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Abstract

Predicting protein-peptide interactions is crucial for understanding peptide binding processes and
designing peptide drugs. However, traditional computational modeling approaches face challenges
in accurately predicting peptide-protein binding structures due to the slow dynamics and high
flexibility of peptides. Here, we introduce a new workflow termed “PepBinding” for predicting
peptide binding structures, which combines peptide docking, all-atom enhanced sampling
simulations using the Peptide Gaussian accelerated Molecular Dynamics (Pep-GaMD) method and
structural clustering. PepBinding has been demonstrated on seven distinct model peptides. In
peptide docking using HPEPDOCK, the peptide backbone root-mean-square deviations (RMSDs)
of their bound conformations relative to X-ray structures ranged from 3.8 A to 16.0 A,
corresponding to the medium to inaccurate quality models according to the Critical Assessment of
PRediction of Interactions (CAPRI) criteria. The Pep-GaMD simulations performed for only 200
ns significantly improved the docking models, resulting in five medium and two acceptable quality
models. Therefore, PepBinding is an efficient workflow for predicting peptide binding structures

and is publicly available at https://github.com/MiaoLab20/PepBinding.

Keywords: Peptide docking, Peptide Gaussian accelerated Molecular Dynamics, PepBinding,

Structural clustering, Enhanced sampling



1. Introduction

Protein-peptide interactions play a critical role in various biological processes, including signal
transduction, cellular regulation, immune response, protein trafficking pathway, and so on.! 2
Peptides exhibit unique capability to bind target protein, particularly those with shallow pockets,
which are difficult to modulate by small molecules. Peptides have thus emerged as promising
candidates for new therapeutics. The number of marketed peptide-based drugs keeps increasing in
recent years.>® Therefore, accurate characterization of peptide-protein interactions is important for
both biological research and drug development.®-

Experimental techniques including X-ray crystallography, cryo-electron microscopy (cryo-EM)
and nuclear magnetic resonance (NMR) have been widely utilized to determine high-resolution
structures of peptide-protein complexes.” These structures are usually deposited into the Protein
Data Bank (PDB).! However, due to time-consuming, high cost and technical difficulties,
experimental structures have been resolved for only a small fraction of protein-peptide
complexes.’ In this context, computational modelling has significantly facilitated the study of
protein-peptide interactions. By exploring and ranking possible peptide binding conformations,
molecular docking has provided key insights into the protein-peptide interactions!? and is widely
used in the peptide drug design.!! The docking methods could be roughly grouped into three
categories: template-based, local docking, and global docking. The template-based docking
methods such as GalaxyPepDock!? are highly efficient and accurate if high-quality templates are
available!'?. While local docking approaches such as MDockPep,!* HADDOCK,'* and Rosetta
FlexPepDock!> need a priori knowledge of the peptide binding site, they are able to generate high
quality models according to the Critical Assessment of PRediction of Interactions (CAPRI)

criteria.!® In contrast, there is no need for any pre-defined binding sites for global docking



programs such as HPEPDOCK,'” CABS-dock,'® PIPER-FlexPepDock,!” PatchMAN?’ and
PeptiDock.?! The global docking approaches provide sampling of peptide binding over the entire
protein surface. However, it is still challenging to account for the system flexibility. In this regard,
HPEPDOCK considers the peptide flexibility through an ensemble of peptide conformations
generated by MODPEP program.!” HPEPDOCK is thus able to alleviate the peptide flexibility
problem through ensemble docking of the peptides. Recently, AlphaFold2?? has shown great
promise for providing structural insight into a wide range of peptide—protein complexes based on
deep learning. Nevertheless, the docking calculations or deep learning could only provide
snapshots of the protein-peptide interactions. Addressing the high flexibility of peptides and the
dynamic interactions between protein and peptide remains a significant challenge. Overall, peptide
docking often generates poor predictions that require further refinement to obtain quality models.

Molecular Dynamics (MD) is a powerful technique that enables all-atom simulations of
biomolecules. It can fully account for the flexibility of both peptides and proteins during their
interactions.> 23-26 Therefore, MD has been used to refine binding poses of peptides to proteins
obtained from docking.?’-3! For example, conventional MD (¢cMD) has been used to refine peptide
binding poses in proteins in the pepATTRACT? and AnchorDock*® docking protocols.
Furthermore, cMD simulations have been widely applied to explore peptide binding mechanisms.>
23-26,32-35 ¢MD simulations performed for 200 us using the Anton specialized supercomputer have
captured 70 binding and unbinding events between an intrinsically disordered protein fragment of
the measles virus nucleoprotein and the X domain of the measles virus phosphoprotein complex,
which enables detailed understanding of the peptide “folding-upon-binding” mechanism.>?
Microseconds of high temperature MD simulations with RSFF2C force field captured repetitive

peptide binding events, which allowed to accurately predict protein-peptide binding complex.*¢



Furthermore, the combination of MD and machine learning has significantly enhanced the efficacy
and accuracy of predicting the structure of cyclic peptide-protein complexes.’” Despite these
remarkable advances, it is still challenging to sufficiently sample peptide-protein interactions
through cMD simulations, due to the slow dynamics and limited simulation timescales.

