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Most existing quantum algorithms are discovered accidentally or adapted from classical

algorithms, and there is the need for a systematic theory to understand and design quantum

circuits. Here we develop a unitary dependence theory to characterize the behaviors of

quantum circuits and states in terms of how quantum gates manipulate qubits and determine

their measurement probabilities. Compared to the conventional entanglement description of

quantum circuits and states, the unitary dependence picture offers more practical information

on the measurement and manipulation of qubits, easier generalization to many-qubit sys-

tems, and better robustness upon partitioning of the system. The unitary dependence theory

can be applied to systematically understand existing quantum circuits and design new

quantum algorithms.
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Over several decades, the search for quantum algorithms
with efficient quantum circuit implementations has
resulted in numerous theoretical and technological

advancements1–14. Notable quantum algorithms with the poten-
tial to outperform classical algorithms include: the phase esti-
mation algorithm15, Shor’s factorization algorithm16, the
Harrow-Hassidim-Lloyd algorithm for linear systems17, the
hybrid classical-quantum algorithms18,19, the quantum machine
learning algorithms20–22, and quantum algorithms for open
quantum dynamics23–25. Despite the expansive selection of ideas,
most existing quantum algorithms are either discovered acci-
dentally or adapted from classical algorithms, and a systematic
way to understand and design quantum algorithms with efficient
quantum circuit implementation is currently lacking. Considering
the enormous search space of quantum circuits, we need a general
theory to classify all quantum circuits and states, and then study
their behaviors based on the classification. To this end, we have
previously proposed a theory to classify all quantum circuits of a
given length into finite types based on the “qubit functional
configuration”26.

In this work we develop a “unitary dependence theory” to
characterize the behaviors of quantum circuits and states in terms
of how quantum gates manipulate qubits and determine their
measurement probabilities. Any quantum circuit can be decom-
posed into a sequence of elementary gates that include 1-qubit
unitaries and 2-qubit CNOT gates. The initial state is transformed
by the circuit into the final state which then undergoes projection
measurements in the computational basis fj0i; j1ig. The prob-
ability of measuring j0i versus j1i on each qubit then determines
the measurement statistics of the final state which can be used to
characterize the behavior of the quantum circuit and the final
state. In this work we study how the probabilities of measuring
each qubit are affected by elementary gates. The basic rules are: 1.
a 1-qubit unitary Uk makes the target qubit qk’s measurement
probabilities depend on Uk; 2. a CNOT gate CXj!k copies all the
control qubit qj’s dependences to the target qubit qk. By these
rules, each qubit qk at the final state has its own collection of
dependences that may be created on itself by some Uk or copied
to it from other qubits by some CNOT gates. While a dependence
may be copied from other qubits, it must have been created by
some Ui on another qubit qi – i.e., any given dependence can be
traced back to the original 1-qubit unitary that has created it in
the first place – therefore a complete unitary dependence picture
of which qubit depends on which 1-qubit unitaries can be drawn
by analyzing the gate sequence of a quantum circuit. The
dependence picture carries important information that helps us
understand the behaviors of quantum circuits. For example, if
two qubits share dependences on some 1-qubit unitaries, then
their measurement probabilities must be dependent; while if they
do not share any dependence, their measurement probabilities
must be independent. From the circuit design perspective, varying
the parameters of a 1-qubit unitary shared by multiple qubits
allows us to manipulate the measurement probabilities of all
involved qubits together; while qubit-specific manipulations have
to be implemented with 1-qubit unitaries that are unique to the
particular qubit. The dependence picture is a new perspective for
characterizing quantum circuits and states because it is distinct
from the conventional way of using entanglement as a descriptor
of complexity27. Compared to the abstract formalism of multi-
qubit entanglement28–30, the dependence picture offers more
practical information on the measurement and manipulation of
qubits, easier generalization to many-qubit systems, and better
robustness upon partitioning of the system. Furthermore, in a
deeper discussion of the unitary dependence theory, we find that
under certain conditions the dependences originated from the
same unitary source can cancel when duplicated on the same

qubit, which reduces complexity and simplifies the dependence
picture. Interestingly, in studying the cancellability of depen-
dences, we find that entanglement can protect the cancellability
from getting broken by local 1-qubit unitaries, and thus an
intricate relation between the unitary dependence and entangle-
ment exists. Finally the theory has been applied to the widely-
used hardware-efficient ansatz31–34 to demonstrate its ability to
characterize the behaviors of different ansatzes in variational
quantum algorithms.

In summary, we propose a unitary dependence theory to
characterize quantum circuits and states in terms of how quan-
tum gates manipulate qubits and determine their measurement
probabilities. A complete unitary dependence picture can be
generated by analyzing the gate sequence of a quantum circuit.
The theory has several advantages over the conventional entan-
glement description of quantum circuits and states, and can be
applied to systematically understand existing quantum circuits
and design new quantum algorithms.

