
Report
Rhythmic temporal coordi
nation of neural activity
prevents representational conflict during working
memory
Highlights
d Workingmemory performance is linked to frequency-specific

neural activity

d Different to-be-remembered items are associated with

different beta (25 Hz) phases

d Theta phase seems to coordinate behaviorally relevant beta-

band activity

d Rhythmic temporal coordination helps to prevent

representational conflicts
Abdalaziz et al., 2023, Current Biology 33, 1855–1863
May 8, 2023 ª 2023 Elsevier Inc.
https://doi.org/10.1016/j.cub.2023.03.088
Authors

Miral Abdalaziz, Zach V. Redding,

Ian C. Fiebelkorn

Correspondence
ian_fiebelkorn@urmc.rochester.edu

In brief

Abdalaziz et al. use EEG and working

memory performance to demonstrate

that the relative strength of item

representations alternates as a function

of the oscillatory phase (�25 Hz). These

findings are consistent with the rhythmic

temporal coordination of neural activity

being a general mechanism for

preventing conflict during cognitive

processes.
ll

mailto:ian_fiebelkorn@urmc.rochester.edu
https://doi.org/10.1016/j.cub.2023.03.088
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2023.03.088&domain=pdf


ll
Report

Rhythmic temporal coordination of neural activity
prevents representational conflict
during working memory
Miral Abdalaziz,1,2 Zach V. Redding,1,2 and Ian C. Fiebelkorn1,3,4,*
1Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14627, USA
2These authors contributed equally
3Twitter: @FiebelkornIan
4Lead contact
*Correspondence: ian_fiebelkorn@urmc.rochester.edu

https://doi.org/10.1016/j.cub.2023.03.088
SUMMARY
Selective attention1 is characterized by alternating states associated with either attentional sampling or
attentional shifting, helping to prevent functional conflicts by isolating function-specific neural activity in
time.2–5 We hypothesized that such rhythmic temporal coordination might also help to prevent representa-
tional conflicts during working memory.6 Multiple items can be simultaneously held in working memory,
and these items can be represented by overlapping neural populations.7–9 Traditional theories propose
that the short-term storage of to-be-remembered items occurs through persistent neural activity,10–12 but
when neurons are simultaneously representing multiple items, persistent activity creates a potential for
representational conflicts. In comparison, more recent, ‘‘activity-silent’’ theories of workingmemory propose
that synaptic changes also contribute to short-term storage of to-be-remembered items.13–16 Transient
bursts in neural activity,17 rather than persistent activity, could serve to occasionally refresh these synaptic
changes. Here, we used EEG and response times to test whether rhythmic temporal coordination helps to
isolate neural activity associated with different to-be-remembered items, thereby helping to prevent repre-
sentational conflicts. Consistent with this hypothesis, we report that the relative strength of different item rep-
resentations alternates over time as a function of the frequency-specific phase. Although RTs were linked to
theta (�6 Hz) and beta (�25 Hz) phases during a memory delay, the relative strength of item representations
only alternated as a function of the beta phase. The present findings (1) are consistent with rhythmic temporal
coordination being a general mechanism for preventing functional or representational conflicts during cogni-
tive processes and (2) inform models describing the role of oscillatory dynamics in organizing working
memory.13,18–21
RESULTS AND DISCUSSION

The rhythmic coordination of neural activity can help to isolate

competing functions or information in time.22–27 For example,

previous studies have demonstrated that selective attention is

characterized by rhythmically alternating states and associated

fluctuations in perceptual sensitivity (at �4–6 Hz).3–5,28–37 These

alternating states help to temporally isolate potentially conflict-

ing sensory (i.e., attention-related sampling) and motor (i.e.,

attention-related shifting) functions within the network that di-

rects both attention-related changes in sensory processing

and orienting movements (i.e., the ‘‘attention network’’).3 Here,

we tested whether the rhythmic temporal coordination of neural

activity is a more general mechanism for avoiding conflict during

cognitive processes. Specifically, we tested whether such coor-

dination helps temporally isolate item-specific neural activity

during working memory, which would help to avoid representa-

tional conflicts.
Curr
Working memory is the process through which behaviorally

important information is temporarily stored and internally

sampled.6,38 Traditional theories of working memory have pro-

posed that the short-term storage of a to-be-remembered item

occurs through persistent neural activity,10 where persistent

neural activity is defined as increased spiking activity that spans

an entire memory delay (occurring among neurons representing

the to-be-remembered item). Although there is clear evidence

that some neurons demonstrate such persistent activity during

working memory delays,10–12,39,40 short-term storage through

persistent neural activity becomes potentially problematic

when there ismore than one to-be-remembered item.13 Previous

evidence has demonstrated that different to-be-remembered

items can be simultaneously represented by overlapping neural

populations.7–9,41 Under these conditions, short-term storage

through persistent neural activity could lead to representational

conflicts. Hence, how can overlapping neural populations simul-

taneously represent multiple to-be-remembered items, avoiding
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Figure 1. Behavioral performance during a working memory task

(A) Participants determined whether a probe was a match for either of two previously presented memory items.

(B) We defined ‘‘Item 1’’ trials as those trials when the probe matched the memory item presented on the same side of space as an intervening flash event and

‘‘Item 2’’ trials as those trials when the probe matched the memory item presented on the opposite side of space as an intervening flash event.

(C) Shows mean (n = 22) response times and the standard error of the mean for each condition (i.e., Item 1, Item 2, and Neither), depending on whether the flash

event occurred to the left (LF) or right (RF) of central fixation.

(D)We hypothesized that the relative strength of the representations for Item 1 (black) and Item 2 (red) would alternate in time as a function of the oscillatory phase.

In this schematic, circles represent cells and lines represent synaptic links within overlapping neural populations representing Item 1 (black) and Item 2 (red).
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representational conflicts that might arise from persistent neural

activity?

