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Abstract

There is a significant demand for multiplexed fluorescence sensing and detection across a
range of applications. Yet, the development of portable and compact multiplexable systems
remains a substantial challenge. This difficulty largely stems from the inherent need for spectrum
separation, which typically requires sophisticated and expensive optical components. Here, we
demonstrate a compact, lens-free, and cost-effective fluorescence sensing setup that incorporates
machine learning for scalable multiplexed fluorescence detection. This method utilizes low-cost
optical components and a pretrained machine learning (ML) model to enable multiplexed
fluorescence sensing without optical adjustments. Its multiplexing capability can be easily scaled
up through updates to the machine learning model without altering the hardware. We demonstrate
its real-world application in a probe-based multiplexed Loop-Mediated Isothermal Amplification
(LAMP) assay designed to simultaneously detect three common respiratory viruses within a single
reaction. The effectiveness of this approach highlights the system’s potential for point-of-care
applications that require cost-effective and scalable solutions. The machine learning-enabled
multiplexed fluorescence sensing demonstrated in this work would pave the way for widespread

adoption in diverse settings, from clinical labs to field diagnostics.
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Fluorescence detection serves as a crucial readout method in a wide array of biochemical
assays, including quantitative Polymerase Chain Reaction', Enzyme-Linked Immunosorbent
Assay?, and various microscopy and imaging techniques®*. This prominence is attributed to the
simplicity of visualizing targets once they are labeled with fluorescent tags or dyed. Traditional
commercial instruments, characterized by their bulkiness and high cost, rely on interchangeable
optical components like filters, dichroic mirrors, and lenses, rendering them impractical for
portable applications. Nevertheless, such complex systems are not always necessary for
conducting bulk fluorescence measurement assays, and more straightforward yet reliable solutions
are being developed for portable use.

Point-of-care testing (POCT) represents a versatile approach to diagnostics, capable of being
conducted in diverse environments such as field locations, homes, ambulances, and hospitals.
POCT circumvents the constraints of conventional laboratory settings by eliminating the need for
specialized personnel and enabling the rapid delivery of results, making it particularly valuable for
diagnostic applications™¢. The advantages of POCT have spurred the development of platforms
designed for real-time, quantitative, and sensitive testing, and fluorescence (optical) detection
emerges as a preferred detection strategy, rivaled by other technologies like electrochemical,
surface plasmon resonance (SPR), and surface-enhanced Raman scattering (SERS)’. This
preference underscores the need for further innovation in miniaturized fluorescence measurement
devices, fostering advancements that could revolutionize point-of-care diagnostics®.

Concurrently, there has been a focus on developing multiplexed diagnostics in point-of-care
settings to conduct comprehensive analyses with minimal sample volume, aiming to significantly
reduce cost and time, enhance decision-making accuracy and speed, improve patient outcomes,
and streamline lab workflows”!°, Multiplexed testing is essential as it allows for the identification
of multiple pathogens or disease indicators from a single sample and is being used in various areas.
For example, the detection of renal biomarkers to indicate acute kidney damage!!, cardiac
biomarkers to identify patients with developing cardiovascular diseases'?, cancer biomarkers for
monitoring purposes'’, and infectious disease diagnostics, wherein this capability is crucial for
differentiating between diseases with similar symptoms'¥, confirming specific infections'>, or
identifying variants for epidemiological surveillance'®. Given the effectiveness and simplicity of
fluorescence-based readouts, there’s a pressing need to advance multiplexed fluorescence sensing

capabilities for efficient multiplexed diagnostics.



One prevalent strategy for sample-to-answer multiplexed POCT for nucleic acid detection is

to spatially parallelize the reactions and detect multiple targets separately!’ >

. However,
multiplexing via parallel reactions has multiple disadvantages due to splitting a small sample
volume into multiple channels or reaction zones, such as variability in analyte concentration,
reduction in analyte concentration below detectable limits, and increased instrumentation
complexity. The other strategy is to develop reporters specific to the analytes under consideration
instead of universal dyes such that multiplexed detection can be enabled in one-pot or one reaction.
Such one-pot detection can be facilitated using various readout methods, such as a smartphone®*
27 which has uniformity issues when the phone is changed, discrete Complementary Metal-Oxide-
Semiconductor (CMOS) or Charge-Coupled Device (CCD) based detectors along with LED or

Laser for excitation?®3°

, which is emerging as the preferred methodology. However, the pending
challenge for highly multiplexed fluorophore detection in one pot is the overlap of the respective
emission spectra. This issue typically necessitates using filters, collimating lenses, or dichroic
mirrors in the optical paths, increasing the complexity and restricting the combinability of
fluorophores. It may also demand hardware reconfiguration if deviating from a particular
combination. Consequently, there is a critical need for an easily assembled, simple-to-adjust or
universally applicable, highly multiplexable, and sensitive fluorescence detection setup for point-
of-care devices.

Recent advancements in ML and Al have substantially improved biochemical sensing
technologies, especially in the detection of multiplexed biomarkers through medical imaging and
fluorescence analysis®!. For instance, digital immunoassays now utilize computer vision-based Al
to decode complex signals from microspheres, varying in color, size, and number, facilitating
precise and straightforward multiplexed detection. Additionally, a deep learning-assisted
programmable chip has been developed for colorimetric sweat biomarker detection. This chip uses
enzyme/indicator-immobilized capsules to achieve perfect accuracy in quantifying substances like
glucose and lactate®?. Furthermore, gold nanoparticles exhibit distinct aggregation behaviors in
response to various buffering conditions, which can be analyzed through machine learning to
accurately classify and quantify neurotransmitters®>. These developments underscore the
transformative impact of Al and ML in refining diagnostic methodologies and improving clinical
outcomes.

