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ABSTRACT 

  

Objectives: We set out to develop a machine learning model capable of distinguishing 

patients presenting with ischemic stroke from a healthy cohort of subjects. The model relies 

on a 3-minute resting electroencephalogram (EEG) recording from which features can be 

computed. 

 

Materials and Methods: Using a large-scale, retrospective database of EEG recordings and 

matching clinical reports, we were able to construct a dataset of 1,385 healthy subjects and 

374 stroke patients. With subjects often producing more than one recording per session, the 

final dataset consisted of 2,401 EEG recordings (63% healthy, 37% stroke). 

 

Results: Using a proprietary set of features, our model yielded an AUC of 0.95 and 

sensitivity and specificity of 93% and 86%, respectively. Allowing for multiple recordings 

per subject in the training set boosted sensitivity by 7%, attributable to a more balanced 

dataset. 

  

Conclusions: Our work demonstrates strong potential for the use of EEG in conjunction with 

machine learning methods to distinguish stroke patients from healthy subjects. Our approach 

provides a solution that is not only timely (3-minutes recording time or less) but also highly 

precise and accurate. Further validation aims to evaluate model performance in the 

prehospital setting. 

  

  

 

 



 

 

1. INTRODUCTION  

Background 

Within the United States alone, a person dies of stroke every 3.6 minutes (1) and remains the 

leading cause of long-term disability worldwide. Stroke can be either ischemic or hemorrhagic. 

Ischemic stroke is due to the loss of blood supply to an area of the brain, whereas hemorrhagic 

stroke is the result of bleeding into the brain by the rupture of a blood vessel. A large majority 

of strokes are ischemic in nature and of all acute ischemic strokes (AIS), 46% are due to large 

vessel occlusion (LVO), which involves obstruction of large, proximal cerebral arteries (2). As 

stroke progresses without relief from treatment, there is significant time-dependent loss of brain 

tissue, affecting neurological recovery and functional outcome. Endovascular therapy (EVT) 

using mechanical thrombectomy, with or without intravenous thrombolysis (IVT) remains the 

leading treatment for LVO and has proven superior to standard medical care (3,4,5). However, 

not all hospitals in the United States are capable of providing EVT. A recent study found that 

only 37% of all stroke-centers were EVT capable and less than one-fifth of the US population 

had access to an EVT-capable hospital within 15 minutes (6). Thus, in the prehospital setting, 

early and accurate triage of patients eligible for such reperfusion therapies would be facilitated 

by improved methods for rapidly identifying patients with LVO appropriate for EVT. 

  

To date, prehospital triage is conducted using available stroke scales. The American Heart 

Association/American Stroke Association commissioned a review committee to systematically 

review evidence for the accuracy of stroke prediction instruments. These assessments test 

between 3-7 items, all of which involve qualitative and subjective assessment on the part of 

EMS personnel. This subjectivity erodes the accuracy and precision of these assessments which 

have a reported sensitivity between 38-67%, with no existing clinical scale achieving >80% 



 

 

sensitivity or specificity simultaneously (5). Thus, there remains a need for novel, objective 

technology that increases sensitivity of stroke diagnosis using the patient's own brain signals. 

  

Electroencephalography (EEG) has long been known to have high sensitivity for immediate 

detection of brain ischemia (7,8,9). EEG has the potential to detect acute changes in brain 

function following onset of ischemia, even before cell death, providing tremendous benefit for 

early prehospital stroke diagnosis. Its application is commonly used for monitoring during 

carotid endarterectomy surgery. However, prehospital detection of stroke has largely been 

limited by EEG hardware accessibility and has yet been granted FDA-approval as a diagnostic 

tool, compared to radiological evaluations such as X-ray or CT. On the other hand, recent 

advances in EEG acquisition hardware, lead technology, and analysis software suggest a larger 

diagnostic role may be possible for patients with suspected acute stroke. In a recent study of 

