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The promise of multi-messenger astronomy relies on the rapid detection of gravitational
waves at very low latencies (O(15s)) in order to maximize the amount of time available for
follow-up observations. In recent years, neural-networks have demonstrated robust non-linear
modeling capabilities and millisecond-scale inference at a comparatively small computational
footprint, making them an attractive family of algorithms in this context. However, integration
of these algorithms into the gravitational-wave astrophysics research ecosystem has proven
non-trivial. Here, we present the first fully machine learning-based pipeline for the detection
of gravitational waves from compact binary coalescences (CBCs) running in low-latency. We
demonstrate this pipeline to have a fraction of the latency of traditional matched filtering
search pipelines while achieving state-of-the-art sensitivity to higher-mass stellar binary black

holes.

Gravitational-wave astronomy has developed rapidly since the first direct detection of gravitational

waves from a binary black hole merger in 2015!, with new detections now a common occurrence?.

With the fourth observing run (O4) of the International Gravitational-wave Network (IGWN),
consisting of LIGO?, Virgo*, and KAGRA? already underway, and with future ground and space
based detectors planned for various points in the next decade®®, ever more frequent discoveries of

gravitational waves will enable follow-up observation of events across other cosmic messengers

“These authors contributed equally to this work
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such as electromagnetic radiation and astrophysical neutrinos®~'#. The insights we gain in this era
of multi-messenger astrophysics will directly correlate with the volume and diversity of data we

are able to collect.

While machine learning (ML) is ubiquitous in some areas of physics'®, it has only recently
approached a stage of maturity in the gravitational-wave community. To date, there have been a
number of machine learning models proposed for the detection of compact binary coalescences
(CBCs); e.g.,'2%; but there are none currently running in O4?! (though, ML-based unmodeled
gravitational-wave searches have seen production usage?®?). This is both a product of well-known
infrastructure hurdles separating the development and deployment of machine learning models>®,
as well as a lack of standardized, astrophysically meaningful probes of the sensitivity of these

models in the face of non-stationary and transient background noise.

The most well-modeled and frequently observed gravitational-wave events to date are the
mergers of binary black hole (BBH) systems*?*2 Their comparatively high number of confirmed
detections has given us reasonable models of their population statistics, allowing for astrophysically
meaningful measures of search sensitivity. BBH mergers also benefit from a highly localized-in-time
signal-to-noise ratio (SNR) profile relative to binary neutron star (BNS) mergers, which are in the
sensitive band of the detectors much longer. Studying the ability of neural-networks to detect BBH
mergers, and in particular what real time use in the IGWN detectors looks like in this context,
represents an important first step towards developing a more thorough understanding of how, and
whether, these algorithms can be applied to more challenging signals such as BNSs, and what tools

and infrastructure would be required to do so.

Here, we present Aframe, a flexible pipeline for detection of BBH mergers using deep
learning. The implementation presented here uses a 1D convolutional neural-network. Convolutional
neural-networks have previously been shown to have potential for gravitational wave detection®®,
and we use this architecture, along with aggressive data augmentation techniques, to achieve a
sensitivity competitive with matched filtering CBC search pipelines while requiring a significantly
lower latency. More broadly, Aframe encompasses a suite of tools for quickly implementing,
testing, and deploying new ideas at scale in order to more confidently realize the potential of

machine learning in service to gravitational wave astronomy.
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Our neural-network architecture modifies a standard ResNet54?7, which maps fixed length
time-series of gravitational wave strain from two interferometers (here, the Hanford and Livingston
LIGO interferometers) to a scalar detection statistic indicating whether a signal is present in
the input. Critically, we replace 2D with 1D convolutions to accommodate time-series input.
In addition, we replace standard Batch Normalization layers (BN)*®, with Group Normalization
(GN) layers?®. While BN layers fit parameters to statistics calculated along the batch dimension,
GN layers are fit to statistics calculated from groups of channels. This choice was motivated by
differences in the statistical properties of batches during training and inference. During training,
there are significantly more signals in each batch than during inference, where most of the batch
consists of noise. Thus, during training, BN layers will learn spurious statistical properties that are
not present at inference time. GN layers mitigate this problem by learning statistical properties of
individual channels. We found that using GN layers improves the agreement between validation
and test time metrics, as well as overall testing performance. Good agreement between validation
and test metrics is essential for ensuring the best neural-network is being selected for deployment.
The neural-network is trained by minimizing a binary cross entropy loss function with an Adam*

optimizer. We use a one cycle learning rate scheduler with cosine annealing®'.