In this study, we developed a highly compact, lens-free, affordable fluorescence sensing setup



that enables scalable multiplexity through machine learning methods. With a fixed set of hardware,
the setup can analyze a mixture of fluorophores with the pretrained model, significantly reducing
the complexity of traditional multiplexed fluorescence sensing, which often requires
reconfiguration of the optical components. We first formulated the problem of multiplexed
fluorophore detection, introduced and modeled our sensing approach, and studied the ability of
this setup to detect multiplexed fluorophores by establishing the single optimized detection
channel for each fluorophore based on the theoretical spectra. Further, we evaluated three distinct
machine learning algorithms that leverage calibration data acquired over multiple channels to
accurately predict the concentrations of these multiplexed fluorophores without considering the
spectral information and demonstrated enhanced performance and scalability. Conclusively, we
applied our optical assembly and machine learning algorithm in the specific and real-time
monitoring of three targets within a multiplexed, isothermal nucleic acid amplification assay,

showcasing the practical application of our developments in a complex biological context.

Problem formulation, experimental setup, and modeling

To create a device capable of compact, affordable fluorescence detection with scalable
multiplexity using fixed universal hardware while addressing critical challenges, including the
overlap of fluorophores’ emission spectra, excitation light spillover into the detection sensors, and
spatial signal loss from bypassing a collimating lens, we set out to first formulate and model an
innovative fluorescence sensing approach. The task of multiplexed fluorescence detection involves
analyzing a mixture with n distinct fluorophores (F1, F2, F3, ..., Fx) at unknown concentrations (Ci,
C2, Cs, ..., Cu), with the aim to determine each fluorophore’s concentration.

Our strategy involves exciting the fluorophore mixture using three sources and recording the
emissions by multiple wavelength channels of a spectral sensor. This is an improvement over our
previous approaches, which consisted of a single blue excitation source along with a three-channel
color sensor, designed for sensing a single fluorescence® . In the development of our setup,
significant emphasis was placed on achieving a lens-free design. Traditional fluorescence
detection systems often employ collimating lenses to focus or direct light, enhancing the detection
capabilities, especially at lower concentrations. These lenses are critical for minimizing signal loss

and improving the signal-to-noise ratio. However, lenses add complexity, cost, and mechanical



alignment requirements to the device assembly. Our design omits the lens, simplifying the
construction and significantly reducing the need for precise optical alignment. This simplification
is particularly advantageous in resource-limited settings.

Figure 1a provides a detailed view of the optical setup developed to analyze an unknown
mixture of multiple fluorophores that comprises an RGB LED (SK6812) as the tri-wavelength
excitation source and a CMOS spectral sensor (AS7341) as the emission detector, mounted
perpendicular to each other. The LED package consists of three separate sources and the required
driver circuit in a package. It can be controlled by a microprocessor such as a Raspberry Pi via
non-return to zero (NRZ) communication protocol. The sensor has an adjustable integration time
and detects incident light using eight optical channels in the visible spectral range. It communicates
with a microprocessor via inter-integrated circuit (I*C) communication protocol. An overview of
the electronic system is given in Figure 1b. This spectral measurement is feasible due to the
integration of high-precision monolithic filters onto standard CMOS silicon via nano-optic
deposited interference filter technology. The sensor has a photodiode array behind the monolithic
filters, and the raw measurements are fed to a 16-bit six-channel analog-to-digital converter (ADC)
via a multiplexer to provide digital relative fluorescence units (RFUs). Although our system is not
entirely filter-free, the integrated filters furnish it with the ingenuity to detect fluorescent emissions
across various wavelength ranges without the need for any hardware reconfiguration, unlike
devices that use separate glass or acrylic filters. Figure 1c illustrates this backend operation of the
spectral sensor along with the schematic representation of using the three sources within the tri-
wavelength LED one by one in a time-divided manner to probe the fluorophore mixture and record
the resulting collective emission across eight different channels of the sensor. As a result, this setup
may be used to measure the emissions of different fluorophores and corresponding LED
excitations simultaneously without the need for any additional lenses, filters, or dichroic beam
splitters that not only complicate the assembly by requiring precise alignment of components but
also limit the number of fluorophores that can be detected without hardware reconfiguration.

