary, set by an error margin, with support vectors crucial for its positioning based on data 

outliers. Support Vector Regression (SVR), utilizing kernel functions like the radial basis function 

(RBF), adapts the basic framework of SVM for regression problems and handles nonlinear data 

by striving for the best fit within a specific error threshold rather than minimizing prediction errors 

directly.  

Considering SVR’s limitation with multiple outputs, we crafted three distinct SVR models 

with the RBF kernel to estimate the concentrations of three fluorophores, presenting these findings 

in Figure 3c. Comparing the linear correlations between predicted and actual concentrations of 

FAM, ATTO550, and Cy5, we observed a marked advancement over MLR, as also evidenced by 

the substantially decreased MAEs. Further, despite changing the kernel function to linear and 

sigmoid, RBF, along with hyperparameter tuning such as the penalty parameter (C), the kernel 

coefficient (γ), and epsilon in the loss function (ϵ), performed the best. Yet the non-random and 

biased accuracy hints at the potential for the exploration of additional ML models capable of 

handling a higher degree of nonlinearity.  

Neural Network. Neural networks (NN) process input data across multiple layers, where each 

neuron performs a weighted sum of its inputs, followed by a nonlinear activation function, 

enabling the network to capture intricate data patterns45. Here, we use a multilayer perceptron 

(MLP), a feedforward artificial neural network (ANN) implementing supervised learning, and the 

output layer generates predictions that are evaluated against true values to determine errors. These 

errors are then propagated backward to adjust neuron weights during the training phase. Given 

their layered architecture and nonlinear activation functions, we expect NN to outperform SVR in 

this application by more effectively modeling complex, nonlinear, and hierarchical relationships 

within the data. Figure 3d illustrates the NN’s predictions for FAM, ATTO550, and Cy5 dyes, 

showing a notable enhancement in the correlation between predicted and actual concentrations 

compared to SVR. Furthermore, the MAE for each concentration level is marginally lower than 

that observed with SVR, without indicating any biased accuracy.  

 

Performance comparison between non-ML and ML methods 

To explain why the ML methods perform much better than an optimized channel’s readings, 
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we consider Equation 6, which gives us an empirical relation assuming a linear superposition of 

emissions and detection responses. However, measuring the exact emission response of each 

fluorophore to each excitation and the distribution of the emission responses over the detection 

channels is challenging, and valuable emission information may be lost by choosing a single 

detection channel. In addition, the nonlinear effects, such as overlapping emission spectra and 

leakage of excitations due to the exclusion of filters cannot effectively be measured or defined. 

This makes the accurate development of a model challenging while considering all these 

intricacies, and it may explain the inadequacy of using a single excitation source and an optimum 

detection channel for sensing fluorophores present in a mixture.  

The underlying principle of the supervised machine learning approach involves forming a 

dataset with various combinations of constituent fluorophores at specific concentrations, and 

recording the resultant fluorescent emissions across eight channels. Each channel is responsive to 

specific wavelength ranges, corresponding to three separate excitation lights. This data helps to 

train a model that establishes a complex relationship between the concentrations of multiple 

fluorophores and the fluorescence readings measured by the sensor. This model can then predict 

the concentrations of fluorophores in an unknown sample based on these readings. The model 

incorporates crucial data about the predominant influence of certain fluorophores over specific 

detection channels and uses this information to predict concentrations from a set of measured 

readings. It also models the concentration-specific cross-influence within the prediction algorithm. 

Due to the extensive training dataset featuring unique combinations, the model predicts 

concentrations for combinations of fluorophores, rather than individual ones. When used in 

conjunction with specific probe-based biochemical reactions, where the concentration of a targeted 

fluorophore increases (if the target is present) while other fluorophores remain stable, this 

approach effectively prevents signal cross-influence. 

