2024 IEEE International Symposium on Information Theory (ISIT) | 979-8-3503-8284-6/24/$31.00 ©2024 IEEE | DOI: 10.1109/ISIT57864.2024.10619135

Break-Resilient Codes for
Forensic 3D Fingerprinting

Canran Wang*, Jin Simaf, and Netanel Raviv*
*Department of Computer Science and Engineering, Washington University in St. Louis,
TDepartment of Electrical and Computer Engineering, University of Illinois Urbana Champaign,
canran@wustl.edu, jsima@illinois.edu, netanel.raviv@wustl.edu

Abstract—3D printing brings about a revolution in con-
sumption and distribution of goods, but poses a significant
risk to public safety. Any individual with internet access and
a commodity printer can now produce untraceable firearms,
keys, and dangerous counterfeit products. To aid government
authorities in combating these new security threats, objects are
often tagged with identifying information. This information, also
known as fingerprints, is written into the object using various bit
embedding techniques, such as varying the width of the molten
thermoplastic layers. Yet, due to the adversarial nature of the
problem, it is important to devise tamper-resilient fingerprinting
techniques, so that the fingerprint could be extracted even
if the object was damaged. This paper focuses on a special
type of adversarial tampering, where the adversary breaks the
object to at most a certain number of parts. This gives rise
to a new adversarial coding problem, which is formulated and
investigated herein. We survey the existing technology, present
an abstract problem definition, provide lower bounds for the
required redundancy, and construct a code which attains it up
to asymptotically small factors.

I. INTRODUCTION

Three dimensional (3D) printing has become increasingly
accessible in recent years. The prevalence of this technology,
however, exposes the public to various security threats, such
as production of untraceable firearms, reconstruction of keys
from online images, counterfeiting medical equipment or ve-
hicle parts, and more [1]. To aid law enforcement agencies
in combating these threats, fingerprinting 3D printers with
uniquely traceable data into the object (e.g., timestamp, geolo-
cation, printer ID, etc.) is becoming increasingly important.

Various techniques for fingerprinting 3D printed objects
have been proposed in the literature [2]-[11]. Any such bit
embedding technique, however, is exposed to a wide range
of adversarial tampering threats. Therefore, bit embedding
techniques must be coupled with coding techniques which
guarantee successful retrieval at the presence of adversarial
tampering. Any such adversarial model must be quantified
by a corresponding security parameter which restricts the
adversary’s capabilities, and affects the information rate.

While some adversarial threats to 3D printed information
can be well modeled by known coding-theoretic notions such
as erasures, substitutions, or deletions, the 3D printing medium
introduces new adversarial noise models that have not been
studied in the past. Specifically, this paper focuses on an
adversarial model in which the information is broken apart
maliciously, to at most a certain number of fragments.

We propose a mathematical framework which does not
pertain to any particular bit embedding technology, and merely
assume that information bits are embedded in some form
within the object. The adversary is able to break the object
apart in at most ¢ arbitrary positions, where ¢ is a tunable se-
curity parameter. The reasoning behind this adversarial model
stems from the nature of 3D printing technologies. In the
context of this technology, embedded bits are tied to physical
elements inside the object, whose size is roughly in the order
of magnitude of millimeters, and hence it is possible to break
an arbitrarily small number of bits away from the object.
Therefore, we do not pose any restriction on the number of bits
in the resulting fragments. On the other hand, time constraints,
access to instruments, or simply physical strength limitations
keep the adversary from breaking the object to arbitrarily many
fragments, and hence the parameter ¢ is expected to be small
with respect to the codeword length.

The goal of the encoder in our mathematical framework is
to recover the original information bits from the (at most) £+ 1
resulting fragments. As commonly assumed in security prob-
lems, we assume the adversary is fully aware of the encoding
method, and wishes to interfere with the decoding process as
much as possible within its capability, which is quantified by
the parameter ¢. Importantly, we do not require the fragments
to be put back together, and aim for a complete reconstruction
of the information bits based exclusively on the information
content of the fragments.

