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US-China trade friction and agricultural nitrogen loss in China
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Agricultural production, trade and environmental quality are interdependent. The US and China have been the
world largest trade partners. However, trade tensions and interest in protectionist policies intensified in recent
years. Weuseaprice endogenous partial equilibrium model to systematically examine theimpact ofincreased
Chinese tariff on agricultural imports from the US on nitrogen (N) loss in China. The results show that a 25%
tariffon US soybeanimportsincreases the acreage of major crops in China by 1.37%. Although aggregate crop
acreage increases, the impact on cumulative nitrogen fertilizer uses and the corresponding N loss from cropland

is not significant as less N-intensive soybean acreage replaces some of the more N-intensive crops like wheat.
However, our estimates show significant heterogeneity in N loss across Chinese provinces, ranging from 0.05% to
2.97% increase. These results identify provinces where remediation measures may be needed to effectively
manage the potential increase in nitrogen loss associated with greater soybean production.

1. Introduction

International trade has beenamajor catalystforeconomic growthin
the US and China, the world's largest economies, with annual bilateral
trade exceeding $500 billion since 2013 (UN, 2020; Krishna et al.,
2023). However, there are significant concerns about the impact of in-
ternational trade on environmental quality (Jayadevappa and Chhatre,
2000;Leetal.,2016;Huetal.,2021). These concerns are especially
pertinent for developing countries like China, where economic growth
hasbeen prioritized, often at the expense of environmental quality (Sun
etal.,2021;Yuetal.,2023; Chaietal., 2023). Yet, thereis a shortage of
studies exploring the effects of international trade on environmental
quality in developing economies.

The merits of trade liberalization and the role of comparative
advantage in economic growth have been well documented (Copeland,
1989; Matsuyama, 1992; Grossman and Helpman, 1993). Previous
literature demonstrates the negative effects of trade barriers on eco-
nomic growth and social welfare (Lawrence, 2018; Qiu and Wei, 2019;
Lietal.,2018; Guoetal., 2021). Itakura (2019) estimates that the real
GDP of the US and China drop by 0.4% and 1.1%, respectively, if trade
barriers implemented in 2018 were to persist through 2035. Neverthe-
less, protectionist and anti-globalization sentiments have grown signif-
icantly recently (Raess etal., 2018; Rodrik,2018; Dtir et al., 2020).

* Corresponding authors.

While the protectionist trade policies are often motivated by geopolit-
ical, domestic industry, labor support objectives, the discussion of
environmental impacts are often absent from the discourse.

The relationship between trade and the environment is complex
(Grossman and Kruger, 1995). Prior studies conclude that trade barriers
resultininefficient use of scarce resources and unnecessary pollution
(BajonaandKelly,2012). Forinstance, the US-Chinaagricultural trade
conflictis harmful to the environment due to increased food trans-
portation mileage (He et al., 2019). However, other studies argue that
trade frictions may have positive environmental effects. Linetal. (2019)
shows that a 25% tariff would significantly reduce global economic
activity, carbon emissions, and PM2.5 related mortality. Similarly, Du
etal. (2020) find that the US-China trade war reduces GDP and emis-
sions. Lu et al. (2020) also find that US-China trade war is likely to
reduce COz emissions in some regions. However, global CO2 emissions
increase as comparative advantages are not exploited.

Much of the priorliterature on trade and environment examines the
impacts of trade disruptions on greenhouse gas emissions, while agri-
cultural nutrient runoff studies are relatively scarce. Shi et al. (2016)
find thatfood trade has greatlyreduced nitrogen pollutionin China. Yao
etal.(2021)showsanincreaseinU.S. nitrogen pollutionasfarmers shift
production from soybeans to more nutrientintensive cropsinresponse
to China's tariffs on US soybean. They also find that China would
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experiencelimited environmentalimprovementdueto theinsignificant
changes in crop portfolio and harvested area.

Significant environmental impacts of agricultural production inten-
sification in China have been thoroughly documented (Liu etal., 2020;
Maetal., 2022; Wang et al., 2023). China is the third biggest fertilizer
user, consuming one-third of the world's total (FAO, 2023). The inten-
sive use of chemical fertilizers involves significant nitrogen losses,
resultinginsoil, water, and air pollution (Hartmannetal.,2015; Zhang
etal.,2015;Ladhaetal.,2016;Shortleetal.,2021),and biodiversity
loss (Oenema et al., 2009; Zhang et al., 2016).

The nexus between agricultural trade and regional nitrogen (N) loss
from crop production in China has been relatively underexplored in
academicliterature. In this study, weexamine therelationship between
agricultural commodity trade and nitrogen loss in China using a price
endogenous partial equilibrium model with spatial land use and crop
production. In particular, we quantify the changes in China's regional
nitrogen losses changes in response a tariff on soybean imported from
the US.

We examine how a tariff on soybeans imported from the US affects
regional fertilizer loss in China as production activities adjust to new
trade structures and prices. Our setting resembles the context of the
2018 trade conflict between the USand China. However, our focusis on
the environmental impact of a long run structural change in the US-
China agricultural trade setting, rather than on the short run effect of
atemporarytradeshock. TherecentUS-Chinatradeconflictservesasa
motivation rather than an object of evaluation, as protectionist senti-
ments have been gaining ground among policy makers. As such, it is
importanttoexamine thelongrun potentialenvironmentalimpacts ofa
structural change in international trade.

