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ABSTRACT

Objectives: We set out to develop a machine learning model capable of distinguishing
patients presenting with ischemic stroke from a healthy cohort of subjects. The model relies
on a 3-minute resting electroencephalogram (EEG) recording from which features can be

computed.

Materials and Methods: Using a large-scale, retrospective database of EEG recordings and
matching clinical reports, we were able to construct a dataset of 1,385 healthy subjects and
374 stroke patients. With subjects often producing more than one recording per session, the

final dataset consisted of 2,401 EEG recordings (63% healthy, 37% stroke).

Results: Using a proprietary set of features, our model yielded an AUC of 0.95 and
sensitivity and specificity of 93% and 86%, respectively. Allowing for multiple recordings
per subject in the training set boosted sensitivity by 7%, attributable to a more balanced

dataset.

Conclusions: Our work demonstrates strong potential for the use of EEG in conjunction with
machine learning methods to distinguish stroke patients from healthy subjects. Our approach
provides a solution that is not only timely (3-minutes recording time or less) but also highly
precise and accurate. Further validation aims to evaluate model performance in the

prehospital setting.



1. INTRODUCTION

Background

Within the United States alone, a person dies of stroke every 3.6 minutes (1) and remains the
leading cause of long-term disability worldwide. Stroke can be either ischemic or hemorrhagic.
Ischemic stroke is due to the loss of blood supply to an area of the brain, whereas hemorrhagic
stroke is the result of bleeding into the brain by the rupture of a blood vessel. A large majority
of strokes are ischemic in nature and of all acute ischemic strokes (AIS), 46% are due to large
vessel occlusion (LVO), which involves obstruction of large, proximal cerebral arteries (2). As
stroke progresses without relief from treatment, there is significant time-dependent loss of brain
tissue, affecting neurological recovery and functional outcome. Endovascular therapy (EVT)
using mechanical thrombectomy, with or without intravenous thrombolysis (IVT) remains the
leading treatment for LVO and has proven superior to standard medical care (3,4,5). However,
not all hospitals in the United States are capable of providing EVT. A recent study found that
only 37% of all stroke-centers were EVT capable and less than one-fifth of the US population
had access to an EVT-capable hospital within 15 minutes (6). Thus, in the prehospital setting,
early and accurate triage of patients eligible for such reperfusion therapies would be facilitated

by improved methods for rapidly identifying patients with LVO appropriate for EVT.

To date, prehospital triage is conducted using available stroke scales. The American Heart
Association/American Stroke Association commissioned a review committee to systematically
review evidence for the accuracy of stroke prediction instruments. These assessments test
between 3-7 items, all of which involve qualitative and subjective assessment on the part of
EMS personnel. This subjectivity erodes the accuracy and precision of these assessments which

have a reported sensitivity between 38-67%, with no existing clinical scale achieving >80%



sensitivity or specificity simultaneously (5). Thus, there remains a need for novel, objective

technology that increases sensitivity of stroke diagnosis using the patient's own brain signals.

Electroencephalography (EEG) has long been known to have high sensitivity for immediate
detection of brain ischemia (7,8,9). EEG has the potential to detect acute changes in brain
function following onset of ischemia, even before cell death, providing tremendous benefit for
early prehospital stroke diagnosis. Its application is commonly used for monitoring during
carotid endarterectomy surgery. However, prehospital detection of stroke has largely been
limited by EEG hardware accessibility and has yet been granted FDA-approval as a diagnostic
tool, compared to radiological evaluations such as X-ray or CT. On the other hand, recent
advances in EEG acquisition hardware, lead technology, and analysis software suggest a larger
diagnostic role may be possible for patients with suspected acute stroke. In a recent study of
100 patients with suspected acute stroke in the emergency department (ED), EEG measures
with clinical data (such as RACE scores, sex, age and time from last known well) increased
sensitivity of stroke detection to 87.8% (9). Another study of 24 patients with suspected stroke
in the emergency department found acceptable discriminative power for several frequency
band power ratios between patients with and without an acute ischemic stroke with a large
infarct volume (10). Similarly, preliminary results from the ELECTRA-STROKE (EEG
Controlled Triage in the Ambulance for Acute Ischemic Stroke) study have established strong
predictive power for theta/alpha ratio with an AUC of 0.83 (11). Despite the promising results,
no large-scale study yet to be able to define a single EEG feature as a strong standalone
diagnostic biomarker for stroke triage. Machine learning methods may provide a solution,

offering a means of quantifying stroke likelihood given multiple EEG biomarkers.