Similar problems have been recently studied in the lit-
erature. Several works studied the so-called sliced-channel
model, in which the information bits are sliced at several
evenly-spaced locations, producing a set of substrings of equal
size [12]-[14]. The torn paper coding problem has been
studied by [15]-[17], where the information string is being
cut by a probabilistic process, producing substrings of random
lengths. More closely related, the adversarial counterpart of
torn-paper coding was studied in [18] with a restriction that all
fragment lengths are between some upper and lower bounds.

In this paper we extend the above line of works and
provide nearly optimal code construction for any number of
breaks ¢. That is, for a given parameter ¢, we wish to construct
a t-break resilient code C of some length n and minimum
redundancy, where redundancy is defined as n — log |C|. We
begin by presenting a simple reduction to traditional (that is,
substitution-correcting) codes, which implies that the minimal

AuBhzgl BeOSQOR4ingicutes MABIOINGT OPUUNRFERSITY LIBRARIES. Dowdifoged on September 09,2024 at 14:51:31 UTC from IEEE Xplore. Restrictions apply.

redundancy of a ¢-break code is Q2(¢logn), and then provide
a code construction with O(tlognloglogn) redundancy.

A. Preliminaries and Problem Definition

Our setup includes an encoder which holds a binary
string x € {0, l}k (an information word) for some integer k,
that is to be encoded to a string ¢ € {0,1}" (a codeword).
After encoding x, the codeword c is embedded in a 3D printed
object in an arbitrary fashion. For a security parameters ¢, an
adversary breaks these n bits at arbitrary ¢ locations or less,
resulting in a multiset of at most ¢ + 1 fragments.

These fragments are given to the decoder in an unordered
fashion, and the goal of the decoder is to reconstruct x
exactly in all cases. The associated set of codewords in {0, 1}"
is called a t-break code, and is denoted by C. The figure
of merit of a given code is its redundancy, i.e., the quan-
tity n — log |C|, where | - | denotes size. Although our context
implies that ¢ is a small number relative to n, we choose not
refer to it as a constant in our asymptotic analysis in order
to better understand the fine dependence of our scheme on
it; in essence, our scheme applies to any n and any ¢ =
O(fogmiogiogs) Further, we also assume that the fragments
are oriented , i.e., the decoder knows the correct orientation of
fragments. We use standard notations for string manipulation,
such as o to denote concatenation, |x| to denote length, and

for a string x = (z1,...,2,) and 1 < a < b < n we
let x[a : b] = (Za, Tat1,---,Tp), and X[a 3] = (Ta, ..., T)x|),
as well as [n] £ {1,2,...,n} for a positive integer n.

Finally, we make use of mutually uncorrelated (MU) codes,
which is a set of codewords such that the prefix of one
codeword does not coincide with the suffix of any (potentially
identical) other. MU codes were firstly introduced in [19]-[21],
extensively studied by [22]-[27], and have been applied to
DNA-based data storage architectures [28]-[30].

For lack of space, proofs and additional details about 3D-
printing technology are given in the full version [31] of this
paper. Meanwhile, in a parallel work we have implemented a
break-resilient coding framework, based on a bit-embedding
method of varying layer widths, and successfully tested it in
practice using commodity 3D printers [32].

II. BOUNDS

In this section we provide bounds on the minimum possible
redundancy of a t-break code C. We observe that certain
constant-weight subcodes of C must have large Hamming
distance, and a bound on the redundancy of C can be achieved
by applying the well-known sphere-packing bound over them.

Theorem 1. t-break code C satisfies n—1log [C| > (t log 7).

Note that Theorem 1 implies a minimum of Q(tlogn)
redundant bits whenever ¢t = O(n!~¢) for any constant € > 0.
III. CobE CONSTRUCTION

A. Overview

In our code construction, we employ the observation
of [33], that naturally occurring patterns in a random string

can be utilized to align a sequence of received bits against
an original reference sequence. Our construction begins by
selecting a uniformly random string z. In z, all occurrences of
codewords of a mutually-uncorrelated code Cyy are identified,
and each is called a signature. The property of MU codes
assures that no two signatures overlap.