We contribute to prior literature by examining regional impacts on
nitrogenlossin China. As ourfocusis muchnarrowerthan Shietal.
(2016) and Yao et al. (2021), we use a multi-region multi-product price
endogenous partial equilibrium model that incorporates US-China-ROW
(rest of the world) agricultural trade and the Chinese regional agricul-
tural land use and production. The price endogenous partial equilibrium
formulation that includes explicit land use is suitable for evaluating
agricultural production and associated environmental impacts. Exami-
nation of spillover effects to other sectors is outside the scope of our
study. We consider several tariff scenarios to estimate the effects on
major crop acreages, yields, fertilizer uses and nitrogen losses in 31

Chl’?‘fnsgrgrs%v&?ﬁ%ss' paperis organized as follows. Section 2 provides a

theoretical framework motivating the empirical analysis. Section 3 de-
scribes the empirical methodology and data. Results are presented in
section 4 and conclusions are in section 5.

2. Theoretical analysis

Toprovide a theoretical motivation for the empirical analysis, we
analytically illustrate the effect of a trade tariff on domestic production
and fertilizer use using a parsimonious set up with two agricultural
commodity groups. We assume that a trade tariffis imposed on the
majorimported commodity (soybean)while otheragricultural products
are unaffected.' The objective function maximizes the consumer and
producer surplus subject to consumption, production and import
balance.

! This assumption is made for the sake of parsimony and is consistent with
US-China agricultural trade context where soybean is overwhelmingly the top
cropimported from USto China (USDAFAS,2021).Inrelative terms, tariffson
other crops have negligible direct effects on production (Yao et al., 2021).
Therefore, we aggregate production activities in China into two groups with the
major imported group subject to the tariff.

Envirc [ Impact A Review 106 (2024) 107507
>
Maxm 2 Pd  Cxxn p Te pe (1)
e = O = Gy )=Gi+ di-22
s.txi+e—d =0 2)

where ris the consumer and producerbeneﬁts.(’,-y’ istheinversedo-
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decreasing in n because fertilizer use decreases the costs of production in
the economically relevant quantity range. ¢; denotes the imports of
producti. p1 and p2 are the corresponding international prices. 7is the
tariffimposed on imported agricultural product e:.

From Egs. (1) and (2), we obtain the effect of the tariff on production
as follows:
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As required by the convexity of the maximization problem, the de-
nominators are negative. The sign of the numerator in Eq. (3) is also
negative. Thus, the signofthe Eq. (3) is positive, whichimplies thata
tariffoncommodity 1 increasesit's domestic production. The signofthe
numerator in the Eq. (4) is ambiguous and depends on the sign of Cy,,,
which dictates the complement/substitute relationship between x; and
x2.If Cy v, <0, then the two agricultural commodities are complements
and thenumeratorofthe Eq. (4)is positive. However, if C, ., > 0, then
thesignofthe Eq. (4)isambiguous. Hence, the tariffon the majorim-
ported commodity can either decrease or increase production of other
commodities.

Likewise, we obtain the effect of the tariffon the nitrogen use (and
nitrogen loss) as follows:
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The sign of the Eq. (5) is ambiguous and depends on the substitute/
complement relationship between the production of the two commod-
ities. If Cy,x, <0, the numerator is positive. Otherwise the numerator
can be positive or negative. Hence, the effect of the tariff on nitrogen use
can also be positive or negative. In China, soybean-corn rotation is
widely practiced, and for these two commodities C,,s, is likely to be
negative, implying a positive Eq. (5). In this setting, fertilizer use and N
loss are likely to increase because corn is the most N-intensive crop.
However, in our theoretical model, x2 includes a group of commodities
that may be substitutes or complements for xi. In the case of x2 being a
substitute that is more (less) N-intensive than soybean, fertilizer use and
N loss decline (increase) with an increase in the tariff on ei1. Hence, the
effect of the tariff on nitrogen loss is indeterminate and should be
examined empirically. These relationships can also be regionally
heterogeneous.

3. Empirical model
We develop a multiple-region, multiple-product, price endogenous

partial equilibrium model for Chinese agricultural sector to empirically
examine the effect of trade tariffs on crop production and nitrogen use/
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loss in China. The model is structured following McCarl and Spreen
(1980)and McCarl(1982). Priceendogenous partialequilibriummodels
have been widely used for agricultural policy evaluation in various
contexts (McCarl and Schneider, 2001; Egbendewe-Mondzozo et al.,
2013; Havlik et al., 2011; Xu et al., 2022).

Our partial equilibrium model includes spatially explicit province-
scale planted crop hectares, per ha N use and irrigation in China.
Province scale planting and production decisions, including per ha N
and irrigation use, generate regional crop outputestimates. Cumulative
output across regions forms national supply, which is combined with
national demand and import/export specifications to produce corre-
sponding prices. The model endogenously identifies optimal province-
scale crop planting and associated production decisions to maximize
consumer and producer surplus (Xu et al., 2022; Elbakidze et al., 2022).