Analyzing data with Aframe involves loading and preprocessing timeseries data, breaking
it up into short time segments, then passing these segments through the neural-network. The
throughput associated with each of these steps can vary drastically, as can the hardware and
software necessary to accelerate them. In order to optimize the total throughput of this system,
we adopt an inference-as-a-service (IaaS) computing model in which neural-network inference is
handled by a dedicated service, to which client applications can send inference requests remotely.
Each step in our pipeline is then implemented and scaled independently to most efficiently leverage
a fixed pool of heterogeneous computing resources. This model has been shown to be effective in

33 is used to cache

optimizing ML inference in GW astronomy*?, provided that “snapshotting
overlapping input data on the server side to avoid redundant data transfer. We adopt this paradigm
using an off-the-shelf IaaS implementation, Triton Inference Server®*, and use the ML inference
framework TensorRT to accelerate the neural-network inference step. The ability to scale and
distribute a workload is an important part of any search pipeline, and the authors are aware of
only one other ML-based CBC detection algorithm that has focused on scalability to arbitrary
resources®. In the sections below, we compare both our sensitivity and our throughput to this

work.



o1 Inference is performed at a rate of 4 Hz (not to be confused with the neural-network throughput,
o2 see the discussion of computational requirements below). In other words, we pass windows of
s data to our neural-network for inference such that each window is shifted by 0.25 s. This inference
s« sampling rate reduces the overall compute load without sacrificing search sensitivity (see Sec. 4
os of Methods). These neural-network predictions are then integrated over time using a 1s top hat
o6 filter (see Fig. 1). Because the neural-network is trained to encode time translation invariance (see
o7 Sec. 2 of Methods), we expect to see a consistently high neural-network responses when analyzing
es astrophysical signals. Thus, integration provides a mechanism to promote consistently high outputs
9 while rejecting short transients that may correspond to non-astrophysical sources. Finally, the
100 Integrated time-series of neural-network predictions is clustered to avoid yielding multiple triggers
101 for the same event. The maximum integrated value over an 8 s window is taken as the detection

102 statistic corresponding to a candidate event.

Example Network Output for m; = 35 My, me = 35 M, Injection
T
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Figure 1: Example neural-network prediction and integrated neural-network prediction for a m; =
35Ms, my = 35M, signal injection. The coalescence time is plotted as the vertical dashed black
line. The brief gap between coalescence time and beginning of neural-network activation is due to
the fact that we do not inject the coalescence time in the first or last 0.25 s of the window during

training.

103 To demonstrate Aframe’s readiness for real-time deployment, we compare its sensitivity
104 to search pipelines used in production by IGWN. For our pipeline, estimating sensitive volume
105 requires analyzing simulated GW events “injected” into strain data, and analyzing background

106 livetime produced by “timeslides.” Performing timeslides is a standard way of empirically estimating

4



107 the background (i.e. the distribution of noise events) for a search pipeline which analyzes a network
10s of detectors. In brief, the strain from one detector is shifted in time by an amount greater than
109 the gravitational wave travel time between the detectors (~ 10 ms for the two LIGO detectors).
1o Therefore, any reported triggers could not have been caused by an astrophysical event. In this
11 analysis, the Hanford strain data is held fixed and the Livingston data is shifted in 1 s increments
12 until the required background livetime is accumulated. Then, a false alarm rate (FAR) can be
113 assigned to injected events by dividing the number of background events with detection statistic
14 greater than the event of interest, with livetime analyzed. All GW detections reported in the third

115 Gravitational-Wave Transient Catalog (GWTC-3)? were excised from the background.

116 Comparison with existing searches. A useful metric to measure the sensitivity of search
17 algorithms is the sensitive volume. Sensitive volume measures the volume over which some
11 astrophysical population of sources distributed uniformly in co-moving volume is detectable at
119 a given false alarm rate (FAR). Sensitive volume was used to measure the sensitivity of search
120 pipelines in GWTC-3. This provides an astrophysically meaningful benchmark to compare the
121 performance of Aframe to the performance of traditional searches. More details on the sensitive
122 volume calculation can be found in Sec. 3 of Methods. Fig. 2 compares Aframe’s sensitive
123 volume as a function of FAR with the sensitivity of the MBTA?’, PyCBC?*®, GstLAL*-*" and
12 ¢WB* searches as reported in GWTC-32. We note that the template banks used by MBTA,
125 GstLAL, and PyCBC-Broad in the GWTC-3 analysis contain waveforms outside of the 5-100 M,
126 range searched by Aframe. In principle, these searches could increase their sensitivities in the
127 5—-100 M, range by removing these templates. This is evident when comparing the performance
128 of PyCBC-BBH and PyCBC-Broad in Fig. 2. For the future, we encourage production level LVK
120 CBC pipelines to publish BBH-specific sensitivities against which developing ML pipelines can

130 benchmark.

131 In the 35-35 M, mass distribution, Af rame has a larger sensitive volume than the GWTC-3
122 configurations of all searches, and is comparable in the 35-20 M mass bin, for the FARs considered
13s 1n this analysis. As source masses decrease further, so does Aframe’s performance relative to
13« existing pipelines. This is in part due to our neural-network architectures inability to model the
135 lower frequency features of these low mass signals. While the architecture implements global
136 pooling layers, the convolution layers use a kernel length of 3 samples. Improvements to neural-network

137 architecture design, such as utilizing dilated convolutions that can better model these lower frequency



138 features will help to improve performance at these mass ranges.

