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Abstract—Advancements in wearable technology and their
capacity to interpret user movements, transforming them into
interactive actions in virtual environments, have sparked an
increased demand for user flexibility within these spaces. A direct
outcome of this growing trend is the imperative need for automated
cinematography in expansive, open-world scenarios. Nevertheless,
the task of interpreting these interactive sequences through
automated cinematography in unconstrained environments
involves significant computational challenges. In response to
this, we introduce the Automated Adaptive Cinematography
for Open-world Generative Adversarial Network (AACOGAN)
-an innovative solution that addresses these issues. Contrary to
traditional models, which require comprehensive prior knowledge
about scenes, characters, and objects, AACOGAN identifies and
models the relationships among user interactions, object positions,
and camera movements during the process of user engagement.
This novel approach allows the model to function effectively even in
open-world scenarios riddled with numerous uncertain factors. In
the experimental phase, we developed and employed the MineStory
Dataset, designed specifically for automatic cinematography
in open-world scenarios. We devised and implemented novel
metrics that are more congruent with the distinctive features of
open-world scenarios. These innovative metrics provide a more
nuanced understanding of the performance and effectiveness of
our proposed method. Experimental findings substantiate that
AACOGAN significantly enhances automatic cinematography
performance within open-world contexts, including an average
augmentation of 73% in the correlation between user interactions
and camera trajectories, and an increase of up to 32.9% in the
quality of multi-focus scenes. Therefore, AACOGAN emerges as an
efficient, and innovative solution for creating appropriate camera
shots in a myriad of interactive motions in open-world scenarios.

Index Terms—Automatic cinematography, deep-learning, effi-
cient, GAN, multi-media application.
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I. INTRODUCTION

THE gaming industry’s progression has been persistently
propelled by the aspiration to provide users with increased

autonomy in gameplay, which serves to elevate their pleasure
and absorption within the game experience [1]. This has resulted
in a trend towards the creation of open-world games, which pro-
vide users with a more expansive and unrestricted environment
and, as a result, a more enriching experience. Cinematography
is a crucial element in conveying character emotions and ad-
vancing the plot in media such as games and films, and it can
significantly enhance the immersion of the audience if utilized
effectively. However, camera placement always requires expert
knowledge and also consumes a significant amount of time and
budget in the production process. Automatic cinematography
technology has been developed to solve this problem.

Historically, film directors could lean on scripts to guide cam-
era strategy and lens selection. Such reliance streamlined the
cinematographic process, ensuring the audience received an op-
timized visual experience, while simultaneously cutting down
on production costs [2], [3]. Over time, these tactics crystallized
into classical lens language techniques, distilled into a codified
set of camera rules [4], [5].

However, these conventional, rule-based methodologies fal-
ter in open-world scenarios, marked by their inherent unpre-
dictability (as shown in Table I). Players in these scenarios
cherish their ability to sculpt and narrate their distinct stories
through interactive gameplay, not just follow a preset narra-
tive. Such unparalleled freedom fosters unique virtual expe-
riences. Player-controlled avatars are emancipated from rigid
scripts, enabling them to interact dynamically with the virtual
world, breaking the shackles of fixed choices. This fluidity intro-
duces unpredictability in elements like narrative flow and char-
acter interplay. Although some applications attempt to employ
rule-based automatic cinematography, they often fall short, com-
promising the immersive quality of the game [6], [7]

Emerging deep learning technologies bring promise to the
domain of automatic cinematography [4], [5]. These method-
ologies empower directors to derive lens language from
expansive datasets, widening the scope of its applications. Con-
sequently, deep learning-centric automatic cinematography be-
comes a formidable tool for open-world settings, significantly
amplifying immersion.

In our research, a predominant challenge was devising an
algorithmic approach for optimal camera placement to maximize
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TABLE I
COMPARISON OF THREE DIFFERENT TYPES OF USER EXPERIENCES (TRADITIONAL MOVIE, PURPOSE-DRIVEN INTERACTIVE MOVIE OR GAME, AND OPEN WORLD)

IN VARIOUS ASPECTS AS PERCEIVED BY THE AUDIENCE

shot quality. Our solution extends the toric surface model [8],
infusing it with considerations of character emotions, actions,
and environmental contexts, leading to nuanced camera choices
in diverse open-world contexts.

Consistency, spanning character movements, emotions [9],
and camera dynamics remain paramount for immersive game-
play [10], [11], [12]. Recent investigations underscore the effi-
cacy of automatic camera movements tailored around individ-
ual characters, encapsulating both their physical and emotional
states [13]. Such techniques surpass prior methods that solely
track head movements, disregarding emotional undertones [14].
Our methodology builds upon these foundations, tailoring them
for open-world applications.

Furthermore, to elevate the aesthetic resonance of our frames,
we incorporated insights from professional film director shot
selections into our model’s loss function, optimizing our auto-
mated camera generation algorithm [15].

To the best of our knowledge, this paper is the first effort
in the automated cinematography field that generates camera
movement for multi-character interactions in an open-world en-
vironment.

The major contributions of this paper can be summarized as
follows:! We develop comprehensive quality assessment metrics tai-

lored for automatic cinematography for open-world scenar-
ios.! We propose a novel auto cinematography framework called
AACOGAN based on Generative Adversarial Networks
(GANs). AACOGAN is designed to generate camera
movements that are consistent with the interactive actions
of the characters in the open-world environment.! We design a unique input criterion that includes all the
factors that need to be considered for camera selection in
open-world scenarios.