The objective functionin Eq. (6) maximizes the sum of producer and
consumer surplusin China, subject to resource and technological con-
straints. Following Havlik et al. (2011), Chen et al. (2014), Yietal.
(2018) and Xu et al. (2022), the objective function is formulated as
follows: ) )

a
" D d() =" NFCig— WCig—  ECig*4ig

g
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where @ is cumulative consumer and producer benefits in g agricultural
commodity markets; ¢ is the inverse demand function and D, is do-
mestic consumption of commodity g. i denotes the provinces in China.
NFC,,and WC,, are costs of nitrogen fertilizer and water for crop gin
region i respectively. EC;, is the production cost, excluding nitrogen
fertilizer and water. 4,, is the acreage of crop gin region i with n kg
nitrogen fertilizer use and w water use per hectare. p; is the corre-
spondinginternational prices. ris the tariffimposed on U.S. soybeans.
[;,',’;(r) isimports fromregionsasfunctionsofthetariffimposed onthe
USsoybean,z.sreferstothe sourceregion ofimports (USand ROW).
The model constraints include supply and demand balance, planted
acreage, cost equations and water use.
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Eq. (7) represents the crop supply and demand balance, where Y, is
the per ha yield of crop g with nitrogen application n and water use win
regioni. Oyis the impot of commodity g. Eq. (8) determines nitrogen
cost for crop gin region i, where 0, is the nitrogen fertilizer cost per ha.
Similarly, Eq. (9) computes cost of irrigation water, where ;¢ is the cost
of water per ha for crop ginregioni. Eq. (10) is the water use constraint,
where w,, is the water use per ha of crop g in region i and w;is the
maximum agricultural water supply per province.

Egs. (11)and (12) restrictland allocation in region i for crop g, using
a convex crop mix constraint that implicitly captures crop acreage re-
strictions such as technical, management and policy factors. The speci-
fication binds acreage within the historically observed lower and upper
bounds (Chen and Onal, 2012). In Eq. (11), the planted area of crop g in
province i, is the sum of the weighted historical crop acreages. Ay, and
simare the historical and synthetic planted areas, respectively; . and
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y.are the endogenously determined crop acreage portfolio weights; m
and n are the sets of ‘historical’ acreage observations and synthetic
acreagedata. Eq.(12)constrainsthesumofz,andy,tobeequaltol,
assuring that the endogenously determined regional crop acreages are
convex combinations of acreages observed in the past and acreages
simulated synthetically.

Nitrogen fertilizeruseinevitablyleads tonitrogenloss. Nitrogenloss
in this study refers to nitrogen leaching and runoff due to fertilizer use.
Estimates of surface nitrogenlosses from crop productionare obtained
by multiplying the amount of nitrogen fertilizer use by the corre-
spondingloss coefficient (Xia etal., 2018). We estimate nitrogen loss in
nitrogen fertilizer use following Tietal. (2012) and Xiaetal. (2018):

[a Vool
NL,‘,g = RO,’,g +LE,’,g AE,',g NE,g A,‘,g (13)

where NL is estimated nitrogen loss. RO,, is nitrogen runoff loss rate,
LE;,is nitrogen leaching loss rate, and 4E;, is the nitrogen fertilizer use
efficiency. NF,, is per ha nitrogenuse.

4. Data source

The study area includes 31 provinces in mainland China. Soybean,
wheat, corn, peanuts, and rapeseed are widely planted major crops in
China, covering >70% of the country's cultivated land. Agricultural
productiondataincluding cultivationareaby provincein2018 arefrom
the ‘China Statistical Yearbook' and ‘National Database’ of the Na-
tional Bureau of Statistics (NBS) (https://data.stats.gov.cn). Consump-
tionof majoragricultural commodities, includingdiets, feed, industrial
use, seed, food loss and waste in the baseline yearis from “China BRIC
Agricultural Database” (http://www.chinabric.com/). The production
inputs (land,labor, fertilizer, pesticides, water, and others) areobtained
from the ‘National Compilation of Data on Costs and Returns of Agri-
cultural Products” (NDRC, 2020). The nitrogen loss coefficients for
different crops on farmland were taken from Tiet al. (2012), with ni-
trogen leaching loss coefficients of 3.4% for paddy fields and 11.1% for
drylands, and N runoff loss coefficients of 5% for both paddy and
drylands.

We use the production, consumption, and price data from 2018 as
the baseline. We calibrate the model to match observed data for 2018
usingthe positive mathematical programming (PMP) approach (Howitt,
2014). After calibration, the results of model simulation including
provincescalecropacreages,yield, fertilizeruse,and nitrogenlossesare
within 5% ofthe observed data (Table 1). For example, the observed
wheat harvest in 2018 was 24.47 million ha, while the baseline simu-
lated area is 24.03 million ha, an underestimation 0f20.98%. In terms
of model validation, it is reassuring that the solutions are close to the
observed values, suggesting that the model provides a reasonable
e SRR R T e anabn B hissyiin g
the long-run equilibrium rather than circumstances in any particular
year.

