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The promise of multi-messenger astronomy relies on the rapid detection of gravitational13

waves at very low latencies (O(1 s)) in order to maximize the amount of time available for14

follow-up observations. In recent years, neural-networks have demonstrated robust non-linear15

modeling capabilities and millisecond-scale inference at a comparatively small computational16

footprint, making them an attractive family of algorithms in this context. However, integration17

of these algorithms into the gravitational-wave astrophysics research ecosystem has proven18

non-trivial. Here, we present the first fully machine learning-based pipeline for the detection19

of gravitational waves from compact binary coalescences (CBCs) running in low-latency. We20

demonstrate this pipeline to have a fraction of the latency of traditional matched filtering21

search pipelines while achieving state-of-the-art sensitivity to higher-mass stellar binary black22

holes.23

Gravitational-wave astronomy has developed rapidly since the first direct detection of gravitational24

waves from a binary black hole merger in 20151, with new detections now a common occurrence2.25

With the fourth observing run (O4) of the International Gravitational-wave Network (IGWN),26

consisting of LIGO3, Virgo4, and KAGRA5 already underway, and with future ground and space27

based detectors planned for various points in the next decade6–8, ever more frequent discoveries of28

gravitational waves will enable follow-up observation of events across other cosmic messengers29

*These authors contributed equally to this work
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such as electromagnetic radiation and astrophysical neutrinos9–14. The insights we gain in this era30

of multi-messenger astrophysics will directly correlate with the volume and diversity of data we31

are able to collect.32

While machine learning (ML) is ubiquitous in some areas of physics15, it has only recently33

approached a stage of maturity in the gravitational-wave community. To date, there have been a34

number of machine learning models proposed for the detection of compact binary coalescences35

(CBCs); e.g.,16–20; but there are none currently running in O421 (though, ML-based unmodeled36

gravitational-wave searches have seen production usage22). This is both a product of well-known37

infrastructure hurdles separating the development and deployment of machine learning models23,38

as well as a lack of standardized, astrophysically meaningful probes of the sensitivity of these39

models in the face of non-stationary and transient background noise.40

The most well-modeled and frequently observed gravitational-wave events to date are the41

mergers of binary black hole (BBH) systems2, 24, 25 Their comparatively high number of confirmed42

detections has given us reasonable models of their population statistics, allowing for astrophysically43

meaningful measures of search sensitivity. BBH mergers also benefit from a highly localized-in-time44

signal-to-noise ratio (SNR) profile relative to binary neutron star (BNS) mergers, which are in the45

sensitive band of the detectors much longer. Studying the ability of neural-networks to detect BBH46

mergers, and in particular what real time use in the IGWN detectors looks like in this context,47

represents an important first step towards developing a more thorough understanding of how, and48

whether, these algorithms can be applied to more challenging signals such as BNSs, and what tools49

and infrastructure would be required to do so.50

Here, we present Aframe, a flexible pipeline for detection of BBH mergers using deep51

learning. The implementation presented here uses a 1D convolutional neural-network. Convolutional52

neural-networks have previously been shown to have potential for gravitational wave detection26,53

and we use this architecture, along with aggressive data augmentation techniques, to achieve a54

sensitivity competitive with matched filtering CBC search pipelines while requiring a significantly55

lower latency. More broadly, Aframe encompasses a suite of tools for quickly implementing,56

testing, and deploying new ideas at scale in order to more confidently realize the potential of57

machine learning in service to gravitational wave astronomy.58
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Our neural-network architecture modifies a standard ResNet5427, which maps fixed length59

time-series of gravitational wave strain from two interferometers (here, the Hanford and Livingston60

LIGO interferometers) to a scalar detection statistic indicating whether a signal is present in61

the input. Critically, we replace 2D with 1D convolutions to accommodate time-series input.62

In addition, we replace standard Batch Normalization layers (BN)28, with Group Normalization63

(GN) layers29. While BN layers fit parameters to statistics calculated along the batch dimension,64

GN layers are fit to statistics calculated from groups of channels. This choice was motivated by65

differences in the statistical properties of batches during training and inference. During training,66

there are significantly more signals in each batch than during inference, where most of the batch67

consists of noise. Thus, during training, BN layers will learn spurious statistical properties that are68

not present at inference time. GN layers mitigate this problem by learning statistical properties of69

individual channels. We found that using GN layers improves the agreement between validation70

and test time metrics, as well as overall testing performance. Good agreement between validation71

and test metrics is essential for ensuring the best neural-network is being selected for deployment.72

The neural-network is trained by minimizing a binary cross entropy loss function with an Adam30
73

optimizer. We use a one cycle learning rate scheduler with cosine annealing31.74

Analyzing data with Aframe involves loading and preprocessing timeseries data, breaking75

it up into short time segments, then passing these segments through the neural-network. The76

throughput associated with each of these steps can vary drastically, as can the hardware and77

software necessary to accelerate them. In order to optimize the total throughput of this system,78

we adopt an inference-as-a-service (IaaS) computing model in which neural-network inference is79

handled by a dedicated service, to which client applications can send inference requests remotely.80