On the other hand, enhanced sampling methods have provided improved sampling of peptide-
protein interactions, which could efficiently capture both peptide binding and dissociation

processes. The widely used enhanced sampling methods include steered MD,**° umbrella

41-43 44-49

sampling, metadynamics, adaptive biasing force,®® 3! supervised MD,** weighted
ensemble,** Modeling by Employing Limited Data (MELD) using temperature and Hamiltonian
replica exchange MD,>% >? temperature-accelerated MD,>* multi-ensemble Markov state models,>?
accelerated MD (aMD) ,%% 7 Gaussian accelerated MD (GaMD) , °7-%° and so on. In particular, the
Peptide GaMD (Pep-GaMD)®! is a more recently developed peptide enhanced sampling method
that works by selectively boosting essential interaction potential energy of the peptide. Pep-GaMD
has successfully captured repetitive dissociation and binding of model peptides within
microsecond simulations. Nevertheless, enhanced sampling simulations of peptide binding to
proteins have been under explored. In this work, we present a new computational workflow termed
“PepBinding” that combines global peptide docking using HPEPDOCK and all-atom enhanced
sampling simulations using Pep-GaMD to model protein-peptide interactions. Seven model
peptides have been selected from the PeptiDB database of non-redundant peptide-protein complex

structures.” Starting with the top model obtained from the HPEPDOCK, Pep-GaMD is applied to

refine the peptide-protein complex structures.

2. Methods



PepBinding Workflow Combining HPEPDOCK and Pep-GaMD

The PepBinding workflow has been developed to predict protein-peptide binding structures. The
workflow integrated peptide docking using HPEPDOCK!? with Pep-GaMD®! enhanced sampling
simulations (Fig. 1). The HPEPDOCK, a hierarchical algorithm for blind and global docking,
addresses peptide flexibility by generating an ensemble of peptide conformation with MODPEP
program.®? Using MDock® with rigid docking, the sampled peptide structures are then globally
docked against the entire protein. After completion of the peptide docking, HPEPDOCK provides
interactive view of top-ranked 10 models. For our study, only the very top pose was selected for

further Pep-GaMD refinement.

System Setup

Seven model peptides were selected from the PeptiDB database of non-redundant peptide-protein
complex structures’. They included peptide “GPPPAMPARPT” (Peptide 1), “HTLKGRRLVFDN”
(Peptide 2), “KSLTIYAQVQK” (Peptide 3), “ARTKQT” (Peptide 4), “KSTQATLERWEF”
(Peptide 5)”, “NMTPYRSPPPYVP” (Peptide 6), “GASDGSGWSSENNPW?” (Peptide 7), which
binds to SH3 domain, WD-repeat 5, C-terminal regions in FEN-1, DNA polymerase sliding clamp,
and dystrophin-glycoprotein complex (DGC) and TolB protein of E. coli, respectively. The free
structures of target proteins are 100T, I1HIR, 1D1Z, 2H14, IRWZ, 1EG4, and 1CRZ, respectively.
The corresponding bound structures of protein-peptide complexes are 1SSH, 2CCH, 1D4T, 2H9M,
IRXZ, 1EG4 and 2IVZ, respectively. The free X-ray PDB structure of target protein and the
peptide sequence were used as input for the HPEPDOCK docking. The top ranked of each peptide

was further refined using Pep-GaMD simulations.

