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ABSTRACT: In the drug discovery paradigm, the evaluation of absorption, distribution, metabolism, and excretion (ADME) and
toxicity properties of new chemical entities is one of the most critical issues, which is a time-consuming process, immensely
expensive, and poses formidable challenges in pharmaceutical R&D. In recent years, emerging technologies like artificial intelligence
(AI), big data, and cloud technologies have garnered great attention to predict the ADME and toxicity of molecules. Currently, the
blend of quantum computation and machine learning has attracted considerable attention in almost every field ranging from
chemistry to biomedicine and several engineering disciplines as well. Quantum computers have the potential to bring advances in
high-throughput experimental techniques and in screening billions of molecules by reducing development costs and time associated
with the drug discovery process. Motivated by the efficiency of quantum kernel methods, we proposed a quantum machine learning
(QML) framework consisting of a classical support vector classifier algorithm with a kernel-based quantum classifier. To
demonstrate the feasibility of the proposed QML framework, the simplified molecular input line entry system (SMILES) notation-
based string kernel, combined with a quantum support vector classifier, is used for the evaluation of chemical/drug ADME-Tox
properties. The proposed quantum machine learning framework is validated and assessed via large-scale simulations. Based on our
results from numerical simulations, the quantum model achieved the best performance as compared to classical counterparts in
terms of the area under the curve of the receiver operating characteristic curve (AUC ROC; 0.80—0.95) for predicting outcomes on
ADME-Tox data sets for small molecules, with a different number of features. The deployment of the proposed framework in the
pharmaceutical industry would be extremely valuable in making the best decisions possible.

Where M>> N

I. INTRODUCTION

In drug development, accurately predicting the absorption,

potential for toxicity, poses a significant task for researchers and
toxicologists.* Toxicology is the study that focuses on the

distribution, metabolism, and excretion (ADME) properties of
chemical compounds is challenging due to complex physio-
logical mechanisms. Characterization of ADME properties of a
drugin the body is indeed an essential prerequisite for evaluating
drug efficacy and safety."” In fact, unfavorable ADME properties
lead to 40% of drug failures overall, which is a significant factor
contributing to the failure of candidate molecules.” In the
pharmaceutical industry, the early prediction of ADME
properties has gained significant interest with an objective of
improving the success rate of compounds reaching further in the
discovery and development stages. Every year, a vast number of
chemical compounds produced globally, combined with the
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adverse effects (i.e., death or injury) that chemical or physical
agents can have on living organisms. Unfortunately, unfavorable
ADME-Tox properties are one of the leading causes of drug

withdrawals in the preclinical or clinical trials.” To address these
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Figure 1. An overview of the quantum machine learning framework for predicting ADME and toxicity properties. (1) ADME-Tox data sets and their
molecular structures and SMILES notations. (2) Feature processing and feature dimension reduction using PCA. (3) Quantum classifier for predicting
ADME-Tox properties on quantum simulator and hardware. (d) Classification metrics.

challenges, advances in computational modeling techniques,
improved data integration and sharing, and the development of
alternative testing models can be of great help.®”

In recent years, the realm of quantum computing has held
significant potential to solve complex computational problems
more efficiently, which are beyond classical boundaries.’
Researchers and scientists are actively working toward unlocking
the full potential of quantum computing and exploring its
practical applications.'’ Currently, the blend of quantum
computing and machine learning is a rapidly evolving field,
and there have been several notable advances in several domains
ranging from healthcare to finance to chemistry."' ="

The collaboration between academic institutions, research
communities, and pharmaceutical industries has been making
significant contributions to drug discovery by leveraging the
power of quantum computing with machine learning
techniques,'” such as quantum kernel methods (i.e., quantum
support vector classifier (QSVC)),'® quantum generative
models (i.e, quantum generative adversarial networks),'”"®
matrix product-state-based quantum classifiers,”> quantum-
enhanced optimization (ie., quantum approximate optimization
algorithm (QAOA), variational quantum eigensolver (VQE) 9,
and physicochemical applications.”” It has been observed that
quantum kernel methods can efficiently produce complex
patterns in terms of quantum circuit training speed and accuracy
of the classifier. However, the application of QML algorithms to
the drug discovery pipeline is still in its early stages, and its
practical applications are limited by the size and computational
power of today’s quantum computers.