Each step in our pipeline is then implemented and scaled independently to most efficiently leverage81

a fixed pool of heterogeneous computing resources. This model has been shown to be effective in82

optimizing ML inference in GW astronomy32, provided that “snapshotting”33 is used to cache83

overlapping input data on the server side to avoid redundant data transfer. We adopt this paradigm84

using an off-the-shelf IaaS implementation, Triton Inference Server34, and use the ML inference85

framework TensorRT to accelerate the neural-network inference step. The ability to scale and86

distribute a workload is an important part of any search pipeline, and the authors are aware of87

only one other ML-based CBC detection algorithm that has focused on scalability to arbitrary88

resources35. In the sections below, we compare both our sensitivity and our throughput to this89

work.90
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Inference is performed at a rate of 4Hz (not to be confused with the neural-network throughput,91

see the discussion of computational requirements below). In other words, we pass windows of92

data to our neural-network for inference such that each window is shifted by 0.25 s. This inference93

sampling rate reduces the overall compute load without sacrificing search sensitivity (see Sec. 494

of Methods). These neural-network predictions are then integrated over time using a 1 s top hat95

filter (see Fig. 1). Because the neural-network is trained to encode time translation invariance (see96

Sec. 2 of Methods), we expect to see a consistently high neural-network responses when analyzing97

astrophysical signals. Thus, integration provides a mechanism to promote consistently high outputs98

while rejecting short transients that may correspond to non-astrophysical sources. Finally, the99

integrated time-series of neural-network predictions is clustered to avoid yielding multiple triggers100

for the same event. The maximum integrated value over an 8 s window is taken as the detection101

statistic corresponding to a candidate event.102
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Figure 1: Example neural-network prediction and integrated neural-network prediction for am1 =

35M�,m2 = 35M� signal injection. The coalescence time is plotted as the vertical dashed black

line. The brief gap between coalescence time and beginning of neural-network activation is due to

the fact that we do not inject the coalescence time in the first or last 0.25 s of the window during

training.

To demonstrate Aframe’s readiness for real-time deployment, we compare its sensitivity103

to search pipelines used in production by IGWN. For our pipeline, estimating sensitive volume104

requires analyzing simulated GW events “injected” into strain data, and analyzing background105

livetime produced by “timeslides.” Performing timeslides is a standard way of empirically estimating106
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the background (i.e. the distribution of noise events) for a search pipeline which analyzes a network107

of detectors. In brief, the strain from one detector is shifted in time by an amount greater than108

the gravitational wave travel time between the detectors (∼ 10 ms for the two LIGO detectors).109

Therefore, any reported triggers could not have been caused by an astrophysical event. In this110

analysis, the Hanford strain data is held fixed and the Livingston data is shifted in 1 s increments111

until the required background livetime is accumulated. Then, a false alarm rate (FAR) can be112

assigned to injected events by dividing the number of background events with detection statistic113

greater than the event of interest, with livetime analyzed. All GW detections reported in the third114

Gravitational-Wave Transient Catalog (GWTC-3)2 were excised from the background.115

Comparison with existing searches. A useful metric to measure the sensitivity of search116

algorithms is the sensitive volume. Sensitive volume measures the volume over which some117

astrophysical population of sources distributed uniformly in co-moving volume is detectable at118

a given false alarm rate (FAR). Sensitive volume was used to measure the sensitivity of search119

pipelines in GWTC-3. This provides an astrophysically meaningful benchmark to compare the120

performance of Aframe to the performance of traditional searches. More details on the sensitive121

volume calculation can be found in Sec. 3 of Methods. Fig. 2 compares Aframe’s sensitive122

volume as a function of FAR with the sensitivity of the MBTA37, PyCBC38, GstLAL39, 40 and123

cWB41 searches as reported in GWTC-32. We note that the template banks used by MBTA,124

GstLAL, and PyCBC-Broad in the GWTC-3 analysis contain waveforms outside of the 5–100 M⊙125

range searched by Aframe. In principle, these searches could increase their sensitivities in the126

5–100 M⊙ range by removing these templates. This is evident when comparing the performance127

of PyCBC-BBH and PyCBC-Broad in Fig. 2. For the future, we encourage production level LVK128

CBC pipelines to publish BBH-specific sensitivities against which developing ML pipelines can129

benchmark.130

In the 35-35 M⊙ mass distribution, Aframe has a larger sensitive volume than the GWTC-3131

configurations of all searches, and is comparable in the 35-20 M⊙ mass bin, for the FARs considered132

in this analysis. As source masses decrease further, so does Aframe’s performance relative to133

existing pipelines. This is in part due to our neural-network architectures inability to model the134

lower frequency features of these low mass signals. While the architecture implements global135

pooling layers, the convolution layers use a kernel length of 3 samples. Improvements to neural-network136

architecture design, such as utilizing dilated convolutions that can better model these lower frequency137

5



features will help to improve performance at these mass ranges.138

Previous studies of ML-based gravitational wave detection algorithms tend not to use sensitive139

volume as a metric, preferring instead to use traditional ML metrics such as receiver operating140

characteristic (ROC) curves (an exception is42, which uses a non-astrophysical prior and a Euclidean141

volume distribution). This makes direct comparison difficult, as these metrics depend on the142

parameter distributions of tested events. For the sake of completeness, in Fig. 3 we present our143

own ROC curve and find that, compared to previous works35, 43, we achieve nearly three orders144

of magnitude of improvement in true positive rate at a false positive rate of ∼ 10−6 for an SNR145

threshold of 6.23, where most astrophysical events are. However, we encourage future studies to146

use sensitive volume to astrophysically motivated distributions as the measure of performance.147