100 patients with suspected acute stroke in the emergency department (ED), EEG measures 

with clinical data (such as RACE scores, sex, age and time from last known well) increased 

sensitivity of stroke detection to 87.8% (9). Another study of 24 patients with suspected stroke 

in the emergency department found acceptable discriminative power for several frequency 

band power ratios between patients with and without an acute ischemic stroke with a large 

infarct volume (10). Similarly, preliminary results from the ELECTRA-STROKE (EEG 

Controlled Triage in the Ambulance for Acute Ischemic Stroke) study have established strong 

predictive power for theta/alpha ratio with an AUC of 0.83 (11). Despite the promising results, 

no large-scale study yet to be able to define a single EEG feature as a strong standalone 

diagnostic biomarker for stroke triage. Machine learning methods may provide a solution, 

offering a means of quantifying stroke likelihood given multiple EEG biomarkers. 

  



 

 

Machine learning (ML) has recently gained momentum in the field of neurotechnology, 

especially in automated EEG analysis and clinical diagnostics. Its application has primarily 

been limited to predicting epileptic seizures or controlling neurostimulation parameters for 

stopping seizure activity (12). Recent work has attempted to expand this scope to stroke 

detection (8,9,11). However, due to the limited availability of clinical EEG databases, 

validation of these models becomes extremely difficult, impeding their adoption for use in a 

clinical setting. To this end, our work is built upon one of the largest public repositories of 

clinical EEG data available – Temple University Hospital EEG Data Corpus (TUH EEG; 13). 

This rich repository enabled us to train and validate our machine learning models using 

recordings from more than 1700 subjects, composed of both healthy and ischemic stroke 

patients. 

  

2. METHODS 

Data Description 

The TUH EEG database represents one of the largest publicly accessible collections of 

electroencephalogram (EEG) recordings, hosting a substantial archive of 26,846 clinical EEG 

samples acquired from 14,987 patients at Temple University Hospital during the years 2002 to 

2017. For our study, we meticulously selected patients devoid of neurological abnormalities 

and those with confirmed ischemic stroke. The identification of healthy subjects was achieved 

through a previously established TUH EEG segmentation, involving the manual review of 

clinical reports and EEG recordings (14). Furthermore, we applied a keyword-based approach 

to flag stroke cases, denoting an occlusion of the Middle Cerebral Artery (MCA), Internal 

Carotid Artery (ICA), Posterior Cerebral Artery (PCA) or Anterior Cerebral Artery (ACA). 

The matching clinical reports then underwent manual review to confirm ischemic stroke. The 

final dataset was made up of 1,385 healthy subjects from the initial curation and 374 stroke 



 

 

patients from keyword search and manual confirmation. An additional 642 EEG samples were 

included (21% healthy, 79% stroke) due to the contribution of multiple EEG recordings by 

certain subjects. Together, a comprehensive dataset of 2,401 recordings (63% healthy, 37% 

stroke) was constructed and used for subsequent training and validation (Table 1).  

  

In addition to collecting the clinical history from each report, demographic information was 

also extracted. For the cohort of stroke patients, mean age was 63.8 years with a standard 

deviation of 15.2 years (Table 2). Regarding the distribution by gender, males constituted 

42% of the dataset, females 51%, with 7% missing gender description. Demographic 

information could not be obtained for the curated healthy cohort as clinical reports were not 

provided. However, the original authors of the TUH EEG segmentation, from which the 

healthy cohort was constructed, published demographic information from a subset of cases. 

The authors report a mean age of 46.6 years (standard deviation of 14.7 years), with a range 

of ages between 20 and 90. The distribution by gender was reportedly balanced between male 

and female cases, though the authors did not provide any quantitative details on the gender 

breakdown (14) 

 

Preprocessing 

All EEG recordings underwent resampling at a frequency of 100Hz, followed by the 

application of a bandpass filter within the 1 to 40 Hz range. 