While quantum computers with machine learning hold great
promise, for drug discovery, there are several challenges and
complications to predicting ADME-Tox properties such as
training data availability (i.e., collecting ADME-Tox data sets
with sufficient diversity can be difficult due to experimental
constraints), quantum data representation (i.e, an effective
method is required to represent the database of molecules into a

quantum format), and scaling and generalization (i.e., scaling of
quantum algorithms to process larger data sets can become a
significant challenge).

I.A. Motivation. The ADME-Tox properties depend on
multiple factors and involve complex processes that often are
interconnected. Typically, chemists predict these properties
using diverse machine learning models, such as linear regression
models, regression trees, neural networks, or support vector
machines. Quantum machine learning has the potential to
accelerate the drug discovery process, enable more efficient
identification of novel drug candidates, and improve molecule
design. Motivated by the exponential advantage of the quantum
support vector classifier over classical algorithms and its
robustness to noise, we proposed a quantum machine learning
(QML) framework employing a QSVC to predict ADME-Tox
properties of chemical compounds in drug discovery, as shown
in Figure 1.

The quantum classifier (quantum support vector classifier
(Qsve)?h) using n-fold cross-validation is learning molecular
properties from string-based chemical representations such as
SMILES. To demonstrate the feasibility of the proposed QML
framework, we performed extensive experiments on bench-
marking data sets of ADME (ie, HIA (human intestinal
absorption),”* CYP2D6 Substrate (dominantly expressed in the
liver),”® Tox properties (DILI (drug-induced liver injury”®), and
Carcinogens (promotes the formation of cancer).”” Based on
our results from numerical IBMQ_simulations and IBMQ_
hardware, we demonstrate that the quantum classifier is capable
of learning to identify important ADME-Tox properties and has
a significantly enhanced performance. The proposed framework
can be applied to any SMILES strings of chemical compounds
against a desired target (i.e., active or inactive, classification of
substrates and nonsubstrates). Moreover, the proposed frame-
work can be demonstrated in federated settings for collaborative
drug discovery across the pharmaceutical industry.”
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The remainder of this article is organized as follows: Section II
is related work. Section III presents the problem formulation,
methodology, and description of benchmarking chemical data
sets used in the study. Moreover, the SVC and QSVC are
described in section IILB. Section IV presents the experimental
results from the IBM simulator with and without noise and a
discussion of the findings and outcomes. Finally, the concluding
remarks are reported in section V.

Il. PRIOR WORK

Today’s variational quantum algorithms (VQE or QAOA) are
designed to be implemented on the current generation of
quantum systems known as noisy intermediate-scale quantum
(NISQ) devices.”” Sen et al.”® tackled the optimization
problems of variational algorithms via calculating Hessians on
quantum computers efficiently for the landscape of varitional
classifiers. In practice, there have been a handful of research
works exploring the applications of quantum machine learning
in drug discovery. In 2021, Batra et al.'® illustrated the QML
applications in drug discovery by comparing the performance of
QSVC, with classical and hybrid approaches after compressing
SARS-CoV-2 data. It has been demonstrated that quantum
computers have the potential to handle “very large” dru
discovery data sets with thousands of molecules. Suzuki et al.”
predicted the toxic level of 221 phenols with a hybrid quantum—
classical approach and outperformed the classical linear
regression algorithm. Later, Liu et al.”' incorporated hybrid
quantum generative adversarial networks (QGANS) to learn the
complex patterns in molecules, quantum convolutional neural
networks (QCNNs) for classification of protein packets, and
quantum variational autoencoders (QVAE) to generate small
molecules. Bhatia and Zheng’® modeled several chemical
reactions using theoretical quantum computational models.