Results and discussion
Basic rules for the creation and copying of unitary depen-
dences. The core idea of quantum computing is to use a small
number of qubits to perform computation on the state space of a
huge dimension that scales exponentially with the qubit number
n. Qubits are therefore the fundamental targets for quantum gates
and measurements. Thus to develop a theory to systematically
understand quantum circuits we need to focus on how quantum
gates affect qubits. Any arbitrary quantum circuit takes in an
initial input state, applies a sequence of elementary gates to
transform it into a final state, and then measures all or selective
qubits in the computational basis. Without loss of generality, we
start with the simplest 3-qubit initial state j000i123 (where the
subscripts 123 denote the qubit number identifiers), then all three
qubits start with probability 1 for measuring j0i. Now if we apply

an arbitrary 1-qubit unitary U1ða1; a2; αÞ ¼ ð a1 a*2e
iα

a2 �a*1e
iα Þ (with

ja1j2 þ ja2j2 ¼ 1) to q1 then the state becomes ða1j0i1 þ
a2j1i1Þ � j00i23 and measuring q1 will yield the probabilities
pðj0i1Þ ¼ ja1j2 and pðj1i1Þ ¼ ja2j2:

Definition 1: The situation that the probabilities of measuring a
qubit qk depend on the parameters of a 1-qubit unitary Uk is
defined as “qk has acquired the dependence on Uk” or
alternatively “Uk’s dependence has been created on qk”.

By the definition q1 has acquired the dependence on
U1ða1; a2; αÞ in the above example. Note in this particular
example the phase α has no obvious effect on pðj0i1Þ or pðj1i1Þ,
but in general it may affect the probabilities in certain cases. Now

if we apply another 1-qubit unitary U2ðb1; b2; βÞ ¼ ð b1 b*2e
iβ

b2 �b*1e
iβ
Þ

(with jb1j2 þ jb2j2 ¼ 1) to q2 then the state becomes
ða1j0i1 þ a2j1i1Þ � ðb1j0i2 þ b2j1i2Þ � j0i3, and q2 has acquired
the dependence on U2ðb1; b2; βÞ. Now if we apply the CNOT gate
CX1!2 with the subscript 1 ! 2 meaning q1 is the control and q2
is the target, then the state becomes
½a1j0i1 � ðb1j0i2 þ b2j1i2Þ þ a2j1i1 � ðb2j0i2 þ b1j1i2Þ� � j0i3,
and now measuring q2 will yield pðj0i2Þ ¼ ja1b1j2 þ ja2b2j2:
we see that the probabilities of measuring q2 now depend on
U1ða1; a2; αÞ too and thus q2 has acquired the dependence
on U1ða1; a2; αÞ through CX1!2. It is obvious that the
control qubit q1 is unaffected by CX1!2. Next if we apply
another CNOT gate CX2!3, then the state becomes
ða1b1j0i1 þ a2b2j1i1Þj00i23 þ ða1b2j0i1 þ a2b1j1i1Þj11i23, and
measuring q3 will yield pðj0i3Þ ¼ ja1b1j2 þ ja2b2j2 such that q3
has acquired all the dependences on q2 – both U1ða1; a2; αÞ and
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U2ðb1; b2; βÞ – through CX2!3. To summarize the entire process,
we started with j000i123 having no dependence on any 1-qubit
unitary for any qubit, created U1ða1; a2; αÞ’s dependence on q1,
created U2ðb1; b2; βÞ’s dependence on q2, copied q1’s dependence
to q2 by CX1!2, and copied q2’s dependences to q3 by CX2!3.

Figure 1 shows the entire process of dependence creation by
1-qubit unitaries and copying by CNOT gates. At each step, the
dependence picture is illustrated by a Venn diagram that clearly
shows how the unitary dependences are shared by the qubits. At
the final Step 3 we have U2ðb1; b2; βÞ shared by q2 and q3, and
U1ða1; a2; αÞ shared by all three qubits. The dependence picture
clearly tells us that the probabilities of all three qubits are
dependent such that they cannot be considered independent
random variables when measured. Furthermore, changing the
parameters a1 and a2 of U1ða1; a2; αÞ will modify the probabilities
of all three qubits, while changing b1 and b2 of U2ðb1; b2; βÞ will
modify only q2 and q3. As there is no 1-qubit unitary unique to
any qubit, in this circuit we cannot specifically modify a single
qubit by changing the parameters of either U1ða1; a2; αÞ or
U2ðb1; b2; βÞ.

Having seen a simple 3-qubit example, next we propose the
rules for a general n-qubit system that:

Rule 1: A 1-qubit unitary Uk applied to the qubit qk creates its
dependence on qk only;

Rule 2: A CNOT gate CXj!k copies all the control qubit qj’s
dependences to the target qubit qk.

A special case of Rule 1 has been proven in Theorem 1 of our
previous quantum encryption study35 for real parameters in
unitaries and states. Below we generalize the proof to complex
parameters:

Proof for Rule 1: An arbitrary n-qubit state can be written as
the Schmidt decomposition form with respect to any given qk:

jϕðnÞi ¼ C1jϕðn�1Þ
1 iða1j0ik þ a2j1ikÞ þ C2jϕðn�1Þ

2 iða*2j0ik � a*1j1ikÞeiα

ð1Þ
where jϕðn�1Þ

1 i and jϕðn�1Þ
2 i are orthogonal ðn� 1Þ-qubit states

that exclude qk, C1 and C2 are non-negative real numbers

satisfying jC1j2 þ jC2j2 ¼ 1, a1 and a2 are complex numbers
satisfying ja1j2 þ ja2j2 ¼ 1. Clearly the probability of measuring
j0i on qk is pðj0ikÞ ¼ jC1a1j2 þ jC2a2j2 and thus we may
generalize the definition of unitary dependence to say that qk
has the dependences on the two pairs of coefficients ðC1;C2Þ and
ða1; a2Þ. Both ðC1;C2Þ and ða1; a2Þ can include the dependences of
many 1-qubit unitaries that were used to create jϕni. However,
because jψ1i ¼ a1j0ik þ a2j1ik and jψ2i ¼ ða*2j0ik � a*1j1ikÞeiα
are orthogonal, ða1; a2Þ is a “local dependence” that only applies
to qk while ðC1;C2Þ is a “shared dependence” that qk may share