  

Feature Engineering 

Quantitative EEG features were computed from a 3-minute window, where the start point 

defaulted to the first minute mark, reducing any potential bias from sensor calibration or 

excessive movement at the beginning of recording. Recordings lasting fewer than 2 minutes 



 

 

were excluded from analysis, allowing for a minimum duration of 60 seconds to be used for 

feature engineering. The computed quantitative features encompassed recently published 

biomarkers, including spectral power ratios, relative powers by frequency band, sample 

entropy, and the brain symmetry index (5,6,7). A complete list of features and descriptions are 

provided under Table 3.  

 

Frequency domain analysis remains a commonly applied technique for the evaluation of EEG. 

In patients suffering from ischemia, prior studies demonstrate a common pattern of slowing, 

characterized by an attenuation of faster frequencies (alpha and beta) and an increase in slower 

frequency (delta and theta) powers (15). To validate this biomarker for use in model 

development, we compared the mean powers of each frequency band (delta, theta, alpha, beta) 

between our healthy cohort and stroke subjects. The power spectrum was computed for each 

of the selected 19 sensors, arranged according to the International 10-20 system, and plotted 

on a topographical map for spatial analysis (Figure 1). Additionally, a Mann-Whitney U Test 

was performed to identify regions with the greatest degree of difference in power between the 

stroke and healthy groups (Figure 2). Within the slower frequencies, the difference in power 

was much more globally distributed, implying that transition to slower frequencies from brain 

ischemia is not always specific to one area. On the contrary, the differences in alpha and beta 

rhythms were more localized, with the greatest dissimilarity appearing within the occipital 

region, which could be attributed to a disruption of the posterior dominant rhythm.  

 

Various time window (1-minute, 30-second, and 10-second) for feature extraction were 

experimented with, and the resulting esimates were compared against the 3-minute window 

benchmark. The intra-class correlation (ICC) was calculated to gauge the consistency of 

features derived from different time window sizes. This metric measures the statistical 



 

 

similarity of intra-cluster estimates. In this case, it provides a strong metric for comparing 

similarity of feature estimates at different time windows against the 3-minute benchmark. 

Results are displayed in Figure 3.  

  

As expected, reducing the time window dampened the reliability of feature estimates. The 

spectral ratios appeared most sensitive to reductions in window size. Upon further analysis, 

this was the result of one feature, specifically, the ratio between slower and faster frequency 

differences. Due to how this feature is derived, slight variations in the power spectrum can give 

rise to significant outliers. Therefore, any subtle change to the size of the time window can 

produce inconsistent estimates for this feature. As a result, the default 3-minute window was 

selected. In the future, reductions in the window size may be tested, but alterations to the feature 

set may be required to enhance robustness to slight deviations in the power spectrum, 

particularly amongst the spectral ratio features.  

 

Model Development 

We employed a series of gradient boosted trees (XGBoost) to distinguish between EEG 

recordings of patients with ischemic stroke and healthy subjects. Each model was trained on a 

distinct subset of features, using a grid search to identify the optimal number of trees and 

maximum depth. Once trained, a stacked ensemble consolidated the diverse set of XGBoost 

models into a single classifier. 

 

Data for training and testing was divided according to the conventional 80/20 split, with 20% 

of the data reserved for subsequent validation. While patients may have provided more than 

one recording in many instances, matching of subject IDs was performed to confirm zero 

overlap between training and validation sets. 



 

 

 

To mitigate the risk of overfitting due to varying numbers of recordings per subject, two 

independent ensembles were trained – the first trained on strictly one recording per patient, the 

other learning from all available recordings.  

 

3. RESULTS 

Validation of the stacked ensemble was performed using 3-fold cross validation. To ensure an 

80/20 split for both datasets with varying numbers of samples allowed per subject, it was not 

feasible to construct two identical validation sets. The validation set constructed using only one 

recording per subject had many fewer stroke cases to ensure an adequate training set size. The 

resulting training and validation set sizes for each partitioning are detailed in Table 4.  