Wevarytariffrates on soybeans originating from the USand examine
the impacts on agricultural production and N loss in China. Specifically,
in addition to the baseline with no additional tariff on soybean imports
from US (0%), we present results from six tariff scenarios incrementally
increasing by 5% from 0% to 30%. Thus, this study includes seven
simulation scenarios, namely scenario 0%, scenario 5%, scenario 10%,
scenario 15%, scenario 20%, scenario 25% and scenario 30%.

5. Results

The corresponding results for crop imports, planted acreages, pro-
duction, fertilizer use, and nitrogen runoff are presented below.


https://data.stats.gov.cn/
http://www.chinabric.com/
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Table 1
Comparison between observed and model-generated data in 2018.
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Acreage (million ha) Yield (million t)

Fertilizer use (million t) N loss (million t)

Obs. Sim. Obs. Sim. Obs. Sim. Obs. Sim.
Wheat 24.27 24.03 13.02 12.96 9.92 9.81 0.78 0.77
(-0.98%) (-0.45%) (-1.07%) (-1.48%)
Corn 42.13 42.12 25.87 25.94 14.61 14.51 1.17 1.15
(-0.03%) (0.28%) (-0.67%) (-1.42%)
Soybean 8.41 8.09 1.65 1.69 0.89 0.87 0.05 0.05
(-3.83%) (2.58%) (-2.26%) (-1.57%)
Peanut 4.63 4.44 1.74 1.74 1.41 1.38 0.08 0.08
(-3.97%) (0.00%) (-1.93%) (-1.11%)
Rapeseed 6.55 6.27 1.32 1.32 1.49 1.50 0.12 0.12
(-4.27%) (-0.17%) (0.28%) (-0.94%)

Note: % in parentheses are the deviations between model simulated results and actual observed values in 2018.

5.1. Crop import

Table 2 presents the aggregate crop import results, along with a
breakdown of soybean solutions into imports from US and ROW. As
expected, soybean imports decrease as tariff on US soybean increases.
Since the trade tariffs are imposed only on US soybean, imports shift
from US to ROW. However, the substitution is not one-to-one. The
decrease in US soybean imports is offset by a combination of increased
imports from other trade partners and increased domestic production,
which is likely to impact regional N loss in China. We observe that corn
imports also decrease with higher tariffs on US soybean. Corn imports
decrease because more corn is produced domestically as corn and soy-
bean are often planted in rotation as completements. Conversely, im-
ports of wheat, peanut, and rapeseed increase when soybean tariff
increases. Theseimportsincrease because ofdecreasein domestic pro-
duction as acreages shift to soybean and corn.

China's soybean imports decrease by 3% from 95.53 million tin the
baseline scenario to 92.68 million tin the 30% tariff scenario. The im-
portsofwheatand cornare more sensitive to soybean tariff. China's
wheatimports increase to 7.74 million tif soybean tariff researches
30%,whichis >80%higherthanimportsinthebaseline scenario. China
is a corn importer if there is no trade barrier. However, if the tariff goes
up to 20%, China starts to export corn. The effects of US soybean tariff
on peanuts and rapeseed are relatively small, with imports increasing by
up to 1.5% and 3% respectively in the highest tariff scenario.

5.2. Cultivated area and production

Table 3 presents changes in major crop acreages in China across tariff
scenarios. Soybean acreageincreases by 1.46 million ha (18.05%) from
8.09 t09.55 million ha when tariff on the US soybean increases to 30%.
Corn hectares also increase by 0.81 million ha (2%) because soybean

and corn are often planted in rotation. Hence, an increase in soybean
hectares comes with an increase in corn hectares. Wheat planting,
however, goes down by 3.16% from 24.027 million ha to 23.269 million
ha. Wheat and soybean growing seasons in China overlap, which implies
competitive land allocation. Hence, soybean and corn displace wheat
planting. These results are consistent with Table 2, asincreased wheat
imports substitute part of the domestic wheat supply. The effects on
rapeseedand peanutacreages are small, asbothchange by <1%evenin
the highest tariff scenario. Cumulatively, the results show that with a
25% tariff on US soybean, planting of major crops increases by 1.37%
from 84.9 to 86.1 millionha.

Table 4 illustrates production changes in different tariff scenarios.
Consistent with the estimated increase in the planted hectares, China's
soybean production increases significantly. A 10% tariff on the US
soybeanresultsina3.44%growthinChina's soybean production, while
a 30% tariff increases domestic production by 17.9% to 2.85 million t.
The loss of soybean imports from the US is substituted with increased
domestic production and imports from ROW. Corn production increases
while wheat, peanuts and rapeseed production decreases in response to
higher soybean import tariffs, consistent with the changes in planted
hectarage.