The pairwise ordering of the signatures are recorded, and
a standard systematic Reed-Solomon encoding process is ap-
plied it to produce redundancy symbols, which are prepended
to z, in order to protect said ordering. A decoder that is given
at most ¢t + 1 fragments of a codeword first identifies all
discernible (i.e., not broken) occurrences of signatures and re-
dundancy symbols. The correct pairwise ordering information
is recovered from the identified signatures and redundancy
symbols; it enables to correctly order all fragments which
contain at least one signature. For the rest of fragments,
additional signatures are defined in an recursive manner and
similar mechanism is applied to recover their correct ordering.
We now proceed to the details of this code construction.

B. Encoding

Let ¢ be the security parameter, and m > ¢ be an integer;
the code length, size, and redundancy will be functions of
them, and will be discussed in the sequel. Let z € {0,1}"
be a uniformly distributed random string, ¢ > 3 be an integer,
and Cyu = {c1,...,C|cy,|} be a mutually uncorrelated code
of length clogm and size |Cymu|. As [30] provides an efficient
binary MU code of any length nyy and [log(nmy)|+4 redun-

X clog m
dancy bits, we assume that |Cyy| > m, where g = 32.

Definition 1. For a given string z € {0,1}™, any occurrence
of a codeword of Cyy in z is called a level-0 signature.

To construct the code we reserve the ¢+ 1 lexicographically
first codewords mg, my, ..., m; in Cyy, and call them mark-
ers. Using the definitions of level-0 signatures and markers,
we now turn to formulate the criteria by which we reject and
resample the random string z.

Definition 2. A binary string z € {0,1}"" is called legit if it
satisfies the following properties.
(I) Every interval of (2Bclog*m + clogm — 1) bits in z
contains a level-0 signature.
(II) Every two non-overlapping substrings of length clogm
of z are distinct.

(Ill) z does not contain any of the markers my, ..., m;.

Property (I) readily implies the following lemma, which is
required in the sequel and is easy to prove.

Lemma 1. Let z = 21 08] 029 0830 ---08,_1 0%, be
legit, where z1,22, . . . ,Z, are (potentially empty) intervals of z
separated by the level-0 signatures si,82,...,8.—1 (each of
length clogm). Then, |z;| < 2Bclog® m for every j € [r].

A codeword c is constructed by feeding a legit string z
to Algorithm 1 . First, the algorithm attaches mg to the left
hand side of z (line 1); the resulting string y is then called
the information region of the codeword. Note that mg becomes

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Dowdile46ed on September 09,2024 at 14:51:31 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Code Construction

Input: A legit binary string z € {0,1}". Output: A codeword c € {0,1}".

Let uy,...,u; be empty strings, and let y < mg o z.

Let A = [A, ;] € NIOwIxICwl be an all-0 matrix.
for all keys k£ in SIGNATURES in ascending order do

compA <~ COMPRESS-ADJACENCY-MATRIX(A), dy, ..
for all [€ [t] do u; <+~ dy_3o0dy_sody_q10dy

D AN A o

Let r be the number of level-0 signatures in y, and let i1, ..
Let SIGNATURES be a key-value store of size r such that SIGNATURES[i;] < z[i;,; + clogm — 1] for all j € [r].

., %, be their indices in ascending order.

Let kyext be the smallest key in SIGNATURES larger than k, or m + 1 if k is the largest.
Let ¢, £ SIGNATURES[k| and ¢, £ SIGNATURES [kpext), Where ¢4, ¢y € Cyu, and let Ay p < Kpex — k.

., dyt < ENCODE((compAll],..., compA[|CMmul]), 4t).

10: Let NEWSIGNATURES, RESIDUALS be empty key-value stores.

11: for level < 1,...,loglogm + 6 do

12: for all keys k in SIGNATURES in ascending order do

13: Let kpexe be the smallest key in SIGNATURES larger than k, or m + 1 if k is the largest.
14 if knexy — k > 2clogm then

15: U 4 (k + Knext)/2, NEWSIGNATURES[u] < y[u,u + clogm — 1]

16: else if k,exi — k > clogm then

17: v + k + clogm,RESIDUALS[v] < PAD(Y[v, knext — 1])

18: SIGNATURES - SIGNATURES UNEWSIGNATURES,NEWSIGNATURES < EMPTY

19: ri,...,ry < ENCODE((SIGNATURES[1], SIGNATURES|2],...), 2t)
20: for all [€ [t] do u; < ujory_jory
21: Let kq, ko, ... be all keys in RESIDUALS in increasing order.

