
Break-Resilient Codes for

Forensic 3D Fingerprinting

Canran Wang∗, Jin Sima†, and Netanel Raviv∗

∗Department of Computer Science and Engineering, Washington University in St. Louis,
†Department of Electrical and Computer Engineering, University of Illinois Urbana Champaign,

canran@wustl.edu, jsima@illinois.edu, netanel.raviv@wustl.edu

Abstract—3D printing brings about a revolution in con-
sumption and distribution of goods, but poses a significant
risk to public safety. Any individual with internet access and
a commodity printer can now produce untraceable firearms,
keys, and dangerous counterfeit products. To aid government
authorities in combating these new security threats, objects are
often tagged with identifying information. This information, also
known as fingerprints, is written into the object using various bit
embedding techniques, such as varying the width of the molten
thermoplastic layers. Yet, due to the adversarial nature of the
problem, it is important to devise tamper-resilient fingerprinting
techniques, so that the fingerprint could be extracted even
if the object was damaged. This paper focuses on a special
type of adversarial tampering, where the adversary breaks the
object to at most a certain number of parts. This gives rise
to a new adversarial coding problem, which is formulated and
investigated herein. We survey the existing technology, present
an abstract problem definition, provide lower bounds for the
required redundancy, and construct a code which attains it up
to asymptotically small factors.

I. INTRODUCTION

Three dimensional (3D) printing has become increasingly

accessible in recent years. The prevalence of this technology,

however, exposes the public to various security threats, such

as production of untraceable firearms, reconstruction of keys

from online images, counterfeiting medical equipment or ve-

hicle parts, and more [1]. To aid law enforcement agencies

in combating these threats, fingerprinting 3D printers with

uniquely traceable data into the object (e.g., timestamp, geolo-

cation, printer ID, etc.) is becoming increasingly important.

Various techniques for fingerprinting 3D printed objects

have been proposed in the literature [2]–[11]. Any such bit

embedding technique, however, is exposed to a wide range

of adversarial tampering threats. Therefore, bit embedding

techniques must be coupled with coding techniques which

guarantee successful retrieval at the presence of adversarial

tampering. Any such adversarial model must be quantified

by a corresponding security parameter which restricts the

adversary’s capabilities, and affects the information rate.

While some adversarial threats to 3D printed information

can be well modeled by known coding-theoretic notions such

as erasures, substitutions, or deletions, the 3D printing medium

introduces new adversarial noise models that have not been

studied in the past. Specifically, this paper focuses on an

adversarial model in which the information is broken apart

maliciously, to at most a certain number of fragments.

We propose a mathematical framework which does not

pertain to any particular bit embedding technology, and merely

assume that information bits are embedded in some form

within the object. The adversary is able to break the object

apart in at most t arbitrary positions, where t is a tunable se-

curity parameter. The reasoning behind this adversarial model

stems from the nature of 3D printing technologies. In the

context of this technology, embedded bits are tied to physical

elements inside the object, whose size is roughly in the order

of magnitude of millimeters, and hence it is possible to break

an arbitrarily small number of bits away from the object.

Therefore, we do not pose any restriction on the number of bits

in the resulting fragments. On the other hand, time constraints,

access to instruments, or simply physical strength limitations

keep the adversary from breaking the object to arbitrarily many

fragments, and hence the parameter t is expected to be small

with respect to the codeword length.

The goal of the encoder in our mathematical framework is

to recover the original information bits from the (at most) t+1
resulting fragments. As commonly assumed in security prob-

lems, we assume the adversary is fully aware of the encoding

method, and wishes to interfere with the decoding process as

much as possible within its capability, which is quantified by

the parameter t. Importantly, we do not require the fragments

to be put back together, and aim for a complete reconstruction

of the information bits based exclusively on the information

content of the fragments.

Similar problems have been recently studied in the lit-

erature. Several works studied the so-called sliced-channel

model, in which the information bits are sliced at several

evenly-spaced locations, producing a set of substrings of equal

size [12]–[14]. The torn paper coding problem has been

studied by [15]–[17], where the information string is being

cut by a probabilistic process, producing substrings of random

lengths. More closely related, the adversarial counterpart of

torn-paper coding was studied in [18] with a restriction that all

fragment lengths are between some upper and lower bounds.

