
DEFCON: Deformable Convolutions Leveraging

Interval Search and GPU Texture Hardware

Malith Jayaweera∗, Yanyu Li†, Yanzhi Wang‡, Bin Ren§, David Kaeli¶

Department of Electrical and Computer Engineering∗†‡¶, Northeastern University, Boston, MA, USA

Department of Computer Science§, William & Mary, Williamsburg, VA, USA

{malithjayaweera.d, li.yanyu, yanz.wang}@northeastern.edu∗†‡, bren@cs.wm.edu§, kaeli@ece.neu.edu¶

Abstract—Deformable convolutions can improve detection ac-
curacy in Convolution Neural Networks (CNNs) by leveraging
flexible spatial sampling in augmenting kernels with learnable
offsets. However, the resulting irregular memory access pat-
terns and additional pixel lookup overhead introduced by de-
formable layers pose inherent challenges when executed on high-
throughput devices such as GPUs. To address these challenges,
we introduce DEFCON, a systematic approach to optimizing
deformable convolutions. DEFCON is designed to provide: (1)
better placement of operators in the neural architecture using
interval search, (2) reduced computational demands by leveraging
lightweight operators, and (3) optimized inference by using
GPU texture hardware. By performing an interval search, we
reduce the number of deformable layers in our architecture.
By leveraging the GPU’s texture hardware, we are able to use
lightweight operators to improve the execution performance of
layers, without sacrificing prediction accuracy. By combining
these approaches, DEFCON increases the inference performance
by 2.8× over YOLACT++ implementation, when run on an
NVIDIA Jetson AGX Xavier GPU. Our work enables faster
and more accurate predictions when performing deformable
convolutions.

Index Terms—GPUs, Deformable Convolution, Interval Search

I. INTRODUCTION

During the past decade, research has significantly advanced

the state-of-the-art in object detection and image segmenta-

tion [1]–[9]. Convolution Neural Networks (CNNs) have paved

the way for groundbreaking approaches toward object detec-

tion. Earlier CNNs were unable to effectively accommodate

geometric or spatial variations in terms of object scale, pose,

viewpoint, and partial deformation [10]. Therefore, two ap-

proaches were followed: i) data augmentation, which includes

spatial variations in the training dataset [11], [12], and ii) hand-

crafting of feature layers, such as pooling [13], [14]. However,

such highly specialized approaches could not be generalized

for new datasets or handle complicated deformations that

require a different receptive field.

Earlier CNNs used rigid geometric structures as the recep-

tive field to perform spatial sampling in fixed locations [1],

[9]. However, some regions in an image are commonly more

important than others, thus it could be advantageous to have

a more flexible spatial sampling pattern applied across the

image [10], [15]. Dai et al. [10] introduced flexible spatial

sampling that could be applied to deformable convolutions.

They have been heavily leveraged to improve the accu-

racy of contemporary models, such as YOLACT [16] and

YOLACT++ [17].

Deformable convolutions (DCNs) allow flexible kernel

shapes through learnable offsets versus relying on neural

network engineers to handcraft feature layers to extract specific

features. These offsets are dynamically computed through

an additional convolution layer for each input feature map.

The computed offsets are then used to augment the spatial

sampling available through a rigid kernel (used in regular

convolutions). Thus, the adaptability of a neural network is

significantly improved by allowing the neural network to

accurately categorize variations that are not available in the

training dataset.

Compared to standard convolution, the increase in adapt-

ability comes with extra computational costs because of the

additional convolution operations required to compute learn-

able offsets. However, the associated accuracy improvements

can justify an increase in the compute time. As these models

are now increasingly being deployed on edge devices, it has

become important to provide real-time inference performance.

In this context, this work characterizes the underlying com-

putational patterns associated with deformable convolution and

explores how to properly optimize the execution of these oper-

ations on GPUs. In particular, this work first identifies unique

challenges (and optimization opportunities) encountered when

searching for the best neural network architecture with the

presence of deformable convolutions during training and then

exploits optimization opportunities specific to model inference.

There are two optimization opportunities during the training

stage when performing the neural architecture search. First, the

placement of deformable layers has usually been performed

by hand [10], so the overuse of deformable layers to improve

accuracy can lead to an inefficient inference. To address this

problem, this work employs an interval-based search method

to automate the placement of deformable layers, achieving

better accuracy than the state-of-the-art YOLACT++ [17]

framework. Second, using regular 2D convolutions to com-

pute offsets results in performing two convolution operations

instead of one (one for offset computation and the other for the

actual convolution of the input/activations with the weights).

Inspired by MobileNetV2 [9], our work here replaces a reg-

ular 2D convolution with depth-wise convolution operators to

compute offsets. Both techniques are geared toward optimizing

neural architecture and improving performance during the

644

2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS)

1530-2075/24/$31.00 ©2024 IEEE
DOI 10.1109/IPDPS57955.2024.00063

Authorized licensed use limited to: William & Mary. Downloaded on September 09,2024 at 18:12:11 UTC from IEEE Xplore. Restrictions apply.

training pipeline.

In addition to training-based optimizations, there are op-

portunities to optimize deformable convolutions during the

inference stage. The first tries to optimize adaptive receptive

field computations, which suffer from irregular access to the

input pixels on the GPU. Since the spatial locality of memory

accesses is low, the resulting computation is not GPU-friendly.

Since the computed offsets are fractional, a direct lookup

cannot be performed per pixel just by augmenting the original

kernel coordinates with the offsets. A bilinear interpolation

using four neighboring pixels is required. In the case of bound-

ary pixels, additional branch statements are required to ensure

program correctness. Both of the aforementioned challenges

can be addressed effectively by treating computation as a

graphics application instead of purely computational, partic-

ularly by leveraging GPU’s built-in graphics processing hard-

ware capabilities. We can leverage the GPU’s texture memory

to store pixel values with high spatial locality and support

linear, bilinear, and trilinear interpolation. This idea has not

been explored in previous state-of-the-art implementations of

deformable convolutions (e.g., the one in PyTorch [18]). In

addition, we perform a search space exploration for the best-

suited tile size for deformable offset computation when using

texture hardware. Our evaluation shows that the choice of tile

size significantly impacts the performance of deformable offset

computation.

In summary, this work proposes a multi-step optimization

approach for deformable convolutions, namely DEFCON, con-

sidering both algorithmic optimizations and hardware char-

acteristics. The resulting computation is better suited to the

characteristics of the underlying GPU. Our contributions are

summarized as follows:

• We automate the deformable layer placement by proposing

a new interval search technique applied during the training

stage to achieve the lowest inference latency and satisfy

model accuracy. Through interval search, we find that

applying deformable convolutions is particularly beneficial

in the downsampling layers (i.e., regular 2-D convolution

layers, with a stride=2).