The rest of the paper is organized as follows: Section II
provides a literature review on computational cinematography,
video editing, and video understanding. Section III presents our
proposed framework, problem formulation, and dynamic pro-
gramming solution. Section IV discusses experimental results
and the potential impact of video understanding errors on the
framework. Section V concludes the work.

II. RELATED WORK

Cinematography plays an essential role in creating immersion
and realism for audiences. Through dynamic camera movements

and meticulously designed shots, it directs attention, establishes
the game world’s ambiance, and communicates information and
emotions [12], [16].

Historically, the film industry relied on director-led strategies,
where camera scripts were derived from the story’s plot [14],
[17]. This method, while effective, requires extensive cine-
matography expertise and considerable manual intervention.
Contemporary research has shifted towards identifying cine-
matic idioms—recurring camera movements tailored for specific
scene types [18], [19]. These idioms, and their sophisticated
counterparts, have been designed for films or games with ex-
plicit narratives, streamlining the filmmaking process [5], [20],
[21]. The relationship between lens language and cinematog-
raphy, especially its potential to guide user emotions, has been
explored extensively [6], [7]. However, for open-world scenar-
ios, where cinematography depends on character dynamics and
environment interactions, this idiom-based approach becomes
inappropriate.

An alternative automated cinematography approach, as de-
scribed in [4], [22], may be more fitting for open-world scenar-
ios. By integrating various lens language elements into training
data, this method adapts to character actions and environmental
interactions. Notably, GAN-based cinematography focuses on
individual character shots, considering actions and emotions,
but often overlooks inter-character and object dynamics [13],
which are vital in open-world contexts.

Optimizing camera position selection is critical in expansive
environments, given the computational challenges posed by nu-
merous options. Limiting camera movements to widely accepted
spaces ensures efficient computations without compromising
quality [8], [23]. However, a persistent challenge in automated
cinematography is the absence of objective evaluation criteria.
Incorporating aesthetic assessment models, rooted in widely rec-
ognized aesthetic benchmarks [24], [25], [26], into AI-driven
cinematography could enhance the overall frame quality.

III. PROBLEM FORMULATION

Evaluating the quality of lenses generated by automated pho-
tography technology presents a complex challenge, given the
absence of universally acknowledged objective evaluation stan-
dards [27]. Traditional user research, employed for outcome as-
sessment, may be hampered by biases and limitations in ad-
dressing dynamic user demands, potentially impeding system
enhancements. Therefore, the development of objective evalua-
tion criteria is vital for improving research results.
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A. Quality Measurement

In open-world environments, user-directed character move-
ments are often primarily focused on the character itself rather
than the entire scene. To effectively address these unique require-
ments for automatic cinematography in open-world contexts, we
propose an equation with rational metrics to evaluate the quality
of the automatically generated camera q, as detailed below:

q = Q(Dcorr(C,A), R(C), Saes(C)), (1)

where Q(·) is the quality function, C is the generated camera
trajectory, and A is the position and rotation of the skeletal bone
during character interactive movement. Dcorr(·) is the function
that calculates the similarity between the camera and character
movement trajectories. R(·) is the function that calculates the
ratio of the all-character captured frame during the interaction,
and Saes(·) calculates the aesthetic score of the frames captured
by the given C.

Undoubtedly, the employment of cinematic language as an es-
sential component of the artistic domain is contingent upon sub-
jective assessments. Consequently, a preferable approach might
encompass enabling automatic cinematography systems to learn
from human film directors in the gaming industry [4], rather than
relying exclusively on fixed algorithms for camera movement
generation. By leveraging pertinent data to mimic the cinematic
language habits of directors and iteratively refining the gener-
ated algorithm based on user feedback, neural network technol-
ogy could effectively replicate directorial expertise. During the
system training phase of our experiment, the preceding quality
measurement defined in (1) can be expanded to Qref as follows:

qref = Qref(Dcorr(C,A), R(C), Saes(C),Dis(C, Ĉ)), (2)

where Dis(·) represents the distance metric that measures the
dissimilarity between the C and the ground truth camera motion
Ĉ obtained from human film directors, who authored the actual
in-game camera movements.

It should be noted that the approach we use to defineQref is not
necessarily a standard one. Moving forward, we will provide a
detailed explanation of each component that makes up this Qref .

In gaming environments, players exert control over both
in-game settings and character functionalities, which can in-
fluence camera trajectories based on predefined rules [11]. This
dynamic is similarly observed in open-world contexts, where
player actions predominantly alter the environment and game
status. Maintaining consistency in character control can reduce
user disorientation, as highlighted by [28]. An important met-
ric to evaluate coherence is the congruence between character
skeletal nodes’ trajectories and camera motion during interac-
tions. The disparity between these trajectories can be quantified
using the correlation distance dcorr for each position and rotation
axis.

dcorr = Dcorr(C,A)

=

√√√√√1−

(∑n−1
t=1 (ft − f̄)(pt − p̄)

)2

∑n−1
t=1 (ft − f̄)2

∑n−1
t=1 (pt − p̄)2

, (3)

ft and pt are the frame and position coordinates of the t-th point
on the trajectory C, n is the number of frames for the action and
camera movement, and f̄ and p̄ are the mean values of the f and
p coordinates, respectively.