with other qubits. Now if we apply Uk ¼ ð u1 u*2e
iθ

u2 �u*1e
iθ Þ on qk, as

jUkψ1i is always orthogonal to jUkψ2i, the dependence on Uk
will be added to the local dependence and thus only qk will
acquire it. This proves Rule 1 that a 1-qubit unitary Uk applied to
the qubit qk creates its dependence on qk only.

Proof for Rule 2: The action of a CNOT gate CXj!k is to keep
qk intact when qj ¼ j0i and bit-flip qk if qj ¼ j1i – this effectively
calculates the binary sum qk � qj and stores its value on
qk

26,36–39. When we measure qk after CXj!k, the probabilities
of getting j0i and j1i are actually the probabilities of getting
qk � qj ¼ 0 and qk � qj ¼ 1, thus all the 1-qubit unitaries that
affect qj’s measurement probabilities will now also affect qk’s
probabilities after CXj!k. In the meanwhile, it is obvious that qj’s
measurement probabilities are not affected by CXj!k. Therefore
Rule 2 has been proven that “A CNOT gate CXj!k copies all the
control qubit qj’s dependences to the target qubit qk”.

The unitary dependence theory allows us to generate
dependence pictures as illustrated by the Venn diagrams in Fig. 1.
The dependence picture of a quantum circuit or state provides
two important pieces of information that characterize its
behaviors. The first piece is how the measurement probabilities
of qubits depend on each other in the output state. If multiple
qubits share dependences on a certain collection of 1-qubit
unitaries, their measurement results will behave as dependent

Fig. 1 The creation and copying of unitary dependences. The figure shows the unitary dependence creation by 1-qubit unitaries and copying by CNOT
gates. The state at each step is described by a Venn diagram that shows how unitary dependences are shared among the qubits. The unitary dependences

are created by the 1-qubit unitaries U1 ¼ U1ða1; a2; αÞ ¼ ð a1 a�2e
iα

a2 �a�1 e
iα Þ (with ja1j2 þ ja2j2 ¼ 1) and U2 ¼ U2ðb1; b2; βÞ ¼ ð b1 b�2e

iβ

b2 �b�1 e
iβ Þ (with

jb1j2 þ jb2j2 ¼ 1). Then the dependences are copied by the CNOT gates CX1!2 and CX2!3 to the appropriate qubits. At the final Step 3 we have U2 shared
by q2 and q3, and U1 shared by all three qubits.
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random variables; if multiple qubits do not share any unitary
dependences, their measurement results will behave as indepen-
dent random variables. The dependence picture thus allows us to
characterize the measurement statistics of the output state, which
is an important property of a quantum circuit or state9. The
second piece is how the qubits can be manipulated together by
varying parameters of the shared 1-qubit unitaries. If a 1-qubit
unitary is shared by multiple qubits, varying its parameters can
change the measurement probabilities of all involved qubits
together, thus allowing collective manipulations of subgroups of
qubits. On the other hand, if the manipulation of an individual
qubit is needed, then the qubit must have 1-qubit unitaries not
shared by any other qubits. This is a design principle that can
guide the development of e.g., parameterized quantum
circuits18,27,40,41 where circuits and ansatz states are tested by
varying gate parameters.

Advantages over the entanglement description of quantum
circuits and states. The unitary dependence theory and the
dependence picture are distinct from the conventional way of
using entanglement to understand quantum circuits and states. In
this section we detail the differences between the two theories and
show the advantages of the dependence picture over the entan-
glement description.

Entanglement is an important subject in quantum physics that
demonstrates quantum-only features that have no classical
equivalent. However, from the perspective of quantum circuit
design, entanglement is too abstract and not easily connected to
the practicalities discussed above on how qubits are related in
manipulations and measurement probabilities. To see this,
consider the state:

jψi ¼ ða1j00i12 þ a2j11i12Þ � b1j0i3 þ ða1j01i12 þ a2j10i12Þ � b2j1i3 ð2Þ

where a1, a2, b1, b2 are complex numbers satisfying ja1j2 þ
ja2j2 ¼ 1 and jb1j2 þ jb2j2 ¼ 1. In jψi, q1 and q3 are considered
entangled because there is no separable way to write the two
qubits as a product state. However, by simple inspection we have
pðj0i1Þ ¼ ja1j2 and pðj0i3Þ ¼ jb1j2 – i.e., q1 only has dependence
on the pair ða1; a2Þ while q3 only has dependence on the pair
ðb1; b2Þ – which means q1 and q3 have independent measurement
probabilities and can be manipulated separately. So the
entanglement picture fails to characterize the relation between
q1 and q3. In the meanwhile, by the unitary dependence theory,
jψi is created by the process shown in Fig. 2 and the relation
between q1 and q3 can be easily seen in the Venn diagram.