• We propose a novel technique to load channel-wise coordi-

nate offsets to the GPU texture units and perform bilinear

interpolation using GPU hardware, instead of existing soft-

ware implementations of bilinear interpolations.

• We also study the impact of tile size selection on execution

performance when using texture units, and propose the use

of a search space exploration to find the best tile size for a

given model and GPU.

With our proposed interval search methodology and the ef-

ficient use of GPU texture hardware, we increase the inference

performance by 2.8× over the state-of-the-art YOLACT++ on

an NVIDIA Jetson AGX Xavier GPU.

II. DEFORMABLE CONVOLUTIONS

This section reviews the characteristics of deformable con-

volutions and discusses some of the challenges associated with

performance optimization when working with this workload

targeting GPUs.

A. Mechanics of Deformable Convolution

A regular 2-D convolution samples the input feature map

using a regular grid R. Then it sums the sampled values,

weighted by the values of w. The grid R defines the size

of the receptive field along with the dilation [19]. As an

example, for a 3×3 kernel with dilation 1, the grid: R =

{(i, j); i, j ∈ {−1, 0, 1} and (i, j) �= (0, 0)}.
Therefore, for each output feature map location in a regular

convolution:

y(po) = Σpi∈Rw(pi).x(po + pi) (1)

In contrast, when using deformable convolution, the regular

grid R is augmented with offsets ∆pi(0 ≤ i ≤ |R|, i ∈ Z).

y(po) = Σpi∈Rw(pi).x(po + pi +∆pi) (2)

Since these offsets ∆pi are fractional, a bilinear interpola-

tion is required to determine the pixel value.

x(p) = ΣqG(p, q) · x(q) (3)

where p denotes an arbitrary location po + pi + ∆pi and

q enumerates all integral spatial locations in the activations.

G(x, y) is the bilinear interpolation kernel.

G(p, q) is computed using component-wise computations:

g(px, qx), g(py, qy) and where g(px, qx) = max(0, 1− |px −
qx|). Thus, only four neighboring pixels are required for the

bilinear kernel.

We can outline the deformable convolution computation as

follows:

1 a regular convolution (conv2D), with the input activations

and filter to derive the offsets.

2 a convolution with the input activations and a filter aug-

mented with offsets computed in the previous step used to

derive the final convolution output.

The goal of the 1 convolution step is to derive offsets

in the x and y directions. The offsets are derived on a per-

kernel value basis. For example, if a 3×3 kernel is used, 9

offset values are computed. Since the offsets are calculated

in both x and y directions, the number of offsets for a 3×3

kernel is 18 (18 = 9× 2). The offset values can be shared per

input channel through a variable called a deformable group.

For example, when using deformable groups, input channels

can be grouped such that offsets are shared between groups

of input channels. This will keep the computational costs

and memory requirements in check, which would not have

happened if the input channels had not shared any offsets.

As shown in Fig. 1, the output height and output width are

computed similarly to a regular convolution. The number of

output channels is equal to deformable groups × kernel height

× kernel width × 2.

As the kernel moves through the image, the offsets also

vary. In the deformable convolution operation (step 2), these

645

Authorized licensed use limited to: William & Mary. Downloaded on September 09,2024 at 18:12:11 UTC from IEEE Xplore. Restrictions apply.

groups deform

x k h
 x k w

x 2

height
out

width
out

channels in

 height
in

width
in

conv2D

Input feature map Offsets

Fig. 1. Deformable offset computation.

offsets are augmented on the kernel coordinates to allow

for arbitrary shapes. As mentioned earlier, since the offset

computed (∆pi) is fractional, a regular pixel lookup cannot

be performed on x. Thus, we apply bilinear interpolation to

each pixel value along the x and y directions, choosing the

four nearest-neighbor pixels. In the case where the pixel of

interest lies in a boundary region, the value of out-of-bounds

neighbors is taken as zero. We will see that this computation

is supported in texture hardware.

Input feature map

kernel

offsets

Output feature map

Fig. 2. Deformable convolution.

B. Hardware Deployment Challenges

Although deformable convolution provides us with flexi-

bility, it also poses some inherent challenges. Compared to

a regular conv2D operation, the use of offsets to allow for

arbitrary kernel shapes means that the input pixels are often

accessed in a more random manner. Thus, the efficiency of

the GPU’s coalescing unit will be impacted. Recent work

on accelerator designs has attempted to address this problem

through input and output tiling [20]. However, such tiling

strategies on GPUs tend to be computationally expensive, as

each inference would require a tile-matching mechanism.

The other main challenge faced with using deformable

convolution is the additional overhead of bilinear interpolation.

For each output feature pixel computation, a bilinear interpo-

lation must be performed with four adjacent neighbors. Hence,

for each output pixel, four multiplications must be performed,

along with three additions. Current implementations often

resort to bilinear interpolation at the software level. Thus, it

would require additional clock cycles compared to a regular

conv2D operation for a simple operation, such as the lookup of

a pixel. However, as we will discuss in the next few sections,

by treating this computation as a graphics problem, we are

Algorithm 1 Gradient-based architecture search with Gumbel

Softmax sampling, to search deformable convolutions.

Require:
∑

n in > 0
Ensure:

∑

n�α
1
n > α0

n� ·α
1
n · t(wn) ≈ T

Interval Search:

for each search epoch do

for each iter do

for each layer n do

dn+1 =
∑

i
e(α

i
n+εin)/τ

∑
i e

(αi
n+εin)/τ

·wi
n(dn)

end for � get output

L ← criterion(output, label)

Ls ←
∣

∣

∑

n�α
1
n > α0

n� ·α
1
n · t(wn)− T

∣

∣

2

backpropagate (L+ Ls), update parameters

end for

end for

Select Layer Type by the Magnitude of α.

Fine-tune the result architecture:

for each fine-tuning epoch do

for each iter do

for each layer n do

dn+1 = ŵi
n(dn)

end for � get output

L ← criterion(output, label)
backpropagate (L), update parameters

end for

end for

able to exploit much of the GPU’s built-in hardware that

supports bilinear interpolation and, in fact, reduce floating

point operations while improving instruction level parallelism.

III. DEFORMABLE OPTIMIZATIONS

We take a holistic approach to deformable optimizations

and focus on both the training and inference stages. Fig. 3

summarizes our optimizations. We begin by deciding the

placement of deformable operators in the neural network by

using our interval search technique. Later, we reduce the

computational cost of these layers by substituting regular

convolutions with depthwise convolution operators (referred to

as lightweight operators). To improve inference speed, we also

include bounded deformations. In the final step, we perform

GPU texture-based optimizations which boost the inference

speed. Next, we will discuss each technique in detail.

Interval

Search

Lightweight

Operators
Bounded

Deformation

Texel-based

Optimization

a b c d

Fig. 3. Sequence of deformable optimizations.

646

Authorized licensed use limited to: William & Mary. Downloaded on September 09,2024 at 18:12:11 UTC from IEEE Xplore. Restrictions apply.