The absence of a predefined script in open-world envi-
ronments poses a significant challenge to automated filming
techniques, especially when it comes to focusing on multiple
points [8]. In scenarios involving multiple parties, it is crucial
for the camera to capture the entire interaction process and all
characters comprehensively, not solely the character currently
under user control. To address this challenge, a potential strat-
egy is to facilitate the camera’s extended capture of all involved
characters throughout the camera movement process. An effec-
tive metric for evaluating the efficacy of capturing all involved
characters r throughout the camera movement process is the ra-
tio of the number of frames in which all interactive characters
appear in the frame to the total number of frames n used for the
interaction, which can be calculated by:

r = R(C)

=

∑t=n
t=0 Rframe(ft)

n
× 100%, (4)

where Rframe(·) result equals 1 when all the interactive charac-
ters are present within ft, otherwise it equals 0.

Although objective criteria for evaluating the quality of im-
agery generated by automated cinematography techniques re-
main elusive, aesthetic evaluation models have been widely ac-
knowledged for images as presented in [26], [29]. As a sequence
of images, the video captured during camera movement can be
evaluated objectively in terms of aesthetics by calculating the
aesthetic score of each frame captured during the camera move-
ment process. Integrating aesthetic models into the automated
cinematography system can improve the conformity of captured
imagery with objective standards. This aesthetic score can be
calculated by:

saes = Saes(C)

=

∑t=n
t=1 AES(ft)

n
, (5)

where ft is the visual content captured by the C at t-th frame,
AES is the model for image aesthetic evaluation, and n is the
number of frames for the camera movement.

Emotional states of characters play a pivotal role in automated
camera movement decisions, influencing shot selection based
on their emotional intensities [12], [13]. Notably, screen motion
intensity has been found to correlate with viewer arousal [9].
Thus, even with consistent interactive actions, diverse emotional
contexts necessitate variations in camera movement dynamics
to aptly represent the character’s emotional nuances. However,
assessing the exact relationship between emotions and camera
movement can be challenging due to individual differences in
perceiving camera movement responses to emotions. This dif-
ference will be directly reflected in the actual camera trajectory
and can be considered a component of Dis(C, Ĉ). The Dis(·) is
employed to compute the distance between the generated and
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real camera drive data, consisting of two parts: MSE and Eu-
clidean distance, represented as follows:

dist = Dis(C, Ĉ)

= MSE(C, Ĉ) + Euclidean(C, Ĉ). (6)

In response to the aforementioned problems and challenges,
a deep-learning-based generative model, AACOGAN, which is
based on GANs and is developed to enable automatic cinematog-
raphy in the open-world environment. GANs have demonstrated
impressive results in generating synthetic data samples that re-
semble data from a training dataset, commonly used for gener-
ating images [30] and audio [31] signals. The essence of camera
movement in cinematography is the variation of the camera’s
position and rotation along different axis over time, which is
comparable to the time-varying intensity of audio signals.

B. AACOGAN Architecture

Based on the aforementioned factors that influence the gen-
erated camera trajectory in AACOGAN, we have designed the
input (green block of Fig. 2) for the generation model.

Character skeletal animation, also known as skeletal anima-
tion (Fig. 3), is a widely adopted technique in the animation
field that enables the generation of realistic and intricate move-
ment. This technique involves continuously recording A of the
skeletal bones during character interactive movement, as well
as computing and documenting the speed (AV) and acceleration
(AD) of these bones. By including the speed and acceleration
of the skeletal bones as input features, the generation model is
able to make more accurate predictions about the position of
the camera, particularly in cases of continuous camera move-
ment. The initial camera position is also significant, as it cannot
be forecasted by the generation model. In addition to the 3D
coordinates and rotation (IniCAM) of the camera’s initial posi-
tion within the virtual environment, the relative coordinates on
a toric surface (IniTheta) have been considered as input param-
eters. This is because the movement of the camera is confined
to this surface in the experiment.

Character and object position, as well as the position rela-
tionship between the user-controlled character (MPOS) and the
target interactive objects (TPOS), are crucial factors in deter-
mining the camera’s path. In the experiment, the 3D coordinates
of both the character and the interactive objects are recorded. It
should be noted that there may be multiple interactive objects,
and thus a set of vectors representing their positions have been
included in the experiment, with a maximum of five vectors.
The character’s emotional intensity Emo is a crucial factor in
the selection of lens language. Compared to simple emotion cat-
egorization (dividing emotions into categories like happy, sad,
angry, etc.), emotional intensity is a better representation of the
impact of emotions on cinematographic language [32]. This is
because even the same emotion might require completely differ-
ent camera presentations, such as the difference between mild
anger and uncontrollable rage. In our experiment, Emo is rep-
resented by numerical values ranging from 0 to 1, indicating the
level of impact that the emotion has on the character’s move-
ments, where the intensity of the emotion increases with higher

numbers. Therefore, the input, O, for the generator can be rep-
resented as the collection of the above factors.

The architecture of the AACOGAN generator model is
represented in Fig. 1. The generator is designed to learn
the pattern of the ground truth camera drive data sequence,
Ĉ = [ĉ0, ĉ1, . . . , ĉT ], for each interactive action and gener-
ate a corresponding sequence of camera drive data, C =
[c0, c1, . . . , cT ], based on the sequence of observed input fea-
tures, O = [o0, o1, . . . , oT ], where T represents the number of
samples of the interactive action over the duration.