Detecting Astrophysical Candidates in GWTC-3. The testing period we use contains 9148

astrophysical candidate events reported as significant detections in GWTC-3. While we evaluated149

our algorithm’s performance using “timeslides” of this data (see Sec. 4 of Methods), we also150

analyzed the unshifted (or “zero-lag”) data to determine if our algorithm detects these known151

candidates. The results of this analysis are shown in Table 1. We detect all 9 candidates, with 8152

of the 9 candidates detected at a false alarm rate of less than 1 per year, the minimum possible153

value for this analysis. For the final event, our reported false alarm rate, 14 per year, is of a similar154

magnitude to the false alarm rate reported by the GWTC-3 pipelines at 2.8 per year. Additionally,155

during this period, we do not report any non-catalog candidates with a false alarm rate less than 5156

per month.157

Latency and Computational Requirements. Training the neural-network with a single158

NVIDIA 16 GB Tesla V100 GPU takes approximately 43 hours, and once trained, the neural-network159

can continue to be used for months without retraining; see the discussion of algorithm longevity160

in Sec. 2 for details. For inference, we utilize a Triton inference server34 that is hosted on a161

NVIDIA DGX server containing eight 16 GB Tesla V100 GPUs (See Sec. 4 for details on inference162

configuration). Altogether, analyzing the one year of background data and one year of injections163

used in this analysis to create Fig. 2 takes approximately 4 hours, corresponding to a throughput164

of about 500 seconds of data from a two detector network analyzed per second per GPU. This165

corresponds to an order of magnitude improvement in throughput compared with previous work166

by Huerta et al35 and a factor of ∼ 2.5 compared with Chatruvedi et al43. This improvement is167
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Figure 2: Sensitive volume vs FAR for four different mass distributions. Masses are specified in

the source frame. Each mass is drawn from a log-normal distribution with a mean of the value

given above each plot and a width of 0.1. Aframe demonstrates state-of-the-art sensitivity at

higher masses, but loses performance relative to traditional search pipelines at lower masses. The

sensitive volume of the other pipelines was calculated using data from a GWTC-3 data release44.

due to the use of a more efficient neural-network architecture, as well as the IaaS model described168

above.169

With trained neural-network weights in hand, the requirements for online deployment are170

much smaller. A single NVIDIA 24GB A30 GPU is sufficient for real-time inference at an171

inference sampling rate of 2048 Hz, which provides sufficient resolution for coalescence time172

estimation. The total memory required to hold both the neural-network and data is 4.6GB. The173

computational latency of the neural-network is less than 10 milliseconds. In practice, the latency174

of our algorithm is dominated by pre- and post-processing steps that bring the total latency to175
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Figure 3: ROC curves for waveforms in different SNR bins in our testing dataset, described in

Sec. 1. Each bin contains waveforms with SNRs at or above the given value.

approximately 3.1 s. For a detailed accounting of sources of latency within Aframe, see Sec. 4. In176

production, additional latency is incurred uploading events to the GRAvitational-wave Candidate177

Event DataBase (GraceDB) a. This latency is not included in this 3.1 s estimate. In addition,178

a recent study46 used a real-time mock data challenge replay of O3 data to benchmark pipeline179

latencies, including GraceDB processing. Analyzing this data stream, we find a median (90%)180

event reporting latency of 3.9 s (4.3 s), in good agreement with our latency budget. Matched181

filtering pipelines report a median (90%) latency of 12.3 s (41.4 s).182

Discussion. We have implemented a machine-learning based CBC search pipeline that is183

ahttps://gracedb.ligo.org/
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capable of low-latency use in a production setting. Through robust data augmentation techniques184

and extensive work in developing software infrastructure (Sec. 5), our algorithm achieves a sensitivity185

that is competitive with established search pipelines for higher mass BBHs. Work remains to186

improve the algorithm’s performance on lower mass BBH systems. We leave these investigations187

to future work.188

There are a number of extensions we plan to investigate in future work. Our algorithm is189

currently limited to the use of data from exactly two interferometers, and this limits our flexibility.190

In this work we trained our neural-network on data from the two LIGO interferometers, but we191

could benefit from the ability to include Virgo and KAGRA data. This could take the form of a192

four-detector model, or could be a suite of pairwise models that work in unison. Additionally,193

allowing for single-detector analysis would be beneficial for instances where only one detector is194

online. Further, low-latency alerts are less important for BBHs than binary neutron star (BNS)195

and neutron star-black hole (NSBH) mergers, where electromagnetic counterparts are more likely.196

The detection of these mergers with neural-networks is more challenging due to the greater length197

of time these signals spend in the sensitive band of the detector. Still, preliminary explorations198

indicate that our framework can adapt to address this problem.199
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Event m1(M⊙) m2(M⊙) Aframe cWB GstLAL MBTA PyCBC-BBH PyCBC-Broad