A. Algorithm Improvements

a Deformation Interval Search: In state-of-the-art appli-

cations using deformable convolution [17], [21], deformable

operations are often manually applied in the last several

stages to extract high-level spatial information. Information

is obtained by applying deformable convolution layers as a

sequence or by interleaving regular 2-D convolution layers

with deformable convolution layers to limit the high inference

cost. For example, YOLACT++ [17] applies DCN in the last

three stages of the ResNet backbone, using an interval of 3. It

is obvious that these handcrafted design choices are far from

optimal and lack adaptability when trying to classify untrained

inputs, which is one of the main goals of using deformable

convolutions. Instead of using hand-crafted layer placement, in

this work, we propose a systematic method of deformable con-

volution layer placement guided by a gradient-based interval

search method which automatically decides the best positions

in the neural network to apply deformable convolutions. With

such a system in place, we can automatically reduce the total

number of deformable layers without compromising accuracy.

We formulate the differentiable interval search as a bi-level

optimization problem:

min
W ,A

L(D,W ,A) + β · Ls(A) (4)

where L refers to the task loss, D represents input data, W is

the set of trainable parameters (i.e., weights) in the network,

and A is the set of architectural parameters that determine

whether to use regular 2-D convolution or deformable convo-

lution. To manage the inference speed of the final model in

a user-specified manner, a speed penalty Ls is applied to the

architectural parameters if a deformable convolution operator

is used, and β is a hyperparameter to balance loss and stabilize

training.

Our gradient-based interval search approach is illustrated

in Fig. 4(c). We first construct a dual-path layer [22], with

a deformable convolution and a regular one. The convolution

outputs are linearly combined using Gumbel Softmax sam-

pling [23], which can be formulated as:

dn+1 =
∑

i

e(α
i
n+εin)/τ

∑

i e
(αi

n+εin)/τ
·wi

n(dn) (5)

where d represents data (features) of two consecutive layers:

n and n + 1, α is the architecture parameter and w denotes

trainable weights of the corresponding layer. ε ∼ U(0, 1)
ensures exploration, and τ is the temperature. i ∈ {0, 1} repre-

sents the dual operator of regular convolution and deformable

convolution in our case. With Gumbel Softmax sampling,

the derivatives with respect to w and α can both be easily

computed, so that we can perform interval search in a gradient-

based fashion.

As the target of our network architecture (interval) search,

we aim to constrain the inference latency on edge GPUs

(e.g., NVIDIA Jetson AGX Xavier). Prior work collected on-

device latency data to build a lookup table [24]–[26], which

was used to estimate candidate neural network layer latency

during the search, or deploy each candidate layer on-chip to

gather real latency data [27]. In this work, we build our search

algorithm based on collecting on-device latency and building a

lookup table, since deformable convolution is only applied in

certain 3× 3 conv2D layers, e.g., the 3× 3 convolution in the

Bottleneck block in ResNet-101, and it is trivial to collect their

latency with all possible configurations. If we denote α0 as

the architecture-specific parameter of a regular convolution,

while α1 is the corresponding parameter of the deformable

convolution, the latency penalty of the interval search can be

expressed as:

Ls =

∣

∣

∣

∣

∣

∑

n

�α1
n > α

0
n� ·α

1
n · t(wn)− T

∣

∣

∣

∣

∣

2

, (6)

where t denotes the latency mapping that stores latency, based

on DCN characteristics (feature size, input and output channel,

etc.). �·� is an element-wise transform from {True, False}
to {1, 0}, and does not require a gradient. T is the target

latency, and
∑

n · denotes the latency accumulated by blocks.

In summary, the gradients with respect to the architecture

parameters are computed as follows:

Gα0 =
∂L(D,W,A)

∂α0

Gα1 =
∂L(D,W,A)

∂α1
+ β ·

∂Ls

∂α1

(7)

where the second derivative in Gα1 (e.g., ∂Ls

∂α1) can be calcu-

lated from Equation (6).

∂Ls

∂α1
n

= 2×
(

�α1
n > α

0
n�·α

1
n ·t(wn)−T

)

·�α1
n > α

0
n�·t(wn)

(8)

The entire workflow of our proposed interval search is

shown in Algorithm 1.

b Lightweight Offset Convolution: In the context of

deformable convolution, input-adaptive spatial sampling is

achieved by introducing an additional convolution layer that

learns and predicts the offset for each input feature map during

inference. Our observations have shown that using regular 2-

D convolution is excessive for this purpose. Hence, inspired

by MobileNet [9], we replace standard 2-D convolutions

with depth-wise convolution operations (also referred to as a

lightweight convolution in this work). The computational cost

of a regular 2-D convolution is W 2k2
×C×3×3, where 3 is the

kernel size, C is the input channel number, and k is the kernel

size of the following deformable convolution. However, our

lightweight implementation replaces this convolution with two

consecutive layers, WC×1×3×3
1 and W 2k2

×C×1×1
2 , where W1

is a depth-wise 3×3 convolution and W2 is a 1×1 convolution

to linearly combine the output and transform it to the required

dimension (2k2). Assuming that we perform a deformable

convolution with k = 3, this lightweight replacement can

reduce multiply-accumulate (MAC) operations by:

1−
H ×W × 3× 3× C + C ×H ×W × 1× 1× 2× k

2

C ×H ×W × 3× 3× 2× k2
= 83.3%

(9)

647

Authorized licensed use limited to: William & Mary. Downloaded on September 09,2024 at 18:12:11 UTC from IEEE Xplore. Restrictions apply.

DCN

3x3

offset

input output

(a) DCN

(b) Bounded and Lightweight DCN

DCN

D.W.

offset

1x1

input output

DCN

3x3

offset

CONV

Gumble

input output

CONV DCN CONV CONV DCN CONV

CONV DCN DCN DCN DCN DCN

(c) Interval Search

Fig. 4. The DCN optimization paradigm. (a) is the original DCN; (b) shows optimizations applied using the bounded offset and light-weight convolution; (c)
illustrates the gradient-based interval search.

Batch normalization and ReLU activation are applied after

the first depth-wise convolution, but not for the following

1 × 1 convolution, as it outputs the floating-point offsets

used to augment the kernel as explained in section II-A. The

architecture of our lightweight DCN is shown in Fig. 4(b).

c Bounded Deformation: The flexible receptive fields of

DCNs tend to reduce the available spatial locality of input

pixel access during kernel execution. Thus, this computation

pattern is not the most hardware-friendly form of convolution.