‘‘Activity-silent’’ theories of working memory propose that the

storage of to-be-remembered items can occur, in part, through

short-term changes in synaptic weights.13–16,42,43 Transient

bursts of neural activity, rather than persistent neural activity,

could serve to refresh these short-term synaptic changes.

When overlapping neural populations are representing multiple

to-be-remembered items, isolated bursts of neural activity—

associated with different to-be-remembered items—could help

to avoid representational conflicts. In support of these ideas,

recent studies have confirmed that working memory delays are

characterized by transient bursts of beta- (20–35 Hz) and

gamma-band (45–100 Hz) activity in local field potentials.15,17,44

Spiking activity associated with these transient bursts in beta-

and gamma-band activity might play a role in refreshing short-

term synaptic changes. It is important to note that models of

working memory that incorporate such short-term synaptic

changes (with transient bursts of neural activity)42,45 and models

of working memory that incorporate persistent neural activity40

are not mutually exclusive. Both mechanisms could be contrib-

uting to the temporary storage of behaviorally important

information.46,47

Here, we used high-density EEG (128 electrodes) and

response times (RTs) to investigate whether rhythmic temporal

coordination—like that previously observed during selective

attention3,4,31,33—helps to organize transient neural activity
1856 Current Biology 33, 1855–1863, May 8, 2023
associated with different to-be-remembered items. Rhythmic

temporal coordination of neural activity would thereby help to

avoid representational conflicts during working memory. Based

on the notion that different item representations are refreshed at

different oscillatory phases (and therefore separated in

time),18,48,49 we specifically predicted that the relative strength

of simultaneously held item representations would alternate

over time as a function of the oscillatory phase (Figure 1D).

Consistent with this prediction, previous theoretical models of

working memory have proposed that serially presented, to-be-

remembered items are multiplexed at different phases of

frequency-specific neural activity.18,48,49 Supporting evidence

for these theoretical models comes from both humans20,21 and

monkeys.19 For example, Bahramisharif et al.20 reported a link be-

tween item-specific, high-frequency band activity (75–120Hz)—a

proxy for population spiking50—and the phase of theta/alpha

(7–13Hz)oscillations. Thespecificphaseassociatedwithchanges

in item-specific, high-frequency band activity was dependent on

when an item occurred within a sequence of to-be-remembered

items. Recent behavioral studies in humans similarly reported

that the internal representations of twoobjects inworkingmemory

are sampled and/or strengthened in alternating time windows,

with this alternation occurring at a theta frequency (�6 Hz).51–53

Although such behavioral findings suggest that the strength of in-

ternal representations fluctuate as a function of theta-band activ-

ity, the temporal binning typically used to measure human behav-

ioral dynamics is too low to detect fluctuations at higher
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frequencies (i.e., >15Hz).31,33,51–53Neurophysiological recordings

in monkeys, which can investigate a much broader range of fre-

quencies, have provided evidence that the strength of item repre-

sentations fluctuates as a function of both lower and higher fre-

quencies (i.e., 3 and 32 Hz).19

Here, we used an experimental task with simultaneously pre-

sented to-be-remembered items (Figure 1A). The Research Sub-

jects Review Board at the University of Rochester approved the

study protocol. On each trial, differently oriented gratings (i.e.,

either horizontal, vertical, or diagonal) were presented 4� from

the central fixation on both the right and the left. Shortly after

the presentation of these two memory items (i.e., to-be-remem-

bered items), a task-irrelevant flash event was presented at the

same location as one of the previously presented items (with

equal probability). Here, we hypothesized that the relative

strength of the item representations (i.e., neural representations

of the to-be-remembered items) would alternate in time as a

function of the oscillatory phase (Figure 1D). Flash events have

previously been used to create consistent sampling patterns

during attention tasks when there are multiple potential target lo-

cations.31 The conceptualization of the flash event for the pre-

sent task was also based on the use of retro cues during working

memory tasks.54 Retro cues have previously been used to boost

the representation of one to-be-remembered item relative to

other to-be-remembered items (during a memory delay). The

flash event in the present task can be thought of as a retro cue

that temporarily boosts the representation of one of the to-be-

remembered items. As both items remain behaviorally relevant

following the flash event (or retro cue), we hypothesized that

the flash event would create a consistent pattern of alternation

across trials, with the item on the same side as the flash event

(i.e., the cued item) having a stronger initial representation than

the item on the opposite side from the flash event (e.g., Item 1,

Item 2, Item 1, Item 2.).55 Following a variable memory delay,

participants (n = 22) reported, as quickly and as accurately as

possible, whether a subsequent probe matched the memory

item presented to (1) the left of fixation (40% of trials), (2) the right

of fixation (40% of trials), or (3) neither of those memory items

(20% of trials). The task therefore required that participants

retain the spatial location and orientation of the two memory

items (i.e., of the two visual gratings). To respond correctly, par-

ticipants needed to sample internal representations of those pre-

viously presented, to-be-remembered items. Thememory probe

was presented at a neutral location, 4� above central fixation. We

defined ‘‘Item 1’’ trials as those trials when the probe matched

the memory item presented on the same side of fixation as the

flash event, and ‘‘Item 2’’ trials as those trials when the probe

matched the memory item presented on the opposite side of fix-

ation from the flash event (Figure 1B).

Participants were able to perform the experimental task with

high accuracy (mean = 85.2%, SE = 2.8). For the remaining an-

alyses, we used RTs on correct trials as the behavioral measure

(Figure 1C). A two-way repeated measures ANOVA revealed a

main effect for the item condition (i.e., Item 1, Item 2, or Neither,

p < 0.001), no main effect for the flash condition (i.e., flash left or

flash right, p = 0.31), and no interaction between the conditions

(p = 0.68). Based on these results, we combined trials when the

flash event occurred on either the right or left of central fixation.