5.3. Fertilizer use and nitrogen loss

Theincreases (decreases)in thedomestic productionofsoybeanand
corn (wheat, peanut, and rapeseed) imply changes in associated input
use including nitrogen fertilizer. Greater production of corn has a pos-
itiveeffectonnitrogenusewhile peanut, rapeseed and wheatreductions
imply less nitrogen use. As soybean and corn hectarages substitute crops
like wheat, rapeseed and peanut the effects on fertilizer use and losses
are ambiguous because soybean is least N-intensive while corn is most
N-intensive. Moreover, the changes in nitrogen use and losses are

Table 2
Major crop imports to China (million t).
Tariff 0% 5% 10% 15% 20% 25% 30%
Soybean 95.53 95.31 94.99 94.56 94.03 93.41 92.68
(-0.23%) (-0.57%) (-1.02%) (-1.57%) (-2.23%) (-2.99%)
-from US 32.85 29.06 25.27 21.48 17.69 13.90 10.10
from ROW 62.68 0250 ) b5727%%) £505°%" T fogi"t™ §57°%)
(5.69%) (11.22%) (16.59%) (21.80%) (26.85%) (31.73%)
Wheat 4.30 4.91 5.52 6.10 6.67 7.21 7.74
(14.39%) (28.38%) (41.96%) (55.13%) (67.89%) (80.25%)
Corn 2.83 2.06 1.32 0.60 -0.10 -0.78 -1.44
(-27.05%) (-53.33%) (-78.85%) (-103.60%) (-127.58%) (-150.80%)
Peanut 0.25 0.25 0.25 0.25 0.25 0.25 0.26
(0.26%) (0.51%) (0.76%) (1.00%) (1.23%) (1.45%)
Rapeseed 4.75 4.77 4.80 4.82 4.84 4.86 4.88
(0.50%) (0.99%) (1.46%) (1.92%) (2.37%) (2.80%)

Note: tariff refers to China's increased tariffs on US soybean imports; % in parentheses are the deviations between the results of baseline and different tariff scenarios.
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Table 3
Cultivated area in China (million ha).
Tariff 0% 5% 10% 15% 20% 25% 30%
Soybean 8.09 8.21 8.39 8.62 8.91 9.22 9.55
(1.50%) (3.68%) (6.53%) (10.07%) (13.91%) (18.05%)
Wheat 24.03 23.86 23.70 23.57 23.46 23.36 23.27
(-0.69%) (-1.36%) (-1.92%) (-2.35%) (-2.76%) (-3.16%
Corn 42.12 42.26 42.43 42.60 42.75 42.87 42.98
(0.35%) (0.74%) (1.14%) (1.50%) (1.78%) (2.04%)
Peanut 4.44 4.44 4.44 4.44 4.44 4.44 4.44
[CRVV) (-0.01%) (-0.01%) (-0.02%) (-0.02%) (-0.02%)
Rapeseed 6.27 6.26 6.25 6.24 6.23 6.22 6.21
(-0.17%) (-0.34%) (-0.50%) (-0.65%) (-0.81%) (-0.95%)
Total 84.95 85.04 85.21 85.46 85.79 86.11 86.45
(0.11%) (0.31%) (0.61%) (0.99%) (1.37%) (1.77%)
Note: tariff refers to China's increased tariffs on US soybean imports; % in parentheses are the deviations from the baseline scenario.
Table 4
Crop Production in China (million tons).
Tariff 0% 5% 10% 15% 20% 25% 30%
Soybean 15.97 16.19 16.52 16.94 17.47 18.10 18.83
1.40% 3.44% 6.11% 9.40% 13.34% 17.90%
Wheat 131.44 130.82 130.22 129.64 129.07 128.52 127.99
-0.47% -0.93% -1.37% -1.80% -2.22% -2.62%
Corn 257.18 257.94 258.68 259.40 260.10 260.78 261.44
0.30% 0.59% 0.87% 1.14% 1.40% 1.66%
Peanut 17.35 17.35 17.35 17.35 17.35 17.34 17.34
U.UU% -0.01% -0.01% -0.01% -0.02% -0.02%
Rapeseed 13.28 13.25 13.23 13.21 13.18 13.16 13.14
-0.18% -0.35% -0.52% -0.69% -0.85% -1.00%

spatially heterogeneous. We present the aggregate and regional nitrogen
use and loss impacts below.

Table 5 shows compound fertilizer use results across five soybean
tariff scenarios. Nitrogen fertilizer use results can be found in Appendix
1. As soybean tariff on imports from the US increases from 0% to 30%,
compound fertilizer uses increases in soybean and corn production and
decreases in wheat and rapeseed production. Soybean is the least N-
intensive crop among the five modeled in this study. Nevertheless,
greater soybean acreage and production results in an increased fertilizer
use for soybean production relative to the baseline. Soybean nitrogen
useincreasesfrom0.866milliontonsinthebaselineto 1.07 milliontons
in the highest tariff, a 23.75% increase. As expected, nitrogen use also
increases in corn production. Percentage increase in corn nitrogen use
(up to 2.24%) is smaller than in soybean. However, in absolute terms,
nitrogen use increase in corn production (324 thousand t) is greater than
in soybean production because corn is more fertilizer intensive than
soybean. Fertilizerusein wheat productiondecreasesfrom9.81t09.53
million tons as tariffs on US soybeans increase to 30%. Peanut fertilizer
use is almost unchanged. Cumulatively, nitrogen fertilizer use increases
by <1 %.

Table 6 shows nitrogen loss results, which are consistent with com-
pound fertilizerusetrendsinTable 5. Nitrogenlossincreasesinsoybean
and corn production and decreases in production of other crops. Nitro-
gen loss in soybean production increases by 23.26% in the 30% tariff
scenario, generating almost 12 thousand additional tons of surplus ni-
trogen. Cornnitrogensurplusincreases byupto35thousandt, whichis
a3.05%increase relative to the baseline. Wheat and rapeseed nitrogen
losses decrease as acreage, production and fertilizer use in these crops
decrease. Nitrogen surplus in peanut production is almost unaffected.
Cumulatively, nitrogen losses increase by up to 1% in the 30% tariff
scenario.