In this paper we extend the above line of works and

provide nearly optimal code construction for any number of

breaks t. That is, for a given parameter t, we wish to construct

a t-break resilient code C of some length n and minimum

redundancy, where redundancy is defined as n − log |C|. We

begin by presenting a simple reduction to traditional (that is,

substitution-correcting) codes, which implies that the minimal

3148979-8-3503-8284-6/24/$31.00 ©2024 IEEE

20
24

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
In

fo
rm

at
io

n
Th

eo
ry

 (I
SI

T)
 |

 9
79

-8
-3

50
3-

82
84

-6
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
OI

: 1
0.

11
09

/IS
IT

57
86

4.
20

24
.1

06
19

13
5

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on September 09,2024 at 14:51:31 UTC from IEEE Xplore. Restrictions apply.

redundancy of a t-break code is Ω(t log n), and then provide

a code construction with O(t log n log log n) redundancy.

A. Preliminaries and Problem Definition

Our setup includes an encoder which holds a binary

string x ∈ {0, 1}
k

(an information word) for some integer k,

that is to be encoded to a string c ∈ {0, 1}
n

(a codeword).

After encoding x, the codeword c is embedded in a 3D printed

object in an arbitrary fashion. For a security parameters t, an

adversary breaks these n bits at arbitrary t locations or less,

resulting in a multiset of at most t+ 1 fragments.

These fragments are given to the decoder in an unordered

fashion, and the goal of the decoder is to reconstruct x

exactly in all cases. The associated set of codewords in {0, 1}
n

is called a t-break code, and is denoted by C. The figure

of merit of a given code is its redundancy, i.e., the quan-

tity n− log |C|, where | · | denotes size. Although our context

implies that t is a small number relative to n, we choose not

refer to it as a constant in our asymptotic analysis in order

to better understand the fine dependence of our scheme on

it; in essence, our scheme applies to any n and any t =
o(n

logn log logn
). Further, we also assume that the fragments

are oriented , i.e., the decoder knows the correct orientation of

fragments. We use standard notations for string manipulation,

such as ◦ to denote concatenation, |x| to denote length, and

for a string x = (x1, . . . , xn) and 1 f a < b f n we

let x[a : b] = (xa, xa+1, . . . , xb), and x[a :] = (xa, . . . , x|x|),

as well as [n] ≜ {1, 2, . . . , n} for a positive integer n.

Finally, we make use of mutually uncorrelated (MU) codes,

which is a set of codewords such that the prefix of one

codeword does not coincide with the suffix of any (potentially

identical) other. MU codes were firstly introduced in [19]–[21],

extensively studied by [22]–[27], and have been applied to

DNA-based data storage architectures [28]–[30].

For lack of space, proofs and additional details about 3D-

printing technology are given in the full version [31] of this

paper. Meanwhile, in a parallel work we have implemented a

break-resilient coding framework, based on a bit-embedding

method of varying layer widths, and successfully tested it in

practice using commodity 3D printers [32].

II. BOUNDS

In this section we provide bounds on the minimum possible

redundancy of a t-break code C. We observe that certain

constant-weight subcodes of C must have large Hamming

distance, and a bound on the redundancy of C can be achieved

by applying the well-known sphere-packing bound over them.

Theorem 1. t-break code C satisfies n− log |C| g Ω(t log n
t
).

Note that Theorem 1 implies a minimum of Ω(t log n)
redundant bits whenever t = O(n1−ϵ) for any constant ϵ > 0.

III. CODE CONSTRUCTION

A. Overview

In our code construction, we employ the observation

of [33], that naturally occurring patterns in a random string

can be utilized to align a sequence of received bits against

an original reference sequence. Our construction begins by

selecting a uniformly random string z. In z, all occurrences of

codewords of a mutually-uncorrelated code CMU are identified,

and each is called a signature. The property of MU codes

assures that no two signatures overlap.

The pairwise ordering of the signatures are recorded, and

a standard systematic Reed-Solomon encoding process is ap-

plied it to produce redundancy symbols, which are prepended

to z, in order to protect said ordering. A decoder that is given

at most t + 1 fragments of a codeword first identifies all

discernible (i.e., not broken) occurrences of signatures and re-

dundancy symbols. The correct pairwise ordering information

is recovered from the identified signatures and redundancy

symbols; it enables to correctly order all fragments which

contain at least one signature. For the rest of fragments,

additional signatures are defined in an recursive manner and

similar mechanism is applied to recover their correct ordering.