As depicted in Fig. 2, the AACOGAN generator is a neu-
ral network designed to generate a camera drive data sequence
based on a given input sequence of observed features, utilizing
an encoder-decoder GAN structure [33], [34]. The encoder, a
function that processes a sequence of partial input features (A),
produces a latent representation through feature extraction [35].

Some interactive actions, such as running or walking, involve
the entire body and can impact the camera’s overall path in
the virtual environment. To address potential connections
between various body parts and movements, in the proposed
AACOGAN architecture (Fig. 3), the encoder separates input
data into distinct body parts using specialized neural network
layers known as Body Part Blocks (BPBs). These BPBs,
trained to isolate and encode specific body regions, facilitate
the learning of fine-grained representations for each region,
establishing a deeper correlation between character and camera
movements. This separation offers multiple benefits, includ-
ing the effective capture of various body parts’ engagement
during different actions and enabling the encoder to focus
on specific input data segments. This is particularly useful
for capturing relevant body parts during intense or vigorous
movements.

Subsequently, this collective feature representation undergoes
a Linear Block (LB) operation, primarily designed to optimize
the input data’s structural compatibility with subsequent com-
putations. This process derives a latent representation of the
skeletal bones A as per the following equation:

Alatent = LB(BPB(Ahead), . . . ,BPB(Afully)). (7)

In particular, the latent representation of A retains the posi-
tions and rotations of skeletal bones, encompassing crucial in-
formation for generating camera drive data. The remaining data
decodes this latent representation at various stages and from dis-
tinct perspectives based on its type. Firstly, AV and AD which are
derived from A are processed through two independent LBs and
concatenated, serving as supplementary information about the
skeletal bones’ position and rotation during movement. The po-
sitional data of the camera, including IniCAM and IniTheta, are
processed separately through two independent LBs and concate-
nated. These features enhance the model’s ability to establish a
robust correlation between the initial camera position and cam-
era movements. Features regarding the positions of the character
and interactive object(s), MPOS and TPOS, are involved in the
decoding of the latent representation after processing through
two other independent LBs.
Emo is a critical component of the proposed model, inte-

grated with other data by the generator through a single LB.
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Fig. 1. AACOGAN architecture overview: C is the ground truth camera trajectory, Ĉ is the generated camera trajectory, and L is the loss.

Fig. 2. AACOGAN generator architecture overview. The green blocks are the input for the generator model including skeletal key point position (A), point
speed (AV), point acceleration (AD), initial camera parameters (CAM), initial theta value on camera moving surface (IniTheta), user-controlled character position
(MPOS) and target objects position (TPOS). The block with “Latent” is the model to generate the latent representation through feature extraction. The detailed
explanation of this overview is in Section III-B.

This integration enhances the model’s capacity to establish a
strong relationship between camera movements and character
emotions. SinceEmo is one-dimensional and remains relatively
stable within a single interactive action, it is incorporated as a
coefficient on all intermediate outputs during the second fusion
for decoding.

The camera’s movement is represented by data that continu-
ously varies over time, requiring two Recurrent Linear Blocks
(RLBs) in the generator’s final portion to decode the time-
varying characteristics of the latent representation.

AACOGAN employs two discriminators, inspired by [36],
to evaluate the performance of the generator from two distinct
perspectives, thus evaluating and enhancing the generator’s per-
formance for multiple requirements.

Accurately capturing subtle variations in the camera’s posi-
tion is vital to ensure the generator produces camera driving
parameters closely resembling the ground truth. Given that mi-
nor differences in the shooting angle can significantly affect

the overall outcome (example details shown in the experiment
about the aesthetic score in Section IV-B), properly evaluating
the generator’s output is essential. Consequently, the pose dis-
criminator evaluates individual data points, ct, generated from
the input features ot.

Conversely, the trajectory discriminator assesses the complete
camera drive data, C, for an entire interactive action generated
by O. This discriminator is pivotal in ensuring the overall co-
herence and realism of the generated camera movement. By
evaluating the entire sequence of camera driving data, it can de-
termine whether the generated camera movement adheres to a
plausible and natural trajectory, rather than consisting of unre-
lated or jarring movements. This aspect is particularly important
for maintaining immersion and ensuring a seamless user experi-
ence. As such, it is critical that the trajectory discriminator accu-
rately assesses the quality of the generated camera movement,
as inaccuracies could lead to unrealistic or incoherent camera
movements.
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Fig. 3. 3D Character skeleton illustration. Each tetrahedron corresponds to a
bone in the skeletal animation.

