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Abstract 

Predicting protein-peptide interactions is crucial for understanding peptide binding processes and 

designing peptide drugs. However, traditional computational modeling approaches face challenges 

in accurately predicting peptide-protein binding structures due to the slow dynamics and high 

flexibility of peptides. Here, we introduce a new workflow termed “PepBinding” for predicting 

peptide binding structures, which combines peptide docking, all-atom enhanced sampling 

simulations using the Peptide Gaussian accelerated Molecular Dynamics (Pep-GaMD) method and 

structural clustering. PepBinding has been demonstrated on seven distinct model peptides. In 

peptide docking using HPEPDOCK, the  peptide backbone root-mean-square deviations (RMSDs) 

of their bound conformations relative to X-ray structures ranged from 3.8 Å to 16.0 Å, 

corresponding to the medium to inaccurate quality models according to the Critical Assessment of 

PRediction of Interactions (CAPRI) criteria. The Pep-GaMD simulations performed for only 200 

ns  significantly improved the docking models, resulting in five medium and two acceptable quality 

models. Therefore, PepBinding is an efficient workflow for predicting peptide binding structures 

and is publicly available at https://github.com/MiaoLab20/PepBinding. 
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1. Introduction 

Protein-peptide interactions play a critical role in various biological processes, including signal 

transduction, cellular regulation, immune response, protein trafficking pathway, and so on.1, 2 

Peptides exhibit unique capability to bind target protein, particularly those with shallow pockets, 

which are difficult to modulate by small molecules. Peptides have thus emerged as	promising 

candidates for new therapeutics. The number of marketed peptide-based drugs keeps increasing in 

recent years.3-6 Therefore, accurate characterization of peptide-protein interactions is important for 

both biological research and drug development.3-6   

Experimental techniques including X-ray crystallography, cryo-electron microscopy (cryo-EM) 

and nuclear magnetic resonance (NMR) have been widely utilized to determine high-resolution 

structures of peptide-protein complexes.7 These structures are usually deposited into the Protein 

Data Bank (PDB).8 However, due to time-consuming, high cost and technical difficulties,  

experimental structures have been resolved for only a small fraction of  protein-peptide 

complexes.9 In this context, computational modelling has significantly facilitated the study of 

protein-peptide interactions. By exploring and ranking possible peptide binding conformations, 

molecular docking has provided key insights into the protein-peptide interactions10 and is widely 

used in the peptide drug design.11 The docking methods could be roughly grouped into three 

categories: template-based, local docking, and global docking. The template-based docking 

methods such as GalaxyPepDock12  are highly efficient and accurate if high-quality templates are 

available12. While local docking approaches such as MDockPep,13 HADDOCK,14 and Rosetta 

FlexPepDock15 need a priori knowledge of the peptide binding site, they are able to generate high 

quality models according to the Critical Assessment of PRediction of Interactions (CAPRI) 

criteria.16 In contrast, there is no need for any pre-defined binding sites for global docking 



programs such as HPEPDOCK,17 CABS-dock,18 PIPER-FlexPepDock,19 PatchMAN20 and 

PeptiDock.21 The global docking approaches provide sampling of peptide binding over the entire 

protein surface. However, it is still challenging to account for the system flexibility. In this regard, 

HPEPDOCK considers the peptide flexibility through an ensemble of peptide conformations 

generated by MODPEP program.17 HPEPDOCK is thus able to alleviate the peptide flexibility 

problem through ensemble docking of the peptides. Recently, AlphaFold222 has shown great 

promise for providing structural insight into a wide range of peptide–protein complexes based on 

deep learning. Nevertheless, the docking calculations or deep learning could only provide 

snapshots of the protein-peptide interactions. Addressing the high flexibility of peptides and the 

dynamic interactions between protein and peptide remains a significant challenge. Overall, peptide 

docking often generates poor predictions that require further refinement to obtain quality models. 

Molecular Dynamics (MD) is a powerful technique that enables all-atom simulations of 

biomolecules. It can fully account for the flexibility of both peptides and proteins during their 

interactions.5, 23-26 Therefore, MD  has been used to refine binding poses of peptides to proteins 

obtained from docking.27-31 For example, conventional MD (cMD) has been used to refine peptide 

binding poses in proteins in the pepATTRACT28 and AnchorDock30 docking protocols. 

Furthermore, cMD simulations have been widely applied to explore peptide binding mechanisms.5, 

23-26, 32-35 cMD simulations performed for 200 μs using the Anton specialized supercomputer have 

captured 70 binding and unbinding events between an intrinsically disordered protein fragment of 

the measles virus nucleoprotein and the X domain of the measles virus phosphoprotein complex, 

which enables detailed understanding of the peptide “folding-upon-binding” mechanism.35 

Microseconds of high temperature MD simulations with RSFF2C force field captured repetitive 

peptide binding events, which allowed to accurately predict protein-peptide binding complex.36 



Furthermore, the combination of MD and machine learning has significantly enhanced the efficacy 

and accuracy of predicting the structure of cyclic peptide-protein complexes.37 Despite these 

remarkable advances, it is still challenging to sufficiently sample peptide-protein interactions 

through cMD simulations, due to the slow dynamics and limited simulation timescales.  