We now proceed to the details of this code construction.

B. Encoding

Let t be the security parameter, and m > t be an integer;

the code length, size, and redundancy will be functions of

them, and will be discussed in the sequel. Let z ∈ {0, 1}
m

be a uniformly distributed random string, c g 3 be an integer,

and CMU = {c1, . . . , c|CMU|} be a mutually uncorrelated code

of length c logm and size |CMU|. As [30] provides an efficient

binary MU code of any length nMU and +log(nMU),+4 redun-

dancy bits, we assume that |CMU| g
2c log m

´c logm
, where ´ = 32.

Definition 1. For a given string z ∈ {0, 1}m, any occurrence

of a codeword of CMU in z is called a level-0 signature.

To construct the code we reserve the t+1 lexicographically

first codewords m0,m1, . . . ,mt in CMU, and call them mark-

ers. Using the definitions of level-0 signatures and markers,

we now turn to formulate the criteria by which we reject and

resample the random string z.

Definition 2. A binary string z ∈ {0, 1}
m

is called legit if it

satisfies the following properties.

(I) Every interval of (2´c log2 m + c logm − 1) bits in z

contains a level-0 signature.

(II) Every two non-overlapping substrings of length c logm
of z are distinct.

(III) z does not contain any of the markers m0, . . . ,mt.

Property (I) readily implies the following lemma, which is

required in the sequel and is easy to prove.

Lemma 1. Let z = z1 ◦ s1 ◦ z2 ◦ s2 ◦ · · · ◦ sr−1 ◦ zr be

legit, where z1, z2, . . . , zr are (potentially empty) intervals of z

separated by the level-0 signatures s1, s2, . . . , sr−1 (each of

length c logm). Then, |zj | < 2´c log2 m for every j ∈ [r].

A codeword c is constructed by feeding a legit string z

to Algorithm 1 . First, the algorithm attaches m0 to the left

hand side of z (line 1); the resulting string y is then called

the information region of the codeword. Note that m0 becomes

3149Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on September 09,2024 at 14:51:31 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Code Construction

Input: A legit binary string z ∈ {0, 1}
m

. Output: A codeword c ∈ {0, 1}
n

.

1: Let u1, . . . ,ut be empty strings, and let y←m0 ◦ z.

2: Let r be the number of level-0 signatures in y, and let i1, . . . , ir be their indices in ascending order.

3: Let SIGNATURES be a key-value store of size r such that SIGNATURES[ij]← z[ij , ij + c logm− 1] for all j ∈ [r].
4: Let A = [Aa,b] ∈ N

|CMU|×|CMU| be an all-0 matrix.

5: for all keys k in SIGNATURES in ascending order do

6: Let knext be the smallest key in SIGNATURES larger than k, or m+ 1 if k is the largest.

7: Let ca ≜ SIGNATURES[k] and cb ≜ SIGNATURES[knext], where ca, cb ∈ CMU, and let Aa,b ← knext − k.

8: compA← COMPRESS-ADJACENCY-MATRIX(A), d1, . . . ,d4t ← ENCODE((compA[1], . . . ,compA[|CMU|]), 4t).
9: for all l ∈ [t] do ul ← d4l−3 ◦ d4l−2 ◦ d4l−1 ◦ d4l

10: Let NEWSIGNATURES, RESIDUALS be empty key-value stores.

11: for level← 1, . . . , log logm+ 6 do

12: for all keys k in SIGNATURES in ascending order do

13: Let knext be the smallest key in SIGNATURES larger than k, or m+ 1 if k is the largest.

14: if knext − k g 2c logm then

15: u← (k + knext)/2,NEWSIGNATURES[u]← y[u, u+ c logm− 1]
16: else if knext − k > c logm then // knext − k f c logm is impossible due the mutual correlation of CMU.