Follow-up t tests revealed that RTs for both the Item 1 (p < 0.001)
and the Item 2 (p < 0.001) conditions were significantly faster

than RTs for Neither condition, whereas RTs were not signifi-

cantly different between the Item 1 and Item 2 conditions (p =

0.21). Previous work using visual search tasks has demonstrated

that RTs are typically longer for ‘‘target-absent’’ trials than for

‘‘target-present’’ trials,56 as more items must be searched, on

average, during target absent trials. Although the memory items

in the present working memory task were not on the screen dur-

ing the response period (Figure 1A), the slower RTs for the

Neither condition likely resulted, at least in part, from having to

compare the memory probe with two non-matching item repre-

sentations.57 On Item 1 and Item 2 trials, the memory probe on

half of the trials could be confirmed as a match after comparing

it with only a single (and internal) item representation.

We next tested whether the behavioral performance was

linked to the phase of frequency-specific neural activity during

the memory delay,29,58,59 first combining all trials for which the

memory probe was a match for either of the two memory items

(i.e., combining the Item 1 and Item 2 conditions). We binned tri-

als based on the oscillatory phase just prior to when the memory

probe was presented and then averaged z-standardized RTs (for

each participant) within overlapping, 90� phase bins (with a step

size of 10�). Figure 2A shows RTs as a function of the phase (i.e.,

a resulting phase-RT function) for a single electrode (i.e., D14, as

labeled based on the BioSemi 128-channel ABC layout) and fre-

quency, averaged across all participants (n = 22). We hypothe-

sized that phase bins associated with peaks (i.e., slower RTs)

and troughs (i.e., faster RTs) in behavioral performance would

be separated by approximately 180�. Based on this hypothesis,

we fit the phase-RT functions with a one-cycle sine wave (Fig-

ure 2A) and used the amplitude of that sine wave to measure

the strength of the relationship between the frequency-specific

oscillatory phase and RTs.29,58,59 Figure 2B shows the amplitude

of these fitted sine waves (i.e., the strength of the phase-RT re-

lationships) for all electrode (from 1 to 128) and frequency com-

binations (from 1 to 55 Hz), with statistically insignificant values

set to zero. Figures S1A and S1B show the same data without

setting statistically insignificant values to zero. Statistical signif-

icance was based on a permutation test (see STAR Methods).

There were clusters of significant phase-RT relationships

(p < 0.05, after correcting for multiple comparisons) in the theta

(3–8 Hz) and beta bands (15–35 Hz), centered at 6 and 25 Hz,

respectively. Figures S1C and S1D more clearly demonstrate

these peaks in the theta and beta bands by averaging phase-

RT relationships across all electrodes (n = 128). Theta- and

beta-band activity have been previously linked to cognitive con-

trol60,61 and the maintenance19,21,61–64 of items held in working

memory. Figure 2C shows scalp topographies for the electrodes

with significant phase-RT relationships at 6 and 25 Hz. Impor-

tantly, we also found consistent phase-RT relationships in the

theta and beta bands when we subsequently split the data into

the Item 1 and Item 2 conditions (Figure 2D). Figure 2E shows

all of the electrode and frequency combinations where we

observed statistically significant phase-RT relationships for

both the Item 1 and the Item 2 conditions, at either p < 0.05 or

p < 0.1 (after corrections for multiple comparisons). The present

results demonstrate that behavioral performance during a work-

ing memory task fluctuates over time as a function of the oscilla-

tory phase within multiple frequency bands. We propose that
Current Biology 33, 1855–1863, May 8, 2023 1857
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Figure 2. Response times fluctuate as a function of theta and beta phases
(A) Illustrates the procedure for measuring the strength of phase-response time (RT) relationships, showing RTs as a function of oscillatory phase (at 6 Hz) for the

electrode with the strongest phase-RT relationship (alternating red/black line). Here, we included all trials when the probe was a match for either of the two

memory items (i.e., combining the Item 1 and Item 2 trials). The shaded region around the line represents the standard error of themean.We used the amplitude of

a fitted, one-cycle sine wave (solid black line) to measure the strength of the phase-RT relationship.

(B and C) (B) Shows the strength of statistically significant (p < 0.05) phase-RT relationships for all of the electrode (1–128) and frequency (3–55 Hz) combinations

(statistically insignificant results were set to zero after corrections for multiple comparisons). There were clusters of significant results in both the theta and the

beta bands, with (C) showing the scalp topographies of electrodes with significant phase-RT relationships within the theta (at 6 Hz) and beta (at 25 Hz) bands.

(B) and (C) use the same color map to represent the strength of phase-RT relationships (i.e., as a z-standardized change in RT).

(D and E) (D) Results were consistent when calculated separately for the Item 1 and Item 2 conditions (statistically insignificant results were set to zero after

corrections for multiple comparisons), with (E) showing overlapping, statistically significant results (in black) clustering in the theta and beta bands at p < 0.05 and

p < 0.1 (after corrections for multiple comparisons).

See also Figures S1 and S2.

ll
Report
observed fluctuations in RTs reflect dynamic changes in the

strength of the underlying item representations.

We then used the item-specific phase-RT relationships to

investigate whether the relative strength of the different item rep-

resentations alternated in time as a function of the oscillatory

phase (Figure 1D). Here, we tested whether the specific phases

associated with better and worse behavioral performance were

different for the Item1and Item2conditions (Figure 3A).Weagain

fit the participant-level phase-RT functions with one-cycle sine

waves, but we now measured the phase of those sine-wave fits

rather than the amplitude. We used a circular Watson-Williams

test65 to determine whether the distributions of participant-level

phases (i.e., the phase of the sine-wave fits) were different be-

tween the Item 1 and Item 2 conditions. We only tested for be-

tween-condition phase differences at the electrode and the fre-

quency combinations where we previously detected significant

phase-RT relationships for both the Item 1 and the Item 2 condi-

tions (Figure 2E). That is, we only made between-condition com-

parisons when both the Item 1 and the Item 2 conditions demon-

strated a relationship between oscillatory phase and behavioral

performance. Figure 3B shows the condition-specific phase dis-

tributions and angular means for a representative electrode and

frequency. Figures 3C and 3D show all of the statistically
1858 Current Biology 33, 1855–1863, May 8, 2023
significant (p < 0.05, after correction for multiple comparisons)

electrode and frequency combinations, as well as the mean dif-

ferences in phase between the Item 1 and Item 2 conditions.