One intuitive and more reliable solution is to set an upper limit

on the deformation so that memory accesses to outliers are

avoided, improving the spatial locality. Furthermore, enabling

an arbitrarily large receptive field within a single layer is

unnecessary from a spatial perspective since using a stack

of conv2D layers can naturally achieve the same effect in

detecting image features. In practice, if we assumed the upper

boundary of offsets was defined by the hardware accelerator

was P , we could restrict the learned offset to [0, P] before the

application of the deformable kernel. The application of the

bounded deformation is illustrated in Fig. 4(b). We determine

the appropriate boundary value (P) by exploring the boundary

limits, as shown in Fig. 5. ∞ denotes unrestricted deformation,

and the lowest boundary is chosen to be the kernel size.

We observe that choosing an upper bound of greater than

7 for deformable convolutions leads to negligible accuracy

gains compared to setting the upper bound to 7. Hence, we

determine that using an upper bound of 7 is the best choice

for deformable convolutions in terms of accuracy.

A closely related approach is to use rounded offsets [28],

[29], which round the sampling coordinates to their closest

integer values so that bilinear interpolation can be avoided.

However, rounding the sampling coordinates which are in

floating point format to integers ultimately results in a sig-

nificant loss of accuracy [28], [29]. Therefore, we do not

employ such techniques in our model training and rely on

∞ 10 9 8 7 6 5 4 3

P

30.0

32.5

35.0

37.5

40.0

m
A
P

box mask

Fig. 5. Determining the P value for bounded deformation.

GPU hardware to perform bilinear interpolation.

Another closely related and popular technique is to employ

square-shaped deformation, which constrains the shape of the

deformable kernel [28], [29] to promote better spatial locality

of memory accesses. However, the resulting convolution kernel

is effectively a simple dilated convolution using a rigid kernel

size, forgoing the superior advantages of using flexible recep-

tive fields available with the original version of the deformable

convolution [10].

B. Hardware Optimization

d Texel-based Optimization: GPUs provide a number of

hardware features specifically for graphics processing. In this

section, we will look at how to leverage the texture units and

use reduced-precision interpolation to improve performance.

GPU texture memory is a read-only memory that is designed

to fetch data elements for applications that possess high spatial

locality. Texture memory is also cached in a dedicated, read-

only, texture cache. However, it is designed to stream fetches

with a constant latency [30].

Textures have built-in functionality, such as read mode,

addressing mode, and filtering mode; Read mode allows access

to pixels using normalized coordinates. Addressing mode spec-

ifies how out-of-bounds pixels are handled. The default mode

is used to set values to zero for out-of-bounds values. With

normalized coordinates, wrap mode, and mirror mode are also

648

Authorized licensed use limited to: William & Mary. Downloaded on September 09,2024 at 18:12:11 UTC from IEEE Xplore. Restrictions apply.

available for addressing. With the wrap mode, each coordinate

x is converted to frac(x) = x− floor(x), where floor(x) is

the largest integer not greater than x. With mirror mode, each

coordinate x is converted to frac(x), if floor(x) is even,

and 1 − frac(x) if floor(x) is odd. Filtering mode specifies

how the fetch value of the texture is computed based on

the input texture coordinates. Linear texture filtering performs

low-precision interpolation between neighboring texels. When

enabled, the texels surrounding a texture fetch location are

read. The returned values are interpolated based on where the

texture coordinates fall between the texels. Linear interpolation

is performed for one-dimensional textures, bilinear interpola-

tion for two-dimensional textures, and trilinear interpolation

for three-dimensional textures. Using these features, software-

level interpolation of pixels can be converted to a hardware-

level interpolation of texels.

One of the major challenges of using texture memory for

input feature map storage is the requirement to have a layered

view (i.e., each channel of the input feature map should be able

to perform interpolations without interfering with neighboring

channels). NVIDIA GPUs that have texture memory provide

two types of layered texture memory types: layered texture and

mipmapped arrays. As mipmapped arrays are pre-computed

pyramidal structures of optimized sequences of images that are

not suited for layered computations, we limit our discussion

to layered textures [31].

A layered texture (whether 1-dimensional or 2-dimensional)

is a texture made up of a sequence of layers, all of which

are regular textures with the same dimensions, size, and data

type. This construct can be easily adapted to an input feature

map, as each layer can be used to store separate channels.

Also, since the CUDA API provides one-step data loading for

layered textures, the programming complexity and the memory

transfer cost are comparatively low. However, the input feature

maps are 4-D tensors and consist of batch, channel, height, and

width dimensions. This problem can be addressed by merging

the 1st and 2nd dimensions, and using an index to navigate

between mini-batches (i.e., batchidx× number of channels).

Mipmapped arrays are widely used in gaming engines to

simulate the illusion of near and far objects by lowering the

resolution of distant objects in the game, until the user is

in close proximity to the object [32]. Thus, mipmaps are

pre-computed pyramidal structures of optimized sequences of

images, each of which has a progressively lower resolution

representation than the previous image. However, due to the

pyramidal structure of mipmaps, each layer must be loaded

and computed using the previous layer. Since this functionality

is inconsistent with our desired behavior, we use a layered

texture for storage. Furthermore, there is also surface memory,

which provides read and write support. However, as we are

not interested in writes to input features, we do not consider

leveraging surface memory for storage.

One thing to note is that 2-D layered textures on an NVIDIA

Jetson Xavier AGX GPU are limited to 32,768 by 32,768

by 2048 (height, width, and number of layers, respectively).

Since layered dimensions are used to store both batch &

channel dimensions, the number of batches × the number of

channels should be less than or equal to 2048. Since we are

targeting inference, this limit is more than enough to support

almost all convolutional networks targeting vision. However,

during training, with the use of multiple GPUs and multiple

mini-batches (as high as 32 or 64), the developers must be

aware of the texture memory limitations. To handle memory

limitations, a partitioning scheme can be used so that only

a subset of mini-batches are loaded into texture memory.

However, such a scheme results in the overhead associated

with multiple invocations of the GPU kernel. Therefore, during

large mini-batch training, it could be more beneficial to use

global memory and to strategically avoid the use of texture

units for larger layers. We leave this analysis for future work.

IV. EVALUATION

This section evaluates the accuracy of DEFCON1 by com-

paring it with three state-of-the-art YOLACT++ neural net-

works: YOLACT with ResNet50 backbone, YOLACT++ with

ResNet50, and YOLACT++ with ResNet101. We then evaluate

the execution performance of DEFCON by comparing it with

YOLACT++ (ResNet101 backbone).

A. Evaluation Methodology

Evaluation Objectives. Our overall evaluation demonstrates

speedups produced by DEFCON through the use of GPU

texture cache and the benefits of our interval search method

for neural architecture search. Specifically, our evaluation

has three objectives: (1) demonstrating that DEFCON op-

timizations achieve similar or improved accuracy compared

to the state of the art, (2) showing that DEFCON outper-

forms the PyTorch framework when performing deformable

operations, without compromising accuracy, and (3) exploring

performance effects and explaining why DEFCON brings

performance gains.

Benchmarks and Datasets. Our experiments use

YOLACT++ [17], a state-of-the-art real-time instance

segmentation model, which applies deformable convolutions.