Pep-GaMD Enhanced Sampling Simulations



For structural refinement of the peptide-protein docked complex, we used a more recently
developed enhanced sampling method Pep-GaMD.%! The complexes were solvated in explicit
water using the tleap program within AMBER22 package.®* The charge in each system was
neutralized using Na+ and CI- ions. The AMBER ff14SB®* force field parameter was used for the
protein/peptide and TIP3P as a water model®® for water molecules. Each system was neutralized
by adding counter ions and immersed in a cubic TIP3P water box,°® which was extended 15 A
from the protein-peptide complex surface. For energy minimization of each system, the steepest
descent for 50,000 steps and the conjugate gradient for additional 50,000 steps were performed
with and without applying harmonic position restraints of 1 kcal/mol*A2 on heavy atoms of protein
and peptides. Minimization was followed by heating the system from 0 to 300 K in constant
number, volume, and temperature (NVT) ensemble for 1ns simulation by applying harmonic
position restraints of 1 kcal/mol. A2 on heavy atoms of protein and peptides. System was then
further equilibrated using constant number, pressure, and temperature (NPT) ensemble at 1 atm
and 300K for Ins with same restraints as in NVT run. Then, the system was fully equilibrated for
a short 2 ns cMD without any constraints under the NPT ensemble. In the Pep-GaMD equilibration:
a 2ns cMD run was firstly performed to calculate potential statistics (such as maximum, minimum,
average and standard deviation) for adding the boost potential; then 18ns Pep-GaMD equilibration
was performed with the boost potential added. Finally, three independent production runs of each
system were performed for 200 ns with randomized initial atomic velocities. The simulation frames
were saved every 0.2 ps for trajectory analysis. In the Pep-GaMD simulations, the threshold
energy for applying the first and second boost potential was set to the lower bound. The upper
limits of the standard deviation of the second potential boost (c0D) were set to 6.0 kcal/mol for all

systems. By default, the upper limits of the standard deviation of the first potential boost (cOP)



were set to 6.0 kcal/mol for the initial tests. However, these acceleration parameters led to peptide
dissociation during Pep-GaMD equilibration in the 1D4T, 2CCH, and 1EG2 systems. Since the
PepBinding approach was focused on refining the local peptide binding pose rather than capturing
the peptide dissociation and rebinding process, cOP was decreased to maintain the peptides in the
bound state. Detailed description about each system setup, including the system size, the number
of ions for neutralization, Pep-GaMD simulation parameters, and the boost potential values were
summarized in Tables S1 & S2. All snapshots from the three production runs were used to analysis
with CPPTRAJ.®” Root-mean square deviations (RMSDs) were calculated for the peptide
backbone relative to the X-ray structure, with the protein backbone aligned. RMSDs of the protein
backbones relative to the X-ray structures with the protein aligned, distances between the center-
of-mass of protein and center-of-mass of peptide, the number of native contact between peptide
and protein were calculated using CPPTRAJ.S” The PyReweighting toolkit®® was utilized to
reweight the structural clusters with three Pep-GaMD simulations combined. The peptide RMSD
with protein aligned and protein RMSD were chosen as reaction coordinate for calculating the 2D
PMF profile. The bin size was set to 1.0 A. The cutoff for the number of simulation frames in one
bin was set to 500 for reweighting 2D PMF profiles. To obtain the peptide binding pose, structural
clustering was performed using the agglomerative algorithm implemented in CPPTRAJ.%
Structural alignment was first performed on the protein backbone. Clustering was then performed
using the peptide backbone RMSDs to obtain 10 representative structures. The structures from the
PepBinding predictions shown in Figs. 2 and S3 are those with the lowest peptide backbone RMSD

among the 10 representative structures.

3. Results



Prediction of Peptide Binding Structures through Docking and Pep-GaMD Simulations
Peptide docking using HPEPDOCK exhibited different levels of accuracy, as evidenced by
RMSDs of the peptide backbone when compared to the bound X-ray structures. The peptide
RMSD values for the seven model peptides were 3.87 A, 4.50 A, 549 A, 7.80 A, 8.50 A, 14.12 A,
and 16.40 A, respectively (Fig. 2 and Table 1). According to the CAPRI criteria,'® the first two
peptides reached predictions of the medium quality, while the third to fifth peptides fell within the
acceptable predictions. The last two peptides, predictions were classified as incorrect.

Pep-GaMD simulations were conducted with three replicas, each lasting 200 ns, to refine the
docking models. For Peptides 1 and 2, RMSDs of the peptide backbone relative to the X-ray
structures decreased to less than 3.0 A during the Pep-GaMD simulations (Figs. 2A-2B &3A-3B).
Peptides 1-3 exhibited tight binding to the protein target site throughout the three Pep-GaMD
simulations, with slight fluctuations observed in Sim3 of the Peptide 1 (Figs. 3A-3C). Two Pep-
GaMD simulations of Peptide 4 resulted in a significant reduction in the peptide RMSD (Figs.
3D). In comparison, Peptides 5-6 displayed higher fluctuations and transiently sampled acceptable
conformations with RMSD <10 A during the Pep-GaMD simulations (Figs. 3E & 3F). Peptide 7
appeared trapped in a metastable state in the 200 ns Pep-GaMD simulations and RMSD of the
peptide backbone dropped below 10 A (Fig. 3G). RMSDs of the seven model peptides showed
notable decreases compared with the initial docking models (Figs. 2-3 and Table 1).