That is, the mean difference in the angular shift of the phase-RT

functions between the Item 1 and Item 2 conditions. The analysis

associated with the results shown in Figure 3C included all of the

electrodes (e.g., 14 electrodes at 25 Hz) with significant phase-

RT relationships at the p < 0.05 level for both the Item 1 and the

Item 2 conditions (Figure 2E), and the analysis associated with

the results shown in Figure 3D included all of the electrodes

(e.g., 33 electrodes at 25 Hz) with significant phase-RT relation-

ships at the p < 0.1 level for both the Item 1 and the Item 2 condi-

tions (Figure 2E). The specific beta phases associatedwith better

orworse behavioral performancewere different for the Item1and

Item 2 conditions. These findings are consistent with the hypoth-

esis that the relative strength of different item representations al-

ternates over time as a function of the oscillatory phase (Fig-

ure 1D). In comparison, we found no difference in the specific

theta phases associated with better or worse behavioral perfor-

mance between the Item 1 and Item 2 conditions (Figure 3),

despite earlier results demonstrating that RTs fluctuate over

time as a function of the theta phase (Figure 2). Siegel et al.19 re-

ported a similar pattern of results in the prefrontal cortex of
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Figure 3. The beta phases associated with

faster and slower response times (RTs) are

different for the Item 1 and Item 2 conditions

(A) Shows RTs as a function of oscillatory phase (at

25 Hz), separately for the Item 1 (black line) and

Item 2 (red line) conditions, for a single represen-

tative electrode. The shaded region around each

line represents the standard error of the mean.

(B) Shows circular histograms, plotting the phase

of fitted one-cycle sine waves (see Figure 2A) for

each participant’s phase-RT functions (n = 22),

separately for Item 1 (in gray) and Item 2 (in light

red). Overlapping measurements between the

Item 1 and Item 2 conditions are represented in

dark red. Participant counts in each phase bin

ranged from 1 to 5. These results are shown for a

single representative electrode, with the angular

mean phases (n = 22) for each condition plotted as

black (Item 1) and red (Item 2) stars.

(C and D) Show all electrode (1–128) and fre-

quency (3–55 Hz) combinations (in color) where

the phases associated with faster and slower RTs

were significantly different between the Item 1 and

Item 2 conditions (p < 0.05 after corrections for

multiple comparisons), including the scalp to-

pographies of electrodes with significant effects in

the beta band (at 25 Hz). (C) and (D) use the same

color map to represent the mean angular differ-

ence in phase between the Item 1 and Item 2

conditions. The analyses shown in (C) included all

electrodes where we previously observed signifi-

cant phase-RT relationships in both the Item 1 and

the Item 2 conditions at the p < 0.05 level (see

Figure 2E), whereas those shown in (D) included all

electrodes where we previously observed signifi-

cant phase-RT relationships in both the Item 1 and

the Item 2 conditions at the p < 0.1 level (see

Figure 2E).

See also Figure S2.
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monkeys,measuring information encodedby spiking activity as a

function of the oscillatory phase (rather than behavioral perfor-

mance as a function of the oscillatory phase). Although informa-

tion coding in spiking activity generally fluctuated as a function of

both theta phase and beta phase, the optimal encoding of

different items only varied as a function of the beta phase. That

is, there was no theta-band difference in the optimal encoding

phase for different to-be-remembered items.

A prominent model of oscillatory dynamics during working

memory has proposed that theta-band activity coordinates

item-specific higher-frequency activity.18,48 According to

this model, each cycle of the theta-dependent, higher-frequency

activity refreshes the representation of a different to-be-
Current
remembered item (see Bahramisharif

et al.20 for supporting data). The number

of cycles of the higher-frequency activity,

nested within theta-band activity, might

therefore reflect the number of to-be-

remembered items. The present findings,

as well as those from Siegel et al.,19

instead indicate that each to-be-remem-

bered item is refreshed within a single cy-
cle of the higher-frequency activity (i.e., within a single cycle of

beta-band activity).

To test whether theta- and beta-band activity might be func-

tionally linked in the present data, we measured whether beta

amplitude varied as a function of the theta phase (i.e., we

measured phase-amplitude coupling66,67). Here, we used the

same approach used to estimate phase-RT relationships. We

calculated the average amplitude (from 15 to 55 Hz) in overlap-

ping theta-phase bins and fit the resulting phase-amplitude func-

tions with one-cycle sine waves to measure the strength of the

relationship (Figure 4A).29 We specifically binned the higher-fre-

quency amplitude using theta phase (at 6 Hz) from the electrode

(i.e., D14) where we previously measured the strongest phase-
Biology 33, 1855–1863, May 8, 2023 1859
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Figure 4. The amplitude of beta-band activity fluctuates as a function of theta phase

(A) Shows beta amplitude as a function of theta phase (at 6 Hz) for a single representative electrode (alternating red/black line), including all trials when the probe

was a match for either of the two memory items (i.e., combining the Item 1 and Item 2 trials). The shaded region around each line represents the standard error of

the mean. We used the amplitude of a fitted, one-cycle sine wave to measure the strength of the phase-amplitude relationship (see Figure 2A).