GW190512 180714 23.2+5.6

−5.6
12.5+3.5

−2.6
< 0.97 0.88 < 1.0× 10−5 0.038 < 1.1× 10−4 1.1× 10−4

GW190513 205428 36.0+10.6

−9.7
18.3+7.4

−4.7
< 0.97 – 1.3× 10−5 0.11 0.044 19

GW190514 065416 40.9+17.3

−9.3
28.4+10.0

−10.1
14 – 450 – 2.8 –

GW190517 055101 39.2+13.9

−9.2
24.0+7.4

−7.9
< 0.97 0.0065 0.0045 0.11 3.5× 10−4 0.0095

GW190519 153544 65.1+10.8

−11.0
40.8+11.5

−12.7
< 0.97 3.1×10−4 < 1.0× 10−5 7.0×10−5 < 1.1× 10−4 < 1.0× 10−4

GW190521 98.4+33.6

−21.7
57.2+27.1

−30.1
< 0.97 2.0×10−4 0.20 0.042 0.0013 0.44

GW190521 074359 43.4+5.8

−5.5
33.4+5.2

−6.8
< 0.97 1.0×10−4 < 1.0× 10−5 1.0×10−5 < 2.3× 10−5 < 1.8× 10−5

GW190527 092055 35.6+18.7

−8.0
22.2+9.0

−8.7
< 0.97 – 0.23 – 19 –

GW190602 175927 71.8+18.1

−14.6
44.8+15.5

−19.6
< 0.97 0.015 < 1.0× 10−5 3.0×10−4 0.013 0.29

Table 1: Masses in units of M⊙, and false alarm rates in units of inverse years from Aframe, cWB,

GstLAL, MBTA, and PyCBC-BBH for the known events in our testing set. Masses come from

Table VIII of GWTC-2.125, and FARs from Table XV of GWTC-32. As our analysis examined

only one year of background, our minimum FAR is one per year.
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Methods309

1 Data310

Strain. We train and validate our neural-network using open data from the Gravitational Wave311

Open Science Center (GWOSC)47 between times 2019-04-29T13:29:25 and 2019-05-09T13:29:25,312

corresponding to a ten calendar day period at the beginning of the O3 observing run. The strain313

data is resampled to 2048 Hz for better computational efficiency. For each interferometer, we314

query the openly available science mode flag to remove segments with poor data quality. We then315

select segments for which the science mode flag is active for both the Hanford and Livingston316

LIGO interferometers. This amounts to approximately 4.7 days of coincident livetime. We reserve317

the segments that total a minimum of 15,000 seconds at the end of this period for validating the318

neural-network throughout the training process.319

For evaluating the performance reported in Fig. 2, we select data satisfying the above criteria320

between times 2019-05-09T13:29:25 and 2019-06-08T13:29:25, corresponding to a 30 day period321

immediately after the training period. This amounts to approximately 18 days of coincident322

livetime. During evaluation, timeslides of this data are created such that the total desired background323

time is achieved. We emphasize that no data used for evaluating the performance of the neural-network324

was used during training or validation. In addition, we train the neural-network only with data from325

before the testing period. This mimics the data availability scenario for real-time application.326

Waveforms. We use bilby48 to simulate 100,000 eight second long BBH waveforms at327

2048 Hz with the IMRPhenomPv2 approximant49. Out of these, 75,000 waveforms are used to328

train the neural-network, and the remaining 25,000 are reserved for validation. To simulate a329

waveform, a probability distribution is specified on each of the parameters that define a compact330

binary merger, and random samples are drawn from each. The distribution set used in this work is331

based on one used for GWTC-350 during O3 to assess the sensitivity of CBC search pipelines, and332

is described in Table 2. The sampled parameters are used to compute the time-domain strain for333

each polarization, h+ and h×. The sampled component mass values are defined in the source frame,334

so conversion to detector frame quantities is performed before generation. The interferometer335

responses of the intrinsic polarizations are calculated during the training process to allow for336

real-time data augmentations, as described below in Sec. 2.337

The same distributions are used to simulate signals for the testing dataset. Enough waveforms338
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are generated to fill the background timeslides with the waveform coalescence points spaced 24 s339

apart. As the signals are only 8 s long, they do not overlap. During the signal generation process,340

we perform rejection sampling and keep only signals that have an SNR greater than 4. This ensures341

that computation is not wasted on signals we do not expect to detect44. Rejection sampling reduces342

the uncertainty of a sensitive volume estimate for a fixed amount of analyzed injections (see Sec. 3).343

In total, we generate ∼ 45, 000, 000 waveforms. Of these, ∼ 3% percent are used for testing and344

∼ 97% are rejected.345

2 Training346

We apply several data augmentation techniques during the training process with the goal of providing347

robust, high entropy data that encodes physics-based knowledge for discriminating signals from348

noise. Below, we will describe how a training batch is composed, as well as the hyper-parameters349

that control the composition of the batches.350

Noise sampling. Sampled at 2048 Hz, the entire training dataset is unable to fit onto a351

single 16 GB V100 GPU at once. Thus, efficient out-of-memory data-loading is required to fully352

utilize the extent of our strain dataset. To do this, we sample strain windows directly from disk353

during the training procedure. The length of each noise window sampled from disk is 10.5 s.354

The first 8 s is used to estimate the power spectral density (PSD) used for whitening. We use355