Machine learning (ML) has recently gained momentum in the field of neurotechnology,
especially in automated EEG analysis and clinical diagnostics. Its application has primarily
been limited to predicting epileptic seizures or controlling neurostimulation parameters for
stopping seizure activity (12). Recent work has attempted to expand this scope to stroke
detection (8,9,11). However, due to the limited availability of clinical EEG databases,
validation of these models becomes extremely difficult, impeding their adoption for use in a
clinical setting. To this end, our work is built upon one of the largest public repositories of
clinical EEG data available — Temple University Hospital EEG Data Corpus (TUH EEG; 13).
This rich repository enabled us to train and validate our machine learning models using
recordings from more than 1700 subjects, composed of both healthy and ischemic stroke

patients.

2. METHODS

Data Description

The TUH EEG database represents one of the largest publicly accessible collections of
electroencephalogram (EEG) recordings, hosting a substantial archive of 26,846 clinical EEG
samples acquired from 14,987 patients at Temple University Hospital during the years 2002 to
2017. For our study, we meticulously selected patients devoid of neurological abnormalities
and those with confirmed ischemic stroke. The identification of healthy subjects was achieved
through a previously established TUH EEG segmentation, involving the manual review of
clinical reports and EEG recordings (14). Furthermore, we applied a keyword-based approach
to flag stroke cases, denoting an occlusion of the Middle Cerebral Artery (MCA), Internal
Carotid Artery (ICA), Posterior Cerebral Artery (PCA) or Anterior Cerebral Artery (ACA).
The matching clinical reports then underwent manual review to confirm ischemic stroke. The

final dataset was made up of 1,385 healthy subjects from the initial curation and 374 stroke



patients from keyword search and manual confirmation. An additional 642 EEG samples were
included (21% healthy, 79% stroke) due to the contribution of multiple EEG recordings by
certain subjects. Together, a comprehensive dataset of 2,401 recordings (63% healthy, 37%

stroke) was constructed and used for subsequent training and validation (Table 1).

In addition to collecting the clinical history from each report, demographic information was
also extracted. For the cohort of stroke patients, mean age was 63.8 years with a standard
deviation of 15.2 years (Table 2). Regarding the distribution by gender, males constituted
42% of the dataset, females 51%, with 7% missing gender description. Demographic
information could not be obtained for the curated healthy cohort as clinical reports were not
provided. However, the original authors of the TUH EEG segmentation, from which the
healthy cohort was constructed, published demographic information from a subset of cases.
The authors report a mean age of 46.6 years (standard deviation of 14.7 years), with a range
of ages between 20 and 90. The distribution by gender was reportedly balanced between male
and female cases, though the authors did not provide any quantitative details on the gender

breakdown (14)

Preprocessing
All EEG recordings underwent resampling at a frequency of 100Hz, followed by the

application of a bandpass filter within the 1 to 40 Hz range.

Feature Engineering
Quantitative EEG features were computed from a 3-minute window, where the start point
defaulted to the first minute mark, reducing any potential bias from sensor calibration or

excessive movement at the beginning of recording. Recordings lasting fewer than 2 minutes



were excluded from analysis, allowing for a minimum duration of 60 seconds to be used for
feature engineering. The computed quantitative features encompassed recently published
biomarkers, including spectral power ratios, relative powers by frequency band, sample
entropy, and the brain symmetry index (5,6,7). A complete list of features and descriptions are

provided under Table 3.

Frequency domain analysis remains a commonly applied technique for the evaluation of EEG.
In patients suffering from ischemia, prior studies demonstrate a common pattern of slowing,
characterized by an attenuation of faster frequencies (alpha and beta) and an increase in slower
frequency (delta and theta) powers (15). To validate this biomarker for use in model
development, we compared the mean powers of each frequency band (delta, theta, alpha, beta)
between our healthy cohort and stroke subjects. The power spectrum was computed for each
of the selected 19 sensors, arranged according to the International 10-20 system, and plotted
on a topographical map for spatial analysis (Figure 1). Additionally, a Mann-Whitney U Test
was performed to identify regions with the greatest degree of difference in power between the
stroke and healthy groups (Figure 2). Within the slower frequencies, the difference in power
was much more globally distributed, implying that transition to slower frequencies from brain
ischemia is not always specific to one area. On the contrary, the differences in alpha and beta
rhythms were more localized, with the greatest dissimilarity appearing within the occipital

region, which could be attributed to a disruption of the posterior dominant rhythm.