(B and C) (B) Shows the strength of statistically significant (p < 0.05) phase-amplitude relationships for all of the electrode (1–128) and frequency (3–55 Hz)

combinations. Statistically insignificant results were set to zero after corrections for multiple comparisons. For all phase-amplitude calculations, we used theta

phase from the electrode that had the strongest phase-RT relationship (see Figure 2A). Therewas a cluster of significant phase-amplitude results in the beta band,

with (C) showing the scalp topography of electrodes with significant phase-amplitude relationships within the beta band (at 25 Hz). (B) and (C) use the same color

map to represent the percent change in beta-band amplitude (at 25 Hz) associated with different theta phases (at 6 Hz).

See also Figure S2.
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RT relationship (Figure 2). Figure 4B shows the strength of

phase-amplitude coupling (i.e., the amplitude of the sine-wave

fits) for all of the statistically significant electrode and frequency

combinations (p < 0.05 after corrections for multiple compari-

sons), with significant values clustered in the beta band. Fig-

ure 4C shows the scalp topography of the electrodes with signif-

icant coupling between theta phase (at 6 Hz) and the beta

amplitude (at 25 Hz). These findings demonstrate that the beta

amplitude fluctuates as a function of the theta phase. Such

theta-dependent fluctuations in the beta amplitude are consis-

tent with transient changes in beta-band activity during a work-

ing memory delay, rather than a persistent increase in the beta-

band activity.15,17

Figure 4A shows a representative phase-amplitude function

from a single electrode, with the beta amplitude peaking when

theta phase is at approximately 180�, which is the same theta

phase associated with relatively worse behavioral performance

(Figure 2A). This pattern of results is potentially compatible

with activity-silent theories of working memory.13–16 If theta-

dependent increases in beta-band activity reflect transient neu-

ral activity that refreshes short-term synaptic changes, it would

theoretically be most likely to occur when changes in synaptic

weights are beginning to decay and behavioral performance is

therefore at its worst (i.e., when item representations need to

be refreshed). There are various mechanisms that contribute to

short-term synaptic changes (e.g., calcium dynamics) on

different timescales. Previous models of working memory have

incorporated synaptic changes on the timescale of hundreds

of milliseconds,42,45,46,68,69 which might seem to be a mismatch

for the frequency-specific modulations of behavioral perfor-

mance reported here (Figures 2 and 3). The timescale of synaptic

decay, however, can occur in stages, with a faster initial decay

followed by a period of slower decay.64,65 Moreover, refreshing

events seem likely to happen on a shorter timescale than
1860 Current Biology 33, 1855–1863, May 8, 2023
synaptic decay itself, helping to maintain and stabilize represen-

tations of to-be-remembered items before those representations

fade. If theta-dependent beta-band activity is associated with

neural events that refresh short-term synaptic changes, the min-

imum temporal separation for those refreshing events would be

�166ms (i.e., the duration of a 6-Hz cycle). However, the tempo-

ral separation of these refreshing events could be greater than

166 ms. Although increased beta-band activity is associated

with a specific theta phase (Figure 4), it might not occur during

every theta cycle. When increased beta-band activity does

occur, we propose that it is associated with the sequential reac-

tivation of multiple-item representations (Figure 3). Future work

will need to investigate, for example, the specific cell types asso-

ciated with these increases in beta-band activity.

The scalp topographies of our results are similar to previous

EEG investigations of working memory. Figure S2 shows the

scalp topographies of isolated periodic components70 for the fre-

quencies of interest during the memory delay (i.e., 6 and 25 Hz).

Theta-band activity in the present EEG results is consistent

with frontal midline theta (FMT),62 which is thought to originate

in medial prefrontal and anterior cingulate cortices.60,71 FMT

has been linked, for example, to memory capacity61 and behav-

ioral performance72,73 during working memory tasks. Ratcliffe

et al.61 recently provided evidence that FMT coordinates the

maintenance of the working memory content in the posterior

brain regions,38 and neural synchronization is commonly

observed between the frontal and parietal cortices during work-

ing memory tasks.74–78 Such neural synchronization can occur

within both the theta and the beta bands,29,74–79 consistent with

the behaviorally relevant frequencies observed during the pre-

sent working memory task (Figures 2, 3, and 4).

Theta-band activity within the frontal and parietal cortices also

coordinates rhythmically alternating states associatedwith either

attentional sampling or shifting,28,29,31–34,80 helping to temporally
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isolate sensory and motor functions of the attention network.3

The present results provide evidence that the temporal coordina-

tion of neural activity helps to isolate item-specific neural activity

duringworkingmemory. This is consistent with the rhythmic tem-

poral coordination of neural activity being a more general mech-

anism for preventing conflicts during cognitive processes. Our

findings show that behavioral performance during workingmem-

ory, like that during selective attention,28,29,59 fluctuates as a

function of both theta phase and beta phase. Rhythmic temporal

coordination of competing attentional states, however, seems to

occur within the theta band (but not the beta band), whereas

rhythmic temporal coordination of competing item representa-

tions seems to occur within the beta band (but not the theta

band). Future research will be needed to test whether the behav-

iorally relevant, frequency-specific neural activity associatedwith

selective attention (i.e., external sampling) and working memory

(i.e., internal sampling) share common, frontoparietal neural sour-

ces. That is, whether there is a common clocking mechanism for

organizing external and internal sampling. The theta phase asso-

ciated with relatively worse working memory performance in the

present task, for example,might reflect a theta-rhythmic switch in

bias from internal to external sampling. In comparison, theta-

dependent beta-band activity might reflect a process for main-

taining short-term synaptic changes associated with working

memory. It is still unclear whether and how these processes—

the sampling of internal representations and the maintenance

of internal representations—interact.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DE-

TAILS

d METHOD DETAILS

B Behavioral task and behavioral data

B Data Acquisition and pre-processing

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Measuring phase-behavior and phase-amplitude rela-

tionships

B Comparing phase-RT relationships between item con-

ditions

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

cub.2023.03.088.