 

Performance comparison among machine-learning methods 

To find the most accurate ML model, we compare the performance of the three models among 

each other and with the optimized channel method through metrics such as the R2, mean absolute 

error (MAE), limit of detection (LoD), and limit of quantification (LoQ) values in Table 1. Please 

refer to the Materials and Methods section for details regarding the calculation of LoD and LoQ. 
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The NN model surpasses others in predictive accuracy, making it the preferred choice for further 

exploration in real-world applications, such as nucleic acid amplification assays. It should be noted 

that the observed improvements in the LoD and LoQ are primarily due to the NN’s enhanced 

ability to model the complex interactions among fluorophores, which are expected to be 

predominantly nonlinear.  

To establish the relevance of the error values, we consider the maximum fluorophore 

concentration used in our experiments to construct the training and test dataset: 1 µM. This value 

is used to convert the MAEs to percentage errors in Table 1. To understand how this percentage 

MAE affects the prediction of the final target concentration, we would need to empirically 

determine two relationships: (i) between fluorophore concentration and time to positive (TTP), 

and (ii) the standard curve equation for target concentration in a biochemical reaction. Therefore, 

we report the MAE in terms of percentage. Please note that the observed improvements in MAE, 

LoD, and LoQ do not directly imply an enhancement in the spectral sensor’s intrinsic electronic 

sensitivity to weaker signals. Additionally, the LoD of a fluorophore could vary under different 

background concentrations of the other two fluorophores. However, a comprehensive evaluation 

in a three-dimensional space involving all possible fluorophore combinations would lead to a 

prohibitively high number of experimental conditions, making practical validation infeasible. 

Hence, in Supplementary Table S1, we present a comparison of the best-case (where the 

concentration of the other two fluorophores is the lowest, i.e., 0 µM) and worst-case (where the 

concentration of the other two fluorophores is the highest, i.e., 1 µM) scenarios. The results do not 

demonstrate a significant worsening of the MAE, LoD, and LoQ values as the background 

concentrations of the fluorophores increase. 

 

Scalable multiplexity enabled by machine learning  

To illustrate the setup’s scalability for varying number of fluorophores in the mixture, we 

assessed its performance in predicting concentrations of two, three, or four fluorophores. We used 

four different concentrations (0.00, 0.25, 0.50, 1.00 µM) of each fluorophore, resulting in 16 

combinations for ATTO425 and FAM, 64 combinations for ATTO425, FAM and ATTO550, 256 

combinations for ATTO425, FAM, ATTO550, and Cy5. As before, each mixture underwent seven 

measurements at blue, green, and red excitations while detections were recorded across eight 
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detection channels to generate 24 RFU values, which served as inputs for the NN model tasked 

with predicting the concentrations of the constituent fluorophores, using 80% of the data for 

training and 20% for validation and testing. The results, illustrated in Figures 4a, 4b, and 4c for 

two, three, and four fluorophores, respectively, show the predicted versus actual concentrations 

for each fluorophore along with the MAEs. The marginal improvement in prediction linearity and 

concentration-specific MAEs is likely due to the increased training and test samples as the number 

of fluorophores increases. No significant trends across concentrations within each model indicate 

uniform predictive reliability. This demonstrates the scalability of our setup to accommodate 

mixtures with varying fluorophores without requiring reconfiguration of the optical components.  

 

Example application for real-time RT-LAMP detection  

Having demonstrated the capability of our optical setup, in conjunction with NN modeling, to 

predict static fluorophore concentrations within a mixture accurately, we applied this system to 

track the progression of a real-world biochemical diagnostic assay as a test-bed. The technique in 

focus, Loop-mediated Isothermal Amplification (LAMP), was initially introduced by Notomi et 

al.46 to amplify DNA molecules exponentially under isothermal conditions. We made use of a 

Reverse Transcription LAMP (RT-LAMP) assay for the simultaneous detection of the presence of 

three RNA targets: Respiratory Syncytial Virus (RSV), Influenza A (IAV), and Severe Acute 

Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Here, multiplexed detection was enabled 

by the Detection of Amplification by Release of Quenching (DARQ) technique47, which involves 

the unquenching of fluorescently labeled probes upon the extension of the backward strand to 

produce an increasing amount of specific fluorescence as the amplification proceeds. In addition 

to enabling multiplexed detection, DARQ LAMP has also enables higher specificity, which helps 

in alleviating false positives in traditional intercalating dye-based LAMP that is often considered 

a characteristic drawback.  