  

Our results demonstrate remarkable sensitivity and specificity in the differentiation between 

stroke patients and healthy subjects using EEG (Table 5, 6; Figure 4). Most notably, the 

ensemble trained on all possible recordings surpassed a sensitivity and specificity of >85%, a 

significant benchmark not yet reached by any clinical stroke scale (5). Despite a significant 

class imbalance, the single subject model was still able to reach a sensitivity and specificity of 

>85%, simultaneously. Additionally, both models were able to attain an AUC above 0.90, a 

challenging benchmark to achieve with the Temple dataset (16). 

 

The individual models that comprised the top-performing stacked ensemble (duplicate subject 

recordings permitted) were evaluated to gain a better understanding of their ability to 

differentiate healthy subjects from stroke patients. The results in Table 6 indicate strong 

predictive power for the spectral and entropy-related features. Notably, the asymmetry-related 



 

 

features displayed the weakest performance, with AUCs of 0.81 and 0.78. We suppose this 

could be the result of a decreased feature set.  

 

We found that allowing multiple recordings per subject significantly enhanced model 

performance, particularly in terms of sensitivity. This improvement likely stems from a 

reduction in the existing class imbalance, achieved by including a greater number of stroke 

samples. Although initial concerns were raised about potential overfitting with multiple 

recordings from the same subjects, it was apparent that it only enhanced validation 

performance. Normally, multiple samples per a subject would contribute to an overfit model. 

However, due to the non-stationarity of EEG, small changes in environmental conditions and 

emotional state between recordings can introduce subtle perturbations to the signal, even if the 

patient’s underlying pathology remained the same. These minor variations in signal increased 

the diversity of the dataset, thereby improving the robustness of the model. 

  

4. DISCUSSION 

Employment of EEG for stroke identification has long been of discussion. However, due to 

subtle differences amongst devices and recording conditions, this potential has yet to be 

realized. This paper demonstrates the potential of EEG in the differentiation of stroke and 

healthy subjects, thereby serving as an effective tool to triage and identify reperfusion-eligible 

patients. We present a solution trained and validated on one of the largest known clinical EEG 

repositories, with results demonstrating improved sensitivity and specificity compared to 

preexisting stroke scales. 

 

EEG provides a direct measurement of the cerebral functional status and reveals the underlying 

pathophysiological processes (17). After an ischemic stroke event that causes cerebral blood 



 

 

flow reduction, the metabolic and electrical activities of cortical neurons are altered (18, 19). 

These alterations can be observed through resting-state EEG oscillatory activity over the 

impacted area, demonstrating an attenuation of faster (alpha and beta) and augmentation of 

slower (delta and theta) frequency bands (20, 21). From our analysis, we show that the 

attenuation of alpha and beta rhythms is more localized, with the greatest dissimilarity 

appearing within the occipital region, where there is maximum alpha power. This attenuation 

of alpha and beta waves at the site of the occipital region could be attributable to a disruption 

of the posterior dominant rhythm. 

 

Our results highlight the promise of literature-reported biomarkers for the identification of 

stroke from a healthy population. However, due to the non-stationarity of EEG, these features 

are subject to high variance across time. Therefore, careful attention must be made to ensure 

the time window from which these features are derived is not riddled with artifact. Future work 

may consider a moving average approach to smooth the feature value across the EEG 

recording, thereby mitigating volatility from sudden artifact. 

 

The methods outlined in this paper introduce numerous advantages over previously published 

work, including a validation cohort of more than 350 subjects (78% healthy, 22% stroke) and 

a sensitivity and specificity greater than 85%. In future work, additional data is necessary to 

continue the validation of EEG in the context of stroke triage. 