ACKNOWLEDGMENTS

This work was supported by grants from the National Science Foundation

(NSF 2120539) and the Searle Scholars Program to I.C.F. We would like to

thank Dr. Edmund Lalor for inviting us to collect data in his laboratory while

our own laboratory space was being renovated.
AUTHOR CONTRIBUTIONS

I.C.F. conceived of the experiment. M.A. and Z.V.R. collected data. I.C.F

analyzed the data. I.C.F wrote the first draft of the manuscript. I.C.F., M.A.,

and Z.V.R. edited the manuscript.
DECLARATION OF INTERESTS

The authors declare no competing interests.
INCLUSION AND DIVERSITY

Weworked to ensure gender balance in the recruitment of human subjects.We

worked to ensure ethnic or other types of diversity in the recruitment of human

subjects. One or more of the authors of this paper self-identifies as a gender

minority in their field of research. We support inclusive, diverse, and equitable

conduct of research.

Received: December 5, 2022

Revised: February 27, 2023

Accepted: March 31, 2023

Published: April 25, 2023

REFERENCES

1. Moore, T., and Zirnsak, M. (2017). Neural mechanisms of selective visual

attention. Annu. Rev. Psychol. 68, 47–72. https://doi.org/10.1146/an-

nurev-psych-122414-033400.

2. Fiebelkorn, I.C., and Kastner, S. (2020). Functional specialization in the

attention network. Annu. Rev. Psychol. 71, 221–249. https://doi.org/10.

1146/annurev-psych-010418-103429.

3. Fiebelkorn, I.C., and Kastner, S. (2019). A rhythmic theory of attention.

Trends Cogn. Sci. 23, 87–101. https://doi.org/10.1016/j.tics.2018.11.009.

4. Benedetto, A., Morrone, M.C., and Tomassini, A. (2020). The common

rhythm of action and perception. J. Cogn. Neurosci. 32, 187–200.

https://doi.org/10.1162/jocn_a_01436.

5. Landau, A.N. (2018). Neuroscience: A mechanism for rhythmic sampling in

vision.Curr.Biol.28, R830–R832.https://doi.org/10.1016/j.cub.2018.05.081.

6. Baddeley, A. (1992). Working memory. Science 255, 556–559. https://doi.

org/10.1126/science.1736359.

7. Panichello, M.F., and Buschman, T.J. (2021). Shared mechanisms under-

lie the control of working memory and attention. Nature 592, 601–605.

https://doi.org/10.1038/s41586-021-03390-w.

8. Warden, M.R., and Miller, E.K. (2007). The representation of multiple ob-

jects in prefrontal neuronal delay activity. Cereb. Cortex 17 (Suppl 1 ),

i41–i50. https://doi.org/10.1093/cercor/bhm070.

9. Rigotti, M., Barak, O., Warden, M.R., Wang, X.J., Daw, N.D., Miller, E.K.,

and Fusi, S. (2013). The importance of mixed selectivity in complex cogni-

tive tasks. Nature 497, 585–590. https://doi.org/10.1038/nature12160.

10. Constantinidis, C., Funahashi, S., Lee, D., Murray, J.D., Qi, X.L., Wang, M.,

andArnsten,A.F.T. (2018). Persistentspikingactivity underliesworkingmem-

ory. J. Neurosci. 38, 7020–7028. https://doi.org/10.1523/JNEUROSCI.2486-

17.2018.

11. Fuster, J.M., and Alexander, G.E. (1971). Neuron activity related to short-

term memory. Science 173, 652–654. https://doi.org/10.1126/science.

173.3997.652.

12. Goldman-Rakic, P.S. (1995). Cellular basis of working memory. Neuron

14, 477–485. https://doi.org/10.1016/0896-6273(95)90304-6.

13. Miller, E.K., Lundqvist, M., and Bastos, A.M. (2018). Working Memory 2.0.

Neuron 100, 463–475. https://doi.org/10.1016/j.neuron.2018.09.023.

14. Kami�nski, J., andRutishauser, U. (2020). Between persistently active and ac-

tivity-silent frameworks: novel vistas on the cellular basis ofworkingmemory.

Ann. NY Acad. Sci. 1464, 64–75. https://doi.org/10.1111/nyas.14213.
Current Biology 33, 1855–1863, May 8, 2023 1861

https://doi.org/10.1016/j.cub.2023.03.088
https://doi.org/10.1016/j.cub.2023.03.088
https://doi.org/10.1146/annurev-psych-122414-033400
https://doi.org/10.1146/annurev-psych-122414-033400
https://doi.org/10.1146/annurev-psych-010418-103429
https://doi.org/10.1146/annurev-psych-010418-103429
https://doi.org/10.1016/j.tics.2018.11.009
https://doi.org/10.1162/jocn_a_01436
https://doi.org/10.1016/j.cub.2018.05.081
https://doi.org/10.1126/science.1736359
https://doi.org/10.1126/science.1736359
https://doi.org/10.1038/s41586-021-03390-w
https://doi.org/10.1093/cercor/bhm070
https://doi.org/10.1038/nature12160
https://doi.org/10.1523/JNEUROSCI.2486-17.2018
https://doi.org/10.1523/JNEUROSCI.2486-17.2018
https://doi.org/10.1126/science.173.3997.652
https://doi.org/10.1126/science.173.3997.652
https://doi.org/10.1016/0896-6273(95)90304-6
https://doi.org/10.1016/j.neuron.2018.09.023
https://doi.org/10.1111/nyas.14213


ll
Report
15. Lundqvist, M., Herman, P., andMiller, E.K. (2018). Working memory: delay

activity, yes! Persistent activity? Maybe not. J. Neurosci. 38, 7013–7019.

https://doi.org/10.1523/JNEUROSCI.2485-17.2018.

16. Stokes, M.G. (2015). ‘Activity-silent’ working memory in prefrontal cortex:

a dynamic coding framework. Trends Cogn. Sci. 19, 394–405. https://doi.

org/10.1016/j.tics.2015.05.004.