C. Loss Functions and Algorithm

Our goal is to maximize the qref while minimizing the network
loss during the training. Let θ represent the parameters of this
camera drive data generator. Additionally, let ψp and ψt denote
the parameters of the camera pose and trajectory discriminators,
respectively. Then the objective function derivatives from (2) for
the AACOGAN can be expressed as follows:

max
θ

Qref(·) = min
θ

max
ψp,ψt

ω0Ldist + ω1Lcorr + ω2L̃aes

+ ω3Lp + ω4Lt, (8)

where ω0, . . . ,ω4 are the weight factors used to balance the loss
terms, the loss functions Ldist and Lcorr represent the distance
function Dis(·) and the correlation distance function Dcorr(·) for
the AACOGAN generator model. They are employed to com-
pute the distance and similarity between C and Ĉ. ˜Laes is a
loss function representation of Saes(·) which utilizes an anes-
thetic assessment model (AES) to evaluate the conformance of
the results to general aesthetic standards. This loss function dif-
fers from others in that it requires the use of the resulting cap-
tured frames for evaluation, whereas the generator only gener-
ates camera drive data. As a result, it is utilized as a separate
fine-tuning mechanism for the generator model at the conclu-
sion of training. Following the completion of a training phase,
the generator is used to generate a set of parametersC for eachO
in the training set. Each set of these C values is used to capture
interactive actions in a virtual environment as a camera shot,
resulting in a corresponding video clip. Each video clip can be
represented as a sequence of images, and an AES is employed
to evaluate these images. Due to the camera trajectories being
pre-designed within the optimization space of a toric surface, as
applied in our experiments, we discern important insights from
the data analysis of professional directors that we collect. The
majority of cases highlighted that the two most critical elements
determining the quality of the shot and the camera trajectory
are the starting and ending points. Therefore, the beginning and
ending frames in this sequence are given more weight in the

calculation of the loss value as follows:

˜Laes =
1

T

T∑

t=1

αt(AESmax − AES(ct)), (9)

where AESmax is the max score of the employed AES and αt is
the weight factor for different frames over t.

As the number of characters captured by C can only be calcu-
lated after the actual video generation, there is no function based
on R(·) in the loss function for the AACOGAN generator.

The discriminator loss function has two parts. The pose dis-
criminator loss function, Lp, which is similar to the Ldist that
calculates the pose difference C and Ĉ at each t. The trajec-
tory discriminator loss function, Lt, which is similar to the Lcorr

that calculates the trajectory difference between C and Ĉ. The
discriminator loss can be defined as follows:

Lp =
T∑

t=1

(−E[logD(ct, ĉt)]− E[log(1−D(G(ot)))]),

(10)

Lt = − E
[
logD(C, Ĉ)

]
− E [log(1−D(G(O)))] , (11)

where the D is the discriminator and G is the generator.
The pseudo-code for training AACOGAN is given in

Algorithm 1. In the first and second loops, ψp is updated sepa-
rately, and θ is updated in both loops. The third loop is imple-
mented to refine θ based on aesthetic aspects for fine-tuning.

Due to the precise camera parameters for each frame and the
presence of noise during data generation, the resulting camera
drive data may exhibit minor fluctuations between frames. These
continuous, randomly oriented fluctuations can disrupt image
continuity and reduce user immersion. To address this issue, our
system’s postprocessing applies smoothing to the final output
data to create a more continuous curve by minimizing these
fluctuations.

The smoothing process, which aims to refine the data points
and generate a smoother curve in a 2D coordinate system, is
achieved using a Savitzky-Golay filter [37]. To ensure the accu-
racy of the smoothed result in representing the underlying data,
a window size of 5 is employed for the filter. The outcome is then
evaluated using four different polynomials of varying degrees,
ranging from 2 to 5. The smoothed result that most closely re-
sembles the original data points is selected, thus preserving data
curvature while reducing potential information loss due to the
smoothing process. This step can be represented as follows:

Csmooth =
5

min
p=2

MSE{savitzkygolay(G(O), 5, p), G(O)} (12)

IV. EXPERIMENT

In this section, the evaluation of the proposed AACOGAN
is carried out using both objective and subjective metrics. To
the best of our knowledge, there is no prior study on automatic
cinematography in open-world scenarios. Therefore, we draw
comparisons between our results and conventional automatic
cinematography techniques [4], [13], [20], [38] commonly em-
ployed in general games and films. These four reference works
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Algorithm 1: Training Procedure of AACOGAN
Input The extracted features defined in the pre-
processing On = [on1, on2, . . . , onT ] and the
corresponding ground truth camera drive data Cn =
[cn1, cn2, . . . , cnT ] for n = 1, 2, . . . , N .

Output Generator parameters θ and two discriminator
parameters ψp and ψt.

for epoch = 1 to max_epoch do
for iterp = 1 to kp do

Sample a mini-batch of input features and camera
drive data pairs in frame {(ot, ct)} from the training
set.
Generate a single camera drive data point ĉt.
Calculate the Lkp = Ldist + Lcorr + Lp

Update ψp and θ.
end for
for itert = 1 to kt do

Sample a mini-batch of input features and camera
drive data for the entire interactive action pairs in
{(O,C)} from the training set.
Generate camera drive data for the entire integrative
action Ĉ.
Calculate the Lkt = Ldist + Lcorr + Lt

Update ψt and θ.
end for

end for
for itert = 1 to kt do
Sample a mini-batch of input features and aesthetic
score pair for each interactive action.
Calculate the ˜Laes

Update θ.
end for

have tackled the problem of automatic cinematography using
two different approaches: a rule-based auto-cinematography ap-
proach [4], [20] and a behavior learning approach [13], [38].
For [20], we have adjusted the original loss function from
dialogue-focus to character-action emphasis since the open-
world scenarios are more focus on the actions. Other significant
parameters like screen position, shot types, visibility, etc, have
been retained.