The concentration of each RNA target was 1500 copies per reaction (cp/rxn), and five distinct 

combinations were introduced into the multiplexed reaction, viz., the no template control (NTC), 

the three individual targets (RSV, IAV, and SARS-CoV-2), and a mixture of all three targets. 

These targets were added to triplicate reactions that were subsequently incubated at 61°C for 70 

minutes and then swiftly cooled to room temperature to stop the amplification. The raw 
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fluorescence data acquired by the optical assembly at 30-second intervals was supplied to the NN 

model described earlier to predict the time-varying concentration for each constituent fluorophore 

in an offline manner. Figures 5a, 5b and 5c show the concentrations of FAM, ATTO550, and Cy5 

as a function of time, which mark the amplification and detection of RSV, IAV, and SARS-CoV-

2, respectively. A threshold concentration TC was computed based on the NTC reactions such that 

TC = µ + 3σ, where µ and σ represent the mean and standard deviation of concentrations over the 

entire reaction time, and a positive call was made when the predicted concentration surpasses the 

set threshold. All plots show accurate prediction of amplification in conditions where the RNA 

target was present individually or with other targets, thus validating the proposed optical assembly 

and accompanying NN model for monitoring the change in a multiplexed nucleic acid 

amplification and detection assay. The use of fluorophores in LAMP assays provides a visual or 

measurable indicator of the amplification process with high specificity. The relationship between 

the increase in fluorescence intensity and the amount of target RNA amplified is linear up to a 

phase before saturation occurs due to the unavailability of additional fluorophore attached primer. 

Consequently, quantifying the initial target sample is feasible by measuring the time to positive 

and establishing a standard curve, where a shorter time to positive typically indicates a higher 

initial target concentration. While this study highlights the foundational detection mechanisms and 

machine learning integration for multiplexed target detection, we note that extensive further testing 

will be required to fully evaluate the sensitivity, specificity, and quantitative capabilities of the 

assay for each target before deploying in real-world human infection scenarios. Characterization 

of these aspects is underway, and findings will be presented in subsequent publications based on 

the detection systems introduced here.  

 

Conclusion 

Our study introduces a transformative approach to fluorescence measurement for point-of-care 

applications involving bulk assays via a lens-free optical assembly complemented by a machine 

learning model. The effective deployment of a Neural Network to analyze data from mixtures 

excited by a tri-wavelength source and the emissions detected by eight channels of a spectral sensor 

significantly enhances detection and quantification limits beyond traditional single-channel 

approaches. The scalability of our model highlights its capability to advance point-of-care 
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diagnostics, offering a versatile, highly multiplexable solution without the need for intricate 

reconfigurations for diverse fluorophores or targets. Validating its utility in concurrently detecting 

viral RNA from pathogens like RSV, Influenza A, and SARS-CoV-2 underscores its potential in 

addressing urgent needs for multiplexed biomarker detection across critical health areas. Future 

efforts will concentrate on refining the machine learning model for a more straightforward 

incorporation of new fluorophores using only their specific calibration data without requiring the 

preparation and testing of exponential unique fluorophore combinations, thereby simplifying the 

process.  

 

Materials and Methods 

Design and fabrication. The aluminum heating block and adapter for mounting the RGB LED 

and spectral sensor were designed using Solidworks CAD software, while the printed circuit 

boards (PCBs) for the LED and sensor were designed with AutoDesk Eagle CAD. All components 

of the optical setup were virtually assembled in Solidworks to verify alignment prior to fabrication. 