Moreover, Pep-GaMD simulation snapshots of the peptide conformations were clustered based
on backbone RMSDs relative to the X-ray structures (See methods). The best models in the
resulting clustering was found to be 2.11 A, 2.79 A, 4.12 A, 1.36 A, 9.87 A, 4.80 A, and 9.64 A,
for the seven peptides (Table 1). According to the CAPRI criteria ', PepBinding predictions of

Peptides 1-4 and 6 were determined of medium quality, while those of Peptides 5 and 7 were



considered acceptable quality. Therefore, Pep-GaMD simulations significantly improved the
docking prediction quality of the seven peptide binding structures. The predicted bound
conformations of the peptides were mostly similar to experimental X-ray structures, showcasing
the peptide backbone RMSDs ranging from 2.1 A to 9.8 A. In contrast, docking poses derived
from HPEPDOCK of the seven peptides exhibited RMSDs spanning from 3.87 A to 16.40 A
(Table 1).

2D potential of mean forces (PMFs) were further calculated from the Pep-GaMD simulations,
utilizing protein and peptide backbone RMSDs relative to the bound X-ray structures as reaction
coordinates (Fig. 4). For peptides 1 to 4, only a single low-energy minimum was identified near
the native bound structure (Figs. 4A-4D). Peptides 5 to 7 also exhibited a single low-energy
minimum, but with moderate deviation and higher RMSDs from the native bound structure (Fig.
4E-4G). Specifically, Peptide 1 sampled a low-energy well, centered at ~2.1 A and ~0.8 A
backbone RMSDs for the peptide and protein relative to the bound X-ray structure, being
consistent with structural clustering findings of the peptide. For Peptide 2, Pep-GaMD explored a
broad low-energy well, centered at ~2.8 A and ~1.2 A backbone RMSDs for the peptide and
protein relative to the bound X-ray structure. Similarly, Peptide 3 exhibited a low-energy well,
centered at around 4.1 A and 0.8 A backbone RMSDs for the peptide and protein relative to the
bound X-ray structure. Peptide 4, featured a low-energy well, centered at approximately 1.4 A and
0.8 A backbone RMSDs for the peptide and protein relative to the bound X-ray structure. In
comparison, Peptides 5 to 7 displayed low-energy wells with centers at higher ~9.8 A and ~1.1 A,
~4.9 A and ~1.0 A, and ~9.5 A and ~1.0 A backbone RMSDs for the peptide and protein relative
to the bound X-ray structures, respectively. To further characterize the Pep-GaMD refinement, we

calculated the time course of the number of native contacts between the protein and peptide, and



their center-of-mass distance (Fig. S2). The results indicated that the current Pep-GaMD
simulations did not sample dissociation of the peptides. During the simulations, the number of
peptide native contacts increased and RMSD of the peptide relative to the X-ray structure mostly
decreased. Therefore, the Pep-GaMD simulations primarily refined local interactions between the
peptide and protein rather than capturing the complete peptide dissociation and binding events.
These findings provide important insights into the energetically favorable conformations sampled
by Pep-GaMD simulations of each peptide.

Effects of Terminal Residue Charges on Peptide Binding

In addition to the zwitterion terminus model as described above, we conducted further Pep-GaMD
simulations of the seven peptides with neutral terminal patched residues. Similar results were
obtained for most of the peptides, as depicted in Figs S3-S5. For Peptides 1-7 in the neutral
terminal model, the top-ranked PepBinding predictions exhibited peptide backbone RMSDs of
1.28A,534A,4.42A,0.69 A, 5.82A,9.06 A, and 8.98 A relative to the X-ray bound structures
(Table 2 and Fig. S3). These prediction yielded one high-quality, two medium-quality, and four
acceptable-quality models. Significant improvements were observed for peptides 1, 4, and 5 with
the neutral termini, for which the backbone RMSDs decreased from 2.11 A to 1.28 A, 1.36 A to
0.69 A, and 9.87 A to 5.82 A, respectively. On the other hand, Peptides 2 and 6 exhibited larger
RMSDs with the neutral termini. Their RMSDs increased from 2.79 A to 5.34 A, and 4.8 A t0 9.06
A, respectively. Overall, the simulation-predicted peptide bound conformations with neutral
termini exhibited slightly smaller peptide RMSDs from the native X-ray structures when compared
to the zwitterion terminus models. It is worth noting that the experimental structures are obtained

from the zwitterion terminus models. Therefore, it is better to adjust terminal residue charges in



predictions of peptide binding structures to match the experimental condition since no significant

differences were observed between these two models in our simulations.