17. Lundqvist, M., Rose, J., Herman, P., Brincat, S.L., Buschman, T.J., and

Miller, E.K. (2016). Gamma and beta bursts underlie working memory.

Neuron 90, 152–164. https://doi.org/10.1016/j.neuron.2016.02.028.

18. Lisman, J.E., and Idiart, M.A. (1995). Storage of 7 +/- 2 short-term mem-

ories in oscillatory subcycles. Science 267, 1512–1515.

19. Siegel, M., Warden, M.R., and Miller, E.K. (2009). Phase-dependent

neuronal coding of objects in short-term memory. Proc. Natl. Acad. Sci.

USA 106, 21341–21346. https://doi.org/10.1073/pnas.0908193106.

20. Bahramisharif, A., Jensen, O., Jacobs, J., and Lisman, J. (2018). Serial

representation of items during working memory maintenance at letter-se-

lective cortical sites. PLoS Biol. 16, e2003805. https://doi.org/10.1371/

journal.pbio.2003805.

21. Kami�nski, J., Brzezicka, A., Mamelak, A.N., and Rutishauser, U. (2020).

Combined phase-rate coding by persistently active neurons as a mecha-

nism for maintaining multiple items in working memory in humans. Neuron

106, 256-264.e3. https://doi.org/10.1016/j.neuron.2020.01.032.

22. Caruso, V.C., Mohl, J.T., Glynn, C., Lee, J., Willett, S.M., Zaman, A.,

Ebihara, A.F., Estrada, R., Freiwald, W.A., Tokdar, S.T., et al. (2018).

Single neurons may encode simultaneous stimuli by switching between

activity patterns. Nat. Commun. 9, 2715. https://doi.org/10.1038/

s41467-018-05121-8.

23. Voloh, B., Oemisch, M., and Womelsdorf, T. (2019). Phase of firing coding

of learning variables across prefrontal cortex, anterior cingulate cortex and

striatum during feature learning. Nat. Commun. 11, 4669.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Twenty-seven individuals (12 females; 18–42 years old) with normal or corrected-to-normal vision and no history of neurological dis-

ease participated in the experiment. The Research Subjects Review Board at the University of Rochester approved the study pro-

tocol. Written informed consent was obtained from all participants prior to data collection, in line with the Declaration of Helsinki. Five

participants were excluded from the analyses because of excessive blinks and/or eye movements (i.e., on greater than 20 percent of

trials).

METHOD DETAILS

Behavioral task and behavioral data
Figure 1 summarizes our experimental design. The experiment was administered in a light- and sound-attenuated chamber. Presen-

tation software (Neurobehavioral Systems, Albany, CA, USA) was used to control stimuli and monitor responses. The visual stimuli

were presented on a 24-inch LCD monitor (ASUS Predator), operating at a refresh rate of 100 Hz. Participants began each trial by

clicking the left mouse button. At the beginning of each trial a crosshair appeared at the center of the screen. Participants were in-

structed to maintain fixation throughout the duration of a trial and to try to blink between trials (i.e., withhold blinks during trials). After

500 ms, two memory items were presented (duration = 500 ms), one to the left and one to the right of central fixation (i.e., 4 degrees

from central fixation). The two memory items, each with a diameter of 4 degrees, were differently oriented (i.e., horizontal, vertical, or

diagonal) visual gratings (2.25 cycles per degree). A task-irrelevant flash event (duration = 100 ms) then occurred 300 ms after the

presentation of the memory items, presented at the location of either of the previously presented memory items (with equal proba-

bility). Here, we hypothesized that the relative strength of the item representations (i.e., neural representations of the to-be-remem-

bered items) would alternate in time as a function of oscillatory phase (Figure 1D). We included the flash event to create a consistent
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pattern of alternation across trials (e.g., Item 1, Item 2, Item 1.).31,82,83 Following the flash event there was a variable memory delay,

from 300–1600 ms. This variable memory delay was sampled from a uniform distribution. At the end of each trial, a memory probe

(duration = 100 ms) was presented 4 degrees above central fixation. Participants reported, as quickly and as accurately as possible,

whether the probematched thememory item presented to (1) the left of fixation (40%of trials), (2) the right of fixation (40%of trials), or

(3) neither of those memory items (20% of trials) by pressing 1, 2, or 3 on a keyboard. The participants were instructed to simulta-

neously place their fingers on the 1, 2, and 3 keys. An auditory ‘‘ding’’ was presented when participants responded correctly. We

defined ‘Item 1’ trials as those trials when the probe matched the memory item presented on the same side of fixation as the flash

event, and ‘Item 2’ trials as those trials when the probe matched the memory item presented on the opposite side of fixation from the

flash event (Figure 1B).

We tested whether response times (RTs) for correct trials differed depending on the Item condition (i.e., Item 1, Item 2, or Neither)

and the Flash conditions (Right Flash or Left Flash) using a two-way repeated measures ANOVA and follow-up t tests. Based on the

results of these statistical tests, we combined trials when the flash occurred on either the left or right of central fixation.

Data Acquisition and pre-processing
Electroencephalographic (EEG) data were acquired with a 128-channel ActiveTwo BioSemi system (Amsterdam, the Netherlands),

sampling at a rate of 512 Hz. For all analyses, we used a combination of customizedMATLAB functions (TheMathWorks, Natick, MA,

USA) and the Fieldtrip toolbox (Donders Institute for Brain, Cognition, and Behaviour, Radbound University Nijmegen, the

Netherlands).81 The EEG data were first zero-padded (2.5 seconds) and epoched (from 2.6 seconds before the memory probe to

0.8 seconds after the memory probe), then linearly detrended and demeaned. A discrete Fourier Transform (DFT) filter was used

to remove 60-Hz line noise, and the data were re-referenced to the average of all 128 electrodes (i.e., we used an average reference).