Various time window (1-minute, 30-second, and 10-second) for feature extraction were
experimented with, and the resulting esimates were compared against the 3-minute window
benchmark. The intra-class correlation (ICC) was calculated to gauge the consistency of

features derived from different time window sizes. This metric measures the statistical



similarity of intra-cluster estimates. In this case, it provides a strong metric for comparing
similarity of feature estimates at different time windows against the 3-minute benchmark.

Results are displayed in Figure 3.

As expected, reducing the time window dampened the reliability of feature estimates. The
spectral ratios appeared most sensitive to reductions in window size. Upon further analysis,
this was the result of one feature, specifically, the ratio between slower and faster frequency
differences. Due to how this feature is derived, slight variations in the power spectrum can give
rise to significant outliers. Therefore, any subtle change to the size of the time window can
produce inconsistent estimates for this feature. As a result, the default 3-minute window was
selected. In the future, reductions in the window size may be tested, but alterations to the feature
set may be required to enhance robustness to slight deviations in the power spectrum,

particularly amongst the spectral ratio features.

Model Development

We employed a series of gradient boosted trees (XGBoost) to distinguish between EEG
recordings of patients with ischemic stroke and healthy subjects. Each model was trained on a
distinct subset of features, using a grid search to identify the optimal number of trees and
maximum depth. Once trained, a stacked ensemble consolidated the diverse set of XGBoost

models into a single classifier.

Data for training and testing was divided according to the conventional 80/20 split, with 20%
of the data reserved for subsequent validation. While patients may have provided more than
one recording in many instances, matching of subject IDs was performed to confirm zero

overlap between training and validation sets.



To mitigate the risk of overfitting due to varying numbers of recordings per subject, two
independent ensembles were trained — the first trained on strictly one recording per patient, the

other learning from all available recordings.

3. RESULTS

Validation of the stacked ensemble was performed using 3-fold cross validation. To ensure an
80/20 split for both datasets with varying numbers of samples allowed per subject, it was not
feasible to construct two identical validation sets. The validation set constructed using only one
recording per subject had many fewer stroke cases to ensure an adequate training set size. The

resulting training and validation set sizes for each partitioning are detailed in Table 4.

Our results demonstrate remarkable sensitivity and specificity in the differentiation between
stroke patients and healthy subjects using EEG (Table 5, 6; Figure 4). Most notably, the
ensemble trained on all possible recordings surpassed a sensitivity and specificity of >85%, a
significant benchmark not yet reached by any clinical stroke scale (5). Despite a significant
class imbalance, the single subject model was still able to reach a sensitivity and specificity of
>85%, simultaneously. Additionally, both models were able to attain an AUC above 0.90, a

challenging benchmark to achieve with the Temple dataset (16).

The individual models that comprised the top-performing stacked ensemble (duplicate subject
recordings permitted) were evaluated to gain a better understanding of their ability to
differentiate healthy subjects from stroke patients. The results in Table 6 indicate strong

predictive power for the spectral and entropy-related features. Notably, the asymmetry-related



features displayed the weakest performance, with AUCs of 0.81 and 0.78. We suppose this

could be the result of a decreased feature set.

We found that allowing multiple recordings per subject significantly enhanced model
performance, particularly in terms of sensitivity. This improvement likely stems from a
reduction in the existing class imbalance, achieved by including a greater number of stroke
samples. Although initial concerns were raised about potential overfitting with multiple
recordings from the same subjects, it was apparent that it only enhanced validation
performance. Normally, multiple samples per a subject would contribute to an overfit model.
However, due to the non-stationarity of EEG, small changes in environmental conditions and
emotional state between recordings can introduce subtle perturbations to the signal, even if the
patient’s underlying pathology remained the same. These minor variations in signal increased

the diversity of the dataset, thereby improving the robustness of the model.

4. DISCUSSION

Employment of EEG for stroke identification has long been of discussion. However, due to
subtle differences amongst devices and recording conditions, this potential has yet to be
realized. This paper demonstrates the potential of EEG in the differentiation of stroke and
healthy subjects, thereby serving as an effective tool to triage and identify reperfusion-eligible
patients. We present a solution trained and validated on one of the largest known clinical EEG
repositories, with results demonstrating improved sensitivity and specificity compared to

preexisting stroke scales.