In Fig. 2, we have U1ða1; a2; αÞ shared by q1 and q2, and
U3ðb1; b2; βÞ shared by q2 and q3, therefore q1 and q3 share no
1-qubit unitaries and are independent for both measurement and
manipulation. This example clearly shows the dependence picture
is fundamentally different from the entanglement picture because
two entangled qubits may have no shared dependence and thus
are considered to be independent by the dependence theory.

Using entanglement to describe quantum circuits and states
can become more confusing when considering multiple-qubit
systems where many different measures and theories for
multipartite entanglement exist28–30. For example, for a 3-qubit
system there are the Greenberger–Horne–Zeilinger (GHZ)
state jGHZi ¼ 1

ffiffi

2
p ðj000i þ j111iÞ and the W state

jWi ¼ 1
ffiffi

3
p ðj001i þ j010i þ j100iÞ, which are well-known to be

different and can be explained by various multipartite entangle-
ment measures28–30. However, most multipartite entanglement
measures generate some numbers for fixed values of parameters
and thus cannot characterize parameterized quantum circuits and
states: e.g., a1j000i þ a2j111i will produce different values of the

von Neumann entropy, given different values for a1 and a2. In the
meanwhile the dependence picture is naturally suited to the ideas
of using finite structures with varying parameters to characterize
large collections of quantum circuits and states together:26,42 e.g.,
a1j000i þ a2j111i can be described by one simple Venn diagram
in Fig. 3.

Although there is a theory to generalize the GHZ state and W
state into the GHZ class and W class29, the process of
determining the class for an arbitrary state involves calculating
the determinants of all the possible bipartite reduced density
matrices and then the 3-tangle:28,29 this is a very complex process
and more importantly not describing the qubit relation in
measurement and manipulation. For example, it is not obvious
whether the state jψi in Eq. (2) belongs to the GHZ or W class,
and even if we can determine its class, it has a dependence picture
(see Fig. 2) distinct from both the GHZ and W classes in Figs. 3
and 4 such that the entanglement class does not describe the qubit
relation of interest in the current study. On the other hand the
dependence pictures in Figs. 2, 3, and 4 clearly show the
differences between the three states by illustrating the relation of
qubits in manipulation and measurement. Furthermore, when the
number of qubits increases beyond 3, the number of possible
entanglement classes becomes infinite and there is no practical
way to determine the class for an arbitrary state29. On the other
hand, no matter how many qubits there are, the dependence
picture can always be easily generated by going through the gate
sequence associated with any quantum circuit or state, one gate at
a time. So as long as the gate count is polynomial the process of
determining the dependence picture is polynomial. When the
number of qubits increases it may be difficult to draw the Venn
diagram, but the dependence picture can still be easily described
by listing the qubits with the unitary dependences they have, and
listing the 1-qubit unitaries with the qubits they belong to. For
example, the W state dependence picture in Fig. 4 can be
alternatively described by

TheW state unitary dependence description

by qubits ðq1 : fRyðθ1Þ;Xg; q2 : fRyðθ1Þ;Ryðθ2Þ;Ryðθ3Þg;
q3 : fRyðθ1Þ;Ryðθ2Þ;Ryðθ3ÞgÞ

by 1� qubit unitaries ðRyðθ1Þ : fq1; q2; q3g; Ryðθ2Þ : fq2; q3g; X : fq1g;
Ryðθ3Þ : fq2; q3gÞ

ð3Þ
and this description always works for systems with more qubits.

When studying the behavior of quantum circuits and states
involving many qubits, there are often cases where we want to
temporarily focus on a subset of qubits and treat the other qubits
as an averaging background. For entanglement, the qubits that
are considered entangled in the total system may become
unentangled in the subsystem. For example, the GHZ-like
entangled state a1j000i þ a2j111i will become the reduced
density matrix ρ ¼ a1j00ih00j þ a2j11ih11j when any one of the
qubits is removed, and this is clearly an unentangled (separable)
mixed state43. This shows that entanglement is sensitive to how
we partition the space into subsets of qubits. On the other hand,
the dependence picture is robust regardless how we partition the
space as we can take the Venn diagrams or the descriptions like in
Eq. (3), remove all the unwanted qubits, and the remaining parts
will describe the correct relations among the qubits of interest.
Again using the example of a1j000i þ a2j111i shown in Fig. 3,
removing any one of the qubits will remove one circle from the
Venn diagram, which does not change the relation between the
two remaining circles: sharing U1, therefore the relation between
the two remaining qubits stays the same in the absence of the
removed qubit. This illustrates the fact that the dependences of
qubits on 1-qubit unitaries are more robust physical properties
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that are invariant upon partitioning of the system, while the
concept of entanglement is less robust that may change upon
partitioning of the system.