The data were visually inspected for each subject to determine a voltage threshold for removing all trials with artifacts associated with

eye movements or blinks, using electrodes positioned near the eyes. For trials without evidence of eye movements or blinks, a

threshold of ± 100 mV was used to identify trials with other noise transients.58 The data at individual electrodes were interpolated,

using the nearest neighbor spline,84 if fewer than 10% of electrodes were affected. Subjects who had artifacts on more than 20%

of trials were excluded from all analyses (n = 5). The remaining subjects (n = 22) had an average of 8%of trials removed during artifact

rejection, leaving an average of 880 trials per subject.

The present analyses were focused on frequency-specific phase during the memory delay (i.e., just prior to the memory probe). To

measure phase on each trial, frequency-specific Morlet wavelets were used, with a varying number of cycles, from 2 cycles between

3 and 8 Hz, and increasing logarithmically from 2–5 cycles between 9 and 55 Hz. Each wavelet has a temporal extent based on the

frequency and number of cycles. For example, a 4-Hz wavelet with 2 cycles extends for 500 ms. To limit the overlap between phase

measurements and the evoked potential that occurred following the flash event, we only included trials where the memory delay was

greater than 750 ms. For analyses measuring the relationship between frequency-specific phase and response times, the wavelet

was fit for each frequency such that the last time point included in the phase measurement was the time point just prior to presen-

tation of the memory probe. For the analysis of phase-amplitude coupling, wavelets for higher frequencies (i.e., 15–55 Hz) were

centered at the same time point as thewavelet at 6 Hz (i.e., -167ms). Pre-probe phase and amplitudemeasurements were calculated

based on the complex output of the wavelet convolution (i.e., taking either the angle or the absolute value).

QUANTIFICATION AND STATISTICAL ANALYSIS

Measuring phase-behavior and phase-amplitude relationships
Here, we testedwhether behavioral performance during aworkingmemory task fluctuates as a function of oscillatory phase. Tomea-

sure whether RTs were related to pre-probe phase (i.e., phase during the memory delay), RTs were first normalized for each partic-

ipant by subtracting the mean of the RTs and dividing by the standard deviation of the RTs (i.e., we calculated z-standardized RTs).

Here, trials with an RT less than 200ms and trials with an RT greater than four standard deviations from themeanwere excluded from

further analysis.85 For each condition (e.g., Item 1 and Item 2 combined, and Item 1 and Item 2 separately), RTswere binned based on

frequency-specific pre-probe phase measurements (see the previous section for how we measured pre-probe phase), and average

RTs were calculated in overlapping phase bins. The phase bins had a width of 90 degrees (e.g., 0–90 degrees) and were shifted for-

ward in 10-degree steps (e.g., 10–100 degrees, then 20–110 degrees, etc.). This procedurewas repeated to generate phase-RT func-

tions, spanning all phases, for each frequency and each electrode. To capture consistent phase-RT relationships, these functions

were averaged across participants (n = 22). Here, we predicted that the averaged phase-RT functions would have a signature shape,

with a peak in RTs separated from a trough in RTs by approximately 180 degrees.29,58 Based on this hypothesis, phase-RT functions

were reduced to a single value for each frequency and electrode, using the following procedure: a discrete Fourier transform (DFT)

was applied to each function (i.e., at each frequency and electrode) and the second component, representing a one-cycle sine wave

(matching the hypothesized shape of the phase-detection relationship), was kept. The amplitude of this one-cycle, sinusoidal

component—determined both by how closely the function approximated a one-cycle sine wave and by the effect size—was used

to measure the strength of the phase-RT relationship29,58 (Figure 2A).

A nearly identical procedure was used to test for a relationship between theta phase (at 6 Hz) and higher-frequency amplitude (i.e.,

phase-amplitude coupling) during the memory delay (i.e., just prior to the memory probe). Here, phase-amplitude functions (rather

than phase-RT functions) were generated by binning higher-frequency amplitude (from 15–55 Hz) by theta phase, then averaging
Current Biology 33, 1855–1863.e1–e3, May 8, 2023 e2
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higher-frequency amplitude within the overlapping theta-phase bins.29 Higher-frequency amplitudes were exclusively binned based

on pre-probe theta phase from the electrode where we previously measured the strongest phase-RT relationship (Figure 2).

For both the phase-behavior and the phase-amplitude analyses, statistical significance was determined by iteratively shuffling

(5000 times) the trial-level phase measurements (breaking the relationship between either phase and behavior or phase and ampli-

tude). For each iteration, the analysis stepswere then repeated, using shuffled data to calculate the strength of the phase-RT relation-

ships or the phase-amplitude relationships. The resulting reference distributions (at each frequency and/or electrode) were

compared to the magnitude of the observed data. For all analyses, before determining statistical significance, we controlled for

the false discovery rate (accounting for multiple comparisons).86

Comparing phase-RT relationships between item conditions
Herewe predicted that the relative strength of the representations of different items should alternate in time as a function of oscillatory

phase (Figure 1D). We specifically tested whether the specific phases (from 3–55 Hz) associated with faster and slower RTs were

different between the Item 1 and Item 2 conditions. Here, only electrodes where the phase-RT relationships exceeded a significance

threshold of either p < 0.05 or p < 0.1 for both conditions (Figure 2E) were included in the analysis. As described above, the discrete

Fourier transform (DFT) was applied to each phase-RT function (see previous section) and the second component, representing a

one-cycle sine wave, was kept. Here, the phase of the one-cycle sine waves (i.e., the angle of the second component), for each

participant, were used (rather than the amplitudes). A circular Watson-Williams test65 determined whether the phases (n = 22) of

the one-cycle sine waveswere statistically different for the Item 1 and Item 2 conditions (Figure 3B). That is, whether faster and slower

RTs for the Item 1 condition were associated with different phases than faster and slower RTs for the Item 2 condition.
e3 Current Biology 33, 1855–1863.e1–e3, May 8, 2023
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