139 Previous studies of ML-based gravitational wave detection algorithms tend not to use sensitive
140 volume as a metric, preferring instead to use traditional ML metrics such as receiver operating
11 characteristic (ROC) curves (an exception is*?, which uses a non-astrophysical prior and a Euclidean
122 volume distribution). This makes direct comparison difficult, as these metrics depend on the
13 parameter distributions of tested events. For the sake of completeness, in Fig. 3 we present our

14 own ROC curve and find that, compared to previous works®>*3

, we achieve nearly three orders
s of magnitude of improvement in true positive rate at a false positive rate of ~ 107 for an SNR
1as threshold of 6.23, where most astrophysical events are. However, we encourage future studies to

147 use sensitive volume to astrophysically motivated distributions as the measure of performance.

148 Detecting Astrophysical Candidates in GWTC-3. The testing period we use contains 9
129 astrophysical candidate events reported as significant detections in GWTC-3. While we evaluated
150 our algorithm’s performance using “timeslides” of this data (see Sec. 4 of Methods), we also
151 analyzed the unshifted (or “zero-lag”) data to determine if our algorithm detects these known
12 candidates. The results of this analysis are shown in Table 1. We detect all 9 candidates, with 8
153 of the 9 candidates detected at a false alarm rate of less than 1 per year, the minimum possible
15« value for this analysis. For the final event, our reported false alarm rate, 14 per year, is of a similar
155 magnitude to the false alarm rate reported by the GWTC-3 pipelines at 2.8 per year. Additionally,
156 during this period, we do not report any non-catalog candidates with a false alarm rate less than 5

157 per month.

158 Latency and Computational Requirements. Training the neural-network with a single
159 NVIDIA 16 GB Tesla V100 GPU takes approximately 43 hours, and once trained, the neural-network
160 can continue to be used for months without retraining; see the discussion of algorithm longevity
161 in Sec. 2 for details. For inference, we utilize a Triton inference server’* that is hosted on a
12 NVIDIA DGX server containing eight 16 GB Tesla V100 GPUs (See Sec. 4 for details on inference
1es configuration). Altogether, analyzing the one year of background data and one year of injections
16« used in this analysis to create Fig. 2 takes approximately 4 hours, corresponding to a throughput
165 of about 500 seconds of data from a two detector network analyzed per second per GPU. This
166 corresponds to an order of magnitude improvement in throughput compared with previous work

167 by Huerta et al®> and a factor of ~ 2.5 compared with Chatruvedi et al**. This improvement is
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Figure 2: Sensitive volume vs FAR for four different mass distributions. Masses are specified in
the source frame. Each mass is drawn from a log-normal distribution with a mean of the value
given above each plot and a width of 0.1. Aframe demonstrates state-of-the-art sensitivity at
higher masses, but loses performance relative to traditional search pipelines at lower masses. The

sensitive volume of the other pipelines was calculated using data from a GWTC-3 data release**.

due to the use of a more efficient neural-network architecture, as well as the IaaS model described

above.

With trained neural-network weights in hand, the requirements for online deployment are
much smaller. A single NVIDIA 24 GB A30 GPU is sufficient for real-time inference at an
inference sampling rate of 2048 Hz, which provides sufficient resolution for coalescence time
estimation. The total memory required to hold both the neural-network and data is 4.6 GB. The
computational latency of the neural-network is less than 10 milliseconds. In practice, the latency

of our algorithm is dominated by pre- and post-processing steps that bring the total latency to
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Figure 3: ROC curves for waveforms in different SNR bins in our testing dataset, described in

Sec. 1. Each bin contains waveforms with SNRs at or above the given value.

approximately 3.1 s. For a detailed accounting of sources of latency within Af rame, see Sec. 4. In
production, additional latency is incurred uploading events to the GR Avitational-wave Candidate
Event DataBase (GraceDB) “. This latency is not included in this 3.1 s estimate. In addition,
a recent study*® used a real-time mock data challenge replay of O3 data to benchmark pipeline
latencies, including GraceDB processing. Analyzing this data stream, we find a median (90%)
event reporting latency of 3.9s (4.3s), in good agreement with our latency budget. Matched

filtering pipelines report a median (90%) latency of 12.3 s (41.4s).

Discussion. We have implemented a machine-learning based CBC search pipeline that is

“https://gracedb.ligo.org/
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capable of low-latency use in a production setting. Through robust data augmentation techniques
and extensive work in developing software infrastructure (Sec. 5), our algorithm achieves a sensitivity
that is competitive with established search pipelines for higher mass BBHs. Work remains to
improve the algorithm’s performance on lower mass BBH systems. We leave these investigations

to future work.