4. Discussion

We have developed and demonstrated the PepBinding workflow to predict peptide binding
structures. Peptides typically bind to shallow protein surface with large pockets, while small-
molecule ligands can access deeply buried sites. Peptide-protein interactions tend to be weaker
than protein-protein interactions, primarily due to the smaller interface between peptides and their
target proteins. Most peptides lack stable structures, making it challenging to incorporate their high
flexibility and large conformational changes (folding and unfolding) into computational modeling,
particularly in peptide docking scenarios. Utilizing seven peptides with diverse lengths and
difficulty levels as model systems, we observed significant improvement of the peptide binding
structure predictions. The Pep-GaMD refinement yielded models of medium quality for Peptides
1-5 and acceptable quality for Peptides 6 and 7 with the zwitterion terminus models. This
promising outcome suggests wide applicability of PepBinding to many other peptide-protein
binding systems. It is worth noting that our current PepBinding approach utilizes only the top
binding pose from HPEPDock.

Next, we examined whether different HPEPDOCK -predicted structures of the peptides could be
effectively refined using the PepBinding approach. Peptides 1 and 2 were selected as test systems
using the second and third binding poses obtained from HPEPDock for additional Pep-GaMD
simulations. As shown in Figs. S6 & S7, docking pose 3 of both peptides showed similar quality
as pose 1 with correct peptide binding orientation. However, docking pose 2 of both peptides

appeared in a reversed binding orientation of the peptide, leading to significant high peptide RMSD



values of 15.8 A and 18.3 A for peptide 1 and 2, respectively. The same parameters and approaches
were applied in the additional Pep-GaMD simulations. For peptide 1, Pep-GaMD improved the
model of binding pose 3, reducing the peptide RMSD from 5.5 A to 2.3 A (Fig S6). Even with
the reversed peptide direction in pose 2, Pep-GaMD could improve the prediction quality from
inaccurate to mediate (Fig S6). In the more challenging case of peptide 2, Pep-GaMD improved
the model of docking pose 3, reducing the peptide RMSD from 4.8 A to 3.2 A (Fig S7). For pose
2 with the reversed peptide direction, although Pep-GaMD reduced the peptide RMSD from 18.3
A to 152 A, the refined model remained inaccurate. These tests suggested that including more
binding poses for refinement in PepBinding may increase the success rate of obtaining improved
quality models of peptide binding structures. In this regard, combining Pep-GaMD with replica
exchange by incorporating different binding poses into different replicas might enhance the
efficiency of PepBinding binding predictions. This will be subject to future studies.

We compared PepBinding prediction accuracies with AutoDock CrankPep (ADCP)* on our
dataset. ADCP is a recent developed local docking method that requires information about the
binding site and has shown excellent prediction performance on the PepSet dataset among eight
local docking methods. However, the ADCP only obtained one mediate quality, 5 acceptable
quality models and 1 inaccurate predictions at the top-rank model (Table S3). This result
underscores the challenging nature of our chosen peptides for different peptide docking software.
Since peptide docking often yielded similar quality models, Pep-GaMD is promising to refine the
peptide docking models, being consistent with our previous findings of GaMD combination with
PeptiDock.’! However, further testing of more peptide systems is needed for Pep-GaMD in peptide
refinement and PepBinding predictions, and its potential generalization to different docking

programs require additional exploration. In addition to conformational sampling, the reliability of



MD simulations relies on the accuracy of the force field. In a study by Chen et al. , 3¢ various force
fields, including RSFF2C and AMBER {f14SB, were compared. While high-temperature MD
simulations with both force fields produced near-native conformations, RSFF2C showed superior
performance. The impact of different force fields on the overall performance remains a subject for
future investigations. In comparison to GaMD and cMD approaches, our current Pep-GaMD
method showcases more efficient sampling, requiring shorter simulation lengths for peptide
structural refinement. For peptides 1 (1SSH), 3 (1D4T) and 6 (1EG4), we compared Pep-GaMD
and cMD simulations of the same length (Fig. S8 & Table S4). For peptides 1 and 3, cMD
improved the binding pose quality to the medium level. However, for the challenging peptide 6,
no improvement was observed with cMD, while Pep-GaMD could improve the model quality from
level of incorrect to medium with the enhanced sampling. While our previous GaMD refinement
required four 300 ns simulations of rather short peptides®!. Pep-GaMD achieves similar refinement
with only three 200 ns simulations on even longer peptides. Notably, the three replicas of Pep-
GaMD simulations were found to converge well, as PMFs calculated from the combined and
individual simulation trajectories were similar (Figs. S9 & S10). In particular, the lowest-energy
states identified from the combined PMFs were close to those from PMFs of the individual
simulations, despite slight differences in the peptide configuration space sampled in the 1SSH and
2HOM systems. Nevertheless, these brief Pep-GaMD simulations did not sample any dissociation
events, preventing convergence on peptide binding. This indicates that enhancing the current
PepBinding approach should primarily focus on refining the local interactions between the peptide
and protein. Longer simulations with higher acceleration of Pep-GaMD are needed for capturing
dissociation and rebinding processes, which will be subject to future studies. High-performance

Pep-GaMD simulations conducted using AMBER 22 on NVIDIA L40 GPU cards further affirm



computational viability, with each 200 ns GaMD simulations of Peptides 1 to 7 requiring less than
two days. This enhanced efficiency positions PepBinding as a highly promising approach for wider

applications in peptide binding structure predictions.