 On the other hand, enhanced sampling methods have provided improved sampling of peptide-

protein interactions, which could efficiently capture both peptide binding and dissociation 

processes. The widely used enhanced sampling methods include steered MD,38-40 umbrella 

sampling,41-43 metadynamics,44-49 adaptive biasing force,50, 51 supervised MD,24 weighted 

ensemble,34 Modeling by Employing Limited Data (MELD) using temperature and Hamiltonian 

replica exchange MD,52, 53 temperature-accelerated MD,54 multi-ensemble Markov state models,55 

accelerated MD (aMD) ,56, 57 Gaussian accelerated MD (GaMD) , 57-60 and so on. In particular, the 

Peptide GaMD (Pep-GaMD)61 is a more recently developed peptide enhanced sampling method 

that works by selectively boosting essential interaction potential energy of the peptide. Pep-GaMD 

has successfully captured repetitive dissociation and binding of model peptides within 

microsecond simulations. Nevertheless, enhanced sampling simulations of peptide binding to 

proteins have been under explored. In this work, we present a new computational workflow termed 

“PepBinding” that combines global peptide docking using HPEPDOCK and all-atom enhanced 

sampling simulations using Pep-GaMD to model protein-peptide interactions. Seven model 

peptides have been selected from the PeptiDB database of non-redundant peptide-protein complex 

structures.9 Starting with the top model obtained from the HPEPDOCK, Pep-GaMD is applied to 

refine the peptide-protein complex structures.  

 

2. Methods 



PepBinding Workflow Combining HPEPDOCK and Pep-GaMD 

The PepBinding workflow has been developed to predict protein-peptide binding structures. The 

workflow integrated peptide docking using HPEPDOCK17 with Pep-GaMD61 enhanced sampling 

simulations (Fig. 1). The HPEPDOCK, a hierarchical algorithm for blind and global docking, 

addresses peptide flexibility by generating an ensemble of peptide conformation with MODPEP 

program.62 Using MDock63 with rigid docking, the sampled peptide structures are then globally 

docked against the entire protein. After completion of the peptide docking, HPEPDOCK provides 

interactive view of top-ranked 10 models. For our study, only the very top pose was selected for 

further Pep-GaMD refinement. 

System Setup 

Seven model peptides were selected from the PeptiDB database of non-redundant peptide-protein 

complex structures9. They included peptide “GPPPAMPARPT” (Peptide 1), “HTLKGRRLVFDN” 

(Peptide 2), “KSLTIYAQVQK” (Peptide 3), “ARTKQT” (Peptide 4), “KSTQATLERWF” 

(Peptide 5)”, “NMTPYRSPPPYVP” (Peptide 6), “GASDGSGWSSENNPW” (Peptide 7), which 

binds to SH3 domain, WD-repeat 5, C-terminal regions in FEN-1, DNA polymerase sliding clamp, 

and dystrophin-glycoprotein complex (DGC) and TolB protein of E. coli, respectively. The free 

structures of target proteins are 1OOT, 1H1R, 1D1Z, 2H14, 1RWZ, 1EG4, and 1CRZ, respectively. 

The corresponding bound structures of protein-peptide complexes are 1SSH, 2CCH, 1D4T, 2H9M, 

1RXZ, 1EG4 and 2IVZ, respectively. The free X-ray PDB structure of target protein and the 

peptide sequence were used as input for the HPEPDOCK docking. The top ranked of each peptide 

was further refined using Pep-GaMD simulations.  

 

Pep-GaMD Enhanced Sampling Simulations 



For structural refinement of the peptide-protein docked complex, we used a more recently 

developed enhanced sampling method Pep-GaMD.61 The complexes were solvated in explicit 

water using the tleap program within AMBER22 package.64 The charge in each system was 

neutralized using Na+ and Cl- ions. The AMBER ff14SB65 force field parameter was used for the 

protein/peptide and TIP3P as a water model66 for water molecules. Each system was neutralized 

by adding counter ions and immersed in a cubic TIP3P water box,66 which was extended 15 Å 

from the protein-peptide complex surface. For energy minimization of each system, the steepest 

descent for 50,000 steps and the conjugate gradient for additional 50,000 steps were performed 

with and without applying harmonic position restraints of 1 kcal/mol*Å! on heavy atoms of protein 

and peptides. Minimization was followed by heating the system from 0 to 300 K in constant 

number, volume, and temperature (NVT) ensemble for 1ns simulation by applying harmonic 

position restraints of 1 kcal/mol. Å! on heavy atoms of protein and peptides. System was then 

further equilibrated using constant number, pressure, and temperature (NPT) ensemble at 1 atm 

and 300K for 1ns with same restraints as in NVT run. Then, the system was fully equilibrated for 