Another hybrid quantum algorithm with a restricted
Boltzmann machine was used to calculate the electronic ground
state energy of molecules.’’ Sajjan et al.'* presented a brief
review of well-known quantum machine learning algorithms for
various physicochemical applications. Recently, Mensa et al.**
investigated the performance of the classical algorithm with
quantum kernel estimation for ligand-based virtual screening
(LB-VS) on ADRB2 and COVID-19 data sets. Moreover, the
performance of the quantum algorithm is tested on an IBM
quantum processor and claimed that it can outperform the best
classical variants.

lll. METHODOLOGY

We designed a quantum machine learning framework for
predicting the ADME-Tox properties of chemical compounds in
drug discovery. The classical data are used to predict properties
with the quantum support vector classifier (QSVC) algorithm
and compared its performance against best known classical
algorithms.

lll.LA. ADME-Tox Databases. To explore the diversity and
complexity of ADME-Tox properties, we used four chemical
compound data sets, i.e,, HIA (Human Intestinal Absorption),
CYP2D6 Substrate, DILI (Drug Induced Liver Injury), and
Carcinogens to predict features accurately given a drug
candidate’s structural information. All data sets are collected
from the Therapeutic Data Commons (TDC),” providing
several data sets for AI/ML tasks spread across therapeutic
modalities (small molecules, macromolecules, cell and gene

therapies) for efficacious medicine development and enhanced
patient safety throughout the lifecycle of a medicine.

e The HIA data set consists of information about the
absorption of drugs in the human gastrointestinal tract. This
data set is commonly used in drug discovery and development to
assess the potential of oral absorption. It is an important
roadblock in the formulation of new drug candidates. 578
druglike molecules with their SMILES string are used to
differentiate the badly absorbed chemical compounds from
those that are well absorbed.

e The CYP2D6 substrate data set contains information on
664 drugs and their interaction with the CYP2D6 enzyme,
which results in the odemethylation of dextromethorphan in the
human liver. It is a crucial enzyme responsible for catalyzing the
metabolism of various drugs and xenobiotics in the human body.
Given a SMILES string of drugs, the task is to predict whether a
drug is a substrate to an enzyme or nonsubstrate.

® The DILI data set consists of the FDA’s 475 approved drugs
with their potential for causing drug-induced liver injury (DILI)
in humans (1) or no-DILI (0) concern. It is a major safety
concern in drug development and can lead potentially to
impacting drug efficacy and patient safety. It contains
information about the chemical structures of various drugs,
and hepatotoxicity data associated with liver injury. Given a
chemical structure and SMILES string, the objective is to predict
whether a drug can cause liver injury or not.

e The Carcinogens (CARC) data set contains information on
chemical compounds that can be classified as carcinogenic, i.e.,
drugs that have the potential to cause cancer. It remains a
challenging problem in drug development due to limited
available data. The data set of 275 drugs with their SMILES
strings is used to identify carcinogenic or noncarcinogenic
chemical compounds.

lI.B. SVC and QSVC. Support vector classifier (SVC) is a
well-known classical machine learning algorithm, also called the
“kernel” method, used to perform classification and regression
tasks. Suppose N training data points (x;) and associated labels y,
€ { — 1, 1} are given, which are spattered in D dimensions,
where 1 <i < N. The objective is to find a hyperplane that helps
us to separate our space into classes by maximum margin. In
SVC, it computes the inner product between pairs of data points
(xjx) €R. In the case where the data points cannot be

separable linearly, the input data points are transformed to high-
dimensional feature space (¢) via a mapping function and a
hyperplane determined with a maximum margin. The technique
“kernel trick” in SVC enables handling of nonlinear data points,
which relies on the inner product between pairs of mapping
kernel functions such that K(x; x) = @(x;) @(x;). Thus, the
optimization objective function of SVC with the kernel trick is
given as
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subject to Y~ cy; = 0 and 0 < ¢; < 1/2N4, where A controls the
hard margin classifier. Although, various kernel functions exist
such as linear, polynomial, Gaussian (RBF), sigmoid, etc. to
solve different problems.
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The kernel-based learning methods have been successfully
applied in problems dealing with highly dimensional input
spaces.