We use YOLACT++ with ResNet50 and ResNet101 as the

backbone for accuracy evaluations and with ResNet101 as

the backbone for performance evaluations as more DCNs

are used with the latter backbone. We train the model on

MS COCO [33], which is a large-scale object detection,

segmentation, key-point detection, and captioning dataset

available from Microsoft. We employ the 2017 release, which

has a split of 118K/5K images for training/validation. To

evaluate performance, we follow the standard COCO metric,

computing the mean Average Precision (mAP) measured over

multiple IoU thresholds, and we report both box and mask

mAP for this instance segmentation task.

Hardware and Software Configurations. We evaluate the

DEFCON performance on an Nvidia Jetson AGX Xavier GPU

running Jetpack 4.5.1 and PyTorch 1.9.0. In addition, we

evaluate the performance of DEFCON on an Nvidia 2080Ti

1Artifact available at https://github.com/malithj/dcn-defcon.

649

Authorized licensed use limited to: William & Mary. Downloaded on September 09,2024 at 18:12:11 UTC from IEEE Xplore. Restrictions apply.

C
O

N
V

:
3
 -

 6
4

3
 x

 5
5

0
 x

 5
5

0

C
O

N
V

:
6

4
 -

 6
4

C
O

N
V

:
6

4
 -

 6
4

C
O

N
V

:
6

4
 -

 6
4

D
C

N
:

6
4
 -

 1
2

8

D
C

N
:

1
2
8
 -

 1
2
8

C
O

N
V

:
1

2
8
 -

 1
2

8

D
C

N
:

1
2
8
 -

 1
2
8

D
C

N
:

1
2
8
 -

 2
5
6

C
O

N
V

:
2

5
6
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

D
C

N
:

2
5
6
 -

 2
5
6

C
O

N
V

:
2

5
6
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

D
C

N
:

2
5
6
 -

 5
1
2

D
C

N
:

5
1
2
 -

 5
1
2

D
C

N
:

5
1
2
 -

 5
1
2

C
O

N
V

:
3

 -
 6

4

3
 x

 5
5

0
 x

 5
5

0

C
O

N
V

:
6

4
 -

 6
4

C
O

N
V

:
6

4
 -

 6
4

C
O

N
V

:
6

4
 -

 6
4

D
C

N
:

6
4
 -

 1
2

8

C
O

N
V

:
1

2
8
 -

 1
2

8

C
O

N
V

:
1

2
8
 -

 1
2

8

D
C

N
:

1
2
8
 -

 1
2
8

C
O

N
V

:
1

2
8
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

D
C

N
:

2
5
6
 -

 2
5
6

C
O

N
V

:
2

5
6
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

D
C

N
:

2
5
6
 -

 2
5
6

C
O

N
V

:
2

5
6
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

D
C

N
:

2
5
6
 -

 2
5
6

C
O

N
V

:
2

5
6
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

D
C

N
:

2
5
6
 -

 2
5
6

C
O

N
V

:
2

5
6
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

D
C

N
:

2
5
6
 -

 2
5
6

C
O

N
V

:
2

5
6
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

D
C

N
:

2
5
6
 -

 2
5
6

C
O

N
V

:
2

5
6
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

D
C

N
:

2
5
6
 -

 2
5
6

C
O

N
V

:
2

5
6
 -

 2
5

6

C
O

N
V

:
2

5
6
 -

 2
5

6

D
C

N
:

2
5
6
 -

 5
1
2

C
O

N
V

:
5

1
2
 -

 5
1

2

C
O

N
V

:
5

1
2
 -

 5
1

2

Fig. 6. Interval search results on YOLACT++ [17] with ResNet101 backbone network. Each box represents the 3 × 3 convolution of the residual block.
Top: applying DCN layers at an interleaved interval of 3 as proposed in YOLACT++. Bottom: applying DCN using our proposed interval search method. Our
interval search reduces the number of DCN layers by 2 while achieving higher performance (+1.05 Mask mAP).

TABLE I
ACCURACY OF OUR OPTIMIZED DCN ON YOLACT [16], [17] INSTANCE SEGMENTATION TASK.

Method Backbone Resolution # of DCNs Box mAP Mask mAP Mask AP50

YOLACT ResNet50 550 0 29.79 27.97 45.92
YOLACT++ ResNet50 550 13 34.72 34.51 54.22
YOLACT++ ResNet50 550 5 34.69 34.11 53.27

Ours ResNet50 550 5 34.81 34.44 53.85

YOLACT ResNet101 550 0 32.07 29.73 48.01
YOLACT++ ResNet101 550 30 36.68 35.75 55.05
YOLACT++ ResNet101 550 10 35.07 34.62 53.79

Ours ResNet101 550 8 35.38 35.35 55.51

running PyTorch 2.1. Following the configurations presented

in prior work [17], we set the input resolution to 550 × 550.

We employ an initial learning rate of 10−2 and decay by 10−1

at selected iterations, which saturates to 10−6. For training

purposes, we use a total mini-batch size of 128 images. As a

result, the number of training iterations is decreased from 800k

to 50k, as we increase the total mini-batch size. A Stochastic

Gradient Descent (SGD) optimizer is used for training with a

momentum of 0.9.

[128
,128

,138
,138

]

[128
,128

,69,6
9]

[256
,256

,69,6
9]

[256
,256

,35,3
5]

[512
,512

,35,3
5]

[512
,512

,18,1
8]

Layer [in channels, out channels, height, width]

1.10×

1.20×

1.30×

1.40×

1.50×

D
ef
o
rm

a
b
le
O
p

S
p
ee
d
u
p

1.
14
×

1.
31
×

1.
30
×

1.
34
×

1.
25
× 1.
34
×

1.
41
×

1.
34
×

1.
33
×

1.
39
×

1.
39
×

1.
40
××× × ×

tex2D tex2D++

Fig. 7. Deformable operation speedup.

TABLE II
DEFORMABLE OPERATION SPEEDUP ON XAVIER.

In Out
H W

PyTorch tex2D tex2D++ Speedup
ch ch (ms) (ms) (ms) w.r. Torch

128 128 138 138 6.87 6.01 4.89 1.41×
128 128 69 69 23.03 17.54 17.23 1.34×
256 256 69 69 23.02 17.67 17.25 1.33×
256 256 35 35 47.87 35.60 34.53 1.39×
512 512 35 35 25.25 20.22 18.15 1.39×
512 512 18 18 97.00 72.33 69.48 1.40×

B. Accuracy Evaluation on Instance Segmentation

We report accuracy results in Table I, corresponding to

applying the optimizations described in Section III-A. To test

a backbone image detection network, we use ResNet50 and

ResNet101 [3]. Utilizing the same or even fewer DCN layers,

our method consistently outperforms baseline YOLACT++

models by a large margin of accuracy. When using the

ResNet50 backbone, our optimized network outperforms the

YOLACT++ baseline by 0.33 mask mAP. Further, with the

ResNet101 backbone, we can achieve a +0.73 mask mAP

with bounded offsets, using lightweight modifications and with

even two fewer DCN layers than YOLACT++.