To better understand the complex relationship between the concentration of each fluorophore
in each mixture and the emission measured by each detection channel for each excitation source,
we set up a mathematical model®’. Consider there are m excitation sources (/7 to /), n fluorophores
with their respective concentrations in the mixture and d detection channels of the sensor, then for

each excitation i, we can try to write the interaction of the excitation source /;, fluorophore emission



coefficients [Ei], fluorophore concentrations [C], and coupling of the n fluorophores’ emissions
(due to an excitation) to the detection channels [£i] as below.
First, we determine the contribution of each fluorophore to the emission under excitation i,

weighted by its concentration:

[EM; EM, EM3; -+ EMy]l=[Ey E; E3 - EJO[G G G - G] (1)
Or
[EMi]nXl = [Ei]nXlG)[C]nXl (2)

where, ® represents element-wise matrix multiplication. Thus, [EM;] represents the emission
response of each fluorophore to the i excitation, weighted by its concentration.
Next, we distribute these emission responses to the ddetection channels, considering the
coupling factors in [fi]:
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which is equal to the detected signals, as shown below,

[Silaxr = [S1 S22 =+ S4] 4)
The time-varying S can be written as follows, which we have previously reported®*,
Iifn
Sa(t) = L2 [a[C ()] + Npip] * IT 5)

where hv is the emitted photon’s energy, a is the absorption coefficient, C is the fluorophore
concentration, ¢r is the fluorescence quantum yield, Nai is the background signal, ¢s is the
background signal quantum yield, and /7'is the sensor’s integration time.

To summarize, for each excitation i ranging between 1 to m, we can write m different equations

with the following form,

B (E1 O [CD = [S] (6)
and all the detected values can be arranged in another matrix as follows,
51,1 51,2 Sl,d
_ 52,1 fuuat
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Thus, we have established a relationship between the detected values and corresponding

fluorophore concentrations, which will be used in non-machine learning and machine learning-



based analyses.

Results and discussion

Traditional analytical method

To explore the use of a conventional approach along the lines of previously reported

instruments3433-38-39

, where a single excitation and detection channel of a sensor is used for a single
fluorophore, we utilized the experimental setup described earlier. This setup detects multiple
fluorophores in a mixture by choosing the optimal excitation and detection channel combination
per fluorophore based on the information about each fluorophore’s excitation and emission spectra.
Figure 2a shows the excitation and emission spectra of the three chosen fluorophores (FAM,
ATTOS550, and Cy5), along with the spectra of the excitation sources chosen for each fluorophore
and their alignment with the discrete detection channels of the sensor. We can see that the blue,
green, and red excitations align with FAM, ATTO550, and Cy5 excitation spectra, respectively,
and we use each source one by one to excite the corresponding fluorophore that constitutes the
mixture.

However, before testing a fluorophore mixture, we first need to determine which of the spectral
sensor’s detection channels is best for detecting each fluorophore under consideration. The
alignment of the sensor’s discrete detection channels with the spectral signatures of the
fluorophores indicates that the highest readings captured for specific channels may stem from
leakage of the LED source’s incident light; this effect must be mitigated to determine the optimal
detection channel for each fluorophore accurately. For this, we tested dilutions of each fluorophore
individually, and the response for each detection channel is given in Supplementary Figure S1.
Briefly, the plots correlating adjusted sensor responses with concentrations for FAM, ATTOS550,
and Cy5, when excited by blue, green, and red light, respectively, show that the channels 4, 6, and
8 centered at 510 nm, 583 nm, and 670 nm respectively exhibit optimal responsiveness for each
dye.

After identifying the optimal detection channels for each fluorophore, we examined how one
fluorophore’s presence affects the others’ detectability in a mixed fluorophore scenario. To test
this, we prepared a sample space comprising four concentrations (0.00, 0.25, 0.50, and 1.00 pM)

of each fluorophore, resulting in 64 unique combinations. These combinations and the normalized
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RFUs for each fluorophore’s previously selected optimum channels are depicted in Figure 2b.
While there is an observable upward trend in the RFUs with rising fluorophore concentrations, for
a precise linear fit, we independently plot the RFUs against the concentration for each fluorophore,
disregarding the concentrations of the other two in the mixture to present the data in a clear, two-
dimensional format. Figure 2¢ shows only moderate linearity for FAM and ATTOS550, suggesting
that this detection scheme may not be sufficient for accurate measurements of these fluorophores
in the sub-micromolar range. However, the strong linearity between RFU and Cy5 concentration
may be attributed to either the better alignment of Cy5’s peak excitation spectra with the source or
the clearer separation of Cy5’s emission spectra from those of FAM and ATTOS550. The higher
overlap of FAM’s and ATTOS550’s spectra could complicate their distinct resolution, making it

challenging to attribute Cy5’s better linearity to one specific cause definitively.

Machine learning-based methods

To leverage the full potential of the spectral sensor, we utilized its ability to capture emissions
across multiple detection channels for the three excitation sources and simultaneously employed
all the data instead of relying on optimized sources and detection channels for a particular
fluorophore. By utilizing machine learning (ML), we identified patterns within the data, as
multiple studies have demonstrated ML’s effectiveness in demixing combinatorial emissions in
biological fluorescence detection and imaging***?. Figure 3a depicts the implementation process
of a supervised ML model initiated by collecting calibration data from 125 fluorophore mixtures.
These mixtures were prepared at five specific concentrations (0.00, 0.25, 0.50, 0.75, and 1.00 uM)
of FAM, ATTO550, and CyS5. For accuracy, each mixture was subjected to seven measurements
under three different excitation sources, blue, green, and red, with each measurement capturing
data across all eight detection channels, generating 24 RFU values. These values were then used
as input features for the ML model, designed to predict the concentrations of the three distinct
fluorophores concurrently. We allocated 80% of the data for training each model, while the
remaining 20% was used for model validation and testing. We evaluated three types of models,
multivariate linear regression (MLR), support vector regression (SVR), and a multilayer
perceptron neural network (NN), to determine the most effective method for accurate prediction.