The quantum support vector classifier (QSVC) is an
extension of the classical support vector classifier (SVC) that
incorporates a quantum feature space for enhanced computa-
tional power. The quantum feature space |(p(x,-)(g0(xj)| is a high-
dimensional complex-valued Hilbert space, which allows for the
exploitation of quantum computing capabilities. An architecture
of QSVC is shown in Figure 2. Here, a quantum kernel function

Figure 2. A generalized quantum circuit architecture of the quantum
support vector classifier. It consists of the encoding circuit, followed by
processing (feature map embedding and inverse of it) and measure-
ment at the end.

is employed to map the data into a quantum feature space
represented as

K(xi) xj) = I (p(x1)>| (p(xj)lz (2)

where @(x;) denotes that the first step is to encode classical
points x € R" into quantum data using an n-qubit parametrized
quantum circuit (PQC)lp(x)) = U(x)I0"), where U is a unitary
operation. We used the ZZFeaturemap with a linear
entanglement layer (depth = 2). Although, we can vary the
depth of the feature map circuit to introduce more entanglement
and repeat (XI) the encoding circuit. The number of qubits
depends on the number of features outlined in our data set. The
quantum kernel is estimated by evolving a reference state 10)" as

K(x;, xj) = |<0”|UT(xi)U(xi)|0">|2 3)

The quantum circuit with linear entanglement for eight-
dimensional classical input features is given in Figure 3, where H
denotes the Hadamard gate to create superposition, and P(6) is
a phase gate. A unitary operation (U) is applied to quantum
registers initialized in the 10) state, and then the inverse
operation U'(x) is applied. Finally, a measurement operator is
applied, which estimates the quantity of interest (i.e., the target
variable).

lll.C. Feeding Molecular Descriptors via Quantum
Encoding. Our QML framework is associated with the open-
source software suite “RDKit” to extract the standard molecular
teatures in SMILES to handle molecular structures in a machine-
processable format. It is used to generate RDKit fingerprints of
molecules with a default size of 2048 bits and a path length of
seven bonds. Due to the limitations of current quantum
hardware, it is impractical to process or manipulate classical
bit strings of such large sizes directly on quantum computers. To
handle this, we used a feature reduction method, “principal
component analysis (PCA),” to compress thousands of
molecular descriptors, which is the most popular dimension
reduction method and widely used in drug discovery. In
experiments, we reduced RDKit fingerprints from 2048 features
to 2, 4, 8, and 16 to retain most of the information. Due to the
low number of qubits available on current gate-based quantum
hardware, reducing the dimension of the data is a must. For a fair
comparison, we compared the QSVC and classical SVC learning
with fewer feature representations.

After generating RDKit fingerprints and reducing the
dimension, each classical data feature is normalized and used
as angles in the parametrized quantum circuit. Finally, the
classical feature vectors are encoded into quantum states via a
ZZFeaturemap parametrized circuit, and the quantum kernel is
evaluated.

IV. RESULTS AND DISCUSSIONS

Before we move on to the discussion of the experiment, it is also
important to provide a brief overview of the parameters our

Table 1. List of Parameters Used in the Experiments

Quantum Support Vector Classifier (QSVC)

entanglement linear
depth (rep) 2
embedding scheme qasm_simulator (qasm)
statevector_simulator (SV)
qasm_noise (p_error= 0.05)

quantum hardware 16-qubit IBMQ_ Guadalupe

cost (c) default (1.0)
Support Vector Classifier (SVC)
kernel linear
cost (c) default (1.0)
Adaboost Algorithm (ADB)
n_estimators S0
learning_rate 0.01
Logistic Regression (LR)

penalty default = “I2”
solver Ibfgs

3
do —H — 200

91 —H _n:([q_ _Z.Ox(ar—z[g]]t(ﬂ—:[l])-

2 . -Z.On(ir—z[f])-(n—z[ﬂ)_

9 2= -m.(,,_xé]).(«_z[sn-

94 —H 5o —2.0.(n_z[§1)-(«_z[41)‘

95 —H — 05 '240-(,:_:[5).("_:[51)'