a short 2 ns cMD without any constraints under the NPT ensemble. In the Pep-GaMD equilibration: 

a 2ns cMD run was firstly performed to calculate potential statistics (such as maximum, minimum, 

average and standard deviation) for adding the boost potential; then 18ns Pep-GaMD equilibration 

was performed with the boost potential added. Finally, three independent production runs of each 

system were performed for 200 ns with randomized initial atomic velocities. The simulation frames 

were saved every 0.2 ps for trajectory analysis.  In the Pep-GaMD simulations, the threshold 

energy for applying the first and second boost potential was set to the lower bound. The upper 

limits of the standard deviation of the second potential boost (σ0D) were set to 6.0 kcal/mol for all 

systems. By default, the upper limits of the standard deviation of the first potential boost (σ0P) 



were set to 6.0 kcal/mol for the initial tests. However, these acceleration parameters led to peptide 

dissociation during Pep-GaMD equilibration in the 1D4T, 2CCH, and 1EG2 systems. Since the 

PepBinding approach was focused on refining the local peptide binding pose rather than capturing 

the peptide dissociation and rebinding process, σ0P was decreased to maintain the peptides in the 

bound state. Detailed description about each system setup, including the system size, the number 

of ions for neutralization, Pep-GaMD simulation parameters, and the boost potential values were 

summarized in Tables S1 & S2. All snapshots from the three production runs were used to analysis 

with CPPTRAJ.67 Root-mean square deviations (RMSDs) were calculated for the peptide 

backbone relative to the X-ray structure, with the protein backbone aligned. RMSDs of the protein 

backbones relative to the X-ray structures with the protein aligned, distances between the center-

of-mass of protein and center-of-mass of peptide, the number of native contact between peptide 

and protein were calculated using  CPPTRAJ.67 The PyReweighting toolkit68 was utilized to 

reweight the structural clusters with three Pep-GaMD simulations combined. The peptide RMSD 

with protein aligned and protein RMSD were chosen as reaction coordinate for calculating the 2D 

PMF profile. The bin size was set to 1.0 Å. The cutoff for the number of simulation frames in one 

bin was set to 500 for reweighting 2D PMF profiles. To obtain the peptide binding pose, structural 

clustering was performed using the agglomerative algorithm implemented in CPPTRAJ.67 

Structural alignment was first performed on the protein backbone. Clustering was then performed 

using the peptide backbone RMSDs to obtain 10 representative structures. The structures from the 

PepBinding predictions shown in Figs. 2 and S3 are those with the lowest peptide backbone RMSD 

among the 10 representative structures. 

 

3. Results 



Prediction of Peptide Binding Structures through Docking and Pep-GaMD Simulations 

Peptide docking using HPEPDOCK exhibited different levels of accuracy, as evidenced by 

RMSDs of the peptide backbone when compared to the bound X-ray structures. The peptide 

RMSD values for the seven model peptides were 3.87 Å, 4.50 Å, 5.49 Å, 7.80 Å, 8.50 Å, 14.12 Å, 

and 16.40 Å, respectively (Fig. 2 and Table 1). According to the CAPRI criteria,16 the first two 

peptides reached predictions of the medium quality, while the third to fifth peptides fell within the 

acceptable predictions. The last two peptides, predictions were classified as incorrect. 

Pep-GaMD simulations were conducted with three replicas, each lasting 200 ns, to refine the 

docking models. For Peptides 1 and 2, RMSDs of the peptide backbone relative to the X-ray 

structures decreased to less than 3.0 Å during the Pep-GaMD simulations (Figs. 2A-2B &3A-3B). 

Peptides 1-3 exhibited tight binding to the protein target site throughout the three Pep-GaMD 

simulations, with slight fluctuations observed in Sim3 of the Peptide 1 (Figs. 3A-3C). Two Pep-

GaMD simulations of Peptide 4 resulted in a significant reduction in the peptide RMSD (Figs. 

3D). In comparison, Peptides 5-6 displayed higher fluctuations and transiently sampled acceptable 

conformations with RMSD <10 Å during the Pep-GaMD simulations (Figs. 3E & 3F). Peptide 7 

appeared trapped in a metastable state in the 200 ns Pep-GaMD simulations and RMSD of the 

peptide backbone dropped below 10 Å (Fig. 3G). RMSDs of the seven model peptides showed 

notable decreases compared with the initial docking models (Figs. 2-3 and Table 1). 

Moreover, Pep-GaMD simulation snapshots of the peptide conformations were clustered based 

on backbone RMSDs relative to the X-ray structures (See methods). The best models in the 

resulting clustering was found to be 2.11 Å, 2.79 Å, 4.12 Å, 1.36 Å, 9.87 Å, 4.80 Å, and 9.64 Å, 

for the seven peptides (Table 1). According to the CAPRI criteria 16, PepBinding predictions of 

Peptides 1-4 and 6 were determined of medium quality, while those of Peptides 5 and 7 were 



considered acceptable quality. Therefore, Pep-GaMD simulations significantly improved the 

docking prediction quality of the seven peptide binding structures. The predicted bound 

conformations of the peptides were mostly similar to experimental X-ray structures, showcasing 

the peptide backbone RMSDs ranging from 2.1 Å to 9.8 Å. In contrast, docking poses derived 

from HPEPDOCK of the seven peptides exhibited RMSDs spanning from 3.87 Å to 16.40 Å 

(Table 1).  