Multivariate Linear Regression. To explore how each fluorophore concentration influences



the emission values and ultimately predict these concentrations, we utilized the multivariate linear
regression (MLR) model, as it is a foundational regression technique. Within MLR, we applied
linear algebra principles to calculate the weights and biases associated with each of the 24 RFU
values serving as inputs. Inspired by the previously proposed model, Equation 8 below illustrates
the MLR model tailored for predicting the concentration of the FAM fluorophore, utilizing 24
RFU values as inputs when there are i excitations and d detection channels. In this equation, each
w coefficient signifies the weight assigned to the regression parameters corresponding to each RFU
input, while € denotes the error or bias inherent in the model.
[Clram = Wo + Wimy1 g1 RFUjoq goq + Wicy =2 RFUjoq g=p + -+ Wiz34-gRFU;—34-5 +€ran (8)

Similarly, two more equations can be written for ATTOS550 and Cy5 to get,

Cram 1 RFUiz14=1 * RFUi=34=s Wimr et Eram
Carrosso| = |1 RFUj—14=1 .. RFUj—34-g eATTOSSO] 9)
Ceys 1 RFUiz1g=1 ~ RFUisgss] |w,_, €cys

For clarity and efficiency, tackling a multivariate regression challenge involves decomposing
it into several single-variable linear regression models. In this approach, we created three distinct
models, each dedicated to one of the three fluorophores, with the predictive outcomes showcased
in Figure 3b. The linear correlations between predicted and actual fluorophore concentrations
demonstrate a good linear relationship and proficient predictive capabilities for static
concentrations. Additionally, residual analysis for each fluorophore, detailed in Supplementary
Figure S2, reveals a normal distribution of residuals, affirming our model’s assumption of
homoscedasticity - constant variance around a zero mean. Despite these promising indicators, the
concentration-specific mean absolute errors (MAE) unveil pronounced inaccuracies at the lowest
and highest concentration levels (0 and 1 uM). This observation indicates the model’s difficulty
in effectively handling the entire concentration range, potentially due to nonlinearities like
overlapping emission spectra and secondary excitations. Thus, we were motivated to explore more
advanced machine learning models capable of addressing nonlinear relationships to improve
predictive accuracy across all concentrations.

Support Vector Regression. Support vector machines (SVM) perform the nonlinear mapping
of input vectors into a high-dimensional feature space and use a linear decision surface within this
feature space primarily for binary classification****. Given the potential nonlinearities mentioned

in the previous section, SVM could perhaps be a better candidate for predicting the fluorophore



concentrations in a mixture. Here, a hyperplane within the feature space acts as the optimal
boundary, set by an error margin, with support vectors crucial for its positioning based on data
outliers. Support Vector Regression (SVR), utilizing kernel functions like the radial basis function
(RBF), adapts the basic framework of SVM for regression problems and handles nonlinear data
by striving for the best fit within a specific error threshold rather than minimizing prediction errors
directly.

Considering SVR’s limitation with multiple outputs, we crafted three distinct SVR models
with the RBF kernel to estimate the concentrations of three fluorophores, presenting these findings
in Figure 3c. Comparing the linear correlations between predicted and actual concentrations of
FAM, ATTO550, and Cy5, we observed a marked advancement over MLR, as also evidenced by
the substantially decreased MAEs. Further, despite changing the kernel function to linear and
sigmoid, RBF, along with hyperparameter tuning such as the penalty parameter (C), the kernel
coefficient (y), and epsilon in the loss function (€), performed the best. Yet the non-random and
biased accuracy hints at the potential for the exploration of additional ML models capable of
handling a higher degree of nonlinearity.

Neural Network. Neural networks (NN) process input data across multiple layers, where each
neuron performs a weighted sum of its inputs, followed by a nonlinear activation function,
enabling the network to capture intricate data patterns*. Here, we use a multilayer perceptron
(MLP), a feedforward artificial neural network (ANN) implementing supervised learning, and the
output layer generates predictions that are evaluated against true values to determine errors. These
errors are then propagated backward to adjust neuron weights during the training phase. Given
their layered architecture and nonlinear activation functions, we expect NN to outperform SVR in
this application by more effectively modeling complex, nonlinear, and hierarchical relationships
within the data. Figure 3d illustrates the NN’s predictions for FAM, ATTO550, and CyS5 dyes,
showing a notable enhancement in the correlation between predicted and actual concentrations
compared to SVR. Furthermore, the MAE for each concentration level is marginally lower than

that observed with SVR, without indicating any biased accuracy.

Performance comparison between non-ML and ML methods

To explain why the ML methods perform much better than an optimized channel’s readings,
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we consider Equation 6, which gives us an empirical relation assuming a linear superposition of
emissions and detection responses. However, measuring the exact emission response of each
fluorophore to each excitation and the distribution of the emission responses over the detection
channels is challenging, and valuable emission information may be lost by choosing a single
detection channel. In addition, the nonlinear effects, such as overlapping emission spectra and
leakage of excitations due to the exclusion of filters cannot effectively be measured or defined.
This makes the accurate development of a model challenging while considering all these
intricacies, and it may explain the inadequacy of using a single excitation source and an optimum
detection channel for sensing fluorophores present in a mixture.