96 M —0m 20+ (- ) (e i)

97 M —orm 20 (r— afth = (r—2l)"

Figure 3. A quantum circuit of eight-dimensional ZZFeaturemap. The qubits are linearly entangled with each other, and the depth is kept as 1. The

total number of qubits depends on the number of classical data points.
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Table 2. Classification Performance Metrics of QSVC on Considering 16 Features on the qgasm Noise Model

ADME data set: HIA

ADME data set: CYP2D6

metrics fold1 fold2 fold3 fold4 fold1 fold2 fold3 fold4
accuracy 0.863 0.881 0.881 0.863 0.706 0.664 0.746 0.735
precision 0.703 0.750 0.774 0.777 0.842 0.730 0.847 0.752
recall 0.918 0.785 0.889 0.792 0.694 0.657 0.729 0.800
F-score 0.796 0.767 0.827 0.78S 0.761 0.691 0.784 0.775
toxicity data set: DILI toxicity data set: CARC
metrics fold1 fold2 fold3 fold4 fold1 fold2 fold3 fold4
accuracy 0.757 0.841 0.766 0.849 0.821 0.785 0.845 0.747
precision 0.796 0.862 0.775 0.872 0.907 0.895 0.900 0.844
recall 0.741 0.814 0.789 0.842 0.830 0.767 0.849 0.730
F-score 0.727 0.818 0.782 0.817 0.867 0.826 0.873 0.783

model uses to evaluate and simulate the ADME and Tox
properties of chemical compounds in drug discovery. In order to
compare the aforementioned classification efforts, we computed
the performance of the QSVC model by calculating the area
under the curve of the receiver operating characteristic (AUC
ROC) curve, classification accuracy (ACC), precision, recall,
and F-score performance metrics. The receiver operating
characteristic (ROC) curve is indeed a widely used evaluation
metric in various fields, including the medical, chemistry, and
physics field. A higher area under the curve indicates better
model performance, which signifies a higher discrimination
capacity of the classifier. To verify the effectiveness and
robustness of the quantum model fit in this study, we plotted
the AUC ROC of QSVC across different quantum simulators
and numbers of features of different ADME-Tox data sets.

To showcase the potential advantage of a quantum machine
learning algorithm, the proposed framework conducted experi-
ments in two phases: In the initial phase, the experiments were
executed in a noiseless quantum environment with the python-
based Qiskit’s state vector simulator (SV), and gasm simulator
(QA), which means that the simulations assumed perfect
conditions without any form of noise or errors.”*

In the subsequent phase, the simulations were adjusted to
introduce noise factors commonly encountered in quantum
processors. We apply our method to simulate the quantum
circuit by adding depolarizing noise to all single-qubit gates and
two-qubit gates using a gasm simulator with noise (QN). These
simulations aimed to emulate the conditions of actual IBM
processors, giving a more realistic assessment of the QSVC
method’s performance for all of the mentioned data sets. The
depolarizing channel depolarizes a state of qubit into a
completely mixed state of 1/2 with probability p, and the state
is left unchanged with 1 — p probability.

In this study, we consider that the quantum channel acting on
an arbitrary quantum state is the depolarizing channel. It is a
widely applied channel model used to represent the decoherence
effects that produce errors in quantum information.” The
probability of destroying the qubit’s state depends on the
specific characteristics of the depolarization channel, such as its
strength or fidelity. The Kraus representation provides a way to
describe the evolution of a quantum system p under the
influence of noise & or errors, as

&Elp) = Z EkalI
k 4)

where E denotes the Kraus operator and satisfies Y (E{E, = L.