Regional nitrogen loss changes in the 25% tariff scenario relative to
the baseline are provided in Fig. 1 (tons) and Fig. 2 (percentage). The
results show that nitrogen loss increases in all provinces, but the changes
vary significantly across regions ranging between 5 tand 4592 t. In
percentage terms, these increases range from 0.05%to 2.97%increase
inNloss.ThelargestincreasesinnitrogenlossareobservedinNortheast
China (including Heilongjiang, Jilin, and Liaoning) and Inner Mongolia.
These are the top soybean and corn producing provinces in China. Ni-
trogenuseintheseareasishighandthevariationinnitrogenlossisalso

Table 5
Fertilizer use in China (thousand t).
Tariff 0% 5% 10% 15% 20% 25% 30%
Soybean 866.06 884.85 912.14 947.83 992.03 1032.20 1071.76
2.17% 5.32% 9.44% 14.54% 19.18% 23.75%
Wheat 9810.59 9761.88 9714.64 9667.35 9620.08 9574.27 9529.91
-0.50% -0.98% -1.46% -1.94% -2.41% -2.86%
Corn 14,507.67 14,561.79 14,614.31 14,664.42 14,716.06 14,774.99 14,832.04
0.37% 0.74% 1.08% 1.44% 1.84% 2.24%
Peanut 1377.92 1377.86 1377.81 1377.74 1377.69 1377.64 1377.59
0.00% -0.01% -0.01% -0.02% -0.02% -0.02%
Rapeseed 1498.00 1495.02 1492.13 1489.32 1486.59 1483.95 1481.30
-0.20% -0.39% -0.58% -0.76% -0.94% -1.11%
Total 28,060.23 28,081.40 28,111.03 28,146.67 28,192.45 28,243.04 28,292.60
0.08% 0.18% 0.31% 0.47% 0.65% 0.83%

Note: tariff refers to China's increased tariffs on US soybean imports; % in parentheses are the deviations relative to the baseline scenario.
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Table 6
N losses in China (thousand t).
Tariff 0% 5% 10% 15% 20% 25% 30%
Soybean 50.14 51.23 52.83 54.91 57.49 59.94 61.80
2.19% 5.36% 9.52% 14.66% 19.56% 23.26%
Wheat 767.67 764.14 760.71 756.82 752.40 748.11 743.96
-0.46% -0.91% -1.41% -1.99% -2.55% -3.09%
Corn 1149.65 1156.21 1162.14 1167.53 1173.02 1178.95 1184.69
0.57% 1.09% 1.56% 2.03% 2.55% 3.05%
Peanut 79.94 79.93 79.93 79.93 79.92 79.92 79.92
0.00% -0.01% -0.01% -0.02% -0.02% -0.03%
Rapeseed 122.58 122.31 122.05 121.80 121.56 121.33 121.09
-0.22% -0.43% -0.63% -0.83% -1.02% -1.21%
Total 2169.97 2173.83 2177.66 2180.99 2184.40 2188.25 2191.46
0.18% 0.35% 0.51% 0.66% 0.84% 0.99%

/\/ National boundary
./ Province boundary

No data The change of N loss (ton)
0 300 600  E——
m km 4.72 160.40 4591.82

Fig. 1. N loss increase in the 25% tariff scenario on soybean imported from US.

higher than the national average. Hence an increase in nitrogen loss
poses a greater threat to the environment in these provinces. Nitrogen
lossin Hebei, Henanand Shandongin central Chinaareaverage across
provinces. Some provinces in southern China, such as Hainan, Guangxi,
and Jiangxi, have relatively low nitrogen use. Thus, total nitrogen loss
increaseofthese provinceislow, despite highrates ofnitrogenloss.

6. Discussion

International agricultural trade plays a pivotal role in ensuring
global food security. Food and agricultural commodity imports are
particularly crucial in regions such as China, where there is limited
arable land and food demand is growing. Numerous studies have
assessed the impact of agricultural trade on agricultural land use savings
in China. Forinstance, China's grain imports have saved 62.25 million
ha of agricultural land use annually between 2002 and 2020. The im-
portsofsoybeanandwheataccountformostofthelandusesavings (Cao
and Yuan, 2022). Over the past five decades, international agricultural
trade has significantly enhanced global land use efficiency and saved
approximately 2270 million hectares ofagriculturalland (Baietal.,

2022).

Although the benefits of international trade have been well recog-
nized, concerns about the impacts on environmental quality have also
been raised (Bajona and Kelly, 2012; Shi et al., 2016). Intuitively, in-
ternational agricultural trade can benefit the environmental quality of
the importing countries at the potential expense of the exporting
countries (Martinez-Melendez and Bennett, 2016). Shietal. (2016)
conclude that China's total nitrogen utilization in agricultural produc-
tion is significantly lower with international trade than without. How-
ever, trade can also have an opposite effectin some contexts due to crop
heterogeneity in fertilizer use intensity. For example, domestic envi-
ronmental quality may suffer from importing low nitrogen intensity
crops like soybean if domestic soybean production is replaced with
relatively more nitrogen intensive crops like wheat (Oita et al., 2016;
Martinez-Melendez and Bennett, 2016; Sun et al., 2018). Hence, the
effect of trade on the importing country's environmental quality can be
theoretically ambiguous.