17: v ← k + c logm,RESIDUALS[v]← PAD(y[v, knext − 1])

18: SIGNATURES← SIGNATURES ∪ NEWSIGNATURES,NEWSIGNATURES← EMPTY

19: r1, . . . , r2t ← ENCODE((SIGNATURES[1],SIGNATURES[2], . . .), 2t)
20: for all l ∈ [t] do ul ← ul ◦ r2l−1 ◦ r2l

21: Let k1, k2, . . . be all keys in RESIDUALS in increasing order.

22: t1 . . . , t3t ← ENCODE((RESIDUALS[k1],RESIDUALS[k2], . . .), 3t)
23: for all l ∈ [t] do ul ← ul ◦ t3l−2 ◦ t3l−1 ◦ t3l

24: c← y

25: for all l ∈ [t] do // Every ul is segmented into binary strings of c logm/2 bits, and ml is inserted between every two.

26: c←ml ◦ ul[1 : c logm/2] ◦ml ◦ u[c logm/2 + 1 : c logm] ◦ml ◦ · · · ◦ c

27: Output c

the first level-0 signature in y, i.e., y[1 : c logm] = m0 and

marks the transition between the information region and the

to-be-attached redundancy region.

The algorithm continues and stores all level-0 signatures

(line 3) in the key-value (KV) store SIGNATURES. It then

creates a |CMU| × |CMU| matrix A which records the correct

pairwise ordering, and pairwise positional distance, of level-0
signatures. Specifically, every element Aa,b counts the number

of bits between a pair of adjacent signatures sj = ca
and sj+1 = cb in z for codewords ca, cb ∈ CMU (line 5–7).

Thanks to Property (II) and Property (III) , every row of A

is either the all-0 vector, or contains exactly one non-zero

element in one of the last |CMU| − t − 2 positions. As a

result, there exist less than |CMU| possible positions for such

a non-zero element in each row of A. Meanwhile, thanks to

Lemma 1, the number of different possible values for such a

non-zero element (if exists) is less than 2´c log2 m.

As such, there exist at most |CMU| · 2´c log
2 m f mc ·

mc = m2c different possible values for one individual row

of A. This fact enables to compress A into compA, a vector

in F
|CMU|

22c log m
(line 8). This is done in the function COMPRESS-

ADJACENCY-MATRIX. The vector compA is later encoded

using a systematic Reed-Solomon code to produce 4t parity

symbols1 (line 8). The algorithm then proceeds recursively.

During recursive step i g 1, the algorithm adds level-ℓ
signatures to SIGNATURES, by locating the midpoint between

every two existing signatures (line 14–15). If the interval

between two consecutive signatures is too short to contain a

signature (line 16), it is padded to a string of length c logm,

stored in a KV store RESIDUALS (line 17), and referred to

as a residual. The padding is performed by attaching a 1
and sufficiently many 0’s until the padded interval is c logm
bits long ([31, line 2, Alg. 3]). For the sake of encoding and

decoding, it is important to note that this padding operation is

injective and reversible. The signatures in level-1 to level-ℓ, as

stored in SIGNATURES, are encoded similar to the adjacency

matrices to produce t redundancy symbols2 (line 19).

The recursion proceeds until no new signatures can fit

between two adjacent existing signatures. Due to Lemma 1,

at most 2´ logm − 1 non-overlapping signatures, each of

1The encoding is performed over the field of size m2c, and requires at
least |CMU|+6t distinct field elements; this is the case since m2c −|CMU|−
4t ≥ m2c −mc − t ≥ 0.

2The encoding is performed over the field of size 2c logm = mc.
Since there are at most m/(c logm) residuals/signatures in z, the encoding
requires m/(c logm) + 2t distinct field elements. The encoding is feasible
due to the fact that mc−m/(c logm)−2t ≥ mc−1−2t ≥ mc−2− t ≥ 0.

3150Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on September 09,2024 at 14:51:31 UTC from IEEE Xplore. Restrictions apply.

length c logm, can fit in between any two level-0 signatures.

Meanwhile, a total of 2ℓ − 1 signatures reside in such an

interval after ℓ recursive steps, since every level-ℓ signature

is defined in the middle of intervals separated by signatures

from level-0 to level-(ℓ−1). Hence, the recursion is guaranteed

to terminate after log(2´ logm) = log logm+ 6 steps.

Finally, the residuals are encoded similar to the adja-

cency matrices, producing 3t redundant symbols t1, . . . , t3t
(line 22), and appended to the redundancy strings u1, . . . ,ut.