The dependence canceling rule and the application to analyz-
ing the hardware-efficient ansatzes. Having seen the basic rules
of dependence creation and copying in the “Basic rules for the
creation and copying of unitary dependences” subsection in the
“Results and Discussion”, next we discuss the situation where
dependences originated from the same unitary source can cancel
when duplicated on the same qubit. In the simplest case, CX1!2
copies all dependences of q1 to q2, and another CX1!2 will
attempt to copy all the same dependences again from q1 to q2. As
CX1!2 is its own inverse, the 2nd CX1!2 thus cancels all
dependences copied by the 1st CX1!2. A more interesting case
happens when the dependence originated from the same unitary
source is received from different qubits. For example, consider the
3-qubit state:

ða1j0i1 þ a2j1i1Þ � ðb1j0i2 þ b2j1i2Þ � ðc1j0i3 þ c2j1i3Þ ð4Þ
which starts with q1 depending on ða1; a2Þ, q2 depending on
ðb1; b2Þ, q3 depending on ðc1; c2Þ. Now if we apply CX2!1 and
CX2!3, it becomes:

ða1j0i1 þ a2j1i1Þ � b1j0i2 � ðc1j0i3 þ c2j1i3Þ þ ða2j0i1
þa1j1i1Þ � b2j1i2 � ðc2j0i3 þ c1j1i3Þ

ð5Þ

where q1 and q3 have both acquired dependence on ðb1; b2Þ. Now
if we apply CX1!3, then the state becomes:

j0i1 � ½a1b1j0i2 � ðc1j0i3 þ c2j1i3Þ þ a2b2j1i2 � ðc2j0i3 þ c1j1i3Þ�
þj1i1 � ½a2b1j0i2 � ðc2j0i3 þ c1j1i3Þ þ a1b2j1i2 � ðc1j0i3 þ c2j1i3Þ�

ð6Þ
where q3 has lost the dependence on ðb1; b2Þ because after some
algebra we find that pðj0i3Þ ¼ ja1c1j2 þ ja2c2j2. Here the effect of
CX1!3 is attempting to copy both ða1; a2Þ and ðb1; b2Þ depen-
dences from q1 to q3, however because q3 has already received
ðb1; b2Þ from q2, receiving the same dependence again from q1
will duplicate and cancel it on q3. Here we propose the general
canceling rule of unitary dependences.

Definition 2: Multiple dependences are considered “the same”
if they are copied from the same qubit qi by some CNOT gates
and there are no 1-qubit unitaries in between these CNOT gates.
Furthermore, these dependences stay the same no matter how
many times they are copied by more CNOT gates and which
qubits they are on, as long as there are no 1-qubit unitaries
applied.

Rule 3: If a qubit qk receives the same dependence twice, it will
lose (cancel) that dependence.

Proof for Rule 3: As discussed in the proof for Rule 2, CXi!j
calculates the binary sum qi � qj and stores its value on qj, and if

we next apply e.g., CXj!k then it calculates the binary sum qi �
qj � qk and stores its value on qk. Note as long as there are no
1-qubit unitaries and only CNOTs, we can continue to perform
such binary additions with more CNOT gates, so as to update the
current “configuration” represented by an account of the current
value held by each qubit. This process can be clearly described by
the “qubit functional configuration” (QFC) where we start with
the initial QFC (for details of the QFC theory please see the
original study26):

ðf 1 ¼ q1; f 2 ¼ q2; f 3 ¼ q3:::; f n ¼ qnÞ ð7Þ
for which each f k (i.e., the qubit functional on qk) represents the
current value stored on the corresponding qubit qk. Now if we
apply e.g., CX1!2, we update f 2 to be f 2 ¼ q1 � q2 with other f k
intact so the QFC becomes:

ðf 1 ¼ q1; f 2 ¼ q1 � q2; f 3 ¼ q3:::; f n ¼ qnÞ ð8Þ
Now if we apply another CNOT gate e.g., CX2!3, we update f 3

to be f 3 ¼ q1 � q2 � q3 and the QFC becomes:

ðf 1 ¼ q1; f 2 ¼ q1 � q2; f 3 ¼ q1 � q2 � q3:::; f n ¼ qnÞ ð9Þ
where we see that although q1 has not directly interacted with q3,
it has nonetheless been connected to q3 by the two CNOT gates
and the connection is clear from the QFC where f 1 and f 3 share
the same component of q1. Here we notice the interesting fact
that, the connection of f 1 and f 3 sharing the same component of
q1 also means q1 and q3 sharing the dependences that already
exist on q1 before the CX1!2 gate. This is clear because by Rule 2
above, CX1!2 copies all dependence from q1 to q2, and then
CX2!3 copies all dependence from q2 to q3 – we see that the
process of the qubit functionals getting updated by some CNOT
gates is essentially the same as the process of the unitary
dependences getting copied by the same CNOT gates. In other
words, take Eq. (9) as an example, f 2 ¼ q1 � q2 means q2 shares
the dependences initially on q1, while f 3 ¼ q1 � q2 � q3 means q3
shares the dependences initially on q1 and q2. With the
equivalence between the two processes understood, it becomes
clear why duplicated dependences get canceled: no matter from
which qubit qk receives the 1st copy of qi’s initial dependences, its
corresponding functional f k now has qi as a component, and then
the attempt to add a 2nd copy of qi’s initial dependences will add
qi to f k again, and this cancels qi on f k because qi � qi ¼ 0. In
addition, it also becomes clear why the canceling requires the
condition of no 1-qubit unitaries, because only then can we stay
in the same QFC addition process or as described in the original
QFC study26 “in the same QFC layer”, while any 1-qubit unitary
will require the QFC getting reset to the initial configuration. In
terms of the unitary dependence theory, if qk receives the 1st copy
of qi’s dependences from qj after a 1-qubit unitary Uj on qj, the
dependences could be modified by Uj such that they are no