There are a number of extensions we plan to investigate in future work. Our algorithm is
currently limited to the use of data from exactly two interferometers, and this limits our flexibility.
In this work we trained our neural-network on data from the two LIGO interferometers, but we
could benefit from the ability to include Virgo and KAGRA data. This could take the form of a
four-detector model, or could be a suite of pairwise models that work in unison. Additionally,
allowing for single-detector analysis would be beneficial for instances where only one detector is
online. Further, low-latency alerts are less important for BBHs than binary neutron star (BNS)
and neutron star-black hole (NSBH) mergers, where electromagnetic counterparts are more likely.
The detection of these mergers with neural-networks is more challenging due to the greater length
of time these signals spend in the sensitive band of the detector. Still, preliminary explorations

indicate that our framework can adapt to address this problem.



Event mi1(Mg) ma(Mg) Aframe c¢WB GstLAL MBTA PyCBC-BBH  PyCBC-Broad

GW190512_180714  23.273:0 125735 <0.97 088 <1.0x107% 0.038 <11x107* 11x107*
GW190513.205428 36.073%6 183771 <097 - 1.3x1075%  0.11 0.044 19
GW190514.065416 4097073 2847100 14 - 450 - 2.8 -
GW190517.055101  39.272%° 24.0775 <097 0.0065 0.0045 0.11 3.5x 107 0.0095
GW190519_153544  65.17108  40.87135 <097 3.1x107*% <1.0x107° 7.0x107° <1.1x10"* <1.0x10*
GW190521 98.4733-0 5727271 <097 2.0x107% 0.20 0.042 0.0013 0.44
GW190521.074359  43.473% 334732 <097 1.0x107* <1.0x107° 1.0x107° <23x107° <1.8x107°
GW190527.092055  35.67357 222790 <097 - 0.23 - 19 -
GW190602_175927 71.8T1%% 44.87155 < 0.97 0.015 <10x107% 3.0x107* 0.013 0.29

Table 1: Masses in units of M, and false alarm rates in units of inverse years from Af rame, cWB,
GstLAL, MBTA, and PyCBC-BBH for the known events in our testing set. Masses come from
Table VIII of GWTC-2.1%, and FARs from Table XV of GWTC-32. As our analysis examined

only one year of background, our minimum FAR is one per year.
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x Vlethods
s0 1 Data

ait Strain. We train and validate our neural-network using open data from the Gravitational Wave
sz Open Science Center (GWOSC)* between times 2019-04-29T13:29:25 and 2019-05-09T13:29:25,
a1z corresponding to a ten calendar day period at the beginning of the O3 observing run. The strain
a4 data is resampled to 2048 Hz for better computational efficiency. For each interferometer, we
a5 query the openly available science mode flag to remove segments with poor data quality. We then
sie  select segments for which the science mode flag is active for both the Hanford and Livingston
a7 LIGO interferometers. This amounts to approximately 4.7 days of coincident livetime. We reserve
ais the segments that total a minimum of 15,000 seconds at the end of this period for validating the

a9 neural-network throughout the training process.

320 For evaluating the performance reported in Fig. 2, we select data satisfying the above criteria

a2t between times 2019-05-09T13:29:25 and 2019-06-08T13:29:25, corresponding to a 30 day period

s22 immediately after the training period. This amounts to approximately 18 days of coincident

223 livetime. During evaluation, timeslides of this data are created such that the total desired background
224 time is achieved. We emphasize that no data used for evaluating the performance of the neural-network
325 was used during training or validation. In addition, we train the neural-network only with data from

a6 before the testing period. This mimics the data availability scenario for real-time application.

327 Waveforms. We use bilby* to simulate 100,000 eight second long BBH waveforms at
s2s 2048 Hz with the IMRPhenomPv2 approximant*. Out of these, 75,000 waveforms are used to
229 train the neural-network, and the remaining 25,000 are reserved for validation. To simulate a
a0 waveform, a probability distribution is specified on each of the parameters that define a compact
331 binary merger, and random samples are drawn from each. The distribution set used in this work is
s based on one used for GWTC-3° during O3 to assess the sensitivity of CBC search pipelines, and
asss 1S described in Table 2. The sampled parameters are used to compute the time-domain strain for
ss¢ each polarization, i, and h. The sampled component mass values are defined in the source frame,
35 SO conversion to detector frame quantities is performed before generation. The interferometer
s responses of the intrinsic polarizations are calculated during the training process to allow for

a7 real-time data augmentations, as described below in Sec. 2.

338 The same distributions are used to simulate signals for the testing dataset. Enough waveforms
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are generated to fill the background timeslides with the waveform coalescence points spaced 24 s
apart. As the signals are only 8 s long, they do not overlap. During the signal generation process,
we perform rejection sampling and keep only signals that have an SNR greater than 4. This ensures
that computation is not wasted on signals we do not expect to detect**. Rejection sampling reduces
the uncertainty of a sensitive volume estimate for a fixed amount of analyzed injections (see Sec. 3).
In total, we generate ~ 45,000, 000 waveforms. Of these, ~ 3% percent are used for testing and

~ 97% are rejected.

