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Abstract—Deformable convolutions can improve detection ac-
curacy in Convolution Neural Networks (CNNs) by leveraging
flexible spatial sampling in augmenting kernels with learnable
offsets. However, the resulting irregular memory access pat-
terns and additional pixel lookup overhead introduced by de-
formable layers pose inherent challenges when executed on high-
throughput devices such as GPUs. To address these challenges,
we introduce DEFCON, a systematic approach to optimizing
deformable convolutions. DEFCON is designed to provide: (1)
better placement of operators in the neural architecture using
interval search, (2) reduced computational demands by leveraging
lightweight operators, and (3) optimized inference by using
GPU texture hardware. By performing an interval search, we
reduce the number of deformable layers in our architecture.
By leveraging the GPU’s texture hardware, we are able to use
lightweight operators to improve the execution performance of
layers, without sacrificing prediction accuracy. By combining
these approaches, DEFCON increases the inference performance
by 2.8x over YOLACT++ implementation, when run on an
NVIDIA Jetson AGX Xavier GPU. Our work enables faster
and more accurate predictions when performing deformable
convolutions.

Index Terms—GPUs, Deformable Convolution, Interval Search

I. INTRODUCTION

During the past decade, research has significantly advanced
the state-of-the-art in object detection and image segmenta-
tion [1]-[9]. Convolution Neural Networks (CNNs) have paved
the way for groundbreaking approaches toward object detec-
tion. Earlier CNNs were unable to effectively accommodate
geometric or spatial variations in terms of object scale, pose,
viewpoint, and partial deformation [10]. Therefore, two ap-
proaches were followed: i) data augmentation, which includes
spatial variations in the training dataset [11], [12], and ii) hand-
crafting of feature layers, such as pooling [13], [14]. However,
such highly specialized approaches could not be generalized
for new datasets or handle complicated deformations that
require a different receptive field.

Earlier CNNs used rigid geometric structures as the recep-
tive field to perform spatial sampling in fixed locations [1],
[9]. However, some regions in an image are commonly more
important than others, thus it could be advantageous to have
a more flexible spatial sampling pattern applied across the
image [10], [15]. Dai et al. [10] introduced flexible spatial
sampling that could be applied to deformable convolutions.
They have been heavily leveraged to improve the accu-

racy of contemporary models, such as YOLACT [16] and
YOLACT++ [17].

Deformable convolutions (DCNs) allow flexible kernel
shapes through learnable offsets versus relying on neural
network engineers to handcraft feature layers to extract specific
features. These offsets are dynamically computed through
an additional convolution layer for each input feature map.
The computed offsets are then used to augment the spatial
sampling available through a rigid kernel (used in regular
convolutions). Thus, the adaptability of a neural network is
significantly improved by allowing the neural network to
accurately categorize variations that are not available in the
training dataset.

Compared to standard convolution, the increase in adapt-
ability comes with extra computational costs because of the
additional convolution operations required to compute learn-
able offsets. However, the associated accuracy improvements
can justify an increase in the compute time. As these models
are now increasingly being deployed on edge devices, it has
become important to provide real-time inference performance.

In this context, this work characterizes the underlying com-
putational patterns associated with deformable convolution and
explores how to properly optimize the execution of these oper-
ations on GPUs. In particular, this work first identifies unique
challenges (and optimization opportunities) encountered when
searching for the best neural network architecture with the
presence of deformable convolutions during training and then
exploits optimization opportunities specific to model inference.

There are two optimization opportunities during the training
stage when performing the neural architecture search. First, the
placement of deformable layers has usually been performed
by hand [10], so the overuse of deformable layers to improve
accuracy can lead to an inefficient inference. To address this
problem, this work employs an interval-based search method
to automate the placement of deformable layers, achieving
better accuracy than the state-of-the-art YOLACT++ [17]
framework. Second, using regular 2D convolutions to com-
pute offsets results in performing two convolution operations
instead of one (one for offset computation and the other for the
actual convolution of the input/activations with the weights).
Inspired by MobileNetV2 [9], our work here replaces a reg-
ular 2D convolution with depth-wise convolution operators to
compute offsets. Both techniques are geared toward optimizing
neural architecture and improving performance during the
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training pipeline.

In addition to training-based optimizations, there are op-
portunities to optimize deformable convolutions during the
inference stage. The first tries to optimize adaptive receptive
field computations, which suffer from irregular access to the
input pixels on the GPU. Since the spatial locality of memory
accesses is low, the resulting computation is not GPU-friendly.
Since the computed offsets are fractional, a direct lookup
cannot be performed per pixel just by augmenting the original
kernel coordinates with the offsets. A bilinear interpolation
using four neighboring pixels is required. In the case of bound-
ary pixels, additional branch statements are required to ensure
program correctness. Both of the aforementioned challenges
can be addressed effectively by treating computation as a
graphics application instead of purely computational, partic-
ularly by leveraging GPU’s built-in graphics processing hard-
ware capabilities. We can leverage the GPU’s texture memory
to store pixel values with high spatial locality and support
linear, bilinear, and trilinear interpolation. This idea has not
been explored in previous state-of-the-art implementations of
deformable convolutions (e.g., the one in PyTorch [18]). In
addition, we perform a search space exploration for the best-
suited tile size for deformable offset computation when using
texture hardware. Our evaluation shows that the choice of tile
size significantly impacts the performance of deformable offset
computation.

In summary, this work proposes a multi-step optimization
approach for deformable convolutions, namely DEFCON, con-
sidering both algorithmic optimizations and hardware char-
acteristics. The resulting computation is better suited to the
characteristics of the underlying GPU. Our contributions are
summarized as follows:

« We automate the deformable layer placement by proposing
a new interval search technique applied during the training
stage to achieve the lowest inference latency and satisfy
model accuracy. Through interval search, we find that
applying deformable convolutions is particularly beneficial
in the downsampling layers (i.e., regular 2-D convolution
layers, with a stride=2).