Fig. 2 The case of entangled qubits not sharing any unitary dependence. The figure shows the creation process of jψi and the final unitary dependence

picture represented by a Venn diagram. U1 ¼ U1ða1; a2; αÞ ¼ ð a1 a�2e
iα

a2 �a�1 e
iα Þ (with ja1j2 þ ja2j2 ¼ 1) and U3 ¼ U3ðb1; b2; βÞ ¼ ð b1 b�2e

iβ

b2 �b�1 e
iβ Þ (with

jb1j2 þ jb2j2 ¼ 1) are 1-qubit unitaries applied to q1 and q3 respectively. From the final unitary dependence picture we see q1 and q3 do not share any 1-qubit
unitaries and thus are independent in measurement probabilities. However q1 and q3 are entangled, thus the unitary dependence picture provides a
different perspective from the entanglement description.
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longer the same as the initial ones. Now when qk receives the 2nd
copy from qh before any 1-qubit unitary Uh on qh, then this copy
stays the same as the initial one, thus the two copies of
dependences are not the same and may not cancel. This
concludes the proof for Rule 3.

The QFC description of quantum circuits and states not only
helps us prove Rule 3, but can also be useful for identifying
connections between qubits with no apparent interactions. In
Definition 2 we have the fact that “dependences stay the same no
matter how many times they are copied by more CNOT gates and
which qubits they are on, as long as there are no 1-qubit unitaries
applied”. This means two qubits may acquire the same
dependences without ever interacting directly and they will be
dependent when manipulated or measured. In addition, canceling

of those dependences will happen when sometime later the two
qubits directly interact with a CNOT gate.

To illustrate the application of all three rules working together
to obtain the complete unitary dependence picture, here we
consider the hardware-efficient ansatz that is widely used in
variational quantum algorithms31–34. The main feature of the
hardware-efficient ansatz is that each ansatz layer includes two
sub-layers: one sub-layer of parameterized 1-qubit unitaries and
one sub-layer of two-qubit entanglers. When the two-qubit
entanglers are all CNOT gates, there is no 1-qubit unitary in
between the entanglers and the entangler sub-layer can be
considered as a single layer of the qubit functional configuration
(QFC) as described above—this means the canceling rule works
perfectly within one entangler sub-layer and we can easily obtain
the unitary dependence picture of each ansatz layer. In two
examples, the ansatzes used in the original studies33,34 are shown
in Figs. 5 and 6, respectively, and the unitary dependence pictures
(in Eq. (3)’s description form of the picture) are shown in Eqs.
(10) and (11), respectively.

The unitary dependence picture of the ansatz in ref. 33.

ðq1 : fU2 � U6g; q2 : fU1;U2g; q3 : fU1 � U3g; q4 : fU1 � U4g;
q5 : fU1 � U5g; q6 : fU1 � U6gÞ
ðU1 : fq2 � q6g; U2 : fq1 � q6g; U3 : fq1; q3 � q6g; U4 : fq1; q4 � q6g;
U5 : fq1; q5; q6g;U6 : fq1; q6gÞ

ð10Þ

The unitary dependence picture of the ansatz in ref. 34:

ðq1 : fU1;U2g; q2 : fU2g; q3 : fU1 � U3g; q4 : fU2;U4g; q5 : fU4 � U6g; q6 : fU6gÞ
ðU1 : fq1; q3g; U2 : fq1 � q4g; U3 : fq3g; U4 : fq4; q5g; U5 : fq5g;U6 : fq5; q6gÞ

ð11Þ

Here the unitary dependence pictures of both ansatzes are
generated by following the quantum gates one by one while
considering Rules 1 to 3 to determine what each gate does to the
evolving unitary dependence picture. A basic example of this
process can be found in Fig. 1 where the Venn diagram is
generated by three steps (with the two 1-qubit unitaries combined
into one step). For the current example of the ansatz in Fig. 5, by
Rule 1 the six 1-qubit unitaries create one dependence on each
qubit; then by Rule 2 CX1!2 copies U1 to q2, CX2!3 copies U1
and U2 to q3, and so on …; then by Rules 2 and 3, CX6!1 copies

Fig. 6 The 2nd example of the hardware-efficient ansatz. The figure
shows the quantum circuit of one layer of the hardware-efficient ansatz in
ref. 34 U1 through U6 are 1-qubit unitaries applied to the qubits q1 through
q6, respectively. The CNOT gate layer then copies the unitary dependencies
around the qubits. The final unitary dependence picture as described in Eq.
(11) shows the qubits are more independent in manipulations and
measurement statistics.

Fig. 4 The dependence picture of the W state. The figure shows the
creation circuit of the W state and the Venn diagram of the dependence
picture. The gates and the parameters are defined as:

RyðθÞ ¼ ð cos
θ
2 � sin θ

2
sin θ

2 cos θ
2
Þ, θ1 ¼ 2 arccosð 1

ffiffi

3
p Þ, θ2 ¼ �θ3 ¼ π

4.

Fig. 3 The dependence picture of the GHZ-like state. The figure shows the
creation circuit of the GHZ-like state and the Venn diagram of the unitary

dependence picture. U1 ¼ U1ða1; a2; αÞ ¼ ð a1 a�2e
iα

a2 �a�1 e
iα Þ is a 1-qubit unitary

applied to q1. When the parameters satisfy a1 ¼ a2 ¼ 1
ffiffi

2
p the state becomes

the GHZ state.