We illustrate the relationship between international agricultural
trade and environmental impacts in China by empirically examining the
effect of a bilateral trade barrier on nitrogen loss. Our illustrative
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Fig. 2. N loss percentage increase in the 25% tariff scenario on soybean imported from US.

scenarioresembles the 2018 trade conflict where Chinaimposeda25%
retaliatory tariffon agricultural commodities imported from the US. We
focus on the effects of a potential structural change rather than a tem-
porary trade barrier. We show that a tariff on the US soybeans signifi-
cantly reduces soybeanimports from the US and increases the imports
from the rest of the world. However, the increase in ROW imports does
not entirely offset the decrease in US imports. Hence, soybean acreage
and production in China increase. Corn acreage and production in China
also increase because soybean and corn are often planted in rotation.
The increases in soybean and corn acreages and production come with
greater nitrogen fertilizer use and loss relative to the baseline scenario
withno tariffon soybeanimports from the US. The marginal decreasein
nitrogen surplus from the decrease in wheat, peanut, and rapeseed
production does not offset the N loss increase in corn and soybean
production. As aresult, cumulative N loss in China increases.

We document that a tariff on US soybean, the dominant import
commodity in China, increases domestic acreage and production, dis-
placing some of the acreage of other crops like wheat. This substitution
decreases nitrogen use and surplus because soybean is less N-intensive
than wheat. However, soybean is often planted in rotation with corn.
Therefore, corn acreage also increases alongside soybean, which posi-
tively affects N use andloss.

We find that N use and surplus increase relative to the baseline
scenario. The effects of the tariffon N loss are heterogeneous across
regions.Inthescenariowitha25%tariffon USsoybeans, theincreasein
Nlossacross provincesin Chinaranges between 0.05%and 3%. Hence,
theimpactofa25% tariffon US soybean on N runoffin Chinese pro-
vincial regions is small in relative terms. However, even a relatively
smallincrease of 3% in N runoff can harm sensitive ecosystems. Liu
(2017) found that excessive nitrogen fertilizer use in China is concen-
trated in North China (Neimenggu, Hebei, Henan, Shangdong) and
South China (Guangdong and Hainan). Our results show that a soybean
import tariff has greatest impact on nitrogen fertilizer loss in these two
areas.

Our results show a small but negative effect of international trade

friction on environmental outcomes. The positive effect of free trade on
environmental quality is consistent with other studies. Using data on
food production and trade between China and 26 other countries, Shi
et al. (2016) estimate that agricultural trade greatly reduced nitrogen
pollution in China. Liu et al. (2020) show that a trade conflict between
USand Chinaincreases global COzemissions. Yaoetal. (2021)indicate
that China would have generated a 1.8 Tg nitrogen surplus if its crop
portfolio imported from the US had been produced domestically. Lu
etal. (2022) also shows that multilateral trade between China and
Central Asian countries reduces nitrogen and phosphorus surplus in
agricultural production. We complement these studies by providing
evidence in support of the positive, though arguably small, impact of
free trade on environmental quality in China relative to trade with a
tariff on largest imported commodity from the US.

Several caveats of this study need to be made clear. First, the model
provides optimal production and consumption solutions from the
perspective of a centralized decision maker and does not account for
individual producer decision making nuances. This limitation is less
pertinent in the context of China than other countries, for which these
types of models have been used extensively (Xu et al., 2022; Elbakidze
etal.,2022; McCarland Schneider, 2001). Second, the modelincludes
only five major commodities produced in China. In this respect, the
model does not fully represent land use in China and provides a lower
bound of N loss. However, the omitted crops are not likely to cause a
significantbiasin the estimates of the changes in nitrogen loss because
the crops included in the model are most relevant in terms of land use
and N surplus. Third, the model represents a long-run equilibrium so-
lution rather than the short-term land and nitrogen use changes in
response to a trade shock. Therefore, the model is not suitable for
evaluating short term impacts of a one-time trade shock on land and
fertilizer use. Instead, the solutions are bestinterpreted as long run re-
sponses to a structural change in trade arrangements.



J. Wang et al.

7. Conclusion and policy implication

Our research makes a valuable contribution to the existing body of
literature byinvestigatingthe nutrientrunoffimpactsofanagricultural
trade barrier between the two largest trading partners, the US and
China. Specifically, we examine how a tariff imposed by China on soy-
bean imports from the US affects cropland nitrogen loss in China. The
results provide evidence in support of small but negative effect ofan
agricultural trade barrier on environmental quality in China, com-
plementing the findings in recent literature (Yao et al., 2021; Lu et al.,
2022; He et al., 2019).

The results show that the tariff on soybean imports from the US
decrease imports and increase domestic soybean and corn production in
China. While there is a decline in the planting and production of other
crops, the overall cropland in China expands due to greater corn and
soybean planting. Hence, trade barriers on primary agricultural com-
modities affect crop productionandincrease environmentalrisks, even
in the importing country.