Welch’s method to estimate the PSD. The remaining 2.5 s of the window is whitened in the356

frequency-domain, and transformed back to time-domain. Due to whitening filter settle-in, 0.5 s357

of data is corrupted on both ends of the window and removed. Thus, only 1.5 s of data is actually358

analyzed by the neural-network. The PSD estimation, filter construction, and whitening are all359

done with PyTorch51 modules to enable GPU-accelerated computation20. We use a training360

batch size of 384, which was chosen such that we fully utilize the GPU memory available. Our361

out-of-memory data-loading is sufficiently fast to support these batch sizes without bottle-necking362

the pre-processing or neural-network modules.363

Noise instances are sampled independently in time from each interferometer. Thus, a noise364

instance from one interferometer can be paired with many different instances from the other365

interferometer. This combinatorially increases the amount of unique two-detector noise instances366

available for optimizing the network. Next, each noise instance has probability pinvert to be inverted367

(h(t) → −h(t)) and, independently, probability preverse to be reversed (h(t) → h(−t))53. Again, the368
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Parameter Description Prior Limits Units

m1 Mass of primary m−2.35
1 (5, 100) M⊙

m2 Mass of secondary m2 (5,m1) M⊙

z Redshift Comoving (0, 2) -

ψ Polarization angle Uniform (0, π) rad.

a1,2 Dimensionless

spin magnitude

Uniform (0, 0.998) -

θ1,2 Spin tilt Sine (0, π) rad.

ϕ12 Relative spin

azimuthal angle

Uniform (0, 2π) rad.

ϕJL Spin phase angle Uniform (0, 2π) rad.

ϕ Orbital phase Uniform (0, 2π) rad.

RA Right ascension (0, 2π) rad.

Dec Declination Cosine (−π/2, π/2) rad.

θJN Inclination angle Sine (0, π) rad.

Table 2: Priors on parameters used to generate waveforms for both the training and testing sets.

The prior is derived from that used in GWTC-3 to assess search pipelines. The component mass

distributions are defined in the source frame. ’Comoving’ refers to uniform in comoving volume.

Parameter Description Prior Limits Best Value

lrmax Maximum learning rate Log Uniform (10−4.5, 10−2) 5.8×10−4

Nramp Number of epochs over which learning rate increases Uniform (2, 50) 23

psignal Probability of batch element containing a signal Uniform (0.2, 0.6) 0.277

pswap Probability of swap augmentation Uniform (0, 0.15) 0.014

pmute Probability of mute augmentation Uniform (0, 0.3) 0.055

SNR steps Number of batches over which SNR scheduler decays Uniform (1, 2500) 989

Table 3: Priors and descriptions of hyperparameters searched over. The best value corresponds

to the neural-network from the hyperparameter search that produced the highest validation score

across all epochs. A neural-network trained with these hyperparameters was used to evaluate

results reported in Fig. 2. Details on hyperparameters can be found in Sec. 2
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inversion and reversal augmentations increase the amount of unique noise instances in our training369

data. For transient noise, these augmentations increase the variety of morphologies provided during370

training, allowing for better generalization to unseen testing data. We fix pinvert and preverse to 0.5.371

Signal Injection. Once a batch of noise instances is generated, simulated BBH signals372

are added into each 2.5 s unwhitened window with probability psignal = 0.277 and labeled as373

signals; this signal probability is one of six hyperparameters that we search over (see Table 3374

and the discussion of hyperparameters below). The procedure for injecting signals is as follows:375

first, intrinsic polarization time-series are randomly sampled from the training waveform bank.376

Next, random extrinsic parameters (right ascension, declination, polarization angle, and SNR) are377

sampled. The first three of these are sampled from the priors described in Table 2; We will discuss378

the method of SNR sampling in the following paragraph. Intrinsic polarization time-series are379

then projected onto the interferometers and re-scaled to the sampled SNR. Randomly sampling380

extrinsic parameters at training time allows each intrinsic time-series to be injected from a variety381

of sky localizations and distances throughout the training procedure. We found that standard CPU382

implementations of projecting intrinsic polarizations onto interferometers created bottlenecks that383

severely limited utilization of GPU resources. We eliminated this bottleneck by developing a384

PyTorch51 implementation so that projection can be accelerated using GPUs by a factor of ∼ 200.385

Finally, the interferometer responses are added into the noise instances. The coalescence time of386

the merger is randomly placed so that it falls at least 0.25 s from either edge of the 1.5 s whitened387

noise instance. We enforce this padding because we found that having the coalescence point too388

close to the left edge of the window makes it more difficult for the neural-network to learn, since389

much of the signal SNR would lie outside the window. The random placement of the coalescence390

time encodes time translational invariance so that the neural-network can identify signals with the391

coalescence time at different locations throughout the window.392

Curriculum Learning. Curriculum learning is a technique for training machine learning393

models in which initially, easy to learn samples are provided as training data, and progressively394

harder samples are introduced over time. One way to apply this in the context of GW detection is395

to initially provide high SNR signals and gradually introduce lower SNR signals20. This allows the396

neural-network to quickly arrive at a minima of its parameter space before trying to optimize for397

the more realistic task. We begin with an SNR distribution that follows a power law, p(SNR) ∼398

(SNR)−3, with a minimum of SNRmin = 12 and a maximum of SNRmax = 100. The form of this399

distribution was chosen to roughly match the SNR distribution of of our astrophysically motivated400
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prior. Each time a new training batch is constructed, the minimum SNR bound of the distribution401

is decreased until we reach the ultimate lower bound of 4. This decrease happens uniformly over402