2 Training

We apply several data augmentation techniques during the training process with the goal of providing
robust, high entropy data that encodes physics-based knowledge for discriminating signals from
noise. Below, we will describe how a training batch is composed, as well as the hyper-parameters

that control the composition of the batches.

Noise sampling. Sampled at 2048 Hz, the entire training dataset is unable to fit onto a
single 16 GB V100 GPU at once. Thus, efficient out-of-memory data-loading is required to fully
utilize the extent of our strain dataset. To do this, we sample strain windows directly from disk
during the training procedure. The length of each noise window sampled from disk is 10.5s.
The first 8 s is used to estimate the power spectral density (PSD) used for whitening. We use
Welch’s method to estimate the PSD. The remaining 2.5s of the window is whitened in the
frequency-domain, and transformed back to time-domain. Due to whitening filter settle-in, 0.5s
of data is corrupted on both ends of the window and removed. Thus, only 1.5 s of data is actually
analyzed by the neural-network. The PSD estimation, filter construction, and whitening are all

done with PyTorch’!' modules to enable GPU-accelerated computation?.

We use a training
batch size of 384, which was chosen such that we fully utilize the GPU memory available. Our
out-of-memory data-loading is sufficiently fast to support these batch sizes without bottle-necking

the pre-processing or neural-network modules.

Noise instances are sampled independently in time from each interferometer. Thus, a noise
instance from one interferometer can be paired with many different instances from the other
interferometer. This combinatorially increases the amount of unique two-detector noise instances
available for optimizing the network. Next, each noise instance has probability pj,e to be inverted

(h(t) — —h(t)) and, independently, probability preverse to be reversed (h(t) — h(—t))*>. Again, the
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Parameter Description Prior Limits Units

my Mass of primary my %% (5,100) Mgy

ma Mass of secondary  ms (5,m1) M,

z Redshift Comoving (0,2) -

W Polarization angle ~ Uniform (0,7) rad.

aio Dimensionless Uniform (0,0.998) -
spin magnitude

61 2 Spin tilt Sine (0, 7) rad.

b12 Relative spin  Uniform (0, 27) rad.
azimuthal angle

bJL Spin phase angle ~ Uniform (0,2m) rad.

o Orbital phase Uniform (0, 2m) rad.

RA Right ascension (0, 27) rad.

Dec Declination Cosine (—m/2,7/2)  rad.

Osn Inclination angle ~ Sine (0,7) rad.

Table 2: Priors on parameters used to generate waveforms for both the training and testing sets.

The prior is derived from that used in GWTC-3 to assess search pipelines. The component mass

distributions are defined in the source frame. ’Comoving’ refers to uniform in comoving volume.

Parameter  Description Prior Limits Best Value
I max Maximum learning rate Log Uniform  (107%*%,1072) 5.8x107%
Nramp Number of epochs over which learning rate increases ~ Uniform (2,50) 23

Dsignal Probability of batch element containing a signal Uniform (0.2,0.6) 0.277
Dswap Probability of swap augmentation Uniform (0,0.15) 0.014
Prmute Probability of mute augmentation Uniform (0,0.3) 0.055
SNR steps  Number of batches over which SNR scheduler decays  Uniform (1,2500) 989

Table 3: Priors and descriptions of hyperparameters searched over. The best value corresponds

to the neural-network from the hyperparameter search that produced the highest validation score

across all epochs. A neural-network trained with these hyperparameters was used to evaluate

results reported in Fig. 2. Details on hyperparameters can be found in Sec. 2
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inversion and reversal augmentations increase the amount of unique noise instances in our training
data. For transient noise, these augmentations increase the variety of morphologies provided during

training, allowing for better generalization to unseen testing data. We fiX piyyert and Preverse to 0.5.

Signal Injection. Once a batch of noise instances is generated, simulated BBH signals
are added into each 2.5s unwhitened window with probability pgena = 0.277 and labeled as
signals; this signal probability is one of six hyperparameters that we search over (see Table 3
and the discussion of hyperparameters below). The procedure for injecting signals is as follows:
first, intrinsic polarization time-series are randomly sampled from the training waveform bank.
Next, random extrinsic parameters (right ascension, declination, polarization angle, and SNR) are
sampled. The first three of these are sampled from the priors described in Table 2; We will discuss
the method of SNR sampling in the following paragraph. Intrinsic polarization time-series are
then projected onto the interferometers and re-scaled to the sampled SNR. Randomly sampling
extrinsic parameters at training time allows each intrinsic time-series to be injected from a variety
of sky localizations and distances throughout the training procedure. We found that standard CPU
implementations of projecting intrinsic polarizations onto interferometers created bottlenecks that
severely limited utilization of GPU resources. We eliminated this bottleneck by developing a
PyTorch’! implementation so that projection can be accelerated using GPUs by a factor of ~ 200.
Finally, the interferometer responses are added into the noise instances. The coalescence time of
the merger is randomly placed so that it falls at least 0.25 s from either edge of the 1.5 s whitened
noise instance. We enforce this padding because we found that having the coalescence point too
close to the left edge of the window makes it more difficult for the neural-network to learn, since
much of the signal SNR would lie outside the window. The random placement of the coalescence
time encodes time translational invariance so that the neural-network can identify signals with the

coalescence time at different locations throughout the window.