    2D potential of mean forces (PMFs) were further calculated from the Pep-GaMD simulations, 

utilizing protein and peptide backbone RMSDs relative to the bound X-ray structures as reaction 

coordinates (Fig. 4). For peptides 1 to 4, only a single low-energy minimum was identified near 

the native bound structure (Figs. 4A-4D). Peptides 5 to 7 also exhibited a single low-energy 

minimum, but with moderate deviation and higher RMSDs from the native bound structure (Fig. 

4E-4G). Specifically, Peptide 1 sampled a low-energy well, centered at ~2.1 Å and ~0.8 Å 

backbone RMSDs for the peptide and protein relative to the bound X-ray structure, being 

consistent with structural clustering findings of the peptide. For Peptide 2, Pep-GaMD explored a 

broad low-energy well, centered at ~2.8 Å and ~1.2 Å backbone RMSDs for the peptide and 

protein relative to the bound X-ray structure. Similarly, Peptide 3 exhibited a low-energy well, 

centered at around 4.1 Å and 0.8 Å backbone RMSDs for the peptide and protein relative to the 

bound X-ray structure. Peptide 4, featured a low-energy well, centered at approximately 1.4 Å and 

0.8 Å backbone RMSDs for the peptide and protein relative to the bound X-ray structure. In 

comparison, Peptides 5 to 7 displayed low-energy wells with centers at higher ~9.8 Å and ~1.1 Å, 

~4.9 Å and ~1.0 Å, and ~9.5 Å and ~1.0 Å backbone RMSDs for the peptide and protein relative 

to the bound X-ray structures, respectively. To further characterize the Pep-GaMD refinement, we 

calculated the time course of the number of native contacts between the protein and peptide, and 



their center-of-mass distance (Fig. S2). The results indicated that the current Pep-GaMD 

simulations did not sample dissociation of the peptides. During the simulations, the number of 

peptide native contacts increased and RMSD of the peptide relative to the X-ray structure mostly 

decreased. Therefore, the Pep-GaMD simulations primarily refined local interactions between the 

peptide and protein rather than capturing the complete peptide dissociation and binding events. 

These findings provide important insights into the energetically favorable conformations sampled 

by Pep-GaMD simulations of each peptide.  

Effects of Terminal Residue Charges on Peptide Binding 

In addition to the zwitterion terminus model as described above, we conducted further Pep-GaMD 

simulations of the seven peptides with neutral terminal patched residues. Similar results were 

obtained for most of the peptides, as depicted in Figs S3-S5. For Peptides 1-7 in the neutral 

terminal model, the top-ranked PepBinding predictions exhibited peptide backbone RMSDs of 

1.28 Å, 5.34 Å, 4.42 Å, 0.69 Å, 5.82 Å, 9.06 Å, and 8.98 Å relative to the X-ray bound structures 

(Table 2 and Fig. S3). These prediction yielded one high-quality, two medium-quality, and four 

acceptable-quality models. Significant improvements were observed for peptides 1, 4, and 5 with 

the neutral termini, for which the backbone RMSDs decreased from 2.11 Å to 1.28 Å, 1.36 Å to 

0.69 Å, and 9.87 Å to 5.82 Å, respectively. On the other hand, Peptides 2 and 6 exhibited larger 

RMSDs with the neutral termini. Their RMSDs increased from 2.79 Å to 5.34 Å, and 4.8 Å to 9.06 

Å, respectively. Overall, the simulation-predicted peptide bound conformations with neutral 

termini exhibited slightly smaller peptide RMSDs from the native X-ray structures when compared 

to the zwitterion terminus models. It is worth noting that the experimental structures are obtained 

from the zwitterion terminus models. Therefore, it is better to adjust terminal residue charges in 



predictions of peptide binding structures to match the experimental condition since no significant 

differences were observed between these two models in our simulations. 

 

4. Discussion 

We have developed and demonstrated the PepBinding workflow to predict peptide binding 

structures. Peptides typically bind to shallow protein surface with large pockets, while small-

molecule ligands can access deeply buried sites. Peptide-protein interactions tend to be weaker 

than protein-protein interactions, primarily due to the smaller interface between peptides and their 

target proteins. Most peptides lack stable structures, making it challenging to incorporate their high 

flexibility and large conformational changes (folding and unfolding) into computational modeling, 

particularly in peptide docking scenarios. Utilizing seven peptides with diverse lengths and 

difficulty levels as model systems, we observed significant improvement of the peptide binding 

structure predictions. The Pep-GaMD refinement yielded models of medium quality for Peptides 

1-5 and acceptable quality for Peptides 6 and 7 with the zwitterion terminus models. This 

promising outcome suggests wide applicability of PepBinding to many other peptide-protein 

binding systems. It is worth noting that our current PepBinding approach utilizes only the top 

binding pose from HPEPDock.  