We propose a novel technique to load channel-wise coordi-
nate offsets to the GPU texture units and perform bilinear
interpolation using GPU hardware, instead of existing soft-
ware implementations of bilinear interpolations.

We also study the impact of tile size selection on execution
performance when using texture units, and propose the use
of a search space exploration to find the best tile size for a
given model and GPU.

With our proposed interval search methodology and the ef-
ficient use of GPU texture hardware, we increase the inference
performance by 2.8 over the state-of-the-art YOLACT++ on
an NVIDIA Jetson AGX Xavier GPU.

II. DEFORMABLE CONVOLUTIONS

This section reviews the characteristics of deformable con-
volutions and discusses some of the challenges associated with
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performance optimization when working with this workload
targeting GPUs.

A. Mechanics of Deformable Convolution

A regular 2-D convolution samples the input feature map
using a regular grid R. Then it sums the sampled values,
weighted by the values of w. The grid R defines the size
of the receptive field along with the dilation [19]. As an
example, for a 3x3 kernel with dilation 1, the grid: R =
{0, 5); 1,5 € {=1,0,1} and (i,j) # (0,0)}.

Therefore, for each output feature map location in a regular
convolution:

6]

In contrast, when using deformable convolution, the regular
grid R is augmented with offsets Ap;( 0 <i < |R|,i € 2).

Y(Po) = Ep,erw(pi)-x(po + pi)

(@)

Since these offsets Ap; are fractional, a bilinear interpola-
tion is required to determine the pixel value.

Y(Po) = p,erw(pi)-x(po + pi + Api)

z(p) = EyG(p,q) - (q) 3)

where p denotes an arbitrary location p, + p; + Ap; and
q enumerates all integral spatial locations in the activations.
G(z,y) is the bilinear interpolation kernel.

G(p,q) is computed using component-wise computations:
9(Px+ @x)> 9(Pys @y) and where g(pz, ¢.) = max (0,1 — [p, —
¢z]). Thus, only four neighboring pixels are required for the
bilinear kernel.

We can outline the deformable convolution computation as
follows:

@ 2 regular convolution (conv2D), with the input activations
and filter to derive the offsets.

@ a convolution with the input activations and a filter aug-
mented with offsets computed in the previous step used to
derive the final convolution output.

The goal of the o convolution step is to derive offsets
in the = and y directions. The offsets are derived on a per-
kernel value basis. For example, if a 3x3 kernel is used, 9
offset values are computed. Since the offsets are calculated
in both x and y directions, the number of offsets for a 3x3
kernel is 18 (18 = 9 x 2). The offset values can be shared per
input channel through a variable called a deformable group.
For example, when using deformable groups, input channels
can be grouped such that offsets are shared between groups
of input channels. This will keep the computational costs
and memory requirements in check, which would not have
happened if the input channels had not shared any offsets.
As shown in Fig. 1, the output height and output width are
computed similarly to a regular convolution. The number of
output channels is equal to deformable groups x kernel height
X kernel width x 2.

As the kernel moves through the image, the offsets also
vary. In the deformable convolution operation (step @), these
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Fig. 1. Deformable offset computation.

offsets are augmented on the kernel coordinates to allow
for arbitrary shapes. As mentioned earlier, since the offset
computed (Ap;) is fractional, a regular pixel lookup cannot
be performed on z. Thus, we apply bilinear interpolation to
each pixel value along the x and y directions, choosing the
four nearest-neighbor pixels. In the case where the pixel of
interest lies in a boundary region, the value of out-of-bounds
neighbors is taken as zero. We will see that this computation
is supported in texture hardware.

offsets

kernel

Input feature map Output feature map

Fig. 2. Deformable convolution.

B. Hardware Deployment Challenges

Although deformable convolution provides us with flexi-
bility, it also poses some inherent challenges. Compared to
a regular conv2D operation, the use of offsets to allow for
arbitrary kernel shapes means that the input pixels are often
accessed in a more random manner. Thus, the efficiency of
the GPU’s coalescing unit will be impacted. Recent work
on accelerator designs has attempted to address this problem
through input and output tiling [20]. However, such tiling
strategies on GPUs tend to be computationally expensive, as
each inference would require a tile-matching mechanism.

The other main challenge faced with using deformable
convolution is the additional overhead of bilinear interpolation.
For each output feature pixel computation, a bilinear interpo-
lation must be performed with four adjacent neighbors. Hence,
for each output pixel, four multiplications must be performed,
along with three additions. Current implementations often
resort to bilinear interpolation at the software level. Thus, it
would require additional clock cycles compared to a regular
conv2D operation for a simple operation, such as the lookup of
a pixel. However, as we will discuss in the next few sections,
by treating this computation as a graphics problem, we are

Algorithm 1 Gradient-based architecture search with Gumbel
Softmax sampling, to search deformable convolutions.

Require: )" i, >0
Ensure: > [al >al] o) - t(w,) =T
Interval Search:
for each search epoch do
for each iter do
for each layer n do
dnsr = X 5 gty whid)
end for > get output
L <+ criterion(output, label)
Ly [, fal > ab] - al - tw,) = T|’
backpropagate (L + L), update parameters
end for
end for
Select Layer Type by the Magnitude of o.
Fine-tune the result architecture:
for each fine-tuning epoch do
for each iter do
for each layer n do
dyy1 = W (dn)
end for
L + criterion(output, label)
backpropagate (L), update parameters
end for
end for

> get output

able to exploit much of the GPU’s built-in hardware that
supports bilinear interpolation and, in fact, reduce floating
point operations while improving instruction level parallelism.

III. DEFORMABLE OPTIMIZATIONS

We take a holistic approach to deformable optimizations
and focus on both the training and inference stages. Fig. 3
summarizes our optimizations. We begin by deciding the
placement of deformable operators in the neural network by
using our interval search technique. Later, we reduce the
computational cost of these layers by substituting regular
convolutions with depthwise convolution operators (referred to
as lightweight operators). To improve inference speed, we also
include bounded deformations. In the final step, we perform
GPU texture-based optimizations which boost the inference
speed. Next, we will discuss each technique in detail.