5. Conclusion

In summary, PepBinding has been demonstrated on predicting the peptide-protein complex
structures, using seven distinct peptides as model systems. However, Pep-GaMD simulations of
different lengths, the effects of different force fields (e.g. RSFF2C, CHARMM236m) and solvent
models (e.g., TIP4P, implicit solvent, etc.)’® and various structural clustering algorithms are to
be further investigated in the future. For refinement of the docking poses with Pep-GaMD,
because AMBER22 was applied for running the simulations, the widely used AMBER {f14SB
force field was selected. Development of novel protocols to increase the accuracy of peptide-
protein structural prediction will facilitate peptide drug design. Advances in computational
methods and computing power are expected to help us to address these challenges.
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Table 1. Summary of the seven model protein-peptide complexes and performance of the

HPEPDOCK and PepBinding predictions. *The model quality was assessed according to the

CAPRI criteria and denoted in parentheses.

Peptide | Bound Free Peptide HPEP}]{;\(/;%% (A)* RMSD PepBinding (A)*
1 ISSH(A) | 100T(A) GPPPAMPARPT 3.87(Medium) 2.11(Medium)
2 2CCH(B) | 1HIR(B) | HTLKGRRLVFDN 4.50(Medium) 2.79(Medium)
3 1D4T(A) | 1D1Z(A) KSLTIYAQVQK 5.49(Acceptable) 4.12(Medium)
4 2HOM(A) | 2HI4(A) ARTKQT 7.80(Acceptable) 1.36(Medium)
5 IRXZ(A) | IRWZ(A) KSTQATLERWF 8.50(Acceptable) 9.87(Acceptable)
6 1EG4(A) | 1EG3(A) NMTPYRSPPPYVP 14.12(Incorrect) 4.80(Medium)
7 2IVZ(A) ICRZ GASDGSGWSSENNPW 16.40(Incorrect) 9.64(Acceptable)

Table 2. Comparison of prediction models with different peptide terminus settings using the

PepBinding workflow. *The model's quality was assessed according to CAPRI peptide docking

criteria, and its classification was put inside the brackets.

Peptide 1 2 3 4 5 6 7
RMSD | PepBinding 1.28 5.34 4.42 0.69 5.82 9.06 8.98
( A) (Neutral | (Medium) | (Acceptable) | (Medium) | (High) | (Acceptable) | (Acceptable) | (Acceptable)
terminus)
PepBinding 2.11 2.79 4.12 1.36 9.87 4.80 9.64
(Zwitterion | (Medium) | (Medium) | (Medium) | (Medium) | (Acceptable) | (Medium) | (Acceptable)
terminus)




Figure captions

Figure 1. Workflow of the PepBinding that combines peptide docking with HPEDOCK, all-atom
enhanced sampling simulations with Pep-GaMD and structural clustering.

Figure 2. Binding poses of seven peptides predicted using HPEPDOCK (purple) and “PepBinding”
(green) with the zwitterion terminus are compared with X-ray structures (blue): (A) peptide

“GPPPAMPARPT” (Peptide 1), (B) “HTLKGRRLVFDN” (Peptide 2), (C) “KSLTIYAQVQK”

(Peptide 3), (D) “ARTKQT” (Peptide 4), (E) “KSTQATLERWEF” (Peptide 5)”, (F)

“NMTPYRSPPPYVP” (Peptide 6), and (G) “GASDGSGWSSENNPW?” (Peptide 7). The binding

poses from the PepBinding predictions were the representative structures with lowest peptide

backbone RMSD obtained through clustering analysis of Pep-GaMD simulations. The top 1

binding poses from the HPEPDock, which were also used as initial Pep-GaMD simulations, were

shown.

Figure 3. Time courses of peptide backbone RMSD obtained from three 200ns Pep-GaMD
simulations on peptides with the zwitterion terminus for (A) peptide “GPPPAMPARPT” (Peptide
1), (B) “HTLKGRRLVFDN” (Peptide 2), (C) “KSLTIYAQVQK” (Peptide 3), (D) “ARTKQT”
(Peptide 4), (E) “KSTQATLERWEF” (Peptide 5)”, (F) “NMTPYRSPPPYVP” (Peptide 6), and (G)
“GASDGSGWSSENNPW” (Peptide 7).

