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Abstract—Analyzingsequencingdatafrom microbiome
experimentsischallenging,sincesamplescancontain
tensofthousandsofuniquetaxa(andtheirgenes)and
populationsofmillionsofcells.Reducingthedimension-
alityofmetagenomicdataisacrucialstepinimproving
theinterpretabilityofcomplexgeneticinformation,as
metagenomicdatasetstypicallyencompassawiderange
ofgeneticdiversityandvariations.

Inthisstudy, weimplement RoBERTa,astate-of-the-
artlargelanguage model,andpre-trainitonrelatively
largegenomicdatasetstoobtaina modelthatcanbe
usedtogenerateembeddingsthatcanhelpsimplify
complexmetagenomicdatasets.Thepre-trainingprocess
enablesRoBERTatocapturetheinherentcharacteristics
andpatternspresentinthegenomicsequences. Wethen
evaluatetheeffectivenessofembeddingsgeneratedusing
thepre-trainedRoBERTa modelindownstreamtasks,
withaparticularfocusontaxonomicclassiication.To
assess whetherour methodcanbegeneralizable, we
conductextensivedownstreamanalysisonthreedistinct
datasets:16srRNA,28srRNA,andITS.Byutilizing
datasetscontaining16SrRNAexclusivetobacteriaand
eukaryotic mitochondria,aswellasdatasetscontaining
28SrRNAandITSspeciictoeukaryotes(suchasfungi),
we wereabletoassesstheperformanceof RoBERTa
embeddingsacrossdiversegenomicregions. Wetunethe
RoBERTa modelthroughhyperparameteroptimization
oneachdataset.OurresultsdemonstratethatRoBERTa
embeddingsexhibitpromisingresultsintaxonomicclassi-
icationcomparedtoconventionalmethods.

Keywords—DNAsequenceanalysis, metagenomics,taxo-
nomicclassiication,microbiome,naturallanguageprocess-
ing.

I.INTRODUCTION

Metagenomicsdataoffersvaluableinsightsintothe
compositionandfunctionalityofmicrobialcommunities
acrossdiverseenvironments.However,analyzingsuch
datapresentssigniicantchallengesduetotheintricate
natureandgenomicdiversityofmicroorganisms.

ByleveragingtheadvancesinNaturalLanguagePro-
cessing(NLP),researchershave maderemarkable
progressintrainingmachine-learningmodelstogen-
eratevectorrepresentationsforwordsequences,offer-
ingpromisingsolutionsforanalyzinggenomicsand
metagenomicsdata[1].Thisadvancement,knownas
representationlearning,hasproventobeapowerfultool
inextractingmeaningfulinformationfromdataandhas
openedupexcitingpossibilitiesintheieldofbiological
research.Leveragingthepowerofthesemodels,weaim

toovercomethechallengesposedbythegenomicdiver-
sityofbacteriaandextractinformativefeaturesforany
downstreamanalysistasksliketaxonomicclassiication.

Inbiologicallanguageprocessing(BLP),theutilization
ofk-merrepresentationhasgainedprominenceasa
methodforworkingwithlower-dimensionalrepresen-
tations.Alsoleveragingthefrequencyofk-mers,has
demonstratedsuccessrepresentationmethodinvarious
BLPapplications[2].Researchershaveemployedvar-
ioustechniques,including Word2Vec[3],LSTM[4],
GloVe[5]andTransformers[6,7],toobtainrepresenta-
tionembeddingvectorsforbiologicalk-mersequences.
TransformersbasedLanguagemodelslikeBERTand
RoBERTaofferseveraladvantagesoverRNNslike
LSTMandstatic wordembeddingslike Word2Vec.
First,modelslikeBERTandRoBERTaprovidecon-
textualizedwordrepresentations,capturingthemeaning
ofwordsinrelationtotheirsurroundingcontext.This
contextualunderstandingenhancestheirperformancein
taskssuchassentimentanalysisandmachinetransla-
tion.Additionally,languagemodelsexcelatsentence-
levelunderstandingbyconsideringtheentiresentence,
makingthemsuitablefortaskslikenaturallanguage
inferenceandtextclassiication.While,Word2Vecrelies
onwordco-occurrencestatistics,limitingitsscopeto
word-levelsimilarities.