The underlying principle of the supervised machine learning approach involves forming a
dataset with various combinations of constituent fluorophores at specific concentrations, and
recording the resultant fluorescent emissions across eight channels. Each channel is responsive to
specific wavelength ranges, corresponding to three separate excitation lights. This data helps to
train a model that establishes a complex relationship between the concentrations of multiple
fluorophores and the fluorescence readings measured by the sensor. This model can then predict
the concentrations of fluorophores in an unknown sample based on these readings. The model
incorporates crucial data about the predominant influence of certain fluorophores over specific
detection channels and uses this information to predict concentrations from a set of measured
readings. It also models the concentration-specific cross-influence within the prediction algorithm.
Due to the extensive training dataset featuring unique combinations, the model predicts
concentrations for combinations of fluorophores, rather than individual ones. When used in
conjunction with specific probe-based biochemical reactions, where the concentration of a targeted
fluorophore increases (if the target is present) while other fluorophores remain stable, this

approach effectively prevents signal cross-influence.

Performance comparison among machine-learning methods

To find the most accurate ML model, we compare the performance of the three models among
each other and with the optimized channel method through metrics such as the R?, mean absolute
error (MAE), limit of detection (LoD), and limit of quantification (LoQ) values in Table 1. Please

refer to the Materials and Methods section for details regarding the calculation of LoD and LoQ.
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The NN model surpasses others in predictive accuracy, making it the preferred choice for further
exploration in real-world applications, such as nucleic acid amplification assays. It should be noted
that the observed improvements in the LoD and LoQ are primarily due to the NN’s enhanced
ability to model the complex interactions among fluorophores, which are expected to be
predominantly nonlinear.

To establish the relevance of the error values, we consider the maximum fluorophore
concentration used in our experiments to construct the training and test dataset: 1 uM. This value
is used to convert the MAEs to percentage errors in Table 1. To understand how this percentage
MAE affects the prediction of the final target concentration, we would need to empirically
determine two relationships: (i) between fluorophore concentration and time to positive (TTP),
and (ii) the standard curve equation for target concentration in a biochemical reaction. Therefore,
we report the MAE in terms of percentage. Please note that the observed improvements in MAE,
LoD, and LoQ do not directly imply an enhancement in the spectral sensor’s intrinsic electronic
sensitivity to weaker signals. Additionally, the LoD of a fluorophore could vary under different
background concentrations of the other two fluorophores. However, a comprehensive evaluation
in a three-dimensional space involving all possible fluorophore combinations would lead to a
prohibitively high number of experimental conditions, making practical validation infeasible.
Hence, in Supplementary Table S1, we present a comparison of the best-case (where the
concentration of the other two fluorophores is the lowest, i.e., 0 uM) and worst-case (where the
concentration of the other two fluorophores is the highest, i.e., 1 uM) scenarios. The results do not
demonstrate a significant worsening of the MAE, LoD, and LoQ values as the background

concentrations of the fluorophores increase.

Scalable multiplexity enabled by machine learning

To illustrate the setup’s scalability for varying number of fluorophores in the mixture, we
assessed its performance in predicting concentrations of two, three, or four fluorophores. We used
four different concentrations (0.00, 0.25, 0.50, 1.00 uM) of each fluorophore, resulting in 16
combinations for ATTO425 and FAM, 64 combinations for ATTO425, FAM and ATTO550, 256
combinations for ATTO425, FAM, ATTO550, and Cy5. As before, each mixture underwent seven

measurements at blue, green, and red excitations while detections were recorded across eight
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detection channels to generate 24 RFU values, which served as inputs for the NN model tasked
with predicting the concentrations of the constituent fluorophores, using 80% of the data for
training and 20% for validation and testing. The results, illustrated in Figures 4a, 4b, and 4c¢ for
two, three, and four fluorophores, respectively, show the predicted versus actual concentrations
for each fluorophore along with the MAEs. The marginal improvement in prediction linearity and
concentration-specific MAEs is likely due to the increased training and test samples as the number
of fluorophores increases. No significant trends across concentrations within each model indicate
uniform predictive reliability. This demonstrates the scalability of our setup to accommodate

mixtures with varying fluorophores without requiring reconfiguration of the optical components.

Example application for real-time RT-LAMP detection

Having demonstrated the capability of our optical setup, in conjunction with NN modeling, to
predict static fluorophore concentrations within a mixture accurately, we applied this system to
track the progression of a real-world biochemical diagnostic assay as a test-bed. The technique in
focus, Loop-mediated Isothermal Amplification (LAMP), was initially introduced by Notomi et
al.*® to amplify DNA molecules exponentially under isothermal conditions. We made use of a
Reverse Transcription LAMP (RT-LAMP) assay for the simultaneous detection of the presence of
three RNA targets: Respiratory Syncytial Virus (RSV), Influenza A (IAV), and Severe Acute
Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Here, multiplexed detection was enabled
by the Detection of Amplification by Release of Quenching (DARQ) technique*’, which involves
the unquenching of fluorescently labeled probes upon the extension of the backward strand to
produce an increasing amount of specific fluorescence as the amplification proceeds. In addition
to enabling multiplexed detection, DARQ LAMP has also enables higher specificity, which helps
in alleviating false positives in traditional intercalating dye-based LAMP that is often considered
a characteristic drawback.