22: t1...,t3;: ¢ ENCODE((RESIDUALS[k;|,RESIDUALS[k2],...), 3t)

23: for all [€ [t] do u; < ujotz_sots_1o0ty
24: c <Yy
25: for all [€ [t] do

26: c+ myouwll:clogm/2]om;oufclogm/2+1:clogm]om;o---oc

27: Output c

the first level-0 signature in y, i.e., y[l : clogm] = my and
marks the transition between the information region and the
to-be-attached redundancy region.

The algorithm continues and stores all level-0 signatures
(line 3) in the key-value (KV) store SIGNATURES. It then
creates a |Cmu| X |Cyu| matrix A which records the correct
pairwise ordering, and pairwise positional distance, of level-0
signatures. Specifically, every element A, ; counts the number
of bits between a pair of adjacent signatures s; = c,
and s; 41 = ¢ in z for codewords c,, ¢, € Cyu (line 5-7).

Thanks to Property (II) and Property (III) , every row of A
is either the all-0 vector, or contains exactly one non-zero
element in one of the last |Cmy| — ¢t — 2 positions. As a
result, there exist less than |Cyy| possible positions for such
a non-zero element in each row of A. Meanwhile, thanks to
Lemma 1, the number of different possible values for such a
non-zero element (if exists) is less than 23¢ log2 m.

As such, there exist at most |Cyu| - 28clog®m < m® -
m¢ = m?¢ different possible values for one individual row
of A. This fact enables to compress A into compa, a vector
in IE“Q(’;“LA‘IJJs .. (line 8). This is done in the function COMPRESS-
ADJACENCY-MATRIX. The vector compA is later encoded
using a systematic Reed-Solomon code to produce 4t parity

symbols' (line 8). The algorithm then proceeds recursively.

During recursive step ¢ > 1, the algorithm adds level-/
signatures to SIGNATURES, by locating the midpoint between
every two existing signatures (line 14-15). If the interval
between two consecutive signatures is too short to contain a
signature (line 16), it is padded to a string of length clogm,
stored in a KV store RESIDUALS (line 17), and referred to
as a residual. The padding is performed by attaching a 1
and sufficiently many 0’s until the padded interval is clogm
bits long ([31, line 2, Alg. 3]). For the sake of encoding and
decoding, it is important to note that this padding operation is
injective and reversible. The signatures in level-1 to level-¢, as
stored in STGNATURES, are encoded similar to the adjacency
matrices to produce ¢ redundancy symbols® (line 19).

The recursion proceeds until no new signatures can fit
between two adjacent existing signatures. Due to Lemma 1,
at most 25logm — 1 non-overlapping signatures, each of

'The encoding is performed over the field of size m2°, and requires at

least |Cmu| + 6t distinct field elements; this is the case since m2¢ — |Cyu| —
4t > m2° —me —t > 0.

2The encoding is performed over the field of size 2¢l°8™ = me,
Since there are at most m/(clog m) residuals/signatures in z, the encoding
requires m/(clogm) + 2t distinct field elements. The encoding is feasible
due to the fact that m® —m/(clogm) —2t > m°™1 -2t > m¢=2 -1t > 0.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Dowdiloifled on September 09,2024 at 14:51:31 UTC from IEEE Xplore. Restrictions apply.

length clogm, can fit in between any two level-0 signatures.
Meanwhile, a total of 2¢ — 1 signatures reside in such an
interval after ¢ recursive steps, since every level-¢ signature
is defined in the middle of intervals separated by signatures
from level-0 to level-(¢—1). Hence, the recursion is guaranteed
to terminate after log(24logm) = loglogm + 6 steps.
Finally, the residuals are encoded similar to the adja-
cency matrices, producing 3t redundant symbols tq,...,ts;
(line 22), and appended to the redundancy strings ug, ..., u;.
The redundancy string w; is of length (642 loglogm)-clogm,
and undergo an instrumentation process. By instrumentation
we mean inserting marker m; in between every interval
of clogm/2 bits of w; ([31, Fig. 3]). Each instrumented
redundancy string is then (64 2loglogm)-3clogm bits long;
they are attached one by one to the left of the information
region y to create the final codeword c (line 25-26) of length

n=|c| =m+ (6 + 2loglogm) - 3clogm - t + clog m.