The heating block was machined by Protolabs Network, and the adapter was 3D printed in-house 

using a MakerBot MethodX printer (Brooklyn, NY) with ABS material. The PCBs were fabricated 

by OSH Park LLC (Lake Oswego, OR). The RGB LED (SK6812) was sourced from Adafruit 

Industries (New York, NY), and other components such as the spectral sensor (AS7341), a two-

ohm power resistor (MP725-2.00) for heating, a 10k-ohm thermistor (MC65F103A) for 

temperature feedback, and a Raspberry Pi Zero microprocessor were purchased from 

DigiKey.com. A detailed description and function of each component, along with a cost estimate, 

are provided in Supplementary Table S2. 

Dataset and codes for ML model training and concentration prediction in Python. The 

training datasets referenced in sections concerning the analysis and comparison of machine 

learning-based methods and the scalability enabled by machine learning, along with the 

corresponding Python codes to generate, train, and test the ML models that were subsequently 

evaluated for predicting static fluorophore combinations are available in a GitHub repository. 

While developing the ML models, we made use of the SciPy open-source package for developing 

Multiple Linear Regression and Scikit-learn package for Support Vector Regression and Neural 

Network models and developed custom codes to train the specific models, pre- and post-process 
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the data and generate prediction results and associated figures. These resources can be accessed at 

https://github.com/alk5897/ML-aided-optics-for-POC-multiplexed-fluorescence.  

Calculation of LoB, LoD, and LoQ values. The limit of blank (LoB) was determined using 

the formula: µblank + 1.64*(σblank), where µblank and σblank are the mean and standard deviation of 

the predictions at 0 µM, respectively. The limit of detection (LoD) was then defined as LoB + 

1.62*(σ0.25), where σ0.25 is the standard deviation of predictions at a low concentration of 0.25 µM. 

The limit of quantification (LoQ) was calculated as 3.3*LoD48. For the traditional analytical 

approach using a single optimal detection channel, we first calculated the LoB, LoD, and LoQ 

values in terms of relative fluorescence units (RFU). We then applied the linear fit equations from 

Figure 2c: RFUFAM = (0.36)*CFAM + 0.34, RFUATTO550 = (0.52)*CATTO550 + 0.26, and RFUCy5 = 

(0.73)*CCy5 + 0.04, where CFAM, CATTO550, and CCy5 are the concentrations of FAM, ATTO550, 

and Cy5, respectively, to convert these values to concentrations. 

RT-LAMP reaction mix. The RT-LAMP reaction mix consists of 1x isothermal buffer (20 

mM Tris-HCl, 10 mM (NH4)2SO4, 50 mM KCl, 2 mM MgSO4, 0.1% Tween 20, pH 8.8), 3 sets of 

6 primers each, 0.5 M Betain, 6 mM MgSO4, 1.4 mM deoxyribonucleotide triphosphates (dNTPs), 

0.5 U/µL Bst 2.0 DNA polymerase, 0.3 U/µL WarmStart reverse transcriptase, 1.5 µL purified 

RNA template (per target) and PCR-grade water to bring total reaction volume to 25 µL. 

Isothermal buffer, DNA polymerase, reverse transcriptase, dNTPs, and PCR-grade water were 

purchased from New England Biolabs (MA, USA). Heat-inactivated SARS-CoV-2 (VR-1986HK) 

RNA and quantitative genomic RNAs of Influenza A virus (H1N1) strain A/PR/8/34 (VR-95DQ) 

and human respiratory syncytial virus strain A2 (VR-1540DQ) were purchased from American 

Type Culture Collection (ATCC). Primer sequences initially described in 49–51 and modified 

according to DARQ rules are detailed in Supplementary Table S3 and were synthesized by 

Integrated DNA Technologies (Coralville, USA). The three fluorophore-attached oligonucleotide 

sequences, Fds, were used to acquire the ML algorithms’ static calibration data. 
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Supporting Information 

Includes comprehensive analysis of sensor channel responses to identify optimal detection 

channel for a particular fluorophore, detailed residual analyses of machine learning models for 

accuracy assessment, alongside tables with a scenario-based comparison of MAE, LoD, and LoQ 

for the ML-based fluorescence prediction methods, cost estimate and detailed sequences of RT-