The concentration of each RNA target was 1500 copies per reaction (cp/rxn), and five distinct
combinations were introduced into the multiplexed reaction, viz., the no template control (NTC),
the three individual targets (RSV, IAV, and SARS-CoV-2), and a mixture of all three targets.
These targets were added to triplicate reactions that were subsequently incubated at 61°C for 70

minutes and then swiftly cooled to room temperature to stop the amplification. The raw
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fluorescence data acquired by the optical assembly at 30-second intervals was supplied to the NN
model described earlier to predict the time-varying concentration for each constituent fluorophore
in an offline manner. Figures Sa, 5b and 5S¢ show the concentrations of FAM, ATTO550, and Cy5
as a function of time, which mark the amplification and detection of RSV, IAV, and SARS-CoV-
2, respectively. A threshold concentration Tc was computed based on the NTC reactions such that
Tc = p + 30, where p and o represent the mean and standard deviation of concentrations over the
entire reaction time, and a positive call was made when the predicted concentration surpasses the
set threshold. All plots show accurate prediction of amplification in conditions where the RNA
target was present individually or with other targets, thus validating the proposed optical assembly
and accompanying NN model for monitoring the change in a multiplexed nucleic acid
amplification and detection assay. The use of fluorophores in LAMP assays provides a visual or
measurable indicator of the amplification process with high specificity. The relationship between
the increase in fluorescence intensity and the amount of target RNA amplified is linear up to a
phase before saturation occurs due to the unavailability of additional fluorophore attached primer.
Consequently, quantifying the initial target sample is feasible by measuring the time to positive
and establishing a standard curve, where a shorter time to positive typically indicates a higher
initial target concentration. While this study highlights the foundational detection mechanisms and
machine learning integration for multiplexed target detection, we note that extensive further testing
will be required to fully evaluate the sensitivity, specificity, and quantitative capabilities of the
assay for each target before deploying in real-world human infection scenarios. Characterization
of these aspects is underway, and findings will be presented in subsequent publications based on

the detection systems introduced here.

Conclusion

Our study introduces a transformative approach to fluorescence measurement for point-of-care
applications involving bulk assays via a lens-free optical assembly complemented by a machine
learning model. The effective deployment of a Neural Network to analyze data from mixtures
excited by a tri-wavelength source and the emissions detected by eight channels of a spectral sensor
significantly enhances detection and quantification limits beyond traditional single-channel

approaches. The scalability of our model highlights its capability to advance point-of-care
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diagnostics, offering a versatile, highly multiplexable solution without the need for intricate
reconfigurations for diverse fluorophores or targets. Validating its utility in concurrently detecting
viral RNA from pathogens like RSV, Influenza A, and SARS-CoV-2 underscores its potential in
addressing urgent needs for multiplexed biomarker detection across critical health areas. Future
efforts will concentrate on refining the machine learning model for a more straightforward
incorporation of new fluorophores using only their specific calibration data without requiring the
preparation and testing of exponential unique fluorophore combinations, thereby simplifying the

process.

Materials and Methods

Design and fabrication. The aluminum heating block and adapter for mounting the RGB LED
and spectral sensor were designed using Solidworks CAD software, while the printed circuit
boards (PCBs) for the LED and sensor were designed with AutoDesk Eagle CAD. All components
of the optical setup were virtually assembled in Solidworks to verify alignment prior to fabrication.
The heating block was machined by Protolabs Network, and the adapter was 3D printed in-house
using a MakerBot MethodX printer (Brooklyn, NY) with ABS material. The PCBs were fabricated
by OSH Park LLC (Lake Oswego, OR). The RGB LED (SK6812) was sourced from Adafruit
Industries (New York, NY), and other components such as the spectral sensor (AS7341), a two-
ohm power resistor (MP725-2.00) for heating, a 10k-ohm thermistor (MC65F103A) for
temperature feedback, and a Raspberry Pi Zero microprocessor were purchased from
DigiKey.com. A detailed description and function of each component, along with a cost estimate,
are provided in Supplementary Table S2.

Dataset and codes for ML model training and concentration prediction in Python. The
training datasets referenced in sections concerning the analysis and comparison of machine
learning-based methods and the scalability enabled by machine learning, along with the
corresponding Python codes to generate, train, and test the ML models that were subsequently
evaluated for predicting static fluorophore combinations are available in a GitHub repository.
While developing the ML models, we made use of the SciPy open-source package for developing
Multiple Linear Regression and Scikit-learn package for Support Vector Regression and Neural

Network models and developed custom codes to train the specific models, pre- and post-process
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the data and generate prediction results and associated figures. These resources can be accessed at
https://github.com/alk5897/ML-aided-optics-for-POC-multiplexed-fluorescence.

Calculation of LoB, LoD, and LoQ values. The limit of blank (LoB) was determined using
the formula: pblank + 1.64%(Gblank), Where pblank and oblank are the mean and standard deviation of
the predictions at 0 uM, respectively. The limit of detection (LoD) was then defined as LoB +
1.62*(o0.25), where 6o0.25 is the standard deviation of predictions at a low concentration of 0.25 pM.
The limit of quantification (LoQ) was calculated as 3.3*LoD*. For the traditional analytical
approach using a single optimal detection channel, we first calculated the LoB, LoD, and LoQ
values in terms of relative fluorescence units (RFU). We then applied the linear fit equations from
Figure 2¢c: RFUram = (0.36)*Cram + 0.34, RFUATTOs50 = (0.52)*CaTr0550 + 0.26, and RFUcys =
(0.73)*Ccys + 0.04, where Cram, Catros50, and Ccys are the concentrations of FAM, ATTOS550,
and CyS5, respectively, to convert these values to concentrations.