Curriculum Learning. Curriculum learning is a technique for training machine learning
models in which initially, easy to learn samples are provided as training data, and progressively
harder samples are introduced over time. One way to apply this in the context of GW detection is
to initially provide high SNR signals and gradually introduce lower SNR signals®°. This allows the
neural-network to quickly arrive at a minima of its parameter space before trying to optimize for
the more realistic task. We begin with an SNR distribution that follows a power law, p(SNR) ~
(SNR) 3, with a minimum of SNR,;, = 12 and a maximum of SNR,,x = 100. The form of this

distribution was chosen to roughly match the SNR distribution of of our astrophysically motivated
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s01 prior. Each time a new training batch is constructed, the minimum SNR bound of the distribution
s02 1s decreased until we reach the ultimate lower bound of 4. This decrease happens uniformly over

a3 989 batches, a value that was reached through a hyperparameter search.

404 Glitch Mitigation. Non-Gaussian noise transients, known as “glitches,” can often mimic
s0s BBH signals and lead to high-significance false alarms. We implement two types of augmentations
a6 we call waveform muting and swapping to mitigate the impact of transient glitches. These augmentations
a7 respectively encode the concepts of coincidence and coherence that true astrophysical signals are
s expected to exhibit. The values of the parameters controlling these augmentations were determined

a9 by hyperparameter search; see below for more details.

410 Muting: For a fraction py, = 0.055 of the training batch, we inject a BBH signal into only
s11 - one of the interferometers and label these samples as noise. This teaches the neural-network that it
a2 1s not enough for a BBH-like signal to be present in just one interferometer: coincidence between

a3 interferometers is a requirement for true astrophysical signals.

414 Swapping: For an independent fraction of the training batch, psy.,, = 0.014, we swap one
a5 of the interferometer responses with an interferometer response from different signal, and label
a6 these samples as noise. Thus, these windows will contain BBH waveforms with different intrinsic
a7 parameters in each interferometer. This motivates the neural-network to learn the concept of

s18 coherence: the time-frequency evolution of the signal must be identical in both interferometers.

419 Algorithm Longevity. Noise in gravitational wave interferometers is non-stationary. Therefore,
s20 the timescale over which a single trained neural-network will maintain its originally measured
s21 performance needs to be evaluated. Determining this timescale helps inform the cadence at which
s22 retraining is needed, if at all. To test the longevity of our algorithm, we construct several testing
223 datasets at various intervals across O3. For each interval, we analyze the testing dataset with a
224 neural-network trained using the first 10 days of O3 data. This is the same neural-network used to
a5 produce the results in Fig. 2. To separate the sensitivity of the neural-network from the sensitivity
a6 of the detectors, we do not measure sensitive volume, but instead look at the fraction of events
227 with SNR > 8 that are detected at different FARs. This metric takes into account the variation
228 1n noise level across different time periods, though it does not account for all aspects of detector
29 performance, such as the rate or morphology of glitches. At a FAR of 1 event per 2 months, a

s30 threshold comparable to the 1 event per 5 months used for releasing significant public alerts by
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the IGWN?, we see in Fig 4 that the fractional detection rate of the original neural-network does
not decay with time. We note that the most significant background event across all weeks is found
during week 2, corresponding to the sharp drop in detection fraction at a FAR of 1 per 2 months.
Though there is some fluctuation from week to week, a single neural-network trained on a week’s

worth of data at the beginning of the observing run maintains sensitivity over the duration of the

run.
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Figure 4: The fraction of SNR > 8 events detected at different false alarm rates during various
weeks across a period of time during O3, beginning May 9th, 2019 and ending March 21st, 2020.

Errors on detection fraction estimates are smaller than the plotted points.

Validation. We construct our validation procedure with the goal of establishing a strong
correlation between validation and test metrics. This allows us to confidently pick the best performing
neural-network during a hyperparameter search, as well as during individual training runs. To
accomplish this, our validation procedure is designed to mimic the testing procedure as closely as
possible. We reserve 15,000 seconds of strain data from immediately after the training period and
25,000 waveforms exclusively for neural-network validation during training. This data is not used

at all for training the neural-network. This temporal choice of training and validation split mimics

bhttps://emfollow.docs.ligo.org/userguide/analysis/
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s the real-time production setting, where a deployed neural-network is only trained on past data.