  

5. WORK WE INTEND TO DO: 

While the work presented in this paper shows great promise for the detection of ischemic 

stroke in a variety of environmental conditions, further validation ought to be performed 

before the integration of these models into a clinical setting. To this point, additional work 



 

 

should be performed to address any potential bias arising during training. In doing so, the 

model becomes more robust to the breadth of cases expected in the clinical setting. 

  

Future directions should include evaluation of EEG measures that can discriminate between 

old and new infarcts, ischemic and hemorrhagic stroke, and stroke-mimicking conditions. 

Additional source localization methodology could also be applied to understand the regional 

differences in EEG measures. This can be achieved using digitized EEG leads and MRI brain 

scans of stroke and healthy subjects.  

  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 1. Number of EEG Recordings by Patient Group 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Demographics of Stroke Cohort 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Descriptions of Features  

 

Feature Set Description 

Spectral Ratios 
Ratio of the power between slower frequencies (delta and alpha) and 

faster frequency bands (alpha, beta)  

Band Power Difference Simple difference in power amongst frequency bands  

Relative Band Powers Average power for each frequency band normalized by sum of all powers 

Brain Symmetry Index (BSI) 
Quantifies interhemispheric spectral asymmetry; Computed as the mean 

difference in absolute power between a sensor and its contralateral pair 

Inter-Hemispheric Amplitude 

Ratio (IHAR) 

Quantifies interhemispheric amplitude asymmetry; Revised as the 

difference in mean amplitude envelopes between a sensor and its 

contralateral pair 

Sample Entropy Quantifies degree of regularity or predictability for a time series 

Hurst Exponent 
Quantifies long term memory of time series by analyzing tendency of a 

signal to regress to its mean, or conversely, trend in a given direction 

 

 

 

 

 

 Healthy Stroke 

Subjects (#) 1,385 374 

Number of Recordings 1,521 880 

Average Number of 

Recordings / Subject 
1.18 2.35 

Demographic Stroke 

Age  

Mean (Std. Deviation) 63.8 (15.2) 

Sex   

Male  158 (42%) 

Female  192 (51%) 

Not Specified 24 (7%) 



 

 

 

Table 4. Training & Validation Breakdown 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Summary of performances by model  

 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Model Performance by Feature Subset  

 

 

 

 

 
Single Recording 

Model 

All Recordings Per 

Subject Permitted 

Cohort Healthy Stroke Healthy Stroke 

Training 1,112 295 1,218 698 

Validation 273 79 303 182 

Total 1,385 374 1,521 880 

Model 
Sensitivity  

(95% CI) 

Specificity  

(95% CI) 
ROC AUC 

Single Subject 

Recording 

0.86 

(0.78, 0.94) 

0.86 

(0.82, 0.90) 
0.91 

All Subject 

Recordings 

Permitted 

0.93 

(0.97, 0.89) 

0.86 

(0.82, 0.90) 
0.95 

Model 
Number of 

Features 
Sensitivity Specificity AUC 

PSD Feature Set 

 Spectral Ratios  

 Band Power Difference 

 Relative Band Powers 

 

42 

31 

80 

 

0.91 

0.83 

0.85 

 

0.82 

0.77 

0.88 

 

0.92 

0.90 

0.93 

 Average: - 0.86 0.82 0.93 

Asymmetry Feature Set 

 Brain Symmetry Index 

 Amplitude Ratio (IHAR) 

 

4 

8 

 

0.95 

0.77 

 

0.40 

0.64 

 

0.81 

0.78 

 Average: - 0.86 0.52 0.80 

Entropy & Hurst Exponent 28 0.85 0.82 0.89 

Stacked Ensemble (All Features) 193 0.93 0.86 0.95 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

Figure 1: Topographical Plot of Frequency Band Power 

 

 

 

 

 

 

 

 

 

Figure 2: Topographical Display of Mann-Whitney U-Test Statistic 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Intra-Class Correlation by Feature Subset 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Model Performances by AUC 
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