Figure 4. 2D potential of mean force (PMF) regarding the peptide backbone RMSD and protein
backbone RMSD for peptides with the zwitterion terminus: (A) Peptide 1, (B) Peptide 2, (C)
Peptide 3, (D) Peptide 3, (E) Peptide 3, (F) Peptide 3 and (G) Peptide 7. The white asterisks indicate
the initial docking poses obtained using HPEPDOCK.
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Table S1. Summary of Pep-GaMD Simulations Performed on Refining HPEPDock models with
zwitterion peptide terminus?

System| Natoms | System Size (axbxc in A)| Nions (Na+/Cl-)| cOP o0OD | AV(kcal/mol)
ISSH | 23,240 67.1x66.0x66.2 0/0 6.0 6.0 12.89+3.66
2CCH | 55,799 96.4x83.5x83.2 2/0 1.0 6.0 9.73+£3.067
1DAT | 28,470 77.0x70.8x65.6 0/4 1.5 6.0 11.24+3.14
2HOM | 48,937 90.3x88.4x74.1 0/7 6.0 6.0 11.81+3.540
IRXZ | 47,063 88.4x96.7x98.8 12/0 6.0 6.0 58.19+6.86
1EG4 59,071 102.9x85.4x80.7 0/1 0.5 6.0 7.99+2.81
21VZ 71,746 112.2x91.5x83.8 3/0 6.0 6.0 13.37+£3.71

2 Natoms is the number of atoms in the simulation; Nions (Na+/Cl-) is the number of ions (Na+ or
Cl-) used to neutralize system; cOP and cOD are the peptide essential and the second boost potential
standard deviations in Pep-GaMD simulations; AV is the total boost potential.

Table S2. Summary of Pep-GaMD Simulations Performed on Refining HPEPDock models with
neutral peptide terminus?

System Natoms System Size (axbxc in A) | Nions (Na+/Cl-) | o6OP | 0D | AV(kcal/mol)
1SSH 23,397 70.4x69.7x63.4 0/0 6.0 6.0 12.56+3.55
2CCH 55,799 96.5x83.5x83.2 2/0 6.0 6.0 12.51+3.60
1D4T 28,470 77.0x70.8x65.6 0/4 1.5 6.0 10.96+3.40
2H9M 49,558 90.3x88.4x75.0 0/7 6.0 6.0 13.80+3.76
IRXZ 47,222 96.4x79.6x74.1 12/0 6.0 6.0 12.97+3.67
1EG4 59,077 102.9x85.4x80.7 0/1 6.0 6.0 | 12.420+3.64
2IVZ 73,690 113.0x92.7x84.1 2/0 6.0 6.0 12.05+3.59

2 Natoms is the number of atoms in the simulation; Nions (Na+/Cl-) is the number of ions (Na+ or
Cl-) used to neutralize system; cOP and cOD are the peptide essential and the second boost potential
standard deviations in Pep-GaMD simulations; AV is the total boost potential.
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Table S3. Comparison of docking models obtained using the HPEPDOCK and AutoDock

CrankPep (ADCP). *The model quality was assessed according to the CAPRI criteria and denoted

in parentheses.
Peptide 1 2 3 4 5 6 7
RMSD | HPEPDOCK 3.87 4.50 5.49 7.80 8.50 14.00 16.40
A) (Medium) (Medium) | (Acceptable) | (Acceptable) | (Acceptable) | (Inaccurate) | (Inaccurate)
ADCP 9.12 5.78 5.22 4.55 7.13 9.70 17.24
(Acceptable) | (Acceptable) | (Acceptable) | (Medium) | (Acceptable) | (Acceptable) | (Inaccurate)

Table S4. Comparison of prediction models with different MD techniques (Pep-GaMD and cMD)

for the PepBinding workflow. *The model's quality was assessed according to CAPRI peptide

docking criteria, and its classification was put inside the brackets.

Peptide 1 3 6

RMSD (A) | HPEPDock | 3.87(Medium) 5.49(Acceptable) 14.12(Incorrect)
Pep-GaMD | 2.11 (Medium) 4.12 (Medium) 4.80 (Medium)
cMD 1.57 (Medium) 4.65 (Medium) 13.07 (Incorrect)

S3




Obtain initial peptide-protein docking model

|

Build MD simulation model (AMBER ff14SB force
field) with fleap

]

Energy minimization, NVT (1 ns) and NPT (1 ns)
equilibration with pmemd.cuda

]

2 ns cMD and 20 ns Pep-GaMD equilibration with
pmemd.cuda

|

Three 200 ns Pep-GaMD production runs for each
system with pmemd.cuda

]

Analyze simulations with cppiraj and calculate free
energy profiles with PyReweighting toolKit