C. Decoding

A procedure for extracting the correct legit string z from
at most ¢t + 1 fragments of the respective codeword c is
given in Algorithm 2. Recall that a codeword ¢ consists of an
information region and a redundancy region; the former is mg,
followed by a legit string z, and the latter includes ¢ instru-
mented redundancy string uy, . .., u;. Algorithm 2 begins with
the attempt to distinguish the transition point, i.e. mg, from all
fragments. If a fragment containing my is found, it is broken
at mg such that the two segments belong to different regions
(line 2). Then, the decoding algorithm sorts the fragments to
those that are from the redundancy region (line 3), and those
that are from the information region (line 4).

A preliminary analysis of the z-fragments, whose purpose is
to extract the surviving level-0 signatures into an approximate
adjacency matrix A’, is given in lines 6-10. In this analysis,
all codewords of Cyjy present in the fragments are located and
identified as level-0 signatures, and the collection of all level-0
signatures is coalesced into a pairwise ordering approximate
adjacency matrix A’.

The analysis of the redundancy fragments is conducted in
lines 12-14, during which all markers my;, if not broken, are
identified. Recall that since u; is instrumented with my;, it can
be identified by observing a series of 2- (642 log log m) mark-
ers m, separated by clogm/2 bits. All extracted redundancy
strings are placed in a KV-store R—~-STRINGS.

The decoding algorithm proceeds to correct the constructed
adjacency matrix A’ to A, i.e., the correct redundancy matrix
generated in Algorithm 1 from z, using the collected redun-
dancy strings (line 16) and a standard Reed-Solomon decoder.
The success of the decoding process is guaranteed as follows.

Theorem 2. Line 16 outputs the correct adjacency matrix A.

Having obtained A, the algorithm allocates string y’ = mygo
*"™ to represent the information region of c (line 18). The *’s
represent the m unknown values of the original z, which
are preceded by my. Using the correct pairwise ordering and

pairwise positional distance of all level-0 signatures in A, in
lines 20-22, the algorithm traverses all adjacent pairs of level-
0 signatures and positions all signatures appropriately in y’.
In line 25 which follows, the algorithm affixes the fragments
in Z-FRAGMENTS to their correct position in y’; by correct
we mean that y'[i : i+ |f| — 1] =fify[i:i+|f] — 1] =1,
where y = mg o z (line 1, Alg. 1). Then, all remaining
fragments in Z-FRAGMENTS contain no level-0 signatures.

In the while loop starting at line 26, the decoding algorithm
proceeds with the extraction of higher level signatures. This is
done by repeatedly traversing all signatures that have already
been affixed to z. In traversal /¢, the algorithm locates the
midpoint u between every two adjacent signatures in y’, as
long as the gap between them is large enough to fit at least
one more signature. Then, the algorithm identifies and collects
the clogm bits which begin at u as a level-¢ signature. This
will result in UPDATED-SIGS, a KV store of signatures from
level-0 to level ¢. Note that some entries in UPDATED-SIGS
may be empty when the respective part of y’ contains a x
(line 33, Alg. 2). The decoder is guaranteed to correctly affix
all fragments in Z-FRAGMENTS, stated as follows.

Theorem 3. The while loop starting at line 26 will eventually
terminate, and by then every fragment in Z—-FRAGMENTS is
correctly affixed to y'.

Theorem 3 implies that all #’s in y’ now reside in residuals.
The next theorem states the correct recovery of residuals.

Theorem 4. Line 44 outputs a KV store such that
REPAIRED-RESIDUALS]i] = PAD(r) for every residual r =
yli:i+|r|].

Finally, the decoder affixes all residuals in
REPAIRED-RESIDUALS to z, and after which y’ = y.
Recall that the marker m is attached to the left of z by the
decoder, and needs to be removed to obtain y. This concludes
the proof of correctness of our construction as follows.