The depolarizing channel consists of each bit flip, phase flip,
and combined flip with the same probability p/3. It evolves a
density matrix as

p = Eppp) =1 —plp + %(XpX + YpY + ZpZ) )

where X, Y, and Z are Pauli gates. We used a custom noise model
by adding errors on single-qubit and two-qubit gates with a
probability (p = 0.05) and tested the quantum model on a gasm
simulator. The list of parameters used in the experiments is given
in Table 1.

IV.A. Application of QSVC to Predict ADME Properties.
For model development and testing, the synthetic minority
oversampling technique (SMOTE) is used to handle the
imbalance data set problem by introducing artificial minority
instances over three data sets. For representation, the number of
chemical compounds of each class is denoted as class:(number
of samples before ) number of samples after applying SMOTE. In
CARC data set, carcinogens are 1:(54)138 and noncarcinogens
as 0:(198)197. In the HIA data set, the class absorption was 1:
(448)432 and nonabsorption was 0:(72)224, and in the
CYP2D6 data set, the substrate was 1(169)344 and the
nonsubstrate was 0:(431)430 chemical compounds. To assess
the average method performance, each simulation involving
both classical machine learning models and quantum classifiers
is implemented using 4-fold cross-validation. Table 2 presented
the classification metrics of QSVC for predicting ADME-Tox
properties using 4-fold cross validation with the gasm noise
model. Figure 4a—d present the true positive rate versus false
positive rate considering different numbers of features (2, 4, 8,
and 16) and different quantum simulators for all ADME-Tox
data sets.

Property Analysis of Human Intestinal Absorption (HIA).
We initially demonstrated the application of a quantum classifier
to classify the absorption and nonabsorption molecules in the
HIA data set. We tested the QSVC on noiseless quantum
simulators and a noise based simulator, considering different
numbers of features after applying PCA. We observed that with
the increase in the number of features, the performance of
QSVC gets improved in terms of AUC ROC, as shown in Figure
Sc. Thus, QSVC performed better than classical counterparts in
predicting ADME-Tox properties after reducing the number of
features (2, 4, 8, and 16), which can be implemented on the
current available quantum infrastructure. Although, the classical
SVC achieved a better AUC ROC on considering whole 2048
bit RdKit fingerprints.
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Figure 4. True positive rate vs false positive rate plotted considering different numbers of features and different quantum simulators. (a—d) Simulation
results using 4-fold cross-validation across all data sets (CARC, DILI, HIA, and CYP2D6), respectively. The QSVC shows promising results for CARC
and HIA data sets with mean (AUC ROC > 0.90) and around 0.85 for the DILI data set. (d) AUC remains below 80% for the CYP2D6 data set on

considering 16 features.

According to the simulation results, the QSVC model showed
promising results across all of the simulators AUC (SV = 0.954,
QA = 0.955, and QN = 0.94) with 16 features. We noticed that
the mean AUC ROC of the quantum model with the noise
model is also in line with noiseless simulators. Although, the
performance of QSVC depends upon the number of features
selected from the molecular data set. The F-score (0.20) remains
lower with two input features, as shown in Figure 6c¢. Later, it
tends to perform substantially better with more features and
achieved an F-score (0.86) irrespective of the quantum
simulator.

Property Analysis of CYP2D6 Substrates. Particularly, the
quantum classifier achieved an AUC ROC less than 0.80 even