Our study reveals a complex interplay of factors resulting from
reduced soybean imports. On the one hand, the decline in imports
prompts an increase in domestic soybean production, displacing the
cultivation of more nitrogen-intensive crops like wheat. This displace-
ment reduces N surplus. However, corn planting and production in-
crease due to the soybean-corn rotation practices often employed in
China. The augmented production of soybean and cornleads to greater
fertilizer usage and increased nitrogen loss. The reduction in fertilizer
uses and N loss from decreased production of other crops is modest in
comparison to the N use increase in corn and soybean production.
Hence, thesechanges have anet positive effecton nitrogenloss because
corn is the most N-intensive commodity and its domestic production
increases significantly in response to the barrier on soybean imports.
The expansion of soybean and corn planting exceeds the decrease in
other crops. Consequently, the cumulative N loss grows when a trade
barrier impedes soybean imports.

We show that the effects of the tariff on N losses are heterogeneous
across regions. In the scenario with a 25% tariff on US soybeans, the
increasein Nlossacross provincesin Chinaranges between 0.05%and
2.97%. Northeastern China, which includes China's main soybean-
producing regions, experiences a greater N loss than other regions in
China.

Appendix A. Appendix
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Acoupleofpolicyimplications can be derived from the studyresults.
Firstly, China should continue to promote its agricultural import
diversification strategy, enhance the resilience of its agricultural supply,
and mitigate the adverse impact of trade frictions on the agricultural
environment. Secondly, there is a need to coordinate agricultural trade
policy with nitrogen emission policymaking and to synergize the man-
agement of agricultural imports and agri-environmental objectives.
Thirdly, nitrogen fertilizer uses to crops needs to be regulated in a
categorized approach, with particular attention to the regulation of ni-
trogen fertilizer use to agricultural products that are highly affected by
international trade.
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Appendix 1
Nitrogen fertilizer use in China (thousand ton).
Tariff 0% 5% 10% 15% 20% 25% 30%
Soybean 311.41 318.23 328.12 341.06 357.08 372.33 383.84
2.19% 5.36% 9.52% 14.66% 19.56% 23.26%
Wheat 4768.15 4746.21 4724.90 4700.75 4673.27 4646.65 4620.87
-0.46% -0.91% -1.41% -1.99% -2.55% -3.09%
Corn 7140.66 7181.43 7218.25 7251.75 7285.87 7322.68 7358.33
0.57% 1.09% 1.56% 2.03% 2.55% 3.05%
Peanut 496.51 496.49 496.47 496.44 496.42 496.40 496.38
V.VLU70 -0.01% -0.01% -0.02% -0.02% -0.03%
Rapeseed 761.34 759.69 758.10 756.54 755.03 753.57 752.12
-0.22% -0.43% -0.63% -0.83% -1.02% -1.21%
Total 13,478.08 13,502.05 13,525.85 13,546.55 13,567.68 13,591.64 13,611.54
0.18% 0.35% 0.51% 0.66% 0.84% 0.99%
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Appendix 2
Nitrogen loss by province under the scenario 25% (ton).

Baseline Add 25% tariff Dev %Dev
Anhui 167,848.68 168,390.44 541.76 0.32%
Beijing 4105.33 4130.19 24.86 0.61%
Chongging 16,779.22 16,916.55 137.33 0.82%
Fujian 2397.25 2404.02 6.77 0.28%
Gansu 57,174.23 57,693.18 518.94 0.91%
Guangdong 8037.53 8101.06 63.53 0.79%
Guangxi 19,993.08 20,233.33 240.25 1.20%
Guizhou 32,145.32 32,174.73 29.41 0.09%
Hainan 366.07 370.80 4.72 1.29%
Hebei 191,154.64 192,404.61 1249.97 0.65%
Heilongjiang 211,045.28 215,637.10 4591.82 2.18%
Henan 283,260.05 284,333.04 1072.99 0.38%
Hubei 55,257.13 55,435.09 177.96 0.32%
Hunan 21,492.98 21,653.38 160.40 0.75%
Jiangsu 135,773.24 135,856.98 83.74 0.06%
Jiangxi 8643.26 8773.13 129.87 1.50%
Jilin 89,377.51 91,491.71 2114.20 2.37%
Liaoning 55,499.56 57,148.72 1649.16 2.97%
Neimenggu 166,041.65 169,021.62 2979.97 1.79%
Ningxia 18,566.23 18,770.57 204.34 1.10%
Qinghai 4989.31 5026.42 37.12 0.74%
Shaanxi 83,606.88 83,984.27 377.39 0.45%
Shandong 251,224.47 252,384.66 1160.19 0.46%
Shanghai 2812.34 2823.20 10.86 0.39%
Shanxi 62,470.63 62,502.38 31.75 0.05%
Sichuan 60,931.44 61,482.68 551.24 0.90%
Tianjin 8491.33 8508.86 17.53 0.21%
Tibet 1282.16 1287.09 4.93 0.38%
Xinjiang 78,984.84 79,046.09 61.25 0.08%
Yunnan 60,183.12 60,210.39 27.28 0.05%
Zhejiang 10,037.09 10,057.74 20.65 0.21%
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