In [38], a Recurrent Neural Network (RNN) is used to capture
the essence of cinematography, while [13] focuses on individual
characters and employs a GAN-based model to generate camera
movement according to the characters’ emotions and actions.
More experiment example video footage can be found at https:
//youtu.be/vhvgvE-DU2Y.

A. MineStory Dataset

Given the complexity and dynamism of user interactions
within open-world environments, we developed a novel inter-
active action dataset named the MineStory dataset. This dataset,
created using motion capture techniques, trains the AACOGAN

to adapt to the diverse and ever-evolving nature of user actions
in such virtual environments.

The MineStory dataset encompasses a total of 546 distinct
actions, including most actions typically used in animation pro-
duction and some actions specially tailored for our product. Each
action is captured by a standard protocol that involves 25 joint
nodes distributed throughout the character’s entire body. The
positional and rotational data of each node is captured at a rate
of 30 frames per second, yielding a comprehensive skeletal an-
imation.

To train the AACOGAN, we need a set of camera trajec-
tory data for each action, as directed by a human operator
in an open-world environment. We employ the toric surface
method, as introduced in [8], to simplify the process of gen-
erating this data. This method conceptualizes the toric surface
as a two-dimensional plane for creating camera movement tra-
jectories, which can then be projected into a three-dimensional
virtual space. This approach allows for the efficient generation
of extensive camera trajectory data with a limited number of
human operators. In our experiments, we generated 2 to 8 dis-
tinct sets of camera trajectory data for each interactive action.
This data generation employed a randomized combination of
parameters tailored to the unique aspects of the interactive ac-
tivities, such as the characters’ emotional states and the distance
of interaction.

B. Training Detail

For the general training process, we trained the AACOGAN
by using the Minestory dataset with a batch size of 128 and a
learning rate of 0.0002. Adam optimizer [39] was employed with
β1 = 0.5 and β2 = 0.999. Due to the varying durations required
for each action performance, we standardized all actions based
on the one with the longest completion time. The missing camera
data and character skeleton data were filled using the information
from the last frame. The model was trained for 3,000 epochs,
with the loss function consisting of adversarial loss, pose, and
trajectory discriminator loss. The weight for adversarial loss and
discriminator loss in the overall loss function was set to 0.5 for
both scenarios. All layer dropout rate was set to 0.2.

For the aesthetic model fine-tuning phase, we began by fine-
tuning the NIMA aesthetic model [26], using frames captured
from the Minestory dataset. Subsequently, we employed this
fine-tuned NIMA model to evaluate frames captured by the out-
put camera sequence from AACOGAN. This evaluation served
as the aesthetic loss (Laes), which was then used to further
fine-tune the AACOGAN.

C. Objective Numerical Comparison

The comparisons between the AACOGAN and the baseline
model have been performed with regard to several important as-
pects of automatic photography technology in open-world sce-
narios.

1) Precise Difference in Camera Position and Rotation: The
camera’s location and orientation in the environment are spec-
ified by a set of six parameters, three of which pertain to po-
sition and three to rotation. This metric directly compares the
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Fig. 4. Accumulated difference between parameters of the generated camera
positions and the ground truth camera position calculated over time, with the
error distance expressed in unit distance.

Fig. 5. Accumulated differences between the generated camera parameters
and the ground ones truth over time are shown for all the rotation parameters.
The error distance is expressed in radians.

difference between the generated camera position and rotation
parameters with the ground truth for each approach. Figs. 4 and
5 present the sum of differences of all the x, y, and z axes be-
tween the generated camera parameters and the ground truth
parameters for position parameters and rotation parameters are
presented, respectively, over time. Compared to other methods,
AACOGAN exhibits the least deviation in position from the
ground truth in terms of results. The results show that there has
been a reduction in the average positional error of 1.56 units
(93.6%) and an average reduction in the rotational error of 1.11
radians (55%), where the ‘unit’ for distance measurement is the
unit distance for object positioning in the virtual environment.

Fig. 6 offers a comprehensive depiction of the accumulated
distance error for position parameters along the x, y, and z axes.
The upper section of Fig. 6 displays the accumulated differ-
ence between generated camera parameters and ground truth

over time, for each axis individually. AACOGAN exhibits the
smallest accumulated discrepancies across all scenarios in com-
parison to other methods. It is crucial to recognize that mere
similarity in camera parameter numerical values does not guar-
antee similarity in camera movement. The camera’s trajectory
in three-dimensional space throughout the shot is of utmost sig-
nificance. Consequently, we extended our evaluation by com-
paring the variation curves of generated camera parameters
for each method along each axis over time. The bottom sec-
tion of Fig. 6 demonstrates the variation of camera rotation
parameters over time, with the visual similarity between the
AACOGAN-generated camera parameters and ground truth pa-
rameters being more distinct than the two baseline models.

Fig. 7 displays a visual comparison of generated camera
shots from different methods in terms of shooting position and
angle. When contrasted with ground truth camera shots, the
AACOGAN-generated frames exhibit a higher degree of simi-
larity, corroborating the numerical results.

In summary, the camera movement generated by the AACO-
GAN model more closely approximates the ground truth, indi-
cating that our method is more adept at learning the film direc-
tor’s lens language in open-world scenarios.

2) Correlation of Trajectories: The correlation distance met-
ric is employed to calculate the similarity between generated
camera motion and the actual motion of subjects during inter-
active actions. As previously mentioned in [10], [11], when
camera movement closely mirrors the subjects’ movements, it
can enhance the sense of immersion for the audience. The sig-
nificance of body parts in real action is often gauged by their
range of motion and velocity.