989 batches, a value that was reached through a hyperparameter search.403

Glitch Mitigation. Non-Gaussian noise transients, known as “glitches,” can often mimic404

BBH signals and lead to high-significance false alarms. We implement two types of augmentations405

we call waveform muting and swapping to mitigate the impact of transient glitches. These augmentations406

respectively encode the concepts of coincidence and coherence that true astrophysical signals are407

expected to exhibit. The values of the parameters controlling these augmentations were determined408

by hyperparameter search; see below for more details.409

Muting: For a fraction pmute = 0.055 of the training batch, we inject a BBH signal into only410

one of the interferometers and label these samples as noise. This teaches the neural-network that it411

is not enough for a BBH-like signal to be present in just one interferometer: coincidence between412

interferometers is a requirement for true astrophysical signals.413

Swapping: For an independent fraction of the training batch, pswap = 0.014, we swap one414

of the interferometer responses with an interferometer response from different signal, and label415

these samples as noise. Thus, these windows will contain BBH waveforms with different intrinsic416

parameters in each interferometer. This motivates the neural-network to learn the concept of417

coherence: the time-frequency evolution of the signal must be identical in both interferometers.418

Algorithm Longevity. Noise in gravitational wave interferometers is non-stationary. Therefore,419

the timescale over which a single trained neural-network will maintain its originally measured420

performance needs to be evaluated. Determining this timescale helps inform the cadence at which421

retraining is needed, if at all. To test the longevity of our algorithm, we construct several testing422

datasets at various intervals across O3. For each interval, we analyze the testing dataset with a423

neural-network trained using the first 10 days of O3 data. This is the same neural-network used to424

produce the results in Fig. 2. To separate the sensitivity of the neural-network from the sensitivity425

of the detectors, we do not measure sensitive volume, but instead look at the fraction of events426

with SNR > 8 that are detected at different FARs. This metric takes into account the variation427

in noise level across different time periods, though it does not account for all aspects of detector428

performance, such as the rate or morphology of glitches. At a FAR of 1 event per 2 months, a429

threshold comparable to the 1 event per 5 months used for releasing significant public alerts by430
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the IGWNb, we see in Fig 4 that the fractional detection rate of the original neural-network does431

not decay with time. We note that the most significant background event across all weeks is found432

during week 2, corresponding to the sharp drop in detection fraction at a FAR of 1 per 2 months.433

Though there is some fluctuation from week to week, a single neural-network trained on a week’s434

worth of data at the beginning of the observing run maintains sensitivity over the duration of the435

run.436
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Figure 4: The fraction of SNR > 8 events detected at different false alarm rates during various

weeks across a period of time during O3, beginning May 9th, 2019 and ending March 21st, 2020.

Errors on detection fraction estimates are smaller than the plotted points.

Validation. We construct our validation procedure with the goal of establishing a strong437

correlation between validation and test metrics. This allows us to confidently pick the best performing438

neural-network during a hyperparameter search, as well as during individual training runs. To439

accomplish this, our validation procedure is designed to mimic the testing procedure as closely as440

possible. We reserve 15,000 seconds of strain data from immediately after the training period and441

25,000 waveforms exclusively for neural-network validation during training. This data is not used442

at all for training the neural-network. This temporal choice of training and validation split mimics443

bhttps://emfollow.docs.ligo.org/userguide/analysis/
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the real-time production setting, where a deployed neural-network is only trained on past data.444

To construct our validation set, we first create timeslides of the background data until at least445

16 hours of livetime is accumulated. Similarly to training, this data is batched into 10.5 s windows,446

with the first 8 s used for whitening the final 2.5 s of each window. As with the training data,447

0.5 s of data is cropped from each edge of the window after whitening. Next, we create a dataset448

of injections by adding waveforms from the validation waveform dataset into the background449

windows. We set a minimum detector-network SNR threshold of 4 for validation signals. Signals450

that are quieter are re-scaled to the SNR 4 threshold. The SNR is computed with respect to the451

PSD calculated from the first 8 s of the window. This rescaling procedure mimics the SNR-based452

rejection sampling performed for the testing dataset. We create 5 unique injection sets that have453

the coalescence point of each waveform at 0.25, 0.5, 0.75, 1.0, and 1.25 s within each whitened454

window. This ensures the validation metric covers a wider variety of scenarios.455

The neural-network outputs a prediction for each window in the background and injection456

datasets. We use these predictions to calculate the area under the ROC curve (AUROC) up to a false457

positive rate (FPR) of 10−3, which is the final validation metric. We make this cut on the AUROC458

so that we are optimizing performance in the regime of low FARs. After the neural-network459

training has converged, the weights corresponding to the epoch with the highest validation score460

are used for testing.461

Hyperparameter Search. The hyperparameters of our algorithm are optimized via a462

random search54. It is infeasible to search over all possible hyperparameters, so we selected those463

that we a-priori expect to have the greatest impact on the neural-network optimization process.464

These were the neural-network’s maximum learning rate (lrmax), the number of epochs over which465

the learning rate “ramps up” (Nramp) to lrmax , psignal, pmute, pswap, and the number of steps over466

which SNR curriculum learning was performed. The priors on each of these parameters can467

be found in Table 3. 30 combinations of these parameters were randomly sampled and used to468

train a neural-network. Of these, the neural-network that reported the highest validation score was469

selected as the neural-network used for testing. The hyperparameters used to train this neural-network470

are reported in Table 3.471
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3 Sensitive Volume472