Bounded
Deformation

Texel-based
Optimization

o (b] o dJ

Fig. 3. Sequence of deformable optimizations.

Interval
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Search
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A. Algorithm Improvements

@ Deformation Interval Search: In state-of-the-art appli-
cations using deformable convolution [17], [21], deformable
operations are often manually applied in the last several
stages to extract high-level spatial information. Information
is obtained by applying deformable convolution layers as a
sequence or by interleaving regular 2-D convolution layers
with deformable convolution layers to limit the high inference
cost. For example, YOLACT++ [17] applies DCN in the last
three stages of the ResNet backbone, using an interval of 3. It
is obvious that these handcrafted design choices are far from
optimal and lack adaptability when trying to classify untrained
inputs, which is one of the main goals of using deformable
convolutions. Instead of using hand-crafted layer placement, in
this work, we propose a systematic method of deformable con-
volution layer placement guided by a gradient-based interval
search method which automatically decides the best positions
in the neural network to apply deformable convolutions. With
such a system in place, we can automatically reduce the total
number of deformable layers without compromising accuracy.

We formulate the differentiable interval search as a bi-level
optimization problem:

Loin L(D,W,A)+ - Ls(A) 4
where L refers to the task loss, D represents input data, W is
the set of trainable parameters (i.e., weights) in the network,
and A is the set of architectural parameters that determine
whether to use regular 2-D convolution or deformable convo-
lution. To manage the inference speed of the final model in
a user-specified manner, a speed penalty L is applied to the
architectural parameters if a deformable convolution operator
is used, and [ is a hyperparameter to balance loss and stabilize
training.

Our gradient-based interval search approach is illustrated
in Fig. 4(c). We first construct a dual-path layer [22], with
a deformable convolution and a regular one. The convolution
outputs are linearly combined using Gumbel Softmax sam-
pling [23], which can be formulated as:

=5 e

where d represents data (features) of two consecutive layers:
n and n + 1, « is the architecture parameter and w denotes
trainable weights of the corresponding layer. ¢ ~ U(0,1)
ensures exploration, and 7 is the temperature. ¢ € {0, 1} repre-
sents the dual operator of regular convolution and deformable
convolution in our case. With Gumbel Softmax sampling,
the derivatives with respect to w and « can both be easily
computed, so that we can perform interval search in a gradient-
based fashion.

As the target of our network architecture (interval) search,
we aim to constrain the inference latency on edge GPUs
(e.g., NVIDIA Jetson AGX Xavier). Prior work collected on-
device latency data to build a lookup table [24]-[26], which
was used to estimate candidate neural network layer latency

e(a +£ )/ T
el T/

-w}, (dn,) 5)

n+1
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during the search, or deploy each candidate layer on-chip to
gather real latency data [27]. In this work, we build our search
algorithm based on collecting on-device latency and building a
lookup table, since deformable convolution is only applied in
certain 3 X 3 conv2D layers, e.g., the 3 X 3 convolution in the
Bottleneck block in ResNet-101, and it is trivial to collect their
latency with all possible configurations. If we denote a® as
the architecture-specific parameter of a regular convolution,
while o' is the corresponding parameter of the deformable
convolution, the latency penalty of the interval search can be
expressed as:

2

D lag, > el e tw,) =T

n

L= (6)
where ¢ denotes the latency mapping that stores latency, based
on DCN characteristics (feature size, input and output channel,
etc.). [-] is an element-wise transform from {True, False}
to {1,0}, and does not require a gradient. 7 is the target
latency, and ) - denotes the latency accumulated by blocks.
In summary, the gradients with respect to the architecture
parameters are computed as follows:

aL(D, W, A)
Goo = 04
8(10 (7)
G _ DEDW.A) oL,
ol T dal dal

where the second derivative in G1 (e.g., gif
lated from Equation (6).

oL,
dal,

) can be calcu-

=2 (Jal, > ab] ol tw,)~T) [, > ab | -t(w,)
®)

The entire workflow of our proposed interval search is
shown in Algorithm 1.

@ Lightweight Offset Convolution: In the context of
deformable convolution, input-adaptive spatial sampling is
achieved by introducing an additional convolution layer that
learns and predicts the offset for each input feature map during
inference. Our observations have shown that using regular 2-
D convolution is excessive for this purpose. Hence, inspired
by MobileNet [9], we replace standard 2-D convolutions
with depth-wise convolution operations (also referred to as a
lightweight convolution in this work). The computational cost
of a regular 2-D convolution is W2k2XCX3X3, where 3 is the
kernel size, C'is the input channel number, and k is the kernel
size of the following deformable convolution. However, our
lightweight implementation replaces this convolutlon with two
consecutive layers, W& *13%3 and Wzk XOXIX where W,
is a depth-wise 3 x 3 convolution and Wy isa 1x1 convolutlon
to linearly combine the output and transform it to the required
dimension (2k?). Assuming that we perform a deformable
convolution with & = 3, this lightweight replacement can
reduce multiply-accumulate (MAC) operations by:

HxWx3x3xCH+CxHxWx1x1x2xEk

1= CxHxWx3x3x2xk2 :83('93)%
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(a) DCN

(b) Bounded and Lightweight DCN
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(c) Interval Search

Fig. 4. The DCN optimization paradigm. (a) is the original DCN; (b) shows optimizations applied using the bounded offset and light-weight convolution; (c)

illustrates the gradient-based interval search.

Batch normalization and ReLU activation are applied after
the first depth-wise convolution, but not for the following
1 x 1 convolution, as it outputs the floating-point offsets
used to augment the kernel as explained in section II-A. The
architecture of our lightweight DCN is shown in Fig. 4(b).