LAMP primers used in the study. 
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Figures and captions 

 

Figure 1. An overview of the optical assembly and procedure for multiplexed fluorescence 
detection. a) 3D render of the optical assembly developed for multiplexed fluorescence detection. 
It consists of an RGB LED with red, green, and blue lights as the excitation source and a multi-
channel spectral sensor for detecting the collective emission, arranged perpendicular to each other 
to reduce excitation light leaked into the sensor. A highlight of this setup is that it forgoes a lens, 
which may require precise alignment and positioning to ensure emissions are focused on the 
sensor, hence permitting some room for alignment errors. b) A simplified electronic block diagram 
of the setup shows all the components. A Raspberry Pi Zero microprocessor controls thermal and 
optical submodules and records the data. c) Schematic representation of the fluorescence 
generation from a mixture of n fluorophores (denoted by F1, F2, F3, …, Fn) and its detection. The 
mixture is depicted using colored dots, where each color represents a different fluorophore. Here, 
n = 4 results in four columns, with the number of rows in each column reflecting the concentration 
of the corresponding fluorophore. The process involves exciting the mixture by alternating 
between the three sources in a time-divided manner and capturing the combinatorial emitted 
fluorescence for each excitation by the sensor across eight wavelength channels, facilitated by 
high-precision monolithic filters on top of an array of photodiodes and later converted to digital 
values.  

 

 

 



23 
 

 

Figure 2. A traditional analytical method that uses a single source and a single detection 
channel per constituent fluorophore is insufficient for accurate detection. a) Displayed are the 
theoretical excitation and emission spectra of the three chosen fluorophores, FAM, ATTO550, and 
Cy5, along with the spectra of RGB excitation sources and the sensor’s eight detection channels. 
Blue, green, and red excitations have optimum alignment with the excitation spectra of FAM, 
ATTO550, and Cy5, respectively, while detection channels 4, 6, and 8 align best with their 
emission spectra. b) 3D scatter plot representing the normalized sensor RFU responses to varying 
fluorophore concentrations in a mixture. Using the optimal excitation sources and detection 
channels from part a, 64 unique combinations prepared by mixing FAM, ATTO550, and Cy5 at 
four concentrations (0.00, 0.25, 0.50, and 1.00 µM) each were tested. This visualization shows the 
increasing RFU trend correlating with rising concentrations of each fluorophore, irrespective of 
the concentrations of the other two. c) 2D scatter plot shows the same experimental data as in part 
b, mapping normalized RFUs against individual fluorophore concentrations, disregarding the 
concentrations of the other fluorophores in the mixture. The independent linear fits for FAM (R2 
= 0.34) and ATTO550 (R2 = 0.55) indicate moderate linearity, suggesting difficulty in precise 
measurement at sub-micromolar concentrations. In contrast, Cy5 exhibits strong linearity (R2 = 
0.92), and could be due to either the better alignment of its peak excitation with the chosen source 
or clearer separation of its emission spectra from those of FAM and ATTO550. 
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Figure 3. Comparative analysis of machine learning models for multiplexed fluorescence 
concentration predictions favors a Neural Network. a) Tabular presentation of fluorophore 
mixture compositions (top), with a sample space of N = 125 mixtures using five concentrations 
(0.00, 0.25, 0.50, 0.75, and 1.00 µM) of each fluorophore. These samples were probed by the 
developed optical setup, generating 24 features—eight detection channels’ values for three 
excitations (bottom). Each of the 125 samples was measured seven times to generate 875 data 
frames, and 20% of this data set is reserved for testing and validation. b) Performance evaluation 
of Multivariate Linear Regression (MLR) for predicting concentrations. Left: MLR architecture; 
center: predicted versus expected fluorophore concentrations with linear fits having R2 values of 
0.97 for FAM, ATTO550, and Cy5; right: concentration-specific mean absolute errors (MAE) for 
all fluorophores, which reveal higher inaccuracies at the extremities of the concentration range (0 
and 1 µM). c) Support Vector Regression (SVR), with the model architecture (left), yields linear 
fits (center) with R2 values of 0.99, 0.95, and 0.98 for each fluorophore and reduced MAEs (right). 
Despite the improvement over MLR, the non-random and biased accuracy points to the potential 
for developing a better model. d) Neural Network (NN), with the model architecture illustrated 
(left), demonstrates the best predictive linearity (center) with R2 values of 0.99 for each 
fluorophore and presents the lowest MAEs (right), indicating its superior ability to handle 
nonlinearities without biased predictive accuracy. 