EEG provides a direct measurement of the cerebral functional status and reveals the underlying

pathophysiological processes (17). After an ischemic stroke event that causes cerebral blood



flow reduction, the metabolic and electrical activities of cortical neurons are altered (18, 19).
These alterations can be observed through resting-state EEG oscillatory activity over the
impacted area, demonstrating an attenuation of faster (alpha and beta) and augmentation of
slower (delta and theta) frequency bands (20, 21). From our analysis, we show that the
attenuation of alpha and beta rhythms is more localized, with the greatest dissimilarity
appearing within the occipital region, where there is maximum alpha power. This attenuation
of alpha and beta waves at the site of the occipital region could be attributable to a disruption

of the posterior dominant rhythm.

Our results highlight the promise of literature-reported biomarkers for the identification of
stroke from a healthy population. However, due to the non-stationarity of EEG, these features
are subject to high variance across time. Therefore, careful attention must be made to ensure
the time window from which these features are derived is not riddled with artifact. Future work
may consider a moving average approach to smooth the feature value across the EEG

recording, thereby mitigating volatility from sudden artifact.

The methods outlined in this paper introduce numerous advantages over previously published
work, including a validation cohort of more than 350 subjects (78% healthy, 22% stroke) and
a sensitivity and specificity greater than 85%. In future work, additional data is necessary to

continue the validation of EEG in the context of stroke triage.

5. WORK WE INTEND TO DO:
While the work presented in this paper shows great promise for the detection of ischemic
stroke in a variety of environmental conditions, further validation ought to be performed

before the integration of these models into a clinical setting. To this point, additional work



should be performed to address any potential bias arising during training. In doing so, the

model becomes more robust to the breadth of cases expected in the clinical setting.

Future directions should include evaluation of EEG measures that can discriminate between
old and new infarcts, ischemic and hemorrhagic stroke, and stroke-mimicking conditions.
Additional source localization methodology could also be applied to understand the regional
differences in EEG measures. This can be achieved using digitized EEG leads and MRI brain

scans of stroke and healthy subjects.



Table 1. Number of EEG Recordings by Patient Group

Subjects (#)

Number of Recordings

Average Number of
Recordings / Subject

Healthy Stroke
1,385 374
1,521 880

1.18 2.35

Table 2. Demographics of Stroke Cohort

Demographic Stroke
Age
Mean (Std. Deviation) 63.8 (15.2)

Sex

Male
Female
Not Specified

158 (42%)
192 (51%)
24 (7%)

Table 3. Descriptions of Features

Feature Set

Description

Spectral Ratios

Ratio of the power between slower frequencies (delta and alpha) and
faster frequency bands (alpha, beta)

Band Power Difference

Simple difference in power amongst frequency bands

Relative Band Powers

Average power for each frequency band normalized by sum of all powers

Brain Symmetry Index (BSI)

Quantifies interhemispheric spectral asymmetry; Computed as the mean
difference in absolute power between a sensor and its contralateral pair

Inter-Hemispheric Amplitude
Ratio (IHAR)

Quantifies interhemispheric amplitude asymmetry; Revised as the
difference in mean amplitude envelopes between a sensor and its
contralateral pair

Sample Entropy

Quantifies degree of regularity or predictability for a time series

Hurst Exponent

Quantifies long term memory of time series by analyzing tendency of a
signal to regress to its mean, or conversely, trend in a given direction



Table 4. Training & Validation Breakdown

Single Recording All Recordings Per
Model Subject Permitted
Cohort Healthy | Stroke | Healthy Stroke
Training 1,112 295 1,218 698
Validation 273 79 303 182
Total 1,385 374 1,521 880
Table S. Summary of performances by model
Sensitivity Specificity
Model (95% CI) (95% CI) ROCAUC
Single Subject 0.86 0.86 091
Recording (0.78, 0.94) (0.82, 0.90) ’
Recordings LOE it 0.5
Permitted (0.97, 0.89) (0.82, 0.90)
Table 6. Model Performance by Feature Subset
Number of e AL
Model Features Sensitivity Specificity AUC
PSD Feature Set
Spectral Ratios 42 0.91 0.82 0.92
Band Power Difference 31 0.83 0.77 0.90
Relative Band Powers 80 0.85 0.88 0.93
Average: - 0.86 0.82 0.93
Asymmetry Feature Set
Brain Symmetry Index 4 0.95 0.40 0.81
Amplitude Ratio (IHAR) 8 0.77 0.64 0.78
Average: - 0.86 0.52 0.80
Entropy & Hurst Exponent 28 0.85 0.82 0.89
Stacked Ensemble (All Features) 193 0.93 0.86 0.95
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