    Next, we examined whether different HPEPDOCK-predicted structures of the peptides could be 

effectively refined using the PepBinding approach. Peptides 1 and 2 were selected as test systems 

using the second and third binding poses obtained from HPEPDock for additional Pep-GaMD 

simulations. As shown in Figs. S6 & S7, docking pose 3 of both peptides showed similar quality 

as pose 1 with correct peptide binding orientation. However, docking pose 2 of both peptides 

appeared in a reversed binding orientation of the peptide, leading to significant high peptide RMSD 



values of 15.8 Å and 18.3 Å for peptide 1 and 2, respectively. The same parameters and approaches 

were applied in the additional Pep-GaMD simulations. For peptide 1, Pep-GaMD improved the 

model of binding pose 3, reducing the peptide RMSD from 5.5 Å to 2.3 Å (Fig S6).  Even with 

the reversed peptide direction in pose 2, Pep-GaMD could improve the prediction quality from 

inaccurate to mediate (Fig S6). In the more challenging case of peptide 2, Pep-GaMD improved 

the model of docking pose 3, reducing the peptide RMSD from 4.8 Å to 3.2 Å (Fig S7). For pose 

2 with the reversed peptide direction, although Pep-GaMD reduced the peptide RMSD from 18.3 

Å to 15.2 Å, the refined model remained inaccurate. These tests suggested that including more 

binding poses for refinement in PepBinding may increase the success rate of obtaining improved 

quality models of peptide binding structures. In this regard, combining Pep-GaMD with replica 

exchange by incorporating different binding poses into different replicas might enhance the 

efficiency of PepBinding binding predictions. This will be subject to future studies. 

 We compared PepBinding prediction accuracies with AutoDock CrankPep (ADCP)69 on our 

dataset. ADCP is a recent developed local docking method that requires information about the 

binding site and has shown excellent prediction performance on the PepSet dataset among eight 

local docking methods. However, the ADCP only obtained one mediate quality, 5 acceptable 

quality models and 1 inaccurate predictions at the top-rank model (Table S3). This result 

underscores the challenging nature of our chosen peptides for different peptide docking software. 

Since peptide docking often yielded similar quality models, Pep-GaMD is promising to refine the 

peptide docking models, being consistent with our previous findings of GaMD combination with 

PeptiDock.31 However, further testing of more peptide systems is needed for Pep-GaMD in peptide 

refinement and PepBinding predictions, and its potential generalization to different docking 

programs require additional exploration. In addition to conformational sampling, the reliability of 



MD simulations relies on the accuracy of the force field. In a study by Chen et al. , 36 various force 

fields, including RSFF2C and AMBER ff14SB, were compared. While high-temperature MD 

simulations with both force fields produced near-native conformations, RSFF2C showed superior 

performance. The impact of different force fields on the overall performance remains a subject for 

future investigations. In comparison to GaMD and cMD approaches, our current Pep-GaMD 

method showcases more efficient sampling, requiring shorter simulation lengths for peptide 

structural refinement. For peptides 1 (1SSH), 3 (1D4T) and 6 (1EG4), we compared Pep-GaMD 

and cMD simulations of the same length (Fig. S8 & Table S4). For peptides 1 and 3, cMD 

improved the binding pose quality to the medium level. However, for the challenging peptide 6, 

no improvement was observed with cMD, while Pep-GaMD could improve the model quality from 

level of incorrect to medium with the enhanced sampling. While our previous GaMD refinement 

required four 300 ns simulations of rather short peptides31. Pep-GaMD achieves similar refinement 

with only three 200 ns simulations on even longer peptides. Notably, the three replicas of Pep-

GaMD simulations were found to converge well, as PMFs calculated from the combined and 

individual simulation trajectories were similar (Figs. S9 & S10).  In particular, the lowest-energy 

states identified from the combined PMFs were close to those from PMFs of the individual 

simulations, despite slight differences in the peptide configuration space sampled in the 1SSH and 

2H9M systems. Nevertheless, these brief Pep-GaMD simulations did not sample any dissociation 

events, preventing convergence on peptide binding. This indicates that enhancing the current 

PepBinding approach should primarily focus on refining the local interactions between the peptide 

and protein. Longer simulations with higher acceleration of Pep-GaMD are needed for capturing 

dissociation and rebinding processes, which will be subject to future studies. High-performance 

Pep-GaMD simulations conducted using AMBER 22 on NVIDIA L40 GPU cards further affirm 



computational viability, with each 200 ns GaMD simulations of Peptides 1 to 7 requiring less than 

two days. This enhanced efficiency positions PepBinding as a highly promising approach for wider 

applications in peptide binding structure predictions. 