Inrecentyears,languagemodelssuchasBERT,AL-
BERT,and XLNethavebeen widelyemployedto
explorethepotentialofTransformermodelsinstudy-
ingproteinstructuresandtheirproperties[8].These
modelsleverageattention mechanismstounveilthe
three-dimensionalstructureofproteins,revealingspatial
relationshipsbetweenaminoacidsthatmaybedistant
inthesequencebutcloseinspace.ProteinBERT[6],
trainedonadiversedatasetof106millionproteins,is
aneficienttoolfortrainingpredictorsandanalyzing
proteinproperties.ProteinBertembeddingisvaluable
forlimitedlabeleddatascenarios,providinginsights
intoproteincharacteristics.ProteinBerthasalsobeen
ine-tunedusingcontrastive-learningforotherprotein
downstreamtasks[9].

DNAsequencesprovideinsightsintocontrolmecha-
nismsforgeneexpression,potentialofcellularpro-
cesses,andtheimpactofgeneticvariationsongene
regulation.DNAsequencesarecomposedofindividual
nucleotides,muchlikelettersinasentence.Thereare
variousmethodsusedtoextractlargerunitsofsequence,
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akin to words. One of the long-used techniques for
effectively extracting meaningful sub-words from a se-
quence of nucleotides is k-mer tokenization. DNABERT
[10] is highlighted as a variant of the BERT model
that has been specifically trained on human genome
data using a wide variety of k-mer tokenizations. This
specialized training empowers DNABERT to effectively
capture genomic language patterns and encode biolog-
ical information, making it suitable for various down-
stream tasks.Furthermore, the paper "BioAutoMATED"
[11] introduces a flexible framework for analyzing
multi-omics data using different model architectures for
specific downstream tasks. The authors demonstrate that
DNABERT outperforms their own method in predicting
ribosome-binding sites with a specific learning rate. This
showcases the effectiveness of using a large language
model for these tasks.Considering downstream applica-
tions involving bacteria genomes, it is crucial to prior-
itize the use of a pre-trained model specifically trained
on bacteria data rather than one trained on human data.
This choice is motivated by the computational demands
and the phylogenetic closeness of the bacteria data [12].

In this study, we chose RoBERTa for its superior perfor-
mance and efficiency in language understanding tasks,
particularly on large datasets. RoBERTa, an advanced
variant of BERT, employs enhanced transformer archi-
tectures and is trained using token prediction, resulting
in improved language understanding and representation
of intricate patterns and relationships within the data.

The implementation challenges were mainly tied to
unique intricacies of prokaryotic genomes. Unlike eu-
karyotes, prokaryotic genomes exhibit compact struc-
tures with a high gene density and diverse operon
arrangements. Adapting RoBERTa to effectively under-
stand and accurately represent prokaryotic genomic lan-
guage posed a significant challenge. We needed to tailor
the model architecture and hyperparameters to address
these specific challenges, ensuring optimal performance
in downstream tasks like taxonomic classification.

II. METHODS

II-A. DNA Language Model Training

The initial step in training any type of language model
involves tokenization. Tokenization is especially impor-
tant when working with DNA sequences since there are
no specific tokens or whitespace in DNA sequences.
There are various methods available for tokenizing DNA
sequences, and one commonly used approach is seg-
menting them into k-mers with a one-base overlap. In
this study, we experimented with different k-mer sizes
ranging from 3-mers to 6-mers in order to validate our
approach. To enhance analysis of prokaryotic genomes,
we conducted experiments using customized RoBERTa
[13] models. We adopted the main architecture and
transformers from the RoBERTa model while exploring