We demonstrate the benefits of using the DCN interval

search method using a ResNet101 backbone network in Fig. 6.

Our interval search reduces the number of DCN layers by 2,

while achieving a +1.05 Mask mAP, by determining the best

placement positions of DCN layers in the network. We observe

that deformable convolutions are especially advantageous in

downsampling layers (i.e., applied to regular 2-D convolution

layers, with a stride=2) and in the final layers. Downsampling

operations enlarge the receptive field, but there is a higher de-

gree of filtering of information. Consequently, downsampling

layers are critical to performance in most CNNs. It is beneficial

to enhance downsampling convolution with deformation, as it

is able to capture some of the information that might otherwise

have been lost. Towards the latter part of the network, flexible

receptive fields of DCNs are much more capable than rigid

receptive fields in extracting feature dependencies and spatial

information, as found using our interval search technique.

650

Authorized licensed use limited to: William & Mary. Downloaded on September 09,2024 at 18:12:11 UTC from IEEE Xplore. Restrictions apply.

C. Execution Performance Results

We evaluate the execution performance of our proposed

implementation of deformable convolutions leveraging texture

units. To facilitate understanding of the maximum speedups,

Fig. 7 shows the layer-wise performance gains of the de-

formable operator that can be achieved using texture units.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Tile Iteration

0.25×

0.50×

1.00×

2.00×

S
p
ee
d
u
p

best choiceb t h i
tex2D tex2D++

Fig. 8. Tile size selection for tex2D and tex2D++ x(the y-axis is in log scale).

Fig. 7 compares the speedup obtained over PyTorch on

Xavier GPU when using layered textures (tex2D) and reduced

bit bilinear interpolation (tex2D++) where we only use 16

bits to compute the offset. Note that the tex2D++ technique

is not the same as applying quantization, which results in an

information loss from input feature maps. The bit-reduced

computation in tex2D++ is only used to perform bilinear

interpolation using the offsets derived at training time. In

contrast, quantization reduces the precision of the input feature

map and/or the filter by mapping values from a larger scale to

a smaller scale. Thus, tex2D++ does not result in any negative

impact on accuracy. As we can see in Fig. 7, we accelerate

deformable operation by 1.27× with tex2D, and by 1.39×
with tex2D++. Due to the reduction in memory bandwidth, the

performance of tex2D++ is superior to tex2D. In addition, we

show the speedup obtained over PyTorch 2.1 when executing

tex2D and tex2D++ on the 2080Ti GPU in Table IV.

Next, Table III shows the end-to-end execution speedup

of DEFCON over our baseline neural network (YOLACT++)

with varied optimizations we designed. Specifically, with all

optimizations, DEFCON outperforms YOLACT++ by up to

2.80×. To prove that DEFCON results in good accuracy and to

help readers better understand the performance gains, Table III

also shows multiple accuracy results and the performance

gains only coming from tex2D and tex2D++, respectively.

More specifically, the interval search method greatly improves

mask mAP by 1.05 over baseline YOLACT++, and brings

1.25× speedup over YOLACT++ because it uses 2 fewer DCN

layers than YOLACT++. Bounding the offsets improves mask

mAP, but slightly impacts box mAP, while maintaining rea-

sonable performance in terms of accuracy. Lightweight layer

modifications result in a slight drop in accuracy, but DEFCON

still outperforms state-of-the-art YOLACT++. Moreover, with

varied optimizations, all tex2D layers achieve a speedup up

to 2.20×, and tex2D++ layers achieve a speedup up to

2.24×, respectively. By substituting regular 2d convolutions

with lightweight operators to compute offsets, we are able to

achieve more than a 2× performance improvement, with an

acceptable level of impact on accuracy as shown in Table III.

D. Optimization Evaluation

Next, to better understand our performance gains, we inves-

tigate the performance effects of each proposed algorithmic

optimization and the usage of texture units more carefully.

We use the YOLACT++ model (with ResNet101 backbone) as

our baseline (PyTorch) which we discover using our interval

search technique explained in section III-A. The baseline

(PyTorch) deformable convolution shown as interval search

in Fig. 9 performs a regular 2-D convolution to first compute

the offsets, and then uses the offsets to perform the actual

deformation using the flexible receptive field. We can see a

few trends in our results. First, better texture unit utiliza-

tion (tex2D) produces a speedup of the deformable layers.

However, we only observe moderate speedups for layers

[128, 128, 138, 138]. This is due to the larger input feature map

height and width, which increases the number of texel com-

putations for bilinear interpolation. Second, with tex2D++,

we achieve a slight speedup of layers over tex2D for the

interval search and bounded configurations. Finally, another

interesting observation is that contrary to the recent work [28],

[29] on accelerators where bounded offset techniques seem

to deliver superior performance, we did not observe speedup

improvements while using bounded offsets on the GPU.

Next, we consider the importance of selecting GPU-specific

parameters (e.g., tile size) to increase SM utilization and

exploit spatial locality. We search for the best tile size for

tex2D and tex2D++ using the ytopt [34] autotuning frame-

work that employs Bayesian optimization. The search is

conducted offline, thus avoiding runtime overhead. Fig. 8

plots the speedup of tex2D and tex2D++ over our baseline,

clearly showing that tile size significantly affects the resulting

speedup, and our autotuning-based tile size search results in

the best performance.

To further analyze the benefit brought by texture memory

usage, we investigate GPU metrics using nvprof in Fig. 10.

nvprof provides MFLOP, Global Load Transactions per Re-

quest, Global Load Efficiency, Texture load requests, as shown

in Fig. 10. We can see that PyTorch (baseline YOLACT++)

does not use any texture load requests, where tex2d and

tex2d++ use texture load requests. By observing the MFLOP

count, we can see that there is a reduction of floating point

operations by about 4× (approximately) due to performing

hardware bilinear interpolation using texture units instead of

software bilinear interpolation used by PyTorch. The PyTorch

native implementation performs bilinear interpolation using

four neighboring pixels. The ratio is not exactly four, as

boundary pixels are often not computed and are substituted as

zero [10]. Global load efficiency (GLD Efficiency) measures

how many of the DRAM memory accesses are coalesced. Due

to the texture unit utilization, the global load efficiency reaches

100% for all layers. Finally, we also observe that the number of

global memory transfers performed per each memory request

(GLD Transactions/Request) also decreases. Thus, texture unit

utilization improves the spatial locality of data accesses.

651

Authorized licensed use limited to: William & Mary. Downloaded on September 09,2024 at 18:12:11 UTC from IEEE Xplore. Restrictions apply.