Theorem 5. Let z € {0,1}™ be a legit string, let ¢ be
the output of Algorithm 1 with input z, and let {1, ... £, be
fragments of c for some ¢ < t + 1. Then, Algorithm 2 with
input f1,. .. £, outputs z.

IV. REDUNDANCY ANALYSIS

We now present an analysis of the redundancy in the
encoding process (Section III-B). Inspired by ideas from [33,
Theorem 4.4], the next theorem bounds the success probability
of choosing a legit binary string z (Definition 2).

Theorem 6. A uniform random string z € {0,1}" is legit
(Definition 2) with probability 1 — 1/ poly(m).
With Theorem 6, we can formally provide the redundancy
of our scheme in the following corollary.
Corollary 1. The code has redundancy of O(tlognloglogn).
V. ACKNOWLEDGMENT

This research was supported by the National Science Foun-
dation under Grant CNS-2223032.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Dowdilogidled on September 09,2024 at 14:51:31 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Decode

Input: A multiset FRAGMENTS of at most ¢ 4+ 1 (unordered) fragments of a codeword c € C.

Output: The binary string z such that Algorithm 1 with input z yields c.

if there exists f € FRAGMENTS and index ¢ such that mg = f[i : i + clogm — 1] then
Remove f, then add f[0 : ¢ — 1] and f[i :] to FRAGMENTS.

Let R-FRAGMENTS be the set of fragments that contains m; for some [€ [0,¢] (fragments in the redundancy region).
Let Z-FRAGMENTS be the remaining fragments that are either at least 3clogm bits, or contain at least one discernible
level-0 signature, i.e., codeword of Cyy (fragments in the z region).

5: Let A’ = [A/] € NICw[x[Cuul be an all-0 matrix.

6: for all f in Z-FRAGMENTS do

7: for all level-0 signatures with index ¢ € [|f|] in f in ascending order do

8

9

B

if i,ex¢ exists, defined as the smallest index of a level-O signature that is greater than ¢ then
: Let c, = f[i,i + clogm — 1] and ¢ 2 f[inext, inext + clogm — 1], where and c,, ¢, € Cyu.
10: A;_’b < Gnext — 1.
11: Let R—-STRINGS be an empty KV store.
12: for all f in R-FRAGMENTS do
13: for all uj, defined as consecutive length-clogm/2 intervals separated by 2 - (6 + 2loglogm) occurrence of mys do
14: R-STRINGS|!] - u;.REMOVE(my;)

15: approx—compA « COMPRESS-ADJACENCY-MATRIX(A)

16: compA ¢ REPAIR-ADJ-MATRIX(approx—compA, R—-STRINGS).

17: A < DECOMPRESS-ADJACENCY-MATRIX(compA)

18: Let y’ + mg o #™, cursor + 1

19: Let a € [|Cmul] be the index of mg in Cyy, and let b € [|Cymu|] be the index of the unique nonzero element in row a of A.
20: while b £ empty do

21: cursor ¢ cursor + A, p, y'[cursor : cursor + clogm — 1] < ¢,

22: a < b, and let b € [|Cmu]] be index the unique nonzero element in row a of A if exists, and empty otherwise.

23: Let SIGNATURES be a KV store such that for all level-0 signatures s with index 4 in y’, SIGNATURES[i] = s
24: Let UPDATED-SIGS be an empty KV store, and let level < 0

25: Z-FRAGMENTS,y’ < AFFIX-FRAGMENTS(SIGNATURES, Z-FRAGMENTS, z)

26: while Z-FRAGMENTS is not empty do

27: level < level +1

28: for all keys 7 in SIGNATURES in ascending order do

29: Let 7pext be the smallest key greater than ¢, or m + 1 if ¢ is the greatest.