445 To construct our validation set, we first create timeslides of the background data until at least
a6 16 hours of livetime is accumulated. Similarly to training, this data is batched into 10.5 s windows,
a7 with the first 8 s used for whitening the final 2.5s of each window. As with the training data,
ss  0.5s of data is cropped from each edge of the window after whitening. Next, we create a dataset
a9 of injections by adding waveforms from the validation waveform dataset into the background
ss0  windows. We set a minimum detector-network SNR threshold of 4 for validation signals. Signals
st that are quieter are re-scaled to the SNR 4 threshold. The SNR is computed with respect to the
ss2 PSD calculated from the first 8 s of the window. This rescaling procedure mimics the SNR-based
153 rejection sampling performed for the testing dataset. We create 5 unique injection sets that have
54 the coalescence point of each waveform at 0.25, 0.5, 0.75, 1.0, and 1.25 s within each whitened

ss5 - window. This ensures the validation metric covers a wider variety of scenarios.

456 The neural-network outputs a prediction for each window in the background and injection
57 datasets. We use these predictions to calculate the area under the ROC curve (AUROC) up to a false
w8 positive rate (FPR) of 1073, which is the final validation metric. We make this cut on the AUROC
159 so that we are optimizing performance in the regime of low FARs. After the neural-network
s0 training has converged, the weights corresponding to the epoch with the highest validation score

st are used for testing.

462 Hyperparameter Search.  The hyperparameters of our algorithm are optimized via a
w3 random search®. It is infeasible to search over all possible hyperparameters, so we selected those
¢ that we a-priori expect to have the greatest impact on the neural-network optimization process.
w5 These were the neural-network’s maximum learning rate (/r,.x), the number of epochs over which
a5 the learning rate “ramps up” (Nramp) 10 {Tmax » Psignal> Pmute> Pswap» and the number of steps over
s which SNR curriculum learning was performed. The priors on each of these parameters can
w8 be found in Table 3. 30 combinations of these parameters were randomly sampled and used to
a9 train a neural-network. Of these, the neural-network that reported the highest validation score was
a0 selected as the neural-network used for testing. The hyperparameters used to train this neural-network

ar1 are reported in Table 3.
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a2 3 Sensitive Volume

a3 A key metric in understanding a search algorithm’s performance is the sensitive volume, which is
a7+ a measure of the region of space in which a pipeline is expected to detect merging binaries. The

a75  sensitive volume as a function of the FAR is defined by
V(F) = /dx dd e(F;x,0)p(x,0) (1)

a7s - Where ¢ is the distribution of events over spatial coordinates x and binary system parameters
«7 0, and € is the detection efficiency of the pipeline at a false alarm rate F>°. Generally, this
a78 quantity is estimated using Monte-Carlo integration by drawing waveforms from a population
s79 - model, injecting them into a background, and counting how many produce triggers below a given
w0 false alarm rate threshold. If the samples are drawn from within the redshifted volume®® V;, with

Fmac o dV, 1
— dz—=< 2
Vo / Zdz 142 2)

Zmin

1 where dV,/dz is the differential comoving volume, then the sensitive volume is approximately

3)

sz where N(F) is the number of signals detected at a FAR less than F and Ny, is the number of

83 1njected events.

a84 It is often desired to quantify the sensitivity of an algorithm to different populations. For
85 example, an algorithm’s sensitivity may vary with different source masses. Through the technique
sss  of importance sampling, it is possible to use one injection set from a broad population to calculate
a7 the sensitive volume for several populations. Each injection is weighted by the ratio of the probability
s of having been drawn from the injected distribution to that of the population distribution of interest>’:

489

N(7F)
Vb Ppo (ez)
Viop (F) ~ PR “4)
pop Ninj <= Pinj (6;)
w0 The Monte-Carlo uncertainty on this estimation is>®
N(F) 2 2
(Vrop)? = V5 (M) Voo 5)
PP i%j —1 Pinj (0) Nij
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The SNR-based rejection performed during the generation of test set waveforms is done to improve
this uncertainty. Waveforms that are sampled but have an SNR less than 4 are not injected;
however, they still count towards Ngg,y. The cut is placed such that any waveforms below the
SNR cutoff are not expected to be recovered at any reasonable FAR, and so would not contribute
to the sensitive volume: whether injected or not, their weight would be zero. This procedure
allows us to effectively draw many times more samples than are actually injected, greatly reducing
the uncertainty on the sensitive volume. For this analysis, we re-weight to the same population
distributions used in the sensitive volume analysis conducted in GWTC-32, log-normal distributions
about central masses of interest with widths of 0.1. In addition, we enforce time difference of
no more than 0.25 s between the recovered and injected coalescence times. This time difference
corresponds to the resolution available at an inference sampling rate of 4 Hz. This time resolution

can be reduced by increasing the inference sampling rate.