 

5. Conclusion 

In summary, PepBinding has been demonstrated on predicting the peptide-protein complex 

structures, using seven distinct peptides as model systems. However, Pep-GaMD simulations of 

different lengths, the effects of different force fields (e.g. RSFF2C, CHARMM36m) and solvent 

models (e.g., TIP4P, implicit solvent, etc.)70 and various structural clustering algorithms are to 

be further investigated in the future. For refinement of the docking poses with Pep-GaMD, 

because AMBER22 was applied for running the simulations, the widely used AMBER ff14SB 

force field was selected. Development of novel protocols to increase the accuracy of peptide-

protein structural prediction will facilitate peptide drug design. Advances in computational 

methods and computing power are expected to help us to address these challenges.  
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Table 1. Summary of the seven model protein-peptide complexes and performance of the 

HPEPDOCK and PepBinding predictions. *The model quality was assessed according to the 

CAPRI criteria and denoted in parentheses. 

Peptide Bound Free Peptide RMSD 
HPEPDOCK (Å)* RMSD PepBinding (Å)* 

1 1SSH(A) 1OOT(A) GPPPAMPARPT 3.87(Medium) 2.11(Medium) 

2 2CCH(B) 1H1R(B) HTLKGRRLVFDN 4.50(Medium) 2.79(Medium) 

3 1D4T(A) 1D1Z(A) KSLTIYAQVQK 5.49(Acceptable) 4.12(Medium) 

4 2H9M(A) 2H14(A) ARTKQT 7.80(Acceptable) 1.36(Medium) 

5 1RXZ(A) 1RWZ(A) KSTQATLERWF 8.50(Acceptable) 9.87(Acceptable) 

6 1EG4(A) 1EG3(A) NMTPYRSPPPYVP 14.12(Incorrect) 4.80(Medium) 

7 2IVZ(A) 1CRZ GASDGSGWSSENNPW 16.40(Incorrect) 9.64(Acceptable) 

 

Table 2. Comparison of prediction models with different peptide terminus settings using the 

PepBinding workflow. *The model's quality was assessed according to CAPRI peptide docking 

criteria, and its classification was put inside the brackets. 

Peptide 1 2 3 4 5 6 7 
RMSD 
(Å) 

PepBinding 
(Neutral 
terminus) 

1.28 
(Medium) 

5.34 
(Acceptable) 

4.42 
(Medium) 

0.69 
(High) 

5.82 
(Acceptable) 

9.06 
(Acceptable) 

8.98 
(Acceptable) 

PepBinding 
(Zwitterion 
terminus) 

2.11 
(Medium) 

2.79 
(Medium) 

4.12 
(Medium) 

1.36 
(Medium) 

9.87 
(Acceptable) 

4.80 
(Medium) 

9.64 
(Acceptable) 

 

  



Figure captions 
 
Figure 1. Workflow of the PepBinding that combines peptide docking with HPEDOCK, all-atom 
enhanced sampling simulations with Pep-GaMD and structural clustering. 
 
Figure 2. Binding poses of seven peptides predicted using HPEPDOCK (purple) and “PepBinding” 
(green) with the zwitterion terminus are compared with X-ray structures (blue): (A) peptide 
“GPPPAMPARPT” (Peptide 1), (B) “HTLKGRRLVFDN” (Peptide 2), (C) “KSLTIYAQVQK” 
(Peptide 3), (D) “ARTKQT” (Peptide 4), (E) “KSTQATLERWF” (Peptide 5)”, (F) 
“NMTPYRSPPPYVP” (Peptide 6), and (G) “GASDGSGWSSENNPW” (Peptide 7). The binding 
poses from the PepBinding predictions were the representative structures with lowest peptide 
backbone RMSD obtained through clustering analysis of Pep-GaMD simulations. The top 1 
binding poses from the HPEPDock, which were also used as initial Pep-GaMD simulations, were 
shown. 
   
Figure 3. Time courses of peptide backbone RMSD obtained from three 200ns Pep-GaMD 
simulations on peptides with the zwitterion terminus for (A) peptide “GPPPAMPARPT” (Peptide 
1), (B) “HTLKGRRLVFDN” (Peptide 2), (C) “KSLTIYAQVQK” (Peptide 3), (D) “ARTKQT” 
(Peptide 4), (E) “KSTQATLERWF” (Peptide 5)”, (F) “NMTPYRSPPPYVP” (Peptide 6), and (G) 
“GASDGSGWSSENNPW” (Peptide 7).  
 