The redundancy string ul is of length (6+2 log logm)·c logm,

and undergo an instrumentation process. By instrumentation

we mean inserting marker ml in between every interval

of c logm/2 bits of ul ([31, Fig. 3]). Each instrumented

redundancy string is then (6+2 log logm) ·3c logm bits long;

they are attached one by one to the left of the information

region y to create the final codeword c (line 25–26) of length

n = |c| = m+ (6 + 2 log logm) · 3c logm · t+ c logm.

C. Decoding

A procedure for extracting the correct legit string z from

at most t + 1 fragments of the respective codeword c is

given in Algorithm 2. Recall that a codeword c consists of an

information region and a redundancy region; the former is m0

followed by a legit string z, and the latter includes t instru-

mented redundancy string u1, . . . ,ut. Algorithm 2 begins with

the attempt to distinguish the transition point, i.e. m0, from all

fragments. If a fragment containing m0 is found, it is broken

at m0 such that the two segments belong to different regions

(line 2). Then, the decoding algorithm sorts the fragments to

those that are from the redundancy region (line 3), and those

that are from the information region (line 4).

A preliminary analysis of the z-fragments, whose purpose is

to extract the surviving level-0 signatures into an approximate

adjacency matrix A′, is given in lines 6-10. In this analysis,

all codewords of CMU present in the fragments are located and

identified as level-0 signatures, and the collection of all level-0
signatures is coalesced into a pairwise ordering approximate

adjacency matrix A′.

The analysis of the redundancy fragments is conducted in

lines 12-14, during which all markers ml, if not broken, are

identified. Recall that since ul is instrumented with ml, it can

be identified by observing a series of 2·(6+2 log logm) mark-

ers ml separated by c logm/2 bits. All extracted redundancy

strings are placed in a KV-store R-STRINGS.

The decoding algorithm proceeds to correct the constructed

adjacency matrix A′ to A, i.e., the correct redundancy matrix

generated in Algorithm 1 from z, using the collected redun-

dancy strings (line 16) and a standard Reed-Solomon decoder.

The success of the decoding process is guaranteed as follows.

Theorem 2. Line 16 outputs the correct adjacency matrix A.

Having obtained A, the algorithm allocates string y′ = m0◦
∗m to represent the information region of c (line 18). The ∗’s
represent the m unknown values of the original z, which

are preceded by m0. Using the correct pairwise ordering and

pairwise positional distance of all level-0 signatures in A, in

lines 20–22, the algorithm traverses all adjacent pairs of level-

0 signatures and positions all signatures appropriately in y′.

In line 25 which follows, the algorithm affixes the fragments

in Z-FRAGMENTS to their correct position in y′; by correct

we mean that y′[i : i+ |f | − 1] = f if y[i : i+ |f | − 1] = f ,

where y = m0 ◦ z (line 1, Alg. 1). Then, all remaining

fragments in Z-FRAGMENTS contain no level-0 signatures.

In the while loop starting at line 26, the decoding algorithm

proceeds with the extraction of higher level signatures. This is

done by repeatedly traversing all signatures that have already

been affixed to z. In traversal ℓ, the algorithm locates the

midpoint u between every two adjacent signatures in y′, as

long as the gap between them is large enough to fit at least

one more signature. Then, the algorithm identifies and collects

the c logm bits which begin at u as a level-ℓ signature. This

will result in UPDATED-SIGS, a KV store of signatures from

level-0 to level ℓ. Note that some entries in UPDATED-SIGS

may be empty when the respective part of y′ contains a ∗
(line 33, Alg. 2). The decoder is guaranteed to correctly affix

all fragments in Z-FRAGMENTS, stated as follows.

Theorem 3. The while loop starting at line 26 will eventually

terminate, and by then every fragment in Z-FRAGMENTS is

correctly affixed to y′.

Theorem 3 implies that all ∗’s in y′ now reside in residuals.

The next theorem states the correct recovery of residuals.

Theorem 4. Line 44 outputs a KV store such that

REPAIRED-RESIDUALS[i] = PAD(r) for every residual r =
y[i : i+ |r|].

Finally, the decoder affixes all residuals in

REPAIRED-RESIDUALS to z, and after which y′ = y.