A key metric in understanding a search algorithm’s performance is the sensitive volume, which is473

a measure of the region of space in which a pipeline is expected to detect merging binaries. The474

sensitive volume as a function of the FAR is defined by475

V (F) =

∫

dx dθ ϵ(F ;x, θ)ϕ(x, θ) (1)

where ϕ is the distribution of events over spatial coordinates x and binary system parameters476

θ, and ϵ is the detection efficiency of the pipeline at a false alarm rate F55. Generally, this477

quantity is estimated using Monte-Carlo integration by drawing waveforms from a population478

model, injecting them into a background, and counting how many produce triggers below a given479

false alarm rate threshold. If the samples are drawn from within the redshifted volume56 V0, with480

V0 =

∫ zmax

zmin

dz
dVc

dz

1

1 + z
(2)

where dVc/dz is the differential comoving volume, then the sensitive volume is approximately481

V (F) ≈ V0
N(F)

Ndraw

(3)

where N(F) is the number of signals detected at a FAR less than F and Ndraw is the number of482

injected events.483

It is often desired to quantify the sensitivity of an algorithm to different populations. For484

example, an algorithm’s sensitivity may vary with different source masses. Through the technique485

of importance sampling, it is possible to use one injection set from a broad population to calculate486

the sensitive volume for several populations. Each injection is weighted by the ratio of the probability487

of having been drawn from the injected distribution to that of the population distribution of interest57:488

489

Vpop(F) ≈
V0

Ninj

N(F)
∑

i=1

ppop(θi)

pinj(θi)
(4)

The Monte-Carlo uncertainty on this estimation is58
490

(δVpop)
2 =

V 2
0

N2
inj

N(F)
∑

i=1

(

ppop(θi)

pinj(θi)

)2

−
V 2

pop

Ninj

(5)
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The SNR-based rejection performed during the generation of test set waveforms is done to improve491

this uncertainty. Waveforms that are sampled but have an SNR less than 4 are not injected;492

however, they still count towards Ndraw. The cut is placed such that any waveforms below the493

SNR cutoff are not expected to be recovered at any reasonable FAR, and so would not contribute494

to the sensitive volume: whether injected or not, their weight would be zero. This procedure495

allows us to effectively draw many times more samples than are actually injected, greatly reducing496

the uncertainty on the sensitive volume. For this analysis, we re-weight to the same population497

distributions used in the sensitive volume analysis conducted in GWTC-32, log-normal distributions498

about central masses of interest with widths of 0.1. In addition, we enforce time difference of499

no more than 0.25 s between the recovered and injected coalescence times. This time difference500

corresponds to the resolution available at an inference sampling rate of 4 Hz. This time resolution501

can be reduced by increasing the inference sampling rate.502

4 Inference503

Our inference pipeline is an ensemble of three models: a snapshotter33, a whitener, and the504

neural-network itself. Clients send streaming updates of strain data to a snapshotter. The snapshotter505

sends the latest state to the whitening module. Finally, batches of whitened data are constructed506

and analyzed by Aframe, producing predictions. The length of the state maintained by the507

snapshotter is determined by the length of the timeseries used to estimate the PSD, the batch size,508

and the inference sampling rate. For our analysis, the whitening module uses the first 64 seconds509

of the snapshotter state to estimate the PSD and build a whitening filter. The remaining data is510

whitened, and half a second is cropped from both edges to remove the effects of filter settle-in.511

The whitened data is then unfolded into a batch of overlapping windows. We use a batch size of512

128 windows, and, as an inference sampling rate of 4 Hz was used, each 1.5 s window overlaps its513

neighbors by 1.25 s. This batch of windows is passed to the neural-network for prediction. Lastly,514

neural-network predictions are aggregated client-side and post-processed via the integration and515

clustering described above.516

For an online analysis, the pre- and post-processing steps incur a total latency of approximately517

3.1 s, see Table 4 for a summary. The most significant source of latency in the online analysis518

comes from waiting for data to exist such that we can crop the edges after resampling and whitening.519

All other computational steps (data reading/writing, data transfer to/from GPU, whitening, event520

identification, etc.) take less than 0.4 seconds combined, while the inference step itself takes less521
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than 10 milliseconds. An additional source of latency is the means by which live data is made522

available during an observation run. New data is written out in 1 s segments. Thus, depending on523

where the coalescence point of an event falls within one of these segments, it may be necessary to524

wait for a full additional second for a file to be written before event identification can occur. This525

factor is not included in Table 4, nor is the time it takes for data to become available, or the time526

taken to upload a candidate event to GraceDB, as none of these processes is within our control.527

A critical parameter is the inference sampling rate. The inference sampling rate controls528

the stride between consecutive windows seen by the neural-network. Too small of an inference529

sampling rate, and astrophysical events may be skipped over. Too large, and computing resources530

are wasted on redundant inferences. We examined the impact of the inference sampling rate on531

our sensitivity by repeating trials of our inference procedure at inference sampling rates of 1, 2, 4,532