@ Bounded Deformation: The flexible receptive fields of
DCNs tend to reduce the available spatial locality of input
pixel access during kernel execution. Thus, this computation
pattern is not the most hardware-friendly form of convolution.
One intuitive and more reliable solution is to set an upper limit
on the deformation so that memory accesses to outliers are
avoided, improving the spatial locality. Furthermore, enabling
an arbitrarily large receptive field within a single layer is
unnecessary from a spatial perspective since using a stack
of conv2D layers can naturally achieve the same effect in
detecting image features. In practice, if we assumed the upper
boundary of offsets was defined by the hardware accelerator
was P, we could restrict the learned offset to [0, P] before the
application of the deformable kernel. The application of the
bounded deformation is illustrated in Fig. 4(b). We determine
the appropriate boundary value (P) by exploring the boundary
limits, as shown in Fig. 5. oo denotes unrestricted deformation,
and the lowest boundary is chosen to be the kernel size.
We observe that choosing an upper bound of greater than
7 for deformable convolutions leads to negligible accuracy
gains compared to setting the upper bound to 7. Hence, we
determine that using an upper bound of 7 is the best choice
for deformable convolutions in terms of accuracy.

A closely related approach is to use rounded offsets [28],
[29], which round the sampling coordinates to their closest
integer values so that bilinear interpolation can be avoided.
However, rounding the sampling coordinates which are in
floating point format to integers ultimately results in a sig-
nificant loss of accuracy [28], [29]. Therefore, we do not
employ such techniques in our model training and rely on

648

@ box -4~ mask
40.0 1
37571 g
< p SR TS I e SR
= 35.0 Rl S
R 0.7
e
3007 : : , : . : . ]
00 10 9 8 7 6 5 4 3
P

Fig. 5. Determining the P value for bounded deformation.

GPU hardware to perform bilinear interpolation.

Another closely related and popular technique is to employ
square-shaped deformation, which constrains the shape of the
deformable kernel [28], [29] to promote better spatial locality
of memory accesses. However, the resulting convolution kernel
is effectively a simple dilated convolution using a rigid kernel
size, forgoing the superior advantages of using flexible recep-
tive fields available with the original version of the deformable
convolution [10].

B. Hardware Optimization

@ Texel-based Optimization: GPUs provide a number of
hardware features specifically for graphics processing. In this
section, we will look at how to leverage the texture units and
use reduced-precision interpolation to improve performance.

GPU texture memory is a read-only memory that is designed
to fetch data elements for applications that possess high spatial
locality. Texture memory is also cached in a dedicated, read-
only, texture cache. However, it is designed to stream fetches
with a constant latency [30].

Textures have built-in functionality, such as read mode,
addressing mode, and filtering mode; Read mode allows access
to pixels using normalized coordinates. Addressing mode spec-
ifies how out-of-bounds pixels are handled. The default mode
is used to set values to zero for out-of-bounds values. With
normalized coordinates, wrap mode, and mirror mode are also
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available for addressing. With the wrap mode, each coordinate
x is converted to frac(x) = x — floor(x), where floor(x) is
the largest integer not greater than x. With mirror mode, each
coordinate x is converted to frac(z), if floor(x) is even,
and 1 — frac(x) if floor(x) is odd. Filtering mode specifies
how the fetch value of the texture is computed based on
the input texture coordinates. Linear texture filtering performs
low-precision interpolation between neighboring texels. When
enabled, the texels surrounding a texture fetch location are
read. The returned values are interpolated based on where the
texture coordinates fall between the texels. Linear interpolation
is performed for one-dimensional textures, bilinear interpola-
tion for two-dimensional textures, and trilinear interpolation
for three-dimensional textures. Using these features, software-
level interpolation of pixels can be converted to a hardware-
level interpolation of texels.

One of the major challenges of using texture memory for
input feature map storage is the requirement to have a layered
view (i.e., each channel of the input feature map should be able
to perform interpolations without interfering with neighboring
channels). NVIDIA GPUs that have texture memory provide
two types of layered texture memory types: layered texture and
mipmapped arrays. As mipmapped arrays are pre-computed
pyramidal structures of optimized sequences of images that are
not suited for layered computations, we limit our discussion
to layered textures [31].

A layered texture (whether 1-dimensional or 2-dimensional)
is a texture made up of a sequence of layers, all of which
are regular textures with the same dimensions, size, and data
type. This construct can be easily adapted to an input feature
map, as each layer can be used to store separate channels.
Also, since the CUDA API provides one-step data loading for
layered textures, the programming complexity and the memory
transfer cost are comparatively low. However, the input feature
maps are 4-D tensors and consist of batch, channel, height, and
width dimensions. This problem can be addressed by merging
the 15 and 2 dimensions, and using an index to navigate
between mini-batches (i.e., batch;q, X number of channels).

Mipmapped arrays are widely used in gaming engines to
simulate the illusion of near and far objects by lowering the
resolution of distant objects in the game, until the user is
in close proximity to the object [32]. Thus, mipmaps are
pre-computed pyramidal structures of optimized sequences of
images, each of which has a progressively lower resolution
representation than the previous image. However, due to the
pyramidal structure of mipmaps, each layer must be loaded
and computed using the previous layer. Since this functionality
is inconsistent with our desired behavior, we use a layered
texture for storage. Furthermore, there is also surface memory,
which provides read and write support. However, as we are
not interested in writes to input features, we do not consider
leveraging surface memory for storage.

One thing to note is that 2-D layered textures on an NVIDIA
Jetson Xavier AGX GPU are limited to 32,768 by 32,768
by 2048 (height, width, and number of layers, respectively).
Since layered dimensions are used to store both batch &
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channel dimensions, the number of batches x the number of
channels should be less than or equal to 2048. Since we are
targeting inference, this limit is more than enough to support
almost all convolutional networks targeting vision. However,
during training, with the use of multiple GPUs and multiple
mini-batches (as high as 32 or 64), the developers must be
aware of the texture memory limitations. To handle memory
limitations, a partitioning scheme can be used so that only
a subset of mini-batches are loaded into texture memory.
However, such a scheme results in the overhead associated
with multiple invocations of the GPU kernel. Therefore, during
large mini-batch training, it could be more beneficial to use
global memory and to strategically avoid the use of texture
units for larger layers. We leave this analysis for future work.