Fig. 5 The 1st example of the hardware-efficient ansatz. The figure shows
the quantum circuit of one layer of the hardware-efficient ansatz in ref. 33

U1 through U6 are 1-qubit unitaries applied to the qubits q1 through q6,
respectively. The CNOT gate layer then copies the unitary dependencies
around the qubits. The final unitary dependence picture as described in Eq.
(10) shows the qubits are highly-dependent on manipulations and
measurement statistics.
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all unitaries to q1 and U1 is canceled—the final result is the
unitary dependence picture in Eq. (10). This example shows the
process of generating the unitary dependence picture is directly
related to the process of building the ansatz itself, so the
complexity of generating the unitary dependence picture is the
same as the complexity of the ansatz, which in the current case of
“hardware-efficient ansatzes” is linear in the qubit number.

Now what useful information is provided by the unitary
dependence pictures of these ansatzes? Firstly, the unitary
dependence pictures provide both intuitive and precise descrip-
tions of the unitary dependences assigned to each qubit: we can
see exactly which qubits depend on which unitaries. Some
information available from the unitary dependence picture may
not be obvious by inspecting the circuit alone: one example is the
fact of q1 not depending on U1 in Fig. 5, which can be deduced by
applying Rules 2 and 3: U1 has been copied to q6 by a series of
CNOT gates and then canceled on q1 by CX6!1; another example
is the fact of q3 depending on U2 in Fig. 6, which can be deduced
by applying Rule 2: U2 has been copied to q1 by CX2!1, and then
to q3 by CX1!3. The precise description of exactly which qubits
depend on which unitaries makes the unitary dependence theory
advantageous over existing descriptions such as the “causal cone”
approach44–46 that only identifies rough correlations between
subgroups of qubits and quantum gates.

Secondly, the unitary dependence pictures show the practical
connections among the qubits in manipulations and measure-
ment statistics, which are also not obvious by inspecting the
circuits alone. For example, inspecting the circuits in Fig. 5 and
Fig. 6, we can say in either ansatz all the qubits are entangled to
each other, but the difference between the two ansatzes is not
obvious. However, the top line of the unitary dependence picture
in Eq. (11) clearly shows that q2 only depends on U2 and q6 only
depends on U6, which means the measurement statistics of these
two qubits are independent from other qubits. Additionally on
the bottom line in Eq. (11), U3 only affects q3 and U5 only affects
q5, which means these two qubits can be individually manipulated
without modifying other qubits. On the other hand, in the unitary
dependence picture in Eq. (10) the qubits are more connected in
the sense that all qubits depend on multiple unitaries and all
unitaries affect multiple qubits. Therefore by the unitary
dependence pictures we immediately know that the measurement
and manipulation of the qubits are more connected in Fig. 5 and
more disconnected in Fig. 6 —thus the two ansatzes can behave
very differently during a variational process when the parameters
of the unitaries are optimized.

Using the useful information provided by the unitary
dependence pictures, next we propose an idea for a systematic
study to improve the performances of ansatzes. Suppose we are
using a variational quantum algorithm31–34 to find the minimum
of an optimization problem: e.g., the ground energy of a
molecular Hamiltonian. The two ansatzes in Figs. 5 and 6 are
likely to have different convergence rates or even converge to
different values if the iteration numbers are limited—these can be
used to evaluate the performances of the ansatzes. Now if for a
particular problem the ansatz in Fig. 5 does better, it may imply
the problem prefers the ansatz to have more connected qubits, or
vice versa. We can then add more CNOT gates to increase the
connectivity or remove some CNOT gates to reduce the
connectivity and see if the performance improves or worsens.
This way we may be able to systematically find better ansatzes
and understand why some ansatzes perform badly for a particular
problem. Going through the same process for a variety of
problems, we may even see the problems themselves separate into
one group that prefers disconnected ansatzes and the other that
prefers connected ansatzes – thus the ansatz properties described

by the unitary dependence pictures may be used to characterize
not only the ansatzes, but also the problems.

Note if two copies of dependences are not considered the same
by Definition 2, they may or may not cancel when copied to the
same qubit. Consider the simple example of a 2-qubit state:

jϕi ¼ ða1j0i1 þ a2j1i1Þ � ðb1j0i2 þ b2j1i2Þ ð12Þ
with q1 depending on ða1; a2Þ and q2 depending on ðb1; b2Þ. Now
applying CX1!2 we have:

jCX1!2ϕi ¼ a1j0i1 � ðb1j0i2 þ b2j1i2Þ þ a2j1i1 � ðb2j0i2 þ b1j1i2Þ ð13Þ
and by Rule 2, q2 now depends on both ðb1; b2Þ and ða1; a2Þ with
pðj0i2Þ ¼ ja1b1j2 þ ja2b2j2. By Rule 3, if we apply CX1!2 again
then ða1; a2Þ will be canceled from q2, but if we apply a 1-qubit

unitary U2 ¼ ð u1 u*2
u2 �u*1

Þ on q2 first, then CX1!2, we have:

jCX1!2 � U2 � CX1!2ϕi ¼ a1j0i1 � ½ðu1b1 þ u*2b2Þj0i2 þ ðu2b1 � u*1b2Þj1i2�
þ a2j1i1 � ½ðu2b2 � u*1b1Þj0i2 þ ðu1b2 þ u*2b1Þj1i2�

ð14Þ
and the probability of measuring j0i for q2 is:

pðj0i2Þ ¼ ja1j2ju1b1 þ u*2b2j
2 þ ja2j2ju2b2 � u*1b1j

2 ð15Þ

which still has dependence on ða1; a2Þ, i.e., canceling did not
happen. This is clearly due to U2’s modification of the 1st copy of
ða1; a2Þ received by q2.