8, 16 and 64 Hz. For this analysis, we accumulated two months worth of timeslide data for each533

trial. Fig. 5 shows a subset of the results of this analysis. Algorithms mostly perform within their534

statistical error. However, at low FARs the 1 Hz analysis has a small performance dip in the 35-35535

mass bin. Because analyses performed at 4 Hz require 16 times fewer inference requests than536

64 Hz without sacrificing performance, we use an inference sampling rate of 4 Hz for the analyses537

in this paper.538

5 Data and Software Availability539

All code used to produce results in this work is publicly available. The Aframe project repository540

can be found at https://github.com/ML4GW/aframe.541

In addition, two open source libraries, ml4gw c and hermesd were developed to support this542

work. The ml4gw library contains PyTorch utilities for efficient on-GPU data-loading, whitening,543

PSD estimation and other data processing techniques common to GW analysis. The hermes544

library contains utilities for deploying models in the IaaS paradigm via Triton Inference Servers.545

chttps://github.com/ML4GW/ml4gw
dhttps://github.com/ML4GW/hermes
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Latency Source Latency (s)

Coalescence point exiting training kernel padding 0.25

Cropping corruption from whitening filter 0.50

Cropping corruption from resampling to 2048 Hz 1.0

Integrating neural-network output 1.0

Reading data and transferring to GPU 1.03+0.06
−0.05 × 10−2

Estimating PSD and whitening 8.77+1.35
−0.31 × 10−4

Performing inference on whitened data 9.63+0.38
−0.32 × 10−3

Integrating and aggregating neural-network output 3.42+0.02
−0.01 × 10−1

Identifying candidate events in integrated output 1.40+0.62
−0.43 × 10−4

Total 3.1140.0060.001

Table 4: Sources of latency for an Aframe online analysis. For the items listed in the upper section

this table, the latency does not come from performing the computation, but rather from needing to

wait for the data to exist before the action can occur. Items in the lower section are computational

steps, and we report the median timing of 9191 trials. The upper and lower error bars represent the

95th and 5th percentile, respectively. All measurements were taken on a dedicated NVIDIA A30

GPU.
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Figure 5: Sensitivity comparisons for the same neural-network run over the same data at different

inference rates. For the purposes of clarity, only a subset of the tested rates are shown here. Except

for the 1Hz inference, all results are within error of each other for all mass combinations and

FARs, including for rates not shown in this plot.
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42. Schäfer, M. B. et al. First machine learning gravitational-wave search mock data challenge.570

Phys. Rev. D 107, 023021 (2023). URL https://link.aps.org/doi/10.1103/571

PhysRevD.107.023021.572

27



43. Chaturvedi, P., Khan, A., Tian, M., Huerta, E. A. & Zheng, H. Inference-optimized ai and573

high performance computing for gravitational wave detection at scale. Frontiers in Artificial574

Intelligence 5 (2022). URL http://dx.doi.org/10.3389/frai.2022.828672.575

44. LIGO Scientific Collaboration, Virgo Collaboration & KAGRA Collaboration. GWTC-3:576

Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the577

Third Observing Run — O3 search sensitivity estimates (2023). URL https://doi.org/578

10.5281/zenodo.7890437.579

45. The LIGO Scientific Collaboration and the Virgo Collaboration et al. Gwtc-2.1: Deep580

extended catalog of compact binary coalescences observed by ligo and virgo during the first581

half of the third observing run (2022). 2108.01045.582

46. Chaudhary, S. S. et al. Low-latency gravitational wave alert products and their performance583

in anticipation of the fourth ligo-virgo-kagra observing run (2023). 2308.04545.584

47. The LIGO Scientific Collaboration and the Virgo Collaboration and the KAGRA585

Collaboration et al. Open data from the third observing run of ligo, virgo, kagra, and geo.586

The Astrophysical Journal Supplement Series 267, 29 (2023). URL https://dx.doi.587

org/10.3847/1538-4365/acdc9f.588

48. Ashton, G. et al. Bilby: A user-friendly bayesian inference library for gravitational-wave589

astronomy. The Astrophysical Journal Supplement Series 241, 27 (2019). URL https:590

//dx.doi.org/10.3847/1538-4365/ab06fc.591

49. Hannam, M. et al. Simple model of complete precessing black-hole-binary gravitational592

waveforms. Phys. Rev. Lett. 113, 151101 (2014). URL https://link.aps.org/doi/593

10.1103/PhysRevLett.113.151101.594

50. Abbott, R. et al. Population of merging compact binaries inferred using gravitational waves595

through gwtc-3. Phys. Rev. X 13, 011048 (2023). URL https://link.aps.org/doi/596

10.1103/PhysRevX.13.011048.597

51. Paszke, A. et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library598

(Curran Associates Inc., Red Hook, NY, USA, 2019).599

28



52. Nousi, P. et al. Deep residual networks for gravitational wave detection. Phys. Rev. D 108,600

024022 (2023). URL https://link.aps.org/doi/10.1103/PhysRevD.108.601

024022.602

53. Bini, S., Vedovato, G., Drago, M., Salemi, F. & Prodi, G. A. An autoencoder neural network603

integrated into gravitational-wave burst searches to improve the rejection of noise transients.604

Classical and Quantum Gravity 40, 135008 (2023). URL https://doi.org/10.1088%605

2F1361-6382%2Facd981.606

54. Bergstra, J. & Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn.607

Res. 13, 281–305 (2012).608
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