various modifications to optimize its performance for
genomics sequences. We focused on the masked lan-
guage modeling (MLM) task, where a random sample
of tokens in the input sequence is replaced with the
special token "[MASK]". We varied the embedding size,
testing values of 512, 768, 1024, and 2048, to assess
their impact on model performance. Additionally, we
investigated different input lengths, choosing a length of
200bp due to the short-read nature of popular Illumina
sequencing. Furthermore, we examined other important
parameters, such as the number of attention heads
and the number of forward layers. By varying these
parameters, we aimed to evaluate their influence on
model effectiveness and identify the best configuration
for metagenomic analysis. Through these experiments,
we sought to determine the most suitable configuration
of the RoBERTa model for metagenomic data, with a
focus on improving the accuracy and interpretability of
downstream tasks. The results of our analysis and model
comparisons will be presented in the following sections.

II-B. Downstream and Pre-Train Datasets

We used one bacterial dataset and two fungal datasets to
evaluate our models. The inclusion of fungal datasets al-
lowed us to assess how well our embeddings generalized
to previously unseen data, providing valuable insight
into the models’ performance. Each dataset was split
into 90% for training and 10% for testing in order to
analyze downstream tasks at different taxonomic levels.
For both sets, we attempted to maintain a balanced
distribution of samples across taxonomic groups in order
to prevent potential biases. Additionally, we filtered
datasets before splitting, considering only classes with
more than 10 genera.

II-B1. Pretraining-Dataset

We collected a comprehensive dataset of 33,902 com-
plete prokaryotic genomes from the National Center
for Biotechnology Information (NCBI) for pretraining
our model. These genomes exhibit an average length of
3.4 megabases (Mb), with a wide range spanning from
0.11 Mb to 13 Mb. The dataset encompasses a diverse
distribution of genomes, representing various taxonomic
groups and genetic characteristics. Two datasets were
extracted from the dataset of this prokaryotic genomes
for pretraining. The first dataset comprised 7 million
genomic 200bp fragments, while the second dataset
consisted of 51 million 200bp fragments. These datasets
were obtained from the same distribution of genomic
fragments but varied in the number of fragments ex-
tracted from each genome.

II-B2. Bacterial-16s Dataset

The DairyDB [14] dataset consists of 10,612 full-
length 16S rRNA sequences derived from microbial
species present in dairy products. To facilitate further
analysis, we extracted 80,227 fragments of 200bp from
these sequences. This fragmented dataset encompasses
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sequences from 42 distinct phyla, 197 different orders,
and 1069 different genera.

II-B3. Fungi-ITS Dataset

This dataset was obtained from the Fungi RefSeq ITS
project [15]. This dataset consists of 15,551 sequences
derived from the non-gene coding region of the genome.
We extracted 50,068 fragments, each containing 200bp,
from the sequences for further analysis. This dataset
showcases sequences from 6 different phyla, 235 dif-
ferent orders, and 516 families.

II-B4. Fungi-28s Dataset

We obtained the curated 28s rRNA sequences from the
mothur project [16]. The dataset comprises 8,506 unique
sequences extracted from the 28S rRNA of fungi. In ad-
dition, we extracted 42,766 fragments, each consisting
of 200 bp, from these sequences. Our dataset exhibits
a broad taxonomic level, encompassing sequences from
8 different phyla, 105 orders, and 293 families.

III. RESULTS & DISCUSSION

We extensively analyzed and optimized 44 different
models, each representing a unique combination of
parameter settings. To ensure reliable and accurate
results, we conducted the training process with con-
sistent parameters except for the specific parameter
being investigated. The training was performed on a
high-performance infrastructure consisting of 4 GPUs,
each with 32GB of memory. The duration of training
varied for each model, typically lasting between 12 and
40 hours per epoch, depending on the complexity of
the architecture. We evaluated our system using two
metrics: the pre-training loss function and accuracy for
taxonomic classification tasks at various levels.