In this experiment, the joint exhibiting the largest range of
motion and fastest movement was selected as a reference to as-
sess the correlation between subject and camera movements.
Table II presents the similarity between various camera param-
eter curves generated by different automatic cinematography
methods and the ground truth, quantified using correlation dis-
tance. The camera movement generated by AACOGAN is evi-
dently more similar to the actual subject movement than other
methods, especially near peaks of subject movement.

The similarity between the camera trajectory generated by
AACOGAN and the manually created camera exhibits the low-
est discrepancy at 27%, while other methods display a minimum
discrepancy of 95.3%. Compared to the other two references, the
camera trajectory produced by AACOGAN demonstrates a de-
crease of 0.78 (73%) in the average correlation distance. This
synchronized movement between the camera and the action can
provide a superior experience for the user.

Fig. 8 illustrates the comparison between the camera trans-
port mirror trajectory generated by different methods and the
skeletal animation motion trajectory for the x-axis in the ex-
periment environment. The y-axis in Fig. 8 represents the po-
sition of the character’s skeletal joint (right y-axis) or the cam-
era position (left y-axis) relative to the previous time step for
each time step. It can be observed that the trajectory generated
by AACOGAN has a higher similarity to the motion trajec-
tory. The corresponding example video footage can be found at
https://youtu.be/M24bHDvDnqk.

Authorized licensed use limited to: Michigan State University. Downloaded on September 09,2024 at 16:19:48 UTC from IEEE Xplore.  Restrictions apply. 

https://youtu.be/M24bHDvDnqk


6186 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 26, 2024

Fig. 6. Top: The accumulated differences between the generated camera parameters by different methods and the ground truth ones are displayed over time. The
parameters for the x, y, and z-axis are shown individually. Bottom: the exact values of the parameters generated by different approaches for each axis at each time
point are presented.

Fig. 7. Compare the frames captured by the virtual camera generated by different methods. From the visual inspection of these frames, we can intuitively observe
the differences between the generated camera shots and the ground truth, in terms of position and orientation.

TABLE II
CORRELATION DISTANCE BETWEEN THE VARIOUS GENERATED CAMERA PARAMETERS AND ACTUAL SKELETON ANIMATION MOVEMENT AMONG DIFFERENT AXIS

FOR A SINGLE ACTION
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Fig. 8. Interactive action comparisons of the change curves of the different axis parameters of the camera position generated by different methods over a certain
period of time with the corresponding skeletal animation motion curves of the interactive action.

Fig. 9. Comparison of different methods for calculating the r value under
varying numbers of individuals and scenes.

3) Multi-Focus: In open-world settings, interactive actions
may not be solely centered on specific characters or objects.
In such instances, the lens language employed by automatic
cinematography technology should encompass as many re-
lated objects as feasible. This metric gauges the proportion of
time during which camera movements, generated by various
methods, successfully capture specified objects in multi-focus
scenes.

Higher proportions generally imply superior performance and
user experience. A comparison of the capture ratio for designated
characters or objects during interactive actions between AACO-
GAN and alternative methods is depicted in Fig. 9. The results
reveal that AACOGAN captures more relevant characters over
extended durations, thereby augmenting users’ overall viewing
experience. In comparison to other reference methods, AACO-
GAN demonstrates an average improvement of 22% and up to
32.9% in multi-focal scene image capturing, contingent upon
content.

Fig. 10 displays frames captured by distinct automatic cine-
matography techniques within a given multi-person interactive
dance scene. Observing the image, the lens language generated
by AACOGAN captures more comprehensive character images
within the scene. The corresponding video footage example can
be accessed at https://youtu.be/3KImvj9wabg.

4) Aesthetic Score: The AES [26], [29] offers an objective
evaluation of images and assigns scores based on their aesthetic

Fig. 10. Frames captured by different automatic cinematography techniques
in a dance scene.

quality, with a higher score indicating a higher level of aesthetic
appeal. This model is widely utilized in the realm of image and
video content generation and provides valuable insights through
artistic analysis of the output generated by these technologies.
To the best of our knowledge, AACOGAN is the first work to
apply this type of model in the field of automatic cinematography
for shot generation. By incorporating aesthetic scores as part of
the input for fine-tuning the generator of the AACOGAN, the
resulting shots have higher aesthetic ratings than the original
model without aesthetic-related adjustments.

In our experiments, employing AES led to a 9% average in-
crease in the aesthetic score of images captured by the AACO-
GAN. For actions like over-wall jumping, illustrated in Fig. 11,
the right-side camera shot generator captures richer lighting,
background, and environmental information compared to the
left-side perspective. This result is achieved by slightly lower-
ing the camera position and raising the shooting angle. This
distinction can be ascribed to the use of aesthetic scores in the
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Fig. 11. Use of aesthetic scores as a part of the input for the generator of
AACOGAN resulted in improved visuals, as seen in the comparison between
the original camera shooting direction (left) and the fine-tuned version camera
shooting direction (right) after incorporating aesthetic considerations.

TABLE III
REAL-TIME PERFORMANCE METRICS FOR AACOGAN MODEL WITH

DIFFERENT INPUT LATENCY

fine-tuning process of AACOGAN’s generator, causing a pref-
erence for content-rich camera angles over monotonous ones,
such as those oriented towards the sky or ground. Aesthetic
assessment models typically favor images with more content.
The corresponding video footage example can be accessed at
https://youtu.be/_je_Gg_QQG0.