RT-LAMP reaction mix. The RT-LAMP reaction mix consists of 1x isothermal buffer (20
mM Tris-HCI, 10 mM (NH4)2SO4, 50 mM KCl, 2 mM MgSOs4, 0.1% Tween 20, pH 8.8), 3 sets of
6 primers each, 0.5 M Betain, 6 mM MgSOs4, 1.4 mM deoxyribonucleotide triphosphates (ANTPs),
0.5 U/uL Bst 2.0 DNA polymerase, 0.3 U/uL WarmStart reverse transcriptase, 1.5 pL purified
RNA template (per target) and PCR-grade water to bring total reaction volume to 25 pL.
Isothermal buffer, DNA polymerase, reverse transcriptase, dNTPs, and PCR-grade water were
purchased from New England Biolabs (MA, USA). Heat-inactivated SARS-CoV-2 (VR-1986HK)
RNA and quantitative genomic RNAs of Influenza A virus (HIN1) strain A/PR/8/34 (VR-95DQ)
and human respiratory syncytial virus strain A2 (VR-1540DQ) were purchased from American

4951 and modified

Type Culture Collection (ATCC). Primer sequences initially described in
according to DARQ rules are detailed in Supplementary Table S3 and were synthesized by
Integrated DNA Technologies (Coralville, USA). The three fluorophore-attached oligonucleotide

sequences, Fds, were used to acquire the ML algorithms’ static calibration data.
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Supporting Information

Includes comprehensive analysis of sensor channel responses to identify optimal detection
channel for a particular fluorophore, detailed residual analyses of machine learning models for
accuracy assessment, alongside tables with a scenario-based comparison of MAE, LoD, and LoQ
for the ML-based fluorescence prediction methods, cost estimate and detailed sequences of RT-

LAMP primers used in the study.
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Figure 1. An overview of the optical assembly and procedure for multiplexed fluorescence
detection. a) 3D render of the optical assembly developed for multiplexed fluorescence detection.
It consists of an RGB LED with red, green, and blue lights as the excitation source and a multi-
channel spectral sensor for detecting the collective emission, arranged perpendicular to each other
to reduce excitation light leaked into the sensor. A highlight of this setup is that it forgoes a lens,
which may require precise alignment and positioning to ensure emissions are focused on the
sensor, hence permitting some room for alignment errors. b) A simplified electronic block diagram
of the setup shows all the components. A Raspberry Pi Zero microprocessor controls thermal and
optical submodules and records the data. ¢) Schematic representation of the fluorescence
generation from a mixture of n fluorophores (denoted by Fi, F2, F3, ..., Fn) and its detection. The
mixture is depicted using colored dots, where each color represents a different fluorophore. Here,
n =4 results in four columns, with the number of rows in each column reflecting the concentration
of the corresponding fluorophore. The process involves exciting the mixture by alternating
between the three sources in a time-divided manner and capturing the combinatorial emitted
fluorescence for each excitation by the sensor across eight wavelength channels, facilitated by
high-precision monolithic filters on top of an array of photodiodes and later converted to digital
values.
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Figure 2. A traditional analytical method that uses a single source and a single detection
channel per constituent fluorophore is insufficient for accurate detection. a) Displayed are the
theoretical excitation and emission spectra of the three chosen fluorophores, FAM, ATTOS550, and
Cy35, along with the spectra of RGB excitation sources and the sensor’s eight detection channels.
Blue, green, and red excitations have optimum alignment with the excitation spectra of FAM,
ATTO550, and Cy5, respectively, while detection channels 4, 6, and 8 align best with their
emission spectra. b) 3D scatter plot representing the normalized sensor RFU responses to varying
fluorophore concentrations in a mixture. Using the optimal excitation sources and detection
channels from part a, 64 unique combinations prepared by mixing FAM, ATTO550, and Cy5 at
four concentrations (0.00, 0.25, 0.50, and 1.00 pM) each were tested. This visualization shows the
increasing RFU trend correlating with rising concentrations of each fluorophore, irrespective of
the concentrations of the other two. ¢) 2D scatter plot shows the same experimental data as in part
b, mapping normalized RFUs against individual fluorophore concentrations, disregarding the
concentrations of the other fluorophores in the mixture. The independent linear fits for FAM (R?
= 0.34) and ATTO550 (R? = 0.55) indicate moderate linearity, suggesting difficulty in precise
measurement at sub-micromolar concentrations. In contrast, Cy5 exhibits strong linearity (R? =
0.92), and could be due to either the better alignment of its peak excitation with the chosen source
or clearer separation of its emission spectra from those of FAM and ATTOS550.
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Figure 3. Comparative analysis of machine learning models for multiplexed fluorescence
concentration predictions favors a Neural Network. a) Tabular presentation of fluorophore
mixture compositions (top), with a sample space of N = 125 mixtures using five concentrations
(0.00, 0.25, 0.50, 0.75, and 1.00 uM) of each fluorophore. These samples were probed by the
developed optical setup, generating 24 features—eight detection channels’ values for three
excitations (bottom). Each of the 125 samples was measured seven times to generate 875 data
frames, and 20% of this data set is reserved for testing and validation. b) Performance evaluation
of Multivariate Linear Regression (MLR) for predicting concentrations. Left: MLR architecture;
center: predicted versus expected fluorophore concentrations with linear fits having R? values of
0.97 for FAM, ATTO550, and CyS5; right: concentration-specific mean absolute errors (MAE) for
all fluorophores, which reveal higher inaccuracies at the extremities of the concentration range (0
and 1 pM). ¢) Support Vector Regression (SVR), with the model architecture (left), yields linear
fits (center) with R? values of 0.99, 0.95, and 0.98 for each fluorophore and reduced MAEs (right).
Despite the improvement over MLR, the non-random and biased accuracy points to the potential
for developing a better model. d) Neural Network (NN), with the model architecture illustrated
(left), demonstrates the best predictive linearity (center) with R? values of 0.99 for each
fluorophore and presents the lowest MAEs (right), indicating its superior ability to handle
nonlinearities without biased predictive accuracy.
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Figure 4. Scalable multiplexed fluorophore detection using a Neural Network model without
hardware reconfiguration. a) The evaluation of NN for predicting concentrations in two-
fluorophore mixtures consisting of ATTO425 and FAM (top) with four concentration levels (0.00,
0.25, 0.50, and 1.00 uM), resulting in 16 combinations. Samples were probed seven times, with
the resulting dataset split into 80% for training and 20% for testing. The predictions (middle) have
R? values of 0.99 for ATTO425 and 0.81 for FAM, and corresponding concentration-specific
MAEs displayed (bottom). b) The concentration predictions for 64 three-fluorophore mixtures of
ATTO425, FAM, and ATTO550 (top) demonstrate improved predictive linearity (middle) with R
values of 0.99 for all fluorophores, and corresponding MAEs (bottom). ¢) The concentration
predictions for 256 four-fluorophore mixtures of ATTO425, FAM, ATTO550, and Cy5 (top)
display predictive linearity (middle) while maintaining R? values of 0.99 for all fluorophores, and
corresponding MAEs (bottom), consistent with the three-fluorophore model. The lower
performance of the two-fluorophore model is due to its smaller dataset. Comparable predictive
reliability for each fluorophore across models confirms the capability to handle mixtures with
different numbers of fluorophores.
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a) FAM marks RSV RNA b) ATTO550 marks IAV RNA c) Cy5 marks SARS-CoV-2 RNA