IV. EVALUATION

This section evaluates the accuracy of DEFCON! by com-
paring it with three state-of-the-art YOLACT++ neural net-
works: YOLACT with ResNet50 backbone, YOLACT++ with
ResNet50, and YOLACT++ with ResNet101. We then evaluate
the execution performance of DEFCON by comparing it with
YOLACT++ (ResNet101 backbone).

A. Evaluation Methodology

Evaluation Objectives. Our overall evaluation demonstrates
speedups produced by DEFCON through the use of GPU
texture cache and the benefits of our interval search method
for neural architecture search. Specifically, our evaluation
has three objectives: (1) demonstrating that DEFCON op-
timizations achieve similar or improved accuracy compared
to the state of the art, (2) showing that DEFCON outper-
forms the PyTorch framework when performing deformable
operations, without compromising accuracy, and (3) exploring
performance effects and explaining why DEFCON brings
performance gains.

Benchmarks and Datasets. Our experiments use
YOLACT++ [17], a state-of-the-art real-time instance
segmentation model, which applies deformable convolutions.
We use YOLACT++ with ResNet50 and ResNet101 as the
backbone for accuracy evaluations and with ResNet101 as
the backbone for performance evaluations as more DCNs
are used with the latter backbone. We train the model on
MS COCO [33], which is a large-scale object detection,
segmentation, key-point detection, and captioning dataset
available from Microsoft. We employ the 2017 release, which
has a split of 118K/5K images for training/validation. To
evaluate performance, we follow the standard COCO metric,
computing the mean Average Precision (mAP) measured over
multiple IoU thresholds, and we report both box and mask
mAP for this instance segmentation task.

Hardware and Software Configurations. We evaluate the
DEFCON performance on an Nvidia Jetson AGX Xavier GPU
running Jetpack 4.5.1 and PyTorch 1.9.0. In addition, we
evaluate the performance of DEFCON on an Nvidia 2080Ti

! Artifact available at https:/github.com/malithj/dcn-defcon.

Authorized licensed use limited to: William & Mary. Downloaded on September 09,2024 at 18:12:11 UTC from IEEE Xplore. Restrictions apply.



< < < 0 & < Q 8 8 © 8 8 © 2 I
2l 3 (o (=) (o gl 5 s B o0 R S RS
x o 3 3 338 8lal 8 8 lel &8 8 lal g 2
%+s»5+s»s»w»‘_+F»‘|~_A»—»N+g»u»~»N+«»~»
C— > 3 3 z 3 3 z 3 3 z 3 3
8383888 33%33%3%%2%3;3
© o

o B o o Bl o o B o o B o o

< < < © = & * © 2 2 2 8 2 2 2
AR 1 R
X o T T % e Q2 s e @ 8 © @ o © @
g-2-2-2-2-3-8-9,.8,.8,8.8-8-8-8-8-28>
© oz 5 L 3 Iz 3 5 5 5 3 5 3
e s s @B zZEElZzZ 22 2 22
© [=]

OROR® 8 g @ & g 6 6 06 6 o0 ©°
Fig. 6.

DCN: 256 - 256
v

CONV: 256 - 256

©o ©o © ©o ©o ©o ©o © ©o ©o ~N o~
0 ) ©° 0 0 ©° n 0 ©° 0 0 ©° n 0 o = =
SUROTE TG S ERGIRORE <1 IRGIRGER = OTRIGHE 5 R
ANGIR R  RE  R  R
N»N»ﬁ»m»u»ﬁ»a»m»ﬁ»u»u»n»«»oa»g}»m»m»
s 2 3 32 32 3z 2 32 z 32 32 % 2 2 % 2 2
z =z 3 z z 53 z z 35 z z 3 z =z 35 =z =
ol oo oo ol oS o Elo o ilo o
o o o (8] o o o o o o o o
£ 8 8 £ 2 2 o £ £ £ 28 £ £ £ & & «
SHORSE R PSR R PR ol P s e e S
© @ © 8 © @8 5 © 8w © © © © 9 4 & «
'Y g ') wn g wn 'Y g ' wn 'Y wn '

>R >A>0>0>A>8>A>0> K> A+ R>R>A>8Q>5>5 >
s 2 2 2 £ 2 z 2 2 2 2 2 2 2 z z =z
zZ z z2 z =z Zz &8 2 z =z z =z z =z |§ |5 /5
o o o o o o B o o o o o [o o ISy ey e
o o (3] o o o o o (3] o (5] o (3]

Interval search results on YOLACT++ [17] with ResNet101 backbone network. Each box represents the 3 x 3 convolution of the residual block.

Top: applying DCN layers at an interleaved interval of 3 as proposed in YOLACT++. Bottom: applying DCN using our proposed interval search method. Our
interval search reduces the number of DCN layers by 2 while achieving higher performance (41.05 Mask mAP).

TABLE 1
ACCURACY OF OUR OPTIMIZED DCN ON YOLACT [16], [17] INSTANCE SEGMENTATION TASK.

Method Backbone Resolution  # of DCNs ~ Box mAP  Mask mAP  Mask AP50

YOLACT ResNet50 550 0 29.79 27.97 45.92
YOLACT++ ResNet50 550 13 34.72 34.51 54.22
YOLACT++ ResNet50 550 5 34.69 34.11 53.27
Ours ResNet50 550 5 34.81 34.44 53.85
YOLACT ResNet101 550 0 32.07 29.73 48.01
YOLACT++  ResNetl01 550 30 36.68 35.75 55.05
YOLACT++  ResNetl101 550 10 35.07 34.62 53.79
Ours ResNet101 550 8 35.38 35.35 55.51

running PyTorch 2.1. Following the configurations presented
in prior work [17], we set the input resolution to 550 x 550.
We employ an initial learning rate of 10~2 and decay by 10~*
at selected iterations, which saturates to 10~%. For training
purposes, we use a total mini-batch size of 128 images. As a
result, the number of training iterations is decreased from 800k
to 50k, as we increase the total mini-batch size. A Stochastic
Gradient Descent (SGD) optimizer is used for training with a
momentum of 0.9.
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Fig. 7. Deformable operation speedup.
TABLE 11
DEFORMABLE OPERATION SPEEDUP ON XAVIER.