with 16 features among all of the simulators (i.e., 0.77—0.79), as
shown in Figure 5d. The range of mean AUC ROC remains
between 0.48 and 0.79 by varying the number of features (2—
16). Its performance is significantly less compared to all
considered ADME-Tox data sets. Moreover, the F-score lies in
the range of 0.68—0.82 across all quantum simulators, as
depicted in Figure 6d. It has been noticed that classical SVC
performed better than quantum variants considering 2048 bit
RDK:it fingerprints and achieved an AUC ROC around 0.856.
IV.B. Application of QSVC to Predict Toxicity. Property
Analysis of Drug-Induced Liver Injury (DILI). In our study, the
DILI data set consists of 475 drugs, and we selected molecules of
bond length 7 causing liver injury (209) and no-DILI (218)
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Figure 5. The mean AUC ROC curves of the quantum classifier across all quantum simulators. Here, we report the mean AUC ROC results with
different numbers of features used to train the QSVC model. (a—d) CARC, DILI, HIA, and CYP2D6 data sets with the PCA feature reduction method.
The state vector backend is a green dotted line, the (qasm simulator (QA) is in blue, and the qasm simulation with noise (QN) is represented with a
purple dotted line. The classical SVC is denoted by a solid line (red), and the shaded line is for SVC considering 2048 bit RDKit fingerprints.

concern. We observed that the quantum model is able to
correctly classify the molecules causing liver injury versus no
injury concern with 168 molecules of each class out of their
respective proportion in the data set. The QSVC model
performed slightly better at predicting active DILI-Concern
compounds with an AUC ROC around 0.87 with 16 features, as
shown in Figure 5b. The F-score remains around 0.50 with two
data points. It has been noticed that the performance of the
quantum model remains constant with increasing the number of
features (4, 8 and 16); i.e., F-score lies in 0.7—0.8, as shown in
Figure 6b. The mean AUC ROC of classical SVC remains in
between 0.65 and 0.82 on varying the number of features.
Property Analysis of Carcinogens (CARC). Here, we have
applied the SMOTE technique to balance the class distribution
in the CARC data set. Now, it consists of a total of 335 drugs in
which the carcinogens (active) equal 138 and the non-
carcinogens (inactive) equal 197. The QSVC shows good
performance in differentiating the active (110) versus inactive
molecules (190). The quantum model provides a mean AUC
ROC (0.75) with only two features and achieved the highest
AUC ROC (SV = 0.942, QA = 0.934, and QN = 0.90) with 16
input features, as shown in Figure Sa. The quantum classifier
achieved an F-score around 0.88. Although, its performance with
the gasm noise model remains lower as compared to the
noiseless quantum simulators with 16 features. The mean AUC
ROC of classical SVC remains in between 0.68 and 0.90 on
varying the number of features. Although, it performed better
than quantum variants considering whole 2048 bit RDKit
fingerprints, achieving an AUC ROC around 0.996.

IV.C. Comparison with Classical Counterparts. In this
section, we evaluated whether the quantum classifier can do well
on available quantum hardware. Here, we performed the
experiments of ADMe-Tox data sets (8 and 16 input features)
on a 16 qubit IBM quantum Guadalupe. Moreover, the
performance of the quantum support vector classifier (QSVC)
is compared with its classical variant SVC, adaboost classifier,
logistic regression, and k-nearest neighbors (KNN) algorithm.
The classical KNN is widely used and makes predictions on the
basis of the average or majority vote of k nearest data points in
the feature space. We performed experiments of SVC with
RDKit and Morgan fingerprint bit strings. Although, we
computed the results of classical counterparts considering only
RDK:it fingerprints. The maximum bond lengths are set as 2 and
7 for Morgan and RDKit fingerprints, respectively. For a fair
comparison between classical and quantum, we reported the
mean result across 4-fold cross-validation for all simulations.