III-A. Kmer Size

Figure 1 illustrates the evaluation of different k-mer
sizes.Increasing the k-mer size led to a consistent in-
crease in loss, indicating the model’s ability to cap-
ture longer sub-sequences and higher computational
complexity. This complexity can be attributed to the
larger vocabulary and the presence of rare words during
training. Additionally, it is noteworthy that increasing
the k-mer size from 3 to 6 led to improvements across
all 9 tasks. Moreover, the model trained with a k-mer
size of 6 achieved the highest accuracy (refer to Figure
1). This significant difference in accuracy compared to
other models can be attributed to the fact that each 6-
mer represents two codons, which correspond to amino
acids. We explored k-mer sizes up to 6 due to the
potential increase in model complexity and computa-
tional resources beyond that. In Figure 2, we also have
demonstrated the benefits of different k-mer sizes by
examining Zipf’s law on a pre-trained dataset. This
analysis revealed that the 6-mer exhibits both high
frequency and a relatively low occurrence of rare words.
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Figure 2. Zipf’s Law of the pre-training dataset of 33k
genomes for Different k-mer Lengths

III-B. Embedding Size

The impact of the embedding size on model perfor-
mance was investigated, and the findings are presented
in Figure 3(a). Increasing the embedding size, which
depends on the vocabulary size (function of k-mer
size), can improve model performance by capturing
more complex relationships in the data, leading to a
decrease in loss. Increasing the embedding size can
improve the model’s performance, but beyond a certain
threshold (e.g., 2048), further increases may lead to
difficulties in training and underfitting. Interestingly in
our case, the best results were achieved when employing
embeddings from the model with an embedding size of
2048 for downstream tasks (refer to Figure 3(a)). The
higher-dimensional embeddings demonstrated superior
performance across all tasks, suggesting that they ef-
fectively captured the diverse distribution of the data
and improved classification accuracy. To conduct further
analysis, it is crucial to preserve this diverse represen-
tation, which is beneficial for taxonomic classification.
By reducing the model size, we trained our final model
that effectively fit the genomics dataset.

III-C. Positional Embedding Type

Positional embeddings are vectors that represent token
positions in a sequence, either uniquely for specific po-
sitions (absolute) or in relation to other tokens (relative).
Figure 3(b) shows the impact of positional embedding
type on model performance. Positional embeddings are
a significant parameter that impacts both training time
and model performance. Through multiple evaluations,
we consistently observed superior performance of the
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Figure 3. Comparison of Average Accuracy and Training Loss for Different Models. Here we represent the two performance
metrics for each optimized parameter. The top row of plots shows the average accuracy of 9 different downstream tasks for each
model.The bottom row of plots displays the pre-training loss value for each model.

relative positional embedding model compared to the
absolute positional embedding model in downstream
tasks.In our view, relative positional embeddings are
preferable because relative information within tokens
(k-mers) is more critical than absolute positional infor-
mation within a sequence.

III-D. Maximum Positional Embedding Size

Figure 3(c) summarizes the results of varying the maxi-
mum positional embedding size on model performance.
The maximum positional embedding size is a parameter
that determines the length of the sequence for which
the model can effectively capture positional information.
In the original BERT model, the default value for this
parameter is 512. Our experiments reveal that the choice
of maximum positional embedding size significantly
influenced the model’s performance. As we explored a
range of values from 200-1000, our results showed that
setting the maximum positional embedding size to 200
resulted in the best average performance (see Figure 3).

III-E. Dataset Size

In Figure 3(d), we analyzed two datasets: the 51 million
dataset and the 7 million dataset. Both datasets share
the same distribution of genomes, but we intentionally
included fewer sequences in the 7M dataset compared to
the 51M dataset. Importantly, the frequency proportion
of each k-mer is nearly identical in both datasets.
Although the training loss was lower for the 51 million
dataset, the performance on downstream tasks was actu-
ally better for the 7 million dataset (refer to Figure 3(d).
This indicates that overfitting might have happened with
the larger dataset, causing a decrease in performance
when working with new, unseen data.