Figure 4. 2D potential of mean force (PMF) regarding the peptide backbone RMSD and protein 
backbone RMSD for peptides with the zwitterion terminus: (A) Peptide 1, (B) Peptide 2, (C) 
Peptide 3, (D) Peptide 3, (E) Peptide 3, (F) Peptide 3 and (G) Peptide 7. The white asterisks indicate 
the initial docking poses obtained using HPEPDOCK.  
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Table S1. Summary of Pep-GaMD Simulations Performed on Refining HPEPDock models with 
zwitterion peptide terminusa 

System Natoms System Size (axbxc in Å) Nions (Na+/Cl-) σOP σOD ΔV(kcal/mol) 

1SSH 23,240 67.1x66.0x66.2 0/0 6.0 6.0 12.89±3.66 

2CCH 55,799 96.4x83.5x83.2 2/0 1.0 6.0 9.73±3.067 

1D4T 28,470 77.0x70.8x65.6 0/4 1.5 6.0 11.24±3.14 

2H9M 48,937 90.3x88.4x74.1 0/7 6.0 6.0 11.81±3.540 

1RXZ 47,063 88.4x96.7x98.8 12/0 6.0 6.0 58.19±6.86 

 1EG4 59,071 102.9x85.4x80.7 0/1 0.5 6.0 7.99±2.81 

 2IVZ 71,746 112.2x91.5x83.8 3/0 6.0 6.0 13.37±3.71 

a Natoms is the number of atoms in the simulation; Nions (Na+/Cl-) is the number of ions (Na+ or 
Cl-) used to neutralize system; σOP and σOD are the peptide essential and the second boost potential 
standard deviations in Pep-GaMD simulations; ΔV is the total boost potential.  

 
Table S2. Summary of Pep-GaMD Simulations Performed on Refining HPEPDock models with 
neutral peptide terminusa 

System Natoms System Size (axbxc in Å) Nions (Na+/Cl-) σOP σOD ΔV(kcal/mol) 

1SSH 23,397 70.4x69.7x63.4 0/0 6.0 6.0 12.56±3.55 

2CCH 55,799 96.5x83.5x83.2 2/0 6.0 6.0 12.51±3.60 

1D4T 28,470 77.0x70.8x65.6 0/4 1.5 6.0 10.96±3.40 

2H9M 49,558 90.3x88.4x75.0 0/7 6.0 6.0 13.80±3.76 

1RXZ 47,222 96.4x79.6x74.1 12/0 6.0 6.0 12.97±3.67 

1EG4 59,077 102.9x85.4x80.7 0/1 6.0 6.0 12.420±3.64 

2IVZ 73,690 113.0x92.7x84.1 2/0 6.0 6.0 12.05±3.59 

a Natoms is the number of atoms in the simulation; Nions (Na+/Cl-) is the number of ions (Na+ or 
Cl-) used to neutralize system; σOP and σOD are the peptide essential and the second boost potential 
standard deviations in Pep-GaMD simulations; ΔV is the total boost potential.  
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Table S3. Comparison of docking models obtained using the HPEPDOCK and AutoDock 

CrankPep (ADCP). *The model quality was assessed according to the CAPRI criteria and denoted 

in parentheses. 

Peptide 1 2 3 4 5 6 7 
RMSD 

(Å) 
HPEPDOCK 3.87 

(Medium) 
4.50 

(Medium) 
5.49 

(Acceptable) 
7.80 

(Acceptable) 
8.50 

(Acceptable) 
14.00 

(Inaccurate) 
16.40 

(Inaccurate) 
ADCP 9.12 

(Acceptable) 
5.78 

(Acceptable) 
5.22 

(Acceptable) 
4.55 

(Medium) 
7.13 

(Acceptable) 
9.70 

(Acceptable) 
17.24 

(Inaccurate) 
 

Table S4. Comparison of prediction models with different MD techniques (Pep-GaMD and cMD) 

for the PepBinding workflow. *The model's quality was assessed according to CAPRI peptide 

docking criteria, and its classification was put inside the brackets. 

Peptide 1 3 6 
RMSD (Å) HPEPDock 3.87(Medium) 5.49(Acceptable) 14.12(Incorrect) 

Pep-GaMD 2.11 (Medium) 4.12 (Medium) 4.80 (Medium) 
cMD 1.57 (Medium) 4.65 (Medium) 13.07 (Incorrect) 
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Figure S1. Protocol of Pep-GaMD simulations for refining peptide docking structures 
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Figure S2. Time courses of peptide backbone RMSD, Number of native contacts and center-of-
mass distance between peptide and protein obtained from three 200ns Pep-GaMD simulations with 
the zwitterion terminus on (A) peptide “GPPPAMPARPT” (Peptide 1, 1SSH), (B) 
“HTLKGRRLVFDN” (Peptide 2, 2CCH), (C) “KSLTIYAQVQK” (Peptide 3, 1D4T), (D) 
“ARTKQT” (Peptide 4, 2H9M), (E) “KSTQATLERWF” (Peptide 5, 1RXZ)”, (F) 
“NMTPYRSPPPYVP” (Peptide 6, 1EG4), and (G) “GASDGSGWSSENNPW” (Peptide 7, 2IVZ). 
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Figure S3. Docking poses of seven peptides obtained using HPEPDOCK (purple) and PepBinding 

(green) are compared with X-ray structures (blue) using the neutral peptide terminus: (A) peptide 

“GPPPAMPARPT” (Peptide 1), (B) “HTLKGRRLVFDN” (Peptide 2), (C) “KSLTIYAQVQK” 