30: UPDATED-SIGS|[i] < SIGNATURES]i|

31: if ipex — ¢ > 2clogm then

32: w4 (& 4 Tnext)/2

33 if y'[u,u + clogm — 1] contains x then UPDATED-SIGS[u] < empty
34 else UPDATED-SIGS[u] « (y'[u,u + clogm — 1])

35: SIGNATURES < REPAIR—SIGNATURES(UPDATED—SIGS, R-STRINGS, level)

36: for all keys ¢ in SIGNATURES do y’[i : i + clogm — 1] +— SIGNATURESi]

37: UPDATED-SIGS <+ empty KV store.
38: Z-FRAGMENTS, y’ < AFFIX-FRAGMENTS(SIGNATURES, Z-FRAGMENTS,y’)

39: Let RESIDUALS be an empty KV store.

40: for all keys ¢ in SIGNATURES in ascending order do

41: Let 7nex: be the smallest key greater than 4, or m + 1 if ¢ is the greatest.
42: if y'[i + clogm : inext — 1] contains * then RESIDUALS[i] « empty

43: else RESIDUALS[i] + PAD(y'[i + clogm : inexy — 1])

44: REPAIRED-RESIDUALS < REPAIR-RESIDUALS(RESIDUALS, R—STRINGS)
45: for all keys ¢ in REPAIRED-RESIDUALS do

46: r < DE-PAD(REPAIRED-RESIDUALSJ:|)

47: y[iiit+|r|—1]«r

48: return y’[clogm + 1]

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Dowdilogided on September 09,2024 at 14:51:31 UTC from IEEE Xplore. Restrictions apply.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

M. Zhou, 3d-printed gun controversy: Everything you
need to know, accessed Sep. 15%, 2023, https://
www. cnet.com/news/ politics/ the - 3d - printed - gun -
controversy-everything- you-need-to-know/, 2018.

A. Delmotte, K. Tanaka, H. Kubo, T. Funatomi, and
Y. Mukaigawa, “Blind watermarking for 3-d printed
objects by locally modifying layer thickness,” IEEE
Trans. Multimedia, vol. 22, no. 11, pp. 2780-2791,
2019.

M. Suzuki, P. Dechrueng, S. Techavichian, P. Silapa-
suphakornwong, H. Torii, and K. Uehira, “Embedding
information into objects fabricated with 3-d printers by
forming fine cavities inside them,” Electronic Imaging,
vol. 2017, no. 7, pp. 6-9, 2017.

K. A. ElSayed, A. Dachowicz, and J. H. Panchal, “In-
formation embedding in additive manufacturing through
printing speed control,” in Proc. Workshop on Additive
Manufacturing (3D Printing) Security, 2021, pp. 31-37.
Z. Li, A. S. Rathore, C. Song, S. Wei, Y. Wang, and
W. Xu, “Printracker: Fingerprinting 3d printers using
commodity scanners,” in Proc. ACM Conf. Comput.
Commun. Security, 2018, pp. 1306-1323.

J. Voris, B. F. Christen, J. Alted, and D. W. Crawford,
Three dimensional printed objects with embedded iden-
tification elements, US Patent 9,656,428, May 2017.

J. Wee, C. 1. Byatte, A. Rhoades, and D. McNeight,
Product authentication, U.S. Patent App. 14/250,533,
2015.

J. Wee, C. 1. Byatte, A. Rhoades, and D. McNeight,
Objets de vertu, U.S. Patent App. 14/485,880, 2015.
C. Wei, Z. Sun, Y. Huang, and L. Li, “Embedding anti-
counterfeiting features in metallic components via mul-
tiple material additive manufacturing,” Additive Manu-
facturing, vol. 24, pp. 1-12, 2018.

F. Chen, Y. Luo, N. G. Tsoutsos, M. Maniatakos,
K. Shahin, and N. Gupta, “Embedding tracking codes
in additive manufactured parts for product authentica-
tion,” Advanced Engineering Materials, vol. 21, no. 4,
p- 1800495, 2019.

C. Harrison, R. Xiao, and S. Hudson, “Acoustic bar-
codes: Passive, durable and inexpensive notched iden-
tification tags,” in Proc. 25th Annual ACM Symp. User
interface software and technology, 2012, pp. 563-568.
J. Sima, N. Raviv, and J. Bruck, “On coding over sliced
information,” IEEE Trans. Inf. Theory, vol. 67, no. 5,
pp- 2793-2807, 2021.

J. Sima, N. Raviv, and J. Bruck, ‘“Robust indexing-
optimal codes for dna storage,” in Proc. IEEE Int. Symp.
Inf. Theory, IEEE, 2020, pp. 717-722.

A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi,
“Coding over sets for dna storage,” IEEE Trans. Inf.
Theory, vol. 66, no. 4, pp. 2331-2351, 2019.

I. Shomorony and A. Vahid, “Torn-paper coding,” IEEE
Trans. Inf. Theory, vol. 67, no. 12, pp. 7904-7913, 2021.

[29]

(30]

(31]

I. Shomorony and A. Vahid, “Communicating over the
torn-paper channel,” in IEEE Globecom, 2020, pp. 1-6.
A. N. Ravi, A. Vahid, and I. Shomorony, “Capacity of
the torn paper channel with lost pieces,” in Proc. IEEE
Int. Symp. Inf. Theory, IEEE, 2021, pp. 1937-1942.
D. Bar-Lev, S. M. E. Yaakobi, and Y. Yehezkeally, “Ad-
versarial torn-paper codes,” IEEE Trans. Inf. Theory,
2023.

V. Levenshtein, “Decoding automata invariant with re-
spect to the initial state,” Problems of Cybernetics,
vol. 12, pp. 125-136, 1964.

V. Levenshtein, “Maximum number of words in codes
without overlaps,” Problemy Peredachi Informatsii,
vol. 6, no. 4, pp. 355-357, 1970.

E. Gilbert, “Synchronization of binary messages,” IRE
Trans. Inf. Theory, vol. 6, no. 4, pp. 470-477, 1960.
D. Bajic and J. Stojanovic, “Distributed sequences and
search process,” in 2004 IEEFE International Conference
on Communications, vol. 1, 2004, 514-518 Vol.1.

D. Bajic and T. Loncar-Turukalo, “A simple suboptimal
construction of cross-bifix-free codes,” Cryptography
and Communications, vol. 6, no. 1, pp. 27-36, 2013.
Y. M. Chee, H. M. Kiah, P. Purkayastha, and C.
Wang, “Cross-bifix-free codes within a constant factor
of optimality,” IEEE Trans. Inf. Theory, vol. 59, no. 7,
pp. 4668-4674, 2013.

S. Bilotta, E. Pergola, and R. Pinzani, “A new ap-
proach to cross-bifix-free sets,” IEEE Trans. Inf. Theory,
vol. 58, no. 6, pp. 4058-4063, 2012.

S. R. Blackburn, “Non-overlapping codes,” IEEE Trans.
Inf. Theory, vol. 61, no. 9, pp. 4890-4894, 2015.

G. Wang and Q. Wang, “Q-ary non-overlapping codes:
A generating function approach,” IEEE Trans. Inf. The-
ory, vol. 68, no. 8, pp. 5154-5164, 2022.

S. M. H. T. Yazdi, Y. Yuan, J. Ma, H. Zhao, and
O. Milenkovic, “A rewritable, random-access dna-based
storage system,” Nature Scientific Reports, vol. 5,
no. 14138, 2015.

S. M. H. T. Yazdi, R. Gabrys, and O. Milenkovic,
“Portable and error-free dna-based data storage,” Nature
Scientific Reports, vol. 7, no. 5011, 2017.

M. Levy and E. Yaakobi, “Mutually uncorrelated codes
for dna storage,” IEEE Trans. Inf. Theory, vol. 65, no. 6,
pp- 3671-3691, 2018.

C. Wang, J. Sima, and N. Raviv, “Break-resilient codes
for forensic 3d fingerprinting,” 2023. arXiv: 2310 .
03897.

C. Wang, J. Wang, M. Zhou, et al., Secure information
embedding and extraction in forensic 3d fingerprinting,
2024. arXiv: 2403.04918.

K. Cheng, Z. Jin, X. Li, and K. Wu, “Determinis-
tic document exchange protocols, and almost optimal
binary codes for edit errors,” in IEEE 59th Annual
Symp. Foundations of Computer Science (FOCS), 2018,
pp- 200-211.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Dowdilo§ided on September 09,2024 at 14:51:31 UTC from IEEE Xplore. Restrictions apply.