TABLE III
SUMMARY OF ACCURACY AND SPEEDUP RESULTS ON XAVIER. Search REFERS TO USING INTERVAL SEARCH, Boundary REFERS TO USING BOUNDED

OFFSET, AND Light REFERS TO USING LIGHTWEIGHT DCN. B.L. SHOWS THE TOTAL ELAPSED TIME FOR THE PYTORCH BASELINE (WITHOUT

TEXEL-BASED OPTIMIZATIONS). THE SPEEDUP OVER YOLACT++ (RESNET101 BACKBONE) IS SHOWN SEPARATELY - OUR INTERVAL SEARCH

DELIVERS A 1.25× IMPROVEMENT DUE TO THE REDUCTION OF DCN LAYERS, WITHOUT COMPROMISING ACCURACY.

Method Accuracy B.L. tex2D++ tex2D tex2D++ Speedup over
Search Boundary Light tex2D Box Mask Mask (ms) (ms) Speedup Speedup YOLACT++

mAP mAP AP50

35.07 34.62 53.79 478.12 - - - 1.00×

� 36.66 35.67 55.84 382.49 - - - 1.25×
� � 36.66 35.67 55.84 382.49 332.60 1.13× 1.15× 1.44×
� � � 36.21 35.84 55.60 384.41 329.73 1.13× 1.16× 1.45×
� � � 35.42 35.21 55.48 222.37 171.52 2.20× 2.23× 2.79×
� � � � 35.38 35.35 55.51 224.99 171.01 2.20× 2.24× 2.80×

[1
28
,1
28
,1
38
,1
38
]

[1
28
,1
28
,6
9,
69
]

[2
56
,2
56
,6
9,
69
]

[2
56
,2
56
,3
5,
35
]

[5
12
,5
12
,3
5,
35
]

[5
12
,5
12
,1
8,
18
]

[1
28
,1
28
,1
38
,1
38
]

[1
28
,1
28
,6
9,
69
]

[2
56
,2
56
,6
9,
69
]

[2
56
,2
56
,3
5,
35
]

[5
12
,5
12
,3
5,
35
]

[5
12
,5
12
,1
8,
18
]

[1
28
,1
28
,1
38
,1
38
]

[1
28
,1
28
,6
9,
69
]

[2
56
,2
56
,6
9,
69
]

[2
56
,2
56
,3
5,
35
]

[5
12
,5
12
,3
5,
35
]

[5
12
,5
12
,1
8,
18
]

Layer [in channels, out channels, height, width]

0.5×

1.0×

2.0×

4.0×

8.0×

S
p
ee
d
u
p

1.
00
×

1.
00
×

1.
00
×

1.
00
×

1.
00
×

1.
00
×

1.
02
×

1.
00
×

0.
97
×

1.
00
×

0.
98
×

1.
00
×

1.
99
×

1.
93
×

1.
98
×

1.
34
×

1.
67
×

1.
70
×

1.
04
×

1.
10
×

1.
12
×

1.
18
×

1.
10
×

1.
16
×

1.
04
×

1.
09
×

1.
12
×

1.
19
×

1.
10
×

1.
17
×

3.
92
×

2.
39
×

2.
35
×

1.
68
×

2.
02
×

2.
17
×

1.
07
×

1.
10
×

1.
08
×

1.
22
×

1.
16
×

1.
19
×

1.
08
×

1.
10
×

1.
10
×

1.
22
×

1.
16
×

1.
18
×

3.
97
×

2.
37
×

2.
21
×

1.
72
×

2.
10
×

2.
24
×

PyTorch tex2D tex2D++

interval search bounded light weight operators

Fig. 9. Speedup of algorithmic optimizations on Xavier. The baseline is YOLACT++ model (with ResNet-101 backbone) we discover using our ”interval
search” technique (y-axis in log scale).

[128
,128

,138
,138

]

[128
,128

,69,6
9]

[256
,256

,69,6
9]

[256
,256

,35,3
5]

[512
,512

,35,3
5]

[512
,512

,18,1
8]

Layer [in channels, out channels, height, width]

1

100

10000

M
F
L
O
P 24
5

98
0

97
5

18
54

94
1 36
32

58 23
1

23
1

46
2

23
1

92
5

58 23
1

23
1

46
2

23
1

92
5

PyTorch tex2D tex2D++

[128
,128

,138
,138

]

[128
,128

,69,6
9]

[256
,256

,69,6
9]

[256
,256

,35,3
5]

[512
,512

,35,3
5]

[512
,512

,18,1
8]

Layer [in channels, out channels, height, width]

0%

50%

100%

G
L
D

E
f
ic
ie
n
cy

41

70 66 59

36

58

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

10
0

Fig. 10. nvprof statistics (MFLOP, Global Load Efficiency).

E. Qualitative Comparison

Finally, to conclude our evaluation, we perform a

qualitative comparison with deformable convolutions [17].

YOLACT++ [17] boosts the accuracy by adding deformable

convolution layers due to: (1) DCNs strengthening the net-

work’s capability to handle instances with different scales and

rotations; (2) As a single shot method, YOLACT++ lacks

flexible sampling. However, similar to DCNv2 [21], they place

deformable layers by determining the positions manually, and

adopt a policy of placing DCNs with an interval of 3 (i.e.,

skipping two ResNet blocks between, resulting in a total of

10 deformable layers). In contrast, with interval search, we

reduce the number of DCN layers by 2 while achieving a

+1.05 Mask mAP. Furthermore, to determine the placement of

DCNs, prior work required formulating hand-crafted strategies

652

Authorized licensed use limited to: William & Mary. Downloaded on September 09,2024 at 18:12:11 UTC from IEEE Xplore. Restrictions apply.

TABLE IV
DEFORMABLE OPERATION SPEEDUP WITH PYTORCH 2.1 ON 2080TI

GPU.

In Out
H W

PyTorch tex2D tex2D++ Speedup
ch ch (ms) (ms) (ms) w.r. Torch

128 128 138 138 5.64 5.18 5.13 1.10×
128 128 69 69 11.89 9.17 9.16 1.30×
256 256 69 69 11.89 9.16 9.14 1.30×
256 256 35 35 26.68 21.27 21.24 1.26×
512 512 35 35 27.87 25.82 25.41 1.10×
512 512 18 18 67.41 56.27 56.14 1.20×

TABLE V
ABLATION STUDY ON OFFSETS BASED ON USING INTERVAL SEARCH

WITH YOLACT++ (RESNET-101 BACKBONE.) A BOUNDARY IS

PREDEFINED TO LIMIT THE MAXIMUM VALUE FOR OFFSET

COORDINATES. WE APPLY REGULARIZED TRAINING AND OFFSET

ROUNDING TO INTEGERS. REGULARIZED TRAINING HAS NEGLIGIBLE

ACCURACY LOSS, AND IT IS POSSIBLE TO APPLY ONLY A

BOUNDARY-LIMITING TECHNIQUE.