III-F. Model Size

The model size significantly depends on two parame-
ters: the feedforward dimension and the number of feed-
forward layers. We extensively investigated these two
parameters multiple times while keeping the remaining
parameters constant. In Figure 3(e), we compare two
models: one with 209 million parameters and the other

with 103 million parameters. Surprisingly, we observed
that a larger model size does not necessarily result in
better performance. In fact, in some tasks, the larger
model even yielded lower accuracy results.

III-G. Optimized Model Results

We conducted t-SNE visualization to gain insights into
the distribution and separability of phyla within the em-
beddings. In the t-SNE plots, we colored the data points
by phylum and focused on the top five most highly
represented phyla. Figures 4a, 4c, and 4d display the
embedding results for the 16S, ITS, and 28S datasets,
respectively. From the visualizations, we observed dis-
tinct clusters and patterns for both the pre-trained model
embeddings and the k-mer frequency representation.
Notably, the pre-trained model embeddings exhibited
tighter and more well-defined clusters compared to the
k-mer frequency representation. This difference was
particularly evident in the ITS and 28s datasets. The
improved cluster separation in the pre-trained model
embeddings suggests that the model captures more
nuanced relationships and discriminative features be-
tween the phyla, leading to enhanced representation
quality in the embedding space. Interestingly, when
examining the results for the 16s dataset (Figure 4b),
we observed an intriguing pattern: the embeddings were
organized based on the position of each fragment in
the sequence. Fragments with similar positions clustered
together, indicating that our embedding captures posi-
tional information effectively, which is not evident in
the k-mer representation. This discovery has inspired
further exploration of the pre-trained model’s potential
in capturing information related to variable regions or
functional characteristics, which could be valuable for
downstream tasks.

We conducted taxonomic classification experiments
comparing our model’s embedding representation, k-
mer representation, and the DNABERT model’s em-
bedding on three downstream datasets at different taxo-
nomic levels. All evaluations were performed using 10-
fold cross-validation, and the reported results are the
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(a) TSNE plots: Top five phyla in 16s dataset (b) TSNE plot: Fragments positions in 16s dataset

(c) TSNE plots: Top five phyla in ITS dataset (d) TSNE plot: Fragments positions in 28s dataset

Figure 4. Unveiling Phylum Distribution and Positional Insights: RoBERTa Model Embeddings(right) vs. 6-mer Frequency(left)

average accuracies. Figures 5,6 and 7 display accuracy
results for various tasks across different datasets. The
combination of 6-mer representation and Random Forest
(RF) consistently outperformed the other models. The
6-mer representation demonstrated its effectiveness by
capturing local sequence information and effectively
discriminating between different taxa. RF’s ability to
handle high-dimensional data, capture complex relation-
ships, and handle noisy data contributed to its superior
performance. It is worth noting that the 6-mer represen-
tation achieved a high-dimensional vector size of 4096,
which may have contributed to its success. However,
we observed a decrease in performance when reducing
the k-mer size to 3-mers, indicating under performance
of this representation. Therefore, there appears to be
a trade-off between representation dimensionality and
classification accuracy.

IV. CONCLUSIONS

We have demonstrated the effectiveness of our op-
timized RoBerta model for taxonomic classification
across diverse downstream datasets and genes. The
model’s strong performance showcases its versatility
and applicability in various biological contexts, even
within the limitation of sequence length, which cur-
rently restricts its usage for sequences exceeding ∼200
nucleotides—posing a potential challenge for tasks like
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SNP detection that require analysis of longer genomic
sequences. For future work, our optimized RoBerta
model opens up possibilities for further downstream
analysis. For example, it should be explored for predic-
tion of gene functions. This provides valuable insights
into the functional capabilities of different organisms
and uncovers novel biological pathways. Moreover, our
model holds promise for metagenomic studies, where
it can accurately classify and identify the taxonomic
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composition of microbial communities. This informa-
tion contributes to a deeper understanding of ecosystem
dynamics, species interactions, and potential functional
roles within these communities.

SUPPLEMENTARY INFORMATION

The source code and relevant data are available at https:
//github.com/EESI/MetaBERTa.
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