Recall that the marker m0 is attached to the left of z by the

decoder, and needs to be removed to obtain y. This concludes

the proof of correctness of our construction as follows.

Theorem 5. Let z ∈ {0, 1}m be a legit string, let c be

the output of Algorithm 1 with input z, and let f1, . . . , fℓ be

fragments of c for some ℓ f t + 1. Then, Algorithm 2 with

input f1, . . . , fℓ outputs z.

IV. REDUNDANCY ANALYSIS

We now present an analysis of the redundancy in the

encoding process (Section III-B). Inspired by ideas from [33,

Theorem 4.4], the next theorem bounds the success probability

of choosing a legit binary string z (Definition 2).

Theorem 6. A uniform random string z ∈ {0, 1}
m

is legit

(Definition 2) with probability 1− 1/ poly(m).

With Theorem 6, we can formally provide the redundancy

of our scheme in the following corollary.

Corollary 1. The code has redundancy of O(t log n log log n).

V. ACKNOWLEDGMENT

This research was supported by the National Science Foun-

dation under Grant CNS-2223032.

3151Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on September 09,2024 at 14:51:31 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Decode

Input: A multiset FRAGMENTS of at most t+ 1 (unordered) fragments of a codeword c ∈ C.

Output: The binary string z such that Algorithm 1 with input z yields c.

1: if there exists f ∈ FRAGMENTS and index i such that m0 = f [i : i+ c logm− 1] then

2: Remove f , then add f [0 : i− 1] and f [i :] to FRAGMENTS.

3: Let R-FRAGMENTS be the set of fragments that contains ml for some l ∈ [0, t] (fragments in the redundancy region).

4: Let Z-FRAGMENTS be the remaining fragments that are either at least 3c logm bits, or contain at least one discernible

level-0 signature, i.e., codeword of CMU (fragments in the z region).

5: Let A′ = [A′
a,b] ∈ N

|CMU|×|CMU| be an all-0 matrix.

6: for all f in Z-FRAGMENTS do

7: for all level-0 signatures with index i ∈ [|f |] in f in ascending order do

8: if inext exists, defined as the smallest index of a level-0 signature that is greater than i then

9: Let ca ≜ f [i, i+ c logm− 1] and cb ≜ f [inext, inext + c logm− 1], where and ca, cb ∈ CMU.

10: A′
a,b ← inext − i.

11: Let R-STRINGS be an empty KV store.

12: for all f in R-FRAGMENTS do

13: for all u′
l, defined as consecutive length-c logm/2 intervals separated by 2 · (6 + 2 log logm) occurrence of mls do

14: R-STRINGS[l]← u′
l.REMOVE(ml)

15: approx-compA← COMPRESS-ADJACENCY-MATRIX(A′)
16: compA← REPAIR-ADJ-MATRIX(approx-compA,R-STRINGS).
17: A← DECOMPRESS-ADJACENCY-MATRIX(compA)
18: Let y′ ←m0 ◦ ∗

m,cursor← 1
19: Let a ∈ [|CMU|] be the index of m0 in CMU, and let b ∈ [|CMU|] be the index of the unique nonzero element in row a of A.

20: while b ̸= empty do

21: cursor← cursor+Aa,b, y′[cursor : cursor+ c logm− 1]← cb
22: a← b, and let b ∈ [|CMU|] be index the unique nonzero element in row a of A if exists, and empty otherwise.

23: Let SIGNATURES be a KV store such that for all level-0 signatures s with index i in y′, SIGNATURES[i] = s

24: Let UPDATED-SIGS be an empty KV store, and let level← 0
25: Z-FRAGMENTS,y′ ← AFFIX-FRAGMENTS(SIGNATURES,Z-FRAGMENTS, z)
26: while Z-FRAGMENTS is not empty do

27: level← level+ 1
28: for all keys i in SIGNATURES in ascending order do

29: Let inext be the smallest key greater than i, or m+ 1 if i is the greatest.