Figure S1. Protocol of Pep-GaMD simulations for refining peptide docking structures
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Figure S2. Time courses of peptide backbone RMSD, Number of native contacts and center-of-
mass distance between peptide and protein obtained from three 200ns Pep-GaMD simulations with
the zwitterion terminus on (A) peptide “GPPPAMPARPT” (Peptide 1, 1SSH), (B)
“HTLKGRRLVFDN” (Peptide 2, 2CCH), (C) “KSLTIYAQVQK” (Peptide 3, 1D4T), (D)
“ARTKQT” (Peptide 4, 2H9M), (E) “KSTQATLERWEF” (Peptide 5, 1RXZ)”, (F)
“NMTPYRSPPPYVP” (Peptide 6, IEG4), and (G) “GASDGSGWSSENNPW” (Peptide 7, 2IVZ).
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Figure S3. Docking poses of seven peptides obtained using HPEPDOCK (purple) and PepBinding
(green) are compared with X-ray structures (blue) using the neutral peptide terminus: (A) peptide
“GPPPAMPARPT” (Peptide 1), (B) “HTLKGRRLVFDN” (Peptide 2), (C) “KSLTIYAQVQK”
(Peptide 3), (D) “ARTKQT” (Peptide 4), (E) “KSTQATLERWEF” (Peptide 5)”, (F)
“NMTPYRSPPPYVP” (Peptide 6), and (G) “GASDGSGWSSENNPW” (Peptide 7).
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simulations with the neutral terminus on (A) peptide “GPPPAMPARPT” (Peptide 1), (B)
“HTLKGRRLVFDN” (Peptide 2), (C) “KSLTIYAQVQK” (Peptide 3), (D) “ARTKQT” (Peptide

4), (E) “KSTQATLERWEF” (Peptide 5)”, (F) “NMTPYRSPPPYVP” (Peptide 6), and (G)
“GASDGSGWSSENNPW” (Peptide 7).
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Figure S5. 2D potential of mean force (PMF) regarding the peptide backbone RMSD and protein
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(G)“GASDGSGWSSENNPW?” (Peptide 7), respectively.
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Figure S6. (A-C) Time courses of peptide backbone RMSD were obtained from Pep-GaMD
simulations with the zwitterion terminus, starting from the top 3 poses predicted by HPEPDock
for peptide 1 (1SSH). (D-F) The 2D PMFs were calculated based on the protein backbone RMSD
and peptide backbone RMSD for peptide 1 starting from the top 3 binding poses. The white
asterisks indicate the initial docking poses obtained using HPEPDOCK. (G-H) Binding poses of
the three poses predicted using HPEPDock (G) and PepBinding (H) with the zwitterion terminus

were compared with X-ray structures.
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Figure S7. (A-C) Time courses of peptide backbone RMSD were obtained from Pep-GaMD
simulations with the zwitterion terminus, starting from the top 3 poses predicted by HPEPDock
for peptide 2 (2CCH). (D-F) The 2D PMFs were calculated based on the protein backbone RMSD
and peptide backbone RMSD for peptide 3 starting from the top 3 binding poses. The white
asterisks indicate the initial docking poses obtained using HPEPDOCK. (G-H) Binding poses of
the three poses predicted using HPEPDock (G) and PepBinding (H) with the zwitterion terminus

were compared with X-ray structures.
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Figure S9. 2D PMFs calculated from three combined or individual Pep-GaMD trajectories
regarding the peptide backbone RMSD and protein backbone RMSD for peptides with the
zwitterion peptide terminus (A) “GPPPAMPARPT” (Peptide 1, ISSH), (B) “HTLKGRRLVFDN”
(Peptide 2, 2CCH), (C) “KSLTIYAQVQK” (Peptide 3, 1D4T), (D) “ARTKQT” (Peptide 4,
2H9M), (E)“KSTQATLERWEF” (Peptide 5, 1RXZ)”, (F)*NMTPYRSPPPYVP” (Peptide 6,
1EG4), and (G)“*GASDGSGWSSENNPW?” (Peptide 7, 2IVZ), respectively. The lowest state from
the combined PMFs was labeled as white star in all PMFs.
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Figure S10. 2D PMFs calculated from three combined or individual Pep-GaMD trajectories
regarding the peptide backbone RMSD and protein backbone RMSD for peptides with neutral
peptide terminus (A) “GPPPAMPARPT” (Peptide 1, 1SSH), (B) “HTLKGRRLVFDN” (Peptide
2, 2CCH), (C) “KSLTIYAQVQK” (Peptide 3, 1D4T), (D) “ARTKQT” (Peptide 4, 2HO9M),
(E)*KSTQATLERWE” (Peptide 5, IRXZ)”, (F)*NMTPYRSPPPYVP” (Peptide 6, 1EG4), and
(G)“GASDGSGWSSENNPW?” (Peptide 7, 2IVZ), respectively. The lowest state from the
combined PMFs was labeled as white star in all PMFs.
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