4 Inference

Our inference pipeline is an ensemble of three models: a snapshotter®, a whitener, and the
neural-network itself. Clients send streaming updates of strain data to a snapshotter. The snapshotter
sends the latest state to the whitening module. Finally, batches of whitened data are constructed
and analyzed by Aframe, producing predictions. The length of the state maintained by the
snapshotter is determined by the length of the timeseries used to estimate the PSD, the batch size,
and the inference sampling rate. For our analysis, the whitening module uses the first 64 seconds
of the snapshotter state to estimate the PSD and build a whitening filter. The remaining data is
whitened, and half a second is cropped from both edges to remove the effects of filter settle-in.
The whitened data is then unfolded into a batch of overlapping windows. We use a batch size of
128 windows, and, as an inference sampling rate of 4 Hz was used, each 1.5 s window overlaps its
neighbors by 1.25s. This batch of windows is passed to the neural-network for prediction. Lastly,
neural-network predictions are aggregated client-side and post-processed via the integration and

clustering described above.

For an online analysis, the pre- and post-processing steps incur a total latency of approximately
3.1s, see Table 4 for a summary. The most significant source of latency in the online analysis
comes from waiting for data to exist such that we can crop the edges after resampling and whitening.
All other computational steps (data reading/writing, data transfer to/from GPU, whitening, event

identification, etc.) take less than 0.4 seconds combined, while the inference step itself takes less
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than 10 milliseconds. An additional source of latency is the means by which live data is made
available during an observation run. New data is written out in 1 s segments. Thus, depending on
where the coalescence point of an event falls within one of these segments, it may be necessary to
wait for a full additional second for a file to be written before event identification can occur. This
factor is not included in Table 4, nor is the time it takes for data to become available, or the time

taken to upload a candidate event to GraceDB, as none of these processes is within our control.

A critical parameter is the inference sampling rate. The inference sampling rate controls
the stride between consecutive windows seen by the neural-network. Too small of an inference
sampling rate, and astrophysical events may be skipped over. Too large, and computing resources
are wasted on redundant inferences. We examined the impact of the inference sampling rate on
our sensitivity by repeating trials of our inference procedure at inference sampling rates of 1, 2, 4,
8, 16 and 64 Hz. For this analysis, we accumulated two months worth of timeslide data for each
trial. Fig. 5 shows a subset of the results of this analysis. Algorithms mostly perform within their
statistical error. However, at low FARs the 1 Hz analysis has a small performance dip in the 35-35
mass bin. Because analyses performed at 4 Hz require 16 times fewer inference requests than
64 Hz without sacrificing performance, we use an inference sampling rate of 4 Hz for the analyses

in this paper.

5 Data and Software Availability

All code used to produce results in this work is publicly available. The A f rame project repository
can be found at https://github.com/ML4GW/aframe.

In addition, two open source libraries, m1 4gw ¢ and he rme s¢

were developed to support this
work. The m14gw library contains PyTorch utilities for efficient on-GPU data-loading, whitening,
PSD estimation and other data processing techniques common to GW analysis. The hermes

library contains utilities for deploying models in the laaS paradigm via Triton Inference Servers.

‘https://github.com/ML4GW/ml4gw
dnttps://github.com/ML4GW/hermes
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Latency Source Latency (s)

Coalescence point exiting training kernel padding 0.25

Cropping corruption from whitening filter 0.50

Cropping corruption from resampling to 2048 Hz 1.0

Integrating neural-network output 1.0

Reading data and transferring to GPU 1.0319:5% x 102
Estimating PSD and whitening 8.77 53 x 107
Performing inference on whitened data 9.631038 x 1073
Integrating and aggregating neural-network output 3.421552 » 1071
Identifying candidate events in integrated output 1.401992 x 1074
Total 3.1149:509

Table 4: Sources of latency for an Af rame online analysis. For the items listed in the upper section
this table, the latency does not come from performing the computation, but rather from needing to
wait for the data to exist before the action can occur. Items in the lower section are computational
steps, and we report the median timing of 9191 trials. The upper and lower error bars represent the
95th and 5th percentile, respectively. All measurements were taken on a dedicated NVIDIA A30
GPU.

25



m1=35M@,m2=35M@ m1=35M@, mQIQOM@

Sensitive volume (Gpc?)
— — — _ —_
3% = o =y 3

—_
no

10! 102 10! 102
m1:20M@7m2:20M@ m1:20M@, mQ:].OM@
4.25 1
= 1.3 1
2. 4.00
<) 121
g 3.75 1
= 1.1+
£ 350
z 101
= 3.251
o2}
% 0 9 4
<2 3.00 1 | ===
10! 102 10! 102
False alarm rate (years™!) False alarm rate (years™!)

Figure 5: Sensitivity comparisons for the same neural-network run over the same data at different
inference rates. For the purposes of clarity, only a subset of the tested rates are shown here. Except
for the 1 Hz inference, all results are within error of each other for all mass combinations and

FARs, including for rates not shown in this plot.
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