However, a more intriguing scenario happens if we entangle a
3rd qubit q3 ¼ j0i3 to q2 by applying CX2!3 to the state
jCX1!2ϕi as in Eq. (13), we have:

jCX2!3 � CX1!2ϕi ¼ a1j0i1 � ðb1j00i23 þ b2j11i23Þ þ a2j1i1 � ðb2j00i23 þ b1j11i23Þ

ð16Þ
where by Rule 2 we have copied q2’s dependences to, while there

is no apparent change to q1 and q2. If we now apply U2 ¼

ð u1 u*2
u2 �u*1

Þ on q2 and then CX1!2, we have:

jCX1!2 � U2 � CX2!3 � CX1!2ϕi
¼ a1j0i1 � ½b1ðu1j0i2 þ u2j1i2Þ � j0i3 þ b2ðu*2j0i2 � u*1j1i2Þ � j1i3�
þ a2j1i1 � ½b2ðu2j0i2 þ u1j1i2Þ � j0i3 þ b1ð�u*1j0i2 þ u*2j1i2Þ � j1i3�

ð17Þ
and the probability of measuring j0i for q2 is:

pðj0i2Þ ¼ ja1j2ðju1b1j2 þ ju*2b2j
2Þ þ ja2j2ðju2b2j2 þ ju*1b1j

2Þ
¼ ju1b1j2 þ ju2b2j2

ð18Þ
which has no dependence on ða1; a2Þ. So although Rule 3’s
condition is violated by U2 before the 2nd CX1!2, canceling still
happens! By comparing Eq. (13) with (16), (14), with (17), we see
the only difference between the two is, in the 2nd case, q2 is
entangled to q3 before U2, and this suggests that entanglement
can protect the cancellability from getting broken by local 1-qubit
unitaries. To understand this interesting phenomenon, we
observe the state in Eq. (13) q1 and q2 are entangled, such that
a local unitary U2 on q2 may affect the dependence on ða1; a2Þ
that is shared by the two qubits. On the other hand, if we trace
out q3 in Eq. (16) to get the reduced density matrix of q1 and q2,
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we have:

Tr3ðρÞ ¼ Tr3ðjCX2!3 � CX1!2ϕihCX2!3 � CX1!2ϕjÞ
¼ ðja1b1j2 þ ja2b2j2Þjφ1ihφ1j þ ðja1b2j2 þ ja2b1j2Þjφ2ihφ2j

jφ1i ¼ ða1b1j0i1þa2b2 j1i1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ja1b1j2þja2b2j2
p � j0i2 jφ2i ¼ ða1b2 j0i1þa2b1j1i1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ja1b2j2þja2b1j2
p � j1i2

ð19Þ
where the reduced density matrix of q1 and q2 is a mixture of two
pure product states jφ1i and jφ2i, and the shared dependence on
ða1; a2Þ only affects q2 through the pure state probabilities p1 ¼
ja1b1j2 þ ja2b2j2 and p2 ¼ ja1b2j2 þ ja2b1j2. Clearly, any 1-qubit
unitaries on q2 will only affect the qubit locally and will not affect
the pure state probabilities, and this is the reason why canceling
holds even after U2. The effect of entanglement is to break the
entangled state in Eq. (13) into product states in the 2-qubit
reduced system in Eq. (19), and this causes the canceling of
dependences to happen even when local 1-qubit unitaries are
applied to q2. This example may suggest a mechanism for using
entanglement with additional qubits to protect certain properties
of the system against local disturbances.

Conclusions
In this work, we develop a unitary dependence theory to char-
acterize the behaviors of quantum circuits and states in terms of
how 1-qubit unitaries and CNOT gates affect qubits and deter-
mine their measurement probabilities. In particular, we define the
basic rules of dependence creation by 1-qubit unitaries and
copying by CNOT gates: 1. a 1-qubit unitary Uk makes the qubit
qk’s measurement probabilities depend on Uk; 2. a CNOT gate
CXj!k copies all the control qubit qj’s dependences to the target
qubit qk. By these rules, after a gate sequence of a quantum
circuit, the final state can be described by a complete dependence
picture that shows which qubits depend on which 1-qubit uni-
taries. The dependence picture carries important information of
whether the measurement results of qubits are dependent or
independent, and whether multiple qubits can be manipulated
together or separately. Compared to the abstract formalism of
multi-qubit entanglement, the dependence picture is more
directly connected to the practicalities of using parameterized
quantum gates to manipulate qubits and create desirable mea-
surement statistics in the output states. In addition, the depen-
dence picture is easier to use for many-qubit systems and more
robust upon system partitioning. Under certain conditions, the
dependences originated from the same unitary source can cancel
when duplicated on the same qubit, which reduces complexity
and simplifies the dependence picture. A particularly interesting
case arises when studying the cancellability of dependences is that
entanglement with an additional qubit may protect the cancell-
ability from getting broken by local 1-qubit unitaries. This may
suggest a mechanism for using entanglement with additional
qubits to protect certain properties of the system against local
disturbances. Finally, the theory has been applied to the widely-
used hardware-efficient ansatz to demonstrate its ability to
characterize the behaviors of different ansatzes in variational
quantum algorithms.
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