Boundary Regularization Round Box mAP Mask mAP

� 35.38 35.35
� � 35.36 35.30
� � 34.52 34.37

such as skipping layers, or choosing the first/last layers [17].

Applying our technique, we discover that a hybrid approach is

the most suitable, where the last few layers are replaced with

DCNs and selectively placed throughout the network.

Rounding the sampling coordinates from floating point

format to integers ultimately results in a significant loss of

accuracy [28], [29] as observed in Table V, and without

significant performance benefits. Regularized training, which

adds penalties to the offset, is an alternative solution to

constrain sampling coordinates. In Table V, we can see that the

accuracy of regularized training results is close to the accuracy

of using only the boundary method.

V. RELATED WORK

Object Detection and Instance Segmentation. A significant

amount of research effort has been devoted to improving

the accuracy of instance segmentation. One such effort is

Mask-RCNN [35] which is a two-stage instance segmenta-

tion method. Mask-RCNN first generates regions of interest

(ROI) and then classifies and segments ROIs. Follow-on work

improved the accuracy of Mask-RCNN by using FPN fea-

tures [36]. Such two-stage methods require re-pooling features

for each ROI and additional processing, making them a poor

choice when real-time throughput (i.e., 30 frames/second, i.e.,

fps) is required. Although real-time object detection [37]–[39]

and semantic segmentation [40], [41] methods exist, Mask R-

CNN was one of the fastest instance segmentation methods

available, especially when processing a semantically challeng-

ing dataset such as COCO [42] (13.5 fps on 5502 px images).

More recently, YOLACT++ [17] was reported to provide real-

time instance segmentation, achieving competitive results on

MS COCO [42]. YOLACTEdge [43] is the first competitive

instance segmentation approach that runs on modest edge

devices at real-time speeds (the target hardware platform is

the NVIDIA Jetson AGX Xavier).

Deformable Convolution. Computer vision research has ex-

plored the use of spatially invariant features. Before CNNs,

vision applications relied on custom features that were con-

strained by geometric transformations [44], [45]. In the context

of CNNs, partial transformer networks (STNs) [46] represent

the first approach that proposed learning features invariant to

translation. However, the global affine transformations used

in STNs cannot model complex geometric variations com-

monly encountered in vision tasks. Deformable convolution

was first proposed by Dai et al. [10] and was extended by

Zhu et al. [21], to address these issues. These Deformable

Convolutional Networks (DCN) have been able to provide

significant accuracy gains in vision tasks, including segmenta-

tion [17], [47], object detection [48], video restoration, super

resolution [49], and other tasks [50].

GPU Texture based Optimization: Pyramidal image pro-

cessing has been used to implement depth-of-field effects

by employing hardware-supported filtering of pinhole images

(i.e., mip-mapping) [51]–[53]. In addition, texture memory has

been used to improve the performance of tree boosting on

GPUs, by mapping the tree data structure to texture mem-

ory [54]. The texture memory cache has been used to store

data structures from some variants of programs when adaptive

code tuning is performed [55] and also to reduce redundant

data loads from global memory [56]. Recently, Ukarande et

al. [57] proposed Cooperative Thread Array (CTA) mapping

techniques to co-locate neighboring work tokens in the same

streaming multiprocessor (SM) to improve the locality of

texture access patterns. In summary, previous work on texture

use focused on machine learning techniques such as tree

boosting [54] and optimized graphics performance [57]. In

contrast, we are the first to explore deformable convolution in

the context of texture-based inference on GPUs.

Accelerating Deformable Convolutional Networks (DCN).

Though DCNs have been shown to be effective, they have

some implementation challenges. First, additional convolution

layers are required to learn the offset in an input-adaptive

manner. Second, though the deformable kernel executes the

same computation as a regular convolution kernel, the ar-

bitrary sampling positions require additional software-level

instructions to perform the linear interpolation. To address

these inefficiencies, multiple methods have been proposed to

accelerate deformable convolutions. Some popular techniques

to optimize DCN on FPGA include: (i) limiting adaptive

offsets to a fixed range, thus increasing the temporal locality of

the input [28], [29]; (ii) constraining arbitrary offset displace-

ments, thus reducing irregular accesses and enabling parallel

accesses to on-chip memory [58]; (iii) rounding the offset

displacements to integers and removing fractional bilinear

interpolations [28], [29]; and (iv) using depthwise convolution

to reduce the total number of Multiply-Accumulate operations

(MACs) [28]. In contrast to existing FPGA-based optimiza-

tions, our work utilizes available hardware units present on just

about every GPU, allowing our technique to remain applicable

653

Authorized licensed use limited to: William & Mary. Downloaded on September 09,2024 at 18:12:11 UTC from IEEE Xplore. Restrictions apply.

to similar operators in the future. We also note that although

the substitution of the depthwise convolution operator has

been proposed in earlier work [28], it has only been used

with manual layer placement and has not been combined with

a neural search engine. Orthogonally, accelerators based on

the ReRAM architecture [59] and accelerators utilizing tile

dependency tables [60] have been proposed.

In contrast to previous work, which focused primarily on

the design of custom accelerators, our work (DEFCON) de-

termines the best placement of deformable operations through

interval search methods and utilizes the existing GPU texture

hardware to improve execution speed.

VI. CONCLUSION

This paper presents DEFCON, the first work to optimize

deformable convolutions on GPU hardware. DEFCON intro-

duces a holistic approach towards deformable convolution

optimization, including better placement of operators and

utilization of GPU texture hardware. Automated placement of

deformable convolution layers, versus hand-tuned placement,

is a key contribution of our approach. In essence, our proposed

technique can run twice as fast as the state-of-the-art frame-

works, providing better accuracy and using fewer deformable

layers. In future work, we expect to use our approach to

improve other DNN operators by leveraging texture hardware.

The adoption and integration of these features to widely

available machine learning frameworks should vastly improve

object detection and image segmentation tasks, helping to

further accelerate the artificial intelligence revolution.

REFERENCES

[1] A. Krizhevsky, “One weird trick for parallelizing convolutional neural
networks,” CoRR, vol. abs/1404.5997, 2014. [Online]. Available:
http://arxiv.org/abs/1404.5997

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” in 3rd International Conference

on Learning Representations, ICLR 2015, San Diego, CA, USA, May

7-9, 2015, Conference Track Proceedings, Y. Bengio and Y. LeCun,
Eds. San Diego, CA, USA: DBLP, 2015. [Online]. Available:
http://arxiv.org/abs/1409.1556

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). Los Alamitos, CA, USA:
IEEE Computer Society, jun 2016, pp. 770–778. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.90

[4] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer param-
eters and <0.5mb model size,” arXiv:1602.07360, vol. abs/1602.07360,
2016