25 
 

 

Figure 4. Scalable multiplexed fluorophore detection using a Neural Network model without 
hardware reconfiguration. a) The evaluation of NN for predicting concentrations in two-
fluorophore mixtures consisting of ATTO425 and FAM (top) with four concentration levels (0.00, 
0.25, 0.50, and 1.00 µM), resulting in 16 combinations. Samples were probed seven times, with 
the resulting dataset split into 80% for training and 20% for testing. The predictions (middle) have 
R2 values of 0.99 for ATTO425 and 0.81 for FAM, and corresponding concentration-specific 
MAEs displayed (bottom). b) The concentration predictions for 64 three-fluorophore mixtures of 
ATTO425, FAM, and ATTO550 (top) demonstrate improved predictive linearity (middle) with R2 
values of 0.99 for all fluorophores, and corresponding MAEs (bottom). c) The concentration 
predictions for 256 four-fluorophore mixtures of ATTO425, FAM, ATTO550, and Cy5 (top) 
display predictive linearity (middle) while maintaining R2 values of 0.99 for all fluorophores, and 
corresponding MAEs (bottom), consistent with the three-fluorophore model. The lower 
performance of the two-fluorophore model is due to its smaller dataset. Comparable predictive 
reliability for each fluorophore across models confirms the capability to handle mixtures with 
different numbers of fluorophores. 
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Figure 5. Demonstrating the use of the machine learning-enhanced fluorescence detection 
setup for a biochemical assay. a) The real-time amplification curves for FAM fluorophore, 
indicating the presence of RSV RNA in a triplex reverse-transcription loop-mediated isothermal 
assay (RT-LAMP) for five different samples (in triplicates): no template control (NTC), RSV RNA 
only, IAV RNA only, SARS-CoV-2 RNA only, and a combination of all three RNAs. The curves 
represent offline-predicted fluorophore concentrations using the 24 feature values acquired at 30-
second intervals, with the horizontal dotted line denoting a threshold concentration TC, calculated 
as the mean (µ) plus three standard deviations (3σ) of the NTC reactions. b) and c) Present the 
real-time amplification curves for ATTO550 (b) and Cy5 (c) fluorophores, tracing IAV and SARS-
CoV-2 RNA detection in the same triplex reactions. The appropriate amplification of each RNA 
across the samples validates the optical setup’s suitability for practical assay deployment. 
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Tables and captions 

Table 1. Performance comparison of fluorescence detection methods  

Fluorophore R
2
 % MAE  LoD (µM) LoQ (µM) 

Optimized source and channel response method 

FAM 0.35 NA 1.60 5.26 

ATTO550 0.56 NA 1.07 3.52 

Cy5 0.93 NA 0.18 0.58 

Multivariate Linear Regression  

FAM 0.97 4.33 0.15 0.48 

ATTO550 0.97 3.98 0.16 0.54 

Cy5 0.97 4.54 0.19 0.63 

Support Vector Regression 

FAM 0.99 0.50 0.03 0.01 

ATTO550 0.95 1.18 0.01 0.38 

Cy5 0.98 1.00 0.07 0.25 

Multilayer Perceptron (NN) Regression  

FAM 0.99 1.99 0.03 0.10 

ATTO550 0.99 0.66 0.02 0.09 

Cy5 0.99 0.67 0.02 0.06 
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