31.0 31.0 §1.0
o o5l S5l N S5l
E g OO0 wm+do=oa7 GO w¥3e=0a8 50T Wi3e=017
5§ 00 I ~~ AN 5001 5 0.0 F b————— T
O 1 " 1 " 1 " 1 " O E 1 " 1 " 1 " 1 " o E 1 " 1 " 1 " 1 "
0 20 40 60 0 20 40 60 0 20 40 60
Time (min) Time (min)
> = L
7]
© i Lo -
1 1 1 1 lf 1 1 1
> - = L
S N SO
. @.N.m‘ > — - :77/7_7 77777777777777777
1 " 1 " 1 " 1 " 1 1 1 1 1 1 1 1
N
>
o L L L
(&)
%) il Velebul I eAREs T M e tddulabled
E |{' 1 1 1 1 1 1 1
(%)
E Y A
kl 1 1 1

Figure 5. Demonstrating the use of the machine learning-enhanced fluorescence detection
setup for a biochemical assay. a) The real-time amplification curves for FAM fluorophore,
indicating the presence of RSV RNA in a triplex reverse-transcription loop-mediated isothermal
assay (RT-LAMP) for five different samples (in triplicates): no template control (NTC), RSV RNA
only, AV RNA only, SARS-CoV-2 RNA only, and a combination of all three RNAs. The curves
represent offline-predicted fluorophore concentrations using the 24 feature values acquired at 30-
second intervals, with the horizontal dotted line denoting a threshold concentration Tc, calculated
as the mean (p) plus three standard deviations (3c) of the NTC reactions. b) and ¢) Present the
real-time amplification curves for ATTO550 (b) and CyS5 (c) fluorophores, tracing IAV and SARS-
CoV-2 RNA detection in the same triplex reactions. The appropriate amplification of each RNA
across the samples validates the optical setup’s suitability for practical assay deployment.
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Tables and captions

Table 1. Performance comparison of fluorescence detection methods

Fluorophore R % MAE LoD (nM) LoQ (uM)
Optimized source and channel response method
FAM 0.35 NA 1.60 5.26
ATTO550 0.56 NA 1.07 3.52
Cy5 0.93 NA 0.18 0.58
Multivariate Linear Regression
FAM 0.97 433 0.15 0.48
ATTOS50 0.97 3.98 0.16 0.54
Cy5s 0.97 4.54 0.19 0.63
Support Vector Regression
FAM 0.99 0.50 0.03 0.01
ATTO550 0.95 1.18 0.01 0.38
Cy5 0.98 1.00 0.07 0.25
Multilayer Perceptron (NN) Regression
FAM 0.99 1.99 0.03 0.10
ATTOS550 0.99 0.66 0.02 0.09
Cy5 0.99 0.67 0.02 0.06
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