(Peptide 3), (D) “ARTKQT” (Peptide 4), (E) “KSTQATLERWF” (Peptide 5)”, (F) 

“NMTPYRSPPPYVP” (Peptide 6), and (G) “GASDGSGWSSENNPW” (Peptide 7). 
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Figure S4. Time courses of peptide backbone RMSD obtained from three 200ns Pep-GaMD 

simulations with the neutral terminus on (A) peptide “GPPPAMPARPT” (Peptide 1), (B) 

“HTLKGRRLVFDN” (Peptide 2), (C) “KSLTIYAQVQK” (Peptide 3), (D) “ARTKQT” (Peptide 

4), (E) “KSTQATLERWF” (Peptide 5)”, (F) “NMTPYRSPPPYVP” (Peptide 6), and (G) 

“GASDGSGWSSENNPW” (Peptide 7). 
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Figure S5. 2D potential of mean force (PMF) regarding the peptide backbone RMSD and protein 

backbone RMSD for peptides with the neutral terminus (A) “GPPPAMPARPT” (Peptide 1), (B) 

“HTLKGRRLVFDN” (Peptide 2), (C) “KSLTIYAQVQK” (Peptide 3), (D) “ARTKQT” (Peptide 

4), (E)“KSTQATLERWF” (Peptide 5)”, (F)“NMTPYRSPPPYVP” (Peptide 6), and 

(G)“GASDGSGWSSENNPW” (Peptide 7), respectively. 
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Figure S6. (A-C) Time courses of peptide backbone RMSD were obtained from Pep-GaMD 

simulations with the zwitterion terminus, starting from the top 3 poses predicted by HPEPDock 

for peptide 1 (1SSH).  (D-F) The 2D PMFs were calculated based on the protein backbone RMSD 

and peptide backbone RMSD for peptide 1 starting from the top 3 binding poses. The white 

asterisks indicate the initial docking poses obtained using HPEPDOCK. (G-H) Binding poses of 

the three poses predicted using HPEPDock (G) and PepBinding (H) with the zwitterion terminus 

were compared with X-ray structures. 
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Figure S7. (A-C) Time courses of peptide backbone RMSD were obtained from Pep-GaMD 

simulations with the zwitterion terminus, starting from the top 3 poses predicted by HPEPDock 

for peptide 2 (2CCH).  (D-F) The 2D PMFs were calculated based on the protein backbone RMSD 

and peptide backbone RMSD for peptide 3 starting from the top 3 binding poses. The white 

asterisks indicate the initial docking poses obtained using HPEPDOCK. (G-H) Binding poses of 

the three poses predicted using HPEPDock (G) and PepBinding (H) with the zwitterion terminus 

were compared with X-ray structures. 
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Figure S8. Time courses of peptide backbone RMSD obtained from three 200ns cMD simulations 

with the zwitterion terminus on (A) peptide “GPPPAMPARPT” (Peptide 1, 1SSH), (B) 

“KSLTIYAQVQK” (Peptide 3, 1D4T) and (C) “NMTPYRSPPPYVP” (Peptide 6, 1EG4). 
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Figure S9. 2D PMFs calculated from three combined or individual Pep-GaMD trajectories  
regarding the peptide backbone RMSD and protein backbone RMSD for peptides with the 
zwitterion peptide terminus  (A) “GPPPAMPARPT” (Peptide 1, 1SSH), (B) “HTLKGRRLVFDN” 
(Peptide 2, 2CCH), (C) “KSLTIYAQVQK” (Peptide 3, 1D4T), (D) “ARTKQT” (Peptide 4, 
2H9M), (E)“KSTQATLERWF” (Peptide 5, 1RXZ)”, (F)“NMTPYRSPPPYVP” (Peptide 6, 
1EG4), and (G)“GASDGSGWSSENNPW” (Peptide 7, 2IVZ), respectively. The lowest state from 
the combined PMFs was labeled as white star in all PMFs. 
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Figure S10. 2D PMFs calculated from three combined or individual Pep-GaMD trajectories  
regarding the peptide backbone RMSD and protein backbone RMSD for peptides with neutral 
peptide terminus  (A) “GPPPAMPARPT” (Peptide 1, 1SSH), (B) “HTLKGRRLVFDN” (Peptide 
2, 2CCH), (C) “KSLTIYAQVQK” (Peptide 3, 1D4T), (D) “ARTKQT” (Peptide 4, 2H9M), 
(E)“KSTQATLERWF” (Peptide 5, 1RXZ)”, (F)“NMTPYRSPPPYVP” (Peptide 6, 1EG4), and 
(G)“GASDGSGWSSENNPW” (Peptide 7, 2IVZ), respectively. The lowest state from the 
combined PMFs was labeled as white star in all PMFs. 


	PepBinding-SI-Final.pdf
	Supporting Information: PepBinding: A workflow for predicting peptide binding structures by combining Peptide Docking and Peptide Gaussian Accelerated Molecular Dynamics Simulations