In Out H w PyTorch | tex2D | tex2D++ Speedup
ch ch (ms) (ms) (ms) w.r. Torch
128 | 128 | 138 | 138 6.87 6.01 4.89 1.41x
128 | 128 | 69 69 23.03 17.54 17.23 1.34 %
256 | 256 | 69 69 23.02 17.67 17.25 1.33%x
256 | 256 | 35 35 47.87 35.60 34.53 1.39x
512 | 512 | 35 35 25.25 20.22 18.15 1.39%
512 | 512 18 18 97.00 72.33 69.48 1.40%
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B. Accuracy Evaluation on Instance Segmentation

We report accuracy results in Table I, corresponding to
applying the optimizations described in Section III-A. To test
a backbone image detection network, we use ResNet50 and
ResNet101 [3]. Utilizing the same or even fewer DCN layers,
our method consistently outperforms baseline YOLACT++
models by a large margin of accuracy. When using the
ResNet50 backbone, our optimized network outperforms the
YOLACT++ baseline by 0.33 mask mAP. Further, with the
ResNet101 backbone, we can achieve a +0.73 mask mAP
with bounded offsets, using lightweight modifications and with
even two fewer DCN layers than YOLACT++.

We demonstrate the benefits of using the DCN interval
search method using a ResNet101 backbone network in Fig. 6.
Our interval search reduces the number of DCN layers by 2,
while achieving a +1.05 Mask mAP, by determining the best
placement positions of DCN layers in the network. We observe
that deformable convolutions are especially advantageous in
downsampling layers (i.e., applied to regular 2-D convolution
layers, with a stride=2) and in the final layers. Downsampling
operations enlarge the receptive field, but there is a higher de-
gree of filtering of information. Consequently, downsampling
layers are critical to performance in most CNNSs. It is beneficial
to enhance downsampling convolution with deformation, as it
is able to capture some of the information that might otherwise
have been lost. Towards the latter part of the network, flexible
receptive fields of DCNs are much more capable than rigid
receptive fields in extracting feature dependencies and spatial
information, as found using our interval search technique.
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C. Execution Performance Results

We evaluate the execution performance of our proposed
implementation of deformable convolutions leveraging texture
units. To facilitate understanding of the maximum speedups,
Fig. 7 shows the layer-wise performance gains of the de-
formable operator that can be achieved using texture units.

T tex2D - tex2D++
2.00% 7 best choice
-t e
S 1.00% 1 [ S St e o USRS
R 0 1 2,41 5 6 7 8 9 1011 1213 14 15
:57‘ 0.50 % ,(’ Tile Iteration
) L
//l
0.25x4 ¢

Fig. 8. Tile size selection for tex2D and tex2D++ x(the y-axis is in log scale).

Fig. 7 compares the speedup obtained over PyTorch on
Xavier GPU when using layered textures (fex2D) and reduced
bit bilinear interpolation (tex2D++) where we only use 16
bits to compute the offset. Note that the fex2D++ technique
is not the same as applying quantization, which results in an
information loss from input feature maps. The bit-reduced
computation in fex2D++ is only used to perform bilinear
interpolation using the offsets derived at training time. In
contrast, quantization reduces the precision of the input feature
map and/or the filter by mapping values from a larger scale to
a smaller scale. Thus, fex2D++ does not result in any negative
impact on accuracy. As we can see in Fig. 7, we accelerate
deformable operation by 1.27x with fex2D, and by 1.39x
with fex2D++. Due to the reduction in memory bandwidth, the
performance of fex2D++ is superior to fex2D. In addition, we
show the speedup obtained over PyTorch 2.1 when executing
tex2D and tex2D++ on the 2080Ti GPU in Table IV.

Next, Table IIT shows the end-to-end execution speedup
of DEFCON over our baseline neural network (YOLACT++)
with varied optimizations we designed. Specifically, with all
optimizations, DEFCON outperforms YOLACT++ by up to
2.80x. To prove that DEFCON results in good accuracy and to
help readers better understand the performance gains, Table I1I
also shows multiple accuracy results and the performance
gains only coming from fex2D and tex2D++, respectively.
More specifically, the interval search method greatly improves
mask mAP by 1.05 over baseline YOLACT++, and brings
1.25x speedup over YOLACT++ because it uses 2 fewer DCN
layers than YOLACT++. Bounding the offsets improves mask
mAP, but slightly impacts box mAP, while maintaining rea-
sonable performance in terms of accuracy. Lightweight layer
modifications result in a slight drop in accuracy, but DEFCON
still outperforms state-of-the-art YOLACT++. Moreover, with
varied optimizations, all fex2D layers achieve a speedup up
to 2.20x, and frex2D++ layers achieve a speedup up to
2.24x, respectively. By substituting regular 2d convolutions
with lightweight operators to compute offsets, we are able to
achieve more than a 2x performance improvement, with an
acceptable level of impact on accuracy as shown in Table III.
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D. Optimization Evaluation

Next, to better understand our performance gains, we inves-
tigate the performance effects of each proposed algorithmic
optimization and the usage of texture units more carefully.
We use the YOLACT++ model (with ResNet101 backbone) as
our baseline (PyTorch) which we discover using our interval
search technique explained in section III-A. The baseline
(PyTorch) deformable convolution shown as interval search
in Fig. 9 performs a regular 2-D convolution to first compute
the offsets, and then uses the offsets to perform the actual
deformation using the flexible receptive field. We can see a
few trends in our results. First, better texture unit utiliza-
tion (tex2D) produces a speedup of the deformable layers.
However, we only observe moderate speedups for layers
[128,128, 138, 138]. This is due to the larger input feature map
height and width, which increases the number of texel com-
putations for bilinear interpolation. Second, with tex2D++,
we achieve a slight speedup of layers over tex2D for the
interval search and bounded configurations. Finally, another
interesting observation is that contrary to the recent work [28],
[29] on accelerators where bounded offset techniques seem
to deliver superior performance, we did not observe speedup
improvements while using bounded offsets on the GPU.