The benefit of this additional aesthetic fine-tuning for the
generator is twofold. Firstly, it enhances the aesthetic quality
of the automatically generated camera movement. Secondly, it
preserves the quality of shots produced by the AACOGAN. This
results in shots that better align with the preferences of a broader
audience, without compromising the utilized lens language.

5) Real-Time Performance: In Table III, we present a de-
tailed comparison of the performance of the AACOGAN model
at various latency levels ranging from 5 to 30 frames. For each
latency level, the table provides data on the frames per second
(FPS) and floating point operations per second (FLOPS) metrics.
We use average Dcorr to represent the quality of the generated
camera position. The data clearly demonstrate an increase in
latency, which effectively allows the model to leverage more
frame data, and improves the predictive capability of the model
for the subsequent camera position. However, this is achieved
at the expense of an increase in computational complexity, as
shown by the higher FLOPS. Thus, it becomes a trade-off be-
tween real-time responsiveness and the quality of camera po-
sition prediction, necessitating careful tuning according to the
specific demands of the gaming environment.

Fig. 12. Comparison of the change curves of the y-axis position parameter of
the camera trajectory generated by different emotional states.

D. Subjective Evaluation

1) Emotional Reinforcement: The lens language also plays
an essential role in expressing the atmosphere and emotions of
characters. The emotion of a character can be analyzed through
the user’s facial expressions [40], speech [41], or body move-
ments [42]. In different scenarios or characters’ emotional states,
the camera movement should reflect the emotions of the char-
acters by varying to a greater or lesser degree.

This metric assesses the influence of a character’s emotional
state on camera trajectory, where stronger emotions should yield
a more significant impact on camera movement. The comparison
of the character’s emotional state’s effect on camera movements
generated for identical interactive actions is depicted in Fig. 12.
The y-axis value, representing emotion, denotes the stability of
the character’s emotional state; a value closer to 1 indicates an
unstable or extremely unstable emotion (such as anger), while a
value closer to 0 signifies a calmer state.

The y-axis in Fig. 12 represents the character’s skeletal joint
position (right y-axis) or the camera position (left y-axis) relative
to the previous time step for each time step. As the character’s
emotional state intensifies, a more pronounced impact on camera
movement is evident. Consequently, the camera movement gen-
erated by AACOGAN more accurately reflects the characters’
actual emotions and creates a superior atmosphere compared to
reference methods. The corresponding video footage example
can be found at https://youtu.be/HfmotyfEWHw.

2) Human Evaluation: It is crucial to acknowledge that the
previously mentioned evaluation methods do not entirely cap-
ture the superiority of AACOGAN’s generated camera shots in
open-world contexts compared to other automatic cinematog-
raphy techniques concerning actual user experience. Conse-
quently, enlisting real users to assess the generated shots is
indispensable. In addition to a general ranking-based human
evaluation, participants will be asked to appraise the shots in
distinct aspects: 1) shot quality (Frames Quality), 2) shot con-
sistency with the actual interaction (Consistence), 3) representa-
tion of characters and objects involved in the interaction (Com-
pleteness), and 4) the enhancement of emotions conveyed by the
characters within the shot (Emotional Enhancement).
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TABLE IV
RESULTS OF THE SUBJECTIVE EVALUATION

As shown in Table IV, the results of the subjective evaluation
indicate that compared to the baseline method, AACOGAN re-
ceived the highest ranking in the sorting task. In comparison to
other methods across various aspects, AACOGAN also received
higher evaluations.

In summary, our experimental outcomes indicate that AACO-
GAN effectively generates camera parameters and produces
shots more akin to those captured by human operators dur-
ing interactive actions. This is demonstrated by comparing
AACOGAN-generated parameters to baseline methods using
metrics such as camera pose similarity, motion similarity, and
character and object coverage. Moreover, aesthetic assessments
and subjective evaluations conducted by human participants cor-
roborate AACOGAN’s superiority in creating visually appeal-
ing and interaction-aligned shots. Consequently, these findings
suggest the potential of the AACOGAN method to enhance the
quality of automatic cinematography in open-world interactive
scenarios.

V. CONCLUSION

The advent of multimedia technology in the entertainment in-
dustry has bestowed upon consumers an unprecedented level of
autonomy in their media consumption experiences. Within vir-
tual open-world environments, automatic cinematography has
emerged as an instrumental factor in delivering immersive ex-
periences, catering to the users’ growing demand for more en-
gaging forms of interaction. In this study, we introduce AACO-
GAN, a technique for automatic cinematography designed for
user-initiated interactions within open-world scenarios, lever-
aging GANs. This model incorporates various elements such
as skeletal animations of interactive actions, positional rela-
tionships between interactive objects and characters, as well as
character emotions, facilitating the effective generation of suit-
able camera movements for a wide array of interactive actions.
Moreover, the integration of aesthetic scores into the generator’s
training process significantly enhances the quality of the shots
generated. The results of our experiments substantiate the effi-
ciency of the AACOGAN approach in producing camera shots
that rival the quality of human-generated shots, demanding min-
imal input, thus leading to a more engaging user experience and
substantially reducing costs.
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