To ensure the validity of our model’s interpretability, we
conducted a verification process using diverse data sets (CARC,
DILI, HIA, and CYP2D6) that shared an identical number of
input features. This rigorous examination allowed us to confirm
the consistency and reliability of our model’s interpretive

capabilities across various data sets. The improved performance
of the QSVC algorithm can be attributed to a larger quantum
feature space and an enhanced expressiveness of the quantum
feature map, enabling appropriate separation between badly
absorbed/well absorbed, DILI/no-DILI, and many more. A
noteworthy observation when comparing classical and quantum
methodologies is that the performance of QSVC either remains
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Figure 7. Performance of QSVC vs classical algorithms. The performance of QSVC is tested on noiseless and noisy simulators and quantum hardware
(16 qubits IBMQ Guadalupe). Moreover, we tested the classical algorithms (SVCR, ADB, LR, and KNN) with RDKit and classical SVCM with
Morgan fingerprints on considering fewer feature representations. We reported the mean result of AUC ROC across 4-fold cross-validation for all
simulations.

consistent or improves as the number of features increases. This In the case of CARC and HIA data sets, we found that the
trend suggests the possibility of a quantum advantage within AUC ROC of QSVC on quantum hardware remains equivalent
QSVC, indicating its potential for enhanced performance to SVC and marginally lower than the KNN algorithm, with
compared to classical approaches. eight data points, as shown in Figure 7b,f. We observed that on
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Figure 8. Prediction of molecules by QSVC and SVC. Molecules are randomly selected from HIA and CYP2D6 data sets. The prediction is made by

quantum simulators and classical SVC against real labels.

considering the number of features (>8), the quantum algorithm
outperformed its classical variant, as shown in Figure 7ase.
Although, the classical KNN algorithm provides marginally
better classification results with Morgan fingerprints (i.e., better
mean AUC ROC values). For the DILI data set, SVC performed
better than QSVC with Morgan fingerprints and eight data
points, as shown in Figure 7d. For the CYP2D6 data set, the
mean AUC ROC of QSVC remains below 0.80 and marginally
better than its variant. But, KNN with Morgan fingerprints
shows promising results considering 16 features of the CYP2D6
data set, as shown in Figure 7gh. It has been noticed that the
performance of QSVC remains less affected with the increase in
number of features and in the presence of qasm simulator noise.
The QSVC algorithm on quantum hardware produces
promising results that are in line with the qasm simulator and
state vector results. In Figure 8, randomly selected molecules
from the HIA and CYP2D6 data sets are utilized to demonstrate
the molecule prediction capabilities of both quantum QSVC and
classical SVC.

Therefore, the quantum kernel has captured the complicated
relationships among the molecular features and leveraged the
increased dimensionality effectively compared to its classical

variant. It is worth noting that the performance of quantum
kernels can be influenced by various factors, such as the specific
quantum computing algorithm or approach used, the nature
(i.e., characteristics, dimensionality, noise) of the data set, and
the real quantum hardware employed.

V. CONCLUSIONS

In this Article, we designed a quantum machine learning
framework to identify the ADME-Tox properties of chemical
compounds in drug discovery. Due to currently available
quantum computers with limited qubit counts, we reduced the
dimensionality of data sets to accommodate the capabilities of
available quantum hardware. We demonstrated the performance
of a quantum support vector classifier using IBM quantum
simulators and systems. A quantum algorithm can provide a
significant advantage over classical counterparts in certain
instances, depending upon the number of features selected. We
investigated whether an analysis of molecular data can benefit
from the use of quantum computers after reducing the problem
to a certain level, which can be affordable. Currently, there are no
apparent reasons to doubt that the quantum benefit observed in
proof-of-principle applications would diminish when simulating
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a larger number of features with 40—60 qubits. However, it is
important to note that achieving a quantum advantage in drug
discovery requires advancements in quantum hardware,
software, and algorithm development. It should be noted that
classical SVC achieved a better mean AUC ROC overall on
considering 2048 RDKit fingerprints. We observed that the
quantum kernel method is well-suited for predicting ADME-
Tox properties by achieving an F-score (0.80—0.90) and AUC
ROC (0.85—0.95) with only 16 features, except the DILI data
set. Moreover, the quantum classifier has correctly predicted the
targets with simulated backends even in the presence of noise
and enabling more comprehensive analysis of drug candidates.
We can conclude that the quantum algorithms have the potential
to enable more complex molecular simulations and calculations,
allowing for more accurate predictions of ADME-Tox proper-
ties.
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