Next, we consider the importance of selecting GPU-specific
parameters (e.g., tile size) to increase SM utilization and
exploit spatial locality. We search for the best tile size for
tex2D and tex2D++ using the ytopt [34] autotuning frame-
work that employs Bayesian optimization. The search is
conducted offline, thus avoiding runtime overhead. Fig. 8
plots the speedup of tex2D and fex2D++ over our baseline,
clearly showing that tile size significantly affects the resulting
speedup, and our autotuning-based tile size search results in
the best performance.

To further analyze the benefit brought by texture memory
usage, we investigate GPU metrics using nvprof in Fig. 10.
nvprof provides MFLOP, Global Load Transactions per Re-
quest, Global Load Efficiency, Texture load requests, as shown
in Fig. 10. We can see that PyTorch (baseline YOLACT++)
does not use any texture load requests, where fex2d and
tex2d++ use texture load requests. By observing the MFLOP
count, we can see that there is a reduction of floating point
operations by about 4x (approximately) due to performing
hardware bilinear interpolation using texture units instead of
software bilinear interpolation used by PyTorch. The PyTorch
native implementation performs bilinear interpolation using
four neighboring pixels. The ratio is not exactly four, as
boundary pixels are often not computed and are substituted as
zero [10]. Global load efficiency (GLD Efficiency) measures
how many of the DRAM memory accesses are coalesced. Due
to the texture unit utilization, the global load efficiency reaches
100% for all layers. Finally, we also observe that the number of
global memory transfers performed per each memory request
(GLD Transactions/Request) also decreases. Thus, texture unit
utilization improves the spatial locality of data accesses.
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TABLE III
SUMMARY OF ACCURACY AND SPEEDUP RESULTS ON XAVIER. Search REFERS TO USING INTERVAL SEARCH, Boundary REFERS TO USING BOUNDED
OFFSET, AND Light REFERS TO USING LIGHTWEIGHT DCN. B.L. SHOWS THE TOTAL ELAPSED TIME FOR THE PYTORCH BASELINE (WITHOUT
TEXEL-BASED OPTIMIZATIONS). THE SPEEDUP OVER YOLACT++ (RESNET101 BACKBONE) IS SHOWN SEPARATELY - OUR INTERVAL SEARCH
DELIVERS A 1.25x IMPROVEMENT DUE TO THE REDUCTION OF DCN LAYERS, WITHOUT COMPROMISING ACCURACY.

Method Accuracy B.L. tex2D++ tex2D tex2D++  Speedup over
Search  Boundary Light fex2D  Box  Mask Mask  (ms) (ms) Speedup  Speedup  YOLACT++
mAP mAP  AP50
35.07 34.62 5379 478.12 - - - 1.00x
v 36.66 35.67 55.84 38249 - - - 1.25x%
v v 36.66 35.67 55.84 38249  332.60 1.13% 1.15% 1.44x
v v v 36.21 35.84 55.60 38441  329.73 1.13% 1.16x 1.45x%
v v v 3542 3521 5548 22237 171.52 2.20% 2.23x% 2.79%
v v v v 3538 3535 5551 22499  171.01 2.20% 2.24x% 2.80%
I interval search 77/, bounded BN light weight operators
8.0x 1

13.92x

1 3.97 %

PyTorch

Layer [in channels, out channels, height, width]

Fig. 9. Speedup of algorithmic optimizations on Xavier. The baseline is YOLACT++ model (with ResNet-101 backbone) we discover using our “interval

search” technique (y-axis in log scale).
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Fig. 10. nvprof statistics (MFLOP, Global Load Efficiency).

E. Qualitative Comparison

Finally, to conclude our evaluation, we perform a
qualitative comparison with deformable convolutions [17].
YOLACT++ [17] boosts the accuracy by adding deformable
convolution layers due to: (1) DCNs strengthening the net-
work’s capability to handle instances with different scales and
rotations; (2) As a single shot method, YOLACT++ lacks

flexible sampling. However, similar to DCNv2 [21], they place
deformable layers by determining the positions manually, and
adopt a policy of placing DCNs with an interval of 3 (i.e.,
skipping two ResNet blocks between, resulting in a total of
10 deformable layers). In contrast, with interval search, we
reduce the number of DCN layers by 2 while achieving a
+1.05 Mask mAP. Furthermore, to determine the placement of
DCN:ss, prior work required formulating hand-crafted strategies
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TABLE IV
DEFORMABLE OPERATION SPEEDUP WITH PYTORCH 2.1 ON 2080T1
GPU.
In Out H W PyTorch | tex2D | tex2D++ Speedup
ch ch (ms) (ms) (ms) w.r. Torch
128 | 128 | 138 | 138 5.64 5.18 5.13 1.10x
128 | 128 | 69 69 11.89 9.17 9.16 1.30x
256 | 256 | 69 69 11.89 9.16 9.14 1.30x
256 | 256 | 35 35 26.68 21.27 21.24 1.26%
512 | 512 | 35 35 27.87 25.82 25.41 1.10x
512 | 512 18 18 67.41 56.27 56.14 1.20x
TABLE V

ABLATION STUDY ON OFFSETS BASED ON USING INTERVAL SEARCH
WITH YOLACT++ (RESNET-101 BACKBONE.) A BOUNDARY IS
PREDEFINED TO LIMIT THE MAXIMUM VALUE FOR OFFSET
COORDINATES. WE APPLY REGULARIZED TRAINING AND OFFSET
ROUNDING TO INTEGERS. REGULARIZED TRAINING HAS NEGLIGIBLE
ACCURACY LOSS, AND IT IS POSSIBLE TO APPLY ONLY A
BOUNDARY-LIMITING TECHNIQUE.