30: UPDATED-SIGS[i]← SIGNATURES[i]
31: if inext − i g 2c logm then

32: u← (i+ inext)/2
33: if y′[u, u+ c logm− 1] contains ∗ then UPDATED-SIGS[u]← empty

34: else UPDATED-SIGS[u]← (y′[u, u+ c logm− 1])

35: SIGNATURES← REPAIR-SIGNATURES(UPDATED-SIGS,R-STRINGS,level)
36: for all keys i in SIGNATURES do y′[i : i+ c logm− 1]← SIGNATURES[i]

37: UPDATED-SIGS← empty KV store.

38: Z-FRAGMENTS,y′ ← AFFIX-FRAGMENTS(SIGNATURES,Z-FRAGMENTS,y′)

39: Let RESIDUALS be an empty KV store.

40: for all keys i in SIGNATURES in ascending order do

41: Let inext be the smallest key greater than i, or m+ 1 if i is the greatest.

42: if y′[i+ c logm : inext − 1] contains ∗ then RESIDUALS[i]← empty

43: else RESIDUALS[i]← PAD(y′[i+ c logm : inext − 1])

44: REPAIRED-RESIDUALS← REPAIR-RESIDUALS(RESIDUALS,R-STRINGS)
45: for all keys i in REPAIRED-RESIDUALS do

46: r← DE-PAD(REPAIRED-RESIDUALS[i])
47: y′[i : i+ |r| − 1]← r

48: return y′[c logm+ 1 :]

3152Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on September 09,2024 at 14:51:31 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] M. Zhou, 3d-printed gun controversy: Everything you

need to know, accessed Sep. 15st, 2023, https : / /

www. cnet . com / news / politics / the - 3d - printed - gun -

controversy-everything-you-need-to-know/, 2018.

[2] A. Delmotte, K. Tanaka, H. Kubo, T. Funatomi, and

Y. Mukaigawa, “Blind watermarking for 3-d printed

objects by locally modifying layer thickness,” IEEE

Trans. Multimedia, vol. 22, no. 11, pp. 2780–2791,

2019.

[3] M. Suzuki, P. Dechrueng, S. Techavichian, P. Silapa-

suphakornwong, H. Torii, and K. Uehira, “Embedding

information into objects fabricated with 3-d printers by

forming fine cavities inside them,” Electronic Imaging,

vol. 2017, no. 7, pp. 6–9, 2017.

[4] K. A. ElSayed, A. Dachowicz, and J. H. Panchal, “In-

formation embedding in additive manufacturing through

printing speed control,” in Proc. Workshop on Additive

Manufacturing (3D Printing) Security, 2021, pp. 31–37.

[5] Z. Li, A. S. Rathore, C. Song, S. Wei, Y. Wang, and

W. Xu, “Printracker: Fingerprinting 3d printers using

commodity scanners,” in Proc. ACM Conf. Comput.

Commun. Security, 2018, pp. 1306–1323.

[6] J. Voris, B. F. Christen, J. Alted, and D. W. Crawford,

Three dimensional printed objects with embedded iden-

tification elements, US Patent 9,656,428, May 2017.

[7] J. Wee, C. I. Byatte, A. Rhoades, and D. McNeight,

Product authentication, U.S. Patent App. 14/250,533,

2015.

[8] J. Wee, C. I. Byatte, A. Rhoades, and D. McNeight,

Objets de vertu, U.S. Patent App. 14/485,880, 2015.

[9] C. Wei, Z. Sun, Y. Huang, and L. Li, “Embedding anti-

counterfeiting features in metallic components via mul-

tiple material additive manufacturing,” Additive Manu-

facturing, vol. 24, pp. 1–12, 2018.

[10] F. Chen, Y. Luo, N. G. Tsoutsos, M. Maniatakos,

K. Shahin, and N. Gupta, “Embedding tracking codes

in additive manufactured parts for product authentica-

tion,” Advanced Engineering Materials, vol. 21, no. 4,

p. 1 800 495, 2019.

[11] C. Harrison, R. Xiao, and S. Hudson, “Acoustic bar-

codes: Passive, durable and inexpensive notched iden-

tification tags,” in Proc. 25th Annual ACM Symp. User

interface software and technology, 2012, pp. 563–568.

[12] J. Sima, N. Raviv, and J. Bruck, “On coding over sliced

information,” IEEE Trans. Inf. Theory, vol. 67, no. 5,

pp. 2793–2807, 2021.

[13] J. Sima, N. Raviv, and J. Bruck, “Robust indexing-

optimal codes for dna storage,” in Proc. IEEE Int. Symp.

Inf. Theory, IEEE, 2020, pp. 717–722.

[14] A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi,

“Coding over sets for dna storage,” IEEE Trans. Inf.

Theory, vol. 66, no. 4, pp. 2331–2351, 2019.

[15] I. Shomorony and A. Vahid, “Torn-paper coding,” IEEE

Trans. Inf. Theory, vol. 67, no. 12, pp. 7904–7913, 2021.

[16] I. Shomorony and A. Vahid, “Communicating over the

torn-paper channel,” in IEEE Globecom, 2020, pp. 1–6.

[17] A. N. Ravi, A. Vahid, and I. Shomorony, “Capacity of

the torn paper channel with lost pieces,” in Proc. IEEE

Int. Symp. Inf. Theory, IEEE, 2021, pp. 1937–1942.

[18] D. Bar-Lev, S. M. E. Yaakobi, and Y. Yehezkeally, “Ad-

versarial torn-paper codes,” IEEE Trans. Inf. Theory,

2023.

[19] V. Levenshtein, “Decoding automata invariant with re-

spect to the initial state,” Problems of Cybernetics,

vol. 12, pp. 125–136, 1964.

[20] V. Levenshtein, “Maximum number of words in codes

without overlaps,” Problemy Peredachi Informatsii,

vol. 6, no. 4, pp. 355–357, 1970.

[21] E. Gilbert, “Synchronization of binary messages,” IRE

Trans. Inf. Theory, vol. 6, no. 4, pp. 470–477, 1960.

[22] D. Bajic and J. Stojanovic, “Distributed sequences and

search process,” in 2004 IEEE International Conference

on Communications, vol. 1, 2004, 514–518 Vol.1.

[23] D. Bajic and T. Loncar-Turukalo, “A simple suboptimal

construction of cross-bifix-free codes,” Cryptography

and Communications, vol. 6, no. 1, pp. 27–36, 2013.

[24] Y. M. Chee, H. M. Kiah, P. Purkayastha, and C.

Wang, “Cross-bifix-free codes within a constant factor

of optimality,” IEEE Trans. Inf. Theory, vol. 59, no. 7,

pp. 4668–4674, 2013.

[25] S. Bilotta, E. Pergola, and R. Pinzani, “A new ap-

proach to cross-bifix-free sets,” IEEE Trans. Inf. Theory,

vol. 58, no. 6, pp. 4058–4063, 2012.

[26] S. R. Blackburn, “Non-overlapping codes,” IEEE Trans.

Inf. Theory, vol. 61, no. 9, pp. 4890–4894, 2015.

[27] G. Wang and Q. Wang, “Q-ary non-overlapping codes:

A generating function approach,” IEEE Trans. Inf. The-

ory, vol. 68, no. 8, pp. 5154–5164, 2022.

[28] S. M. H. T. Yazdi, Y. Yuan, J. Ma, H. Zhao, and

O. Milenkovic, “A rewritable, random-access dna-based

storage system,” Nature Scientific Reports, vol. 5,

no. 14138, 2015.

[29] S. M. H. T. Yazdi, R. Gabrys, and O. Milenkovic,

“Portable and error-free dna-based data storage,” Nature

Scientific Reports, vol. 7, no. 5011, 2017.

[30] M. Levy and E. Yaakobi, “Mutually uncorrelated codes

for dna storage,” IEEE Trans. Inf. Theory, vol. 65, no. 6,

pp. 3671–3691, 2018.

[31] C. Wang, J. Sima, and N. Raviv, “Break-resilient codes

for forensic 3d fingerprinting,” 2023. arXiv: 2310 .

03897.

[32] C. Wang, J. Wang, M. Zhou, et al., Secure information

embedding and extraction in forensic 3d fingerprinting,

2024. arXiv: 2403.04918.

[33] K. Cheng, Z. Jin, X. Li, and K. Wu, “Determinis-

tic document exchange protocols, and almost optimal

binary codes for edit errors,” in IEEE 59th Annual

Symp. Foundations of Computer Science (FOCS), 2018,

pp. 200–211.

3153Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on September 09,2024 at 14:51:31 UTC from IEEE Xplore. Restrictions apply.