Boundary  Regularization ~Round Box mAP  Mask mAP
35.38 35.35
v v 35.36 35.30
v v 34.52 34.37

such as skipping layers, or choosing the first/last layers [17].
Applying our technique, we discover that a hybrid approach is
the most suitable, where the last few layers are replaced with
DCNs and selectively placed throughout the network.

Rounding the sampling coordinates from floating point
format to integers ultimately results in a significant loss of
accuracy [28], [29] as observed in Table V, and without
significant performance benefits. Regularized training, which
adds penalties to the offset, is an alternative solution to
constrain sampling coordinates. In Table V, we can see that the
accuracy of regularized training results is close to the accuracy
of using only the boundary method.

V. RELATED WORK

Object Detection and Instance Segmentation. A significant
amount of research effort has been devoted to improving
the accuracy of instance segmentation. One such effort is
Mask-RCNN [35] which is a two-stage instance segmenta-
tion method. Mask-RCNN first generates regions of interest
(ROI) and then classifies and segments ROIs. Follow-on work
improved the accuracy of Mask-RCNN by using FPN fea-
tures [36]. Such two-stage methods require re-pooling features
for each ROI and additional processing, making them a poor
choice when real-time throughput (i.e., 30 frames/second, i.e.,
fps) is required. Although real-time object detection [37]-[39]
and semantic segmentation [40], [41] methods exist, Mask R-
CNN was one of the fastest instance segmentation methods
available, especially when processing a semantically challeng-
ing dataset such as COCO [42] (13.5 fps on 5502 px images).
More recently, YOLACT++ [17] was reported to provide real-
time instance segmentation, achieving competitive results on
MS COCO [42]. YOLACTEdge [43] is the first competitive
instance segmentation approach that runs on modest edge
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devices at real-time speeds (the target hardware platform is
the NVIDIA Jetson AGX Xavier).

Deformable Convolution. Computer vision research has ex-
plored the use of spatially invariant features. Before CNNss,
vision applications relied on custom features that were con-
strained by geometric transformations [44], [45]. In the context
of CNNss, partial transformer networks (STNs) [46] represent
the first approach that proposed learning features invariant to
translation. However, the global affine transformations used
in STNs cannot model complex geometric variations com-
monly encountered in vision tasks. Deformable convolution
was first proposed by Dai et al. [10] and was extended by
Zhu et al. [21], to address these issues. These Deformable
Convolutional Networks (DCN) have been able to provide
significant accuracy gains in vision tasks, including segmenta-
tion [17], [47], object detection [48], video restoration, super
resolution [49], and other tasks [50].

GPU Texture based Optimization: Pyramidal image pro-
cessing has been used to implement depth-of-field effects
by employing hardware-supported filtering of pinhole images
(i.e., mip-mapping) [51]-[53]. In addition, texture memory has
been used to improve the performance of tree boosting on
GPUs, by mapping the tree data structure to texture mem-
ory [54]. The texture memory cache has been used to store
data structures from some variants of programs when adaptive
code tuning is performed [55] and also to reduce redundant
data loads from global memory [56]. Recently, Ukarande et
al. [57] proposed Cooperative Thread Array (CTA) mapping
techniques to co-locate neighboring work tokens in the same
streaming multiprocessor (SM) to improve the locality of
texture access patterns. In summary, previous work on texture
use focused on machine learning techniques such as tree
boosting [54] and optimized graphics performance [57]. In
contrast, we are the first to explore deformable convolution in
the context of texture-based inference on GPUs.
Accelerating Deformable Convolutional Networks (DCN).
Though DCNs have been shown to be effective, they have
some implementation challenges. First, additional convolution
layers are required to learn the offset in an input-adaptive
manner. Second, though the deformable kernel executes the
same computation as a regular convolution kernel, the ar-
bitrary sampling positions require additional software-level
instructions to perform the linear interpolation. To address
these inefficiencies, multiple methods have been proposed to
accelerate deformable convolutions. Some popular techniques
to optimize DCN on FPGA include: (i) limiting adaptive
offsets to a fixed range, thus increasing the temporal locality of
the input [28], [29]; (ii) constraining arbitrary offset displace-
ments, thus reducing irregular accesses and enabling parallel
accesses to on-chip memory [58]; (iii) rounding the offset
displacements to integers and removing fractional bilinear
interpolations [28], [29]; and (iv) using depthwise convolution
to reduce the total number of Multiply-Accumulate operations
(MACs) [28]. In contrast to existing FPGA-based optimiza-
tions, our work utilizes available hardware units present on just
about every GPU, allowing our technique to remain applicable
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to similar operators in the future. We also note that although
the substitution of the depthwise convolution operator has
been proposed in earlier work [28], it has only been used
with manual layer placement and has not been combined with
a neural search engine. Orthogonally, accelerators based on
the ReRAM architecture [59] and accelerators utilizing tile
dependency tables [60] have been proposed.

In contrast to previous work, which focused primarily on
the design of custom accelerators, our work (DEFCON) de-
termines the best placement of deformable operations through
interval search methods and utilizes the existing GPU texture
hardware to improve execution speed.

VI. CONCLUSION

This paper presents DEFCON, the first work to optimize
deformable convolutions on GPU hardware. DEFCON intro-
duces a holistic approach towards deformable convolution
optimization, including better placement of operators and
utilization of GPU texture hardware. Automated placement of
deformable convolution layers, versus hand-tuned placement,
is a key contribution of our approach. In essence, our proposed
technique can run twice as fast as the state-of-the-art frame-
works, providing better accuracy and using fewer deformable
layers. In future work, we expect to use our approach to
improve other DNN operators by leveraging texture hardware.
The adoption and integration of these features to widely
available machine learning frameworks should vastly improve
object detection and image segmentation tasks, helping to
further accelerate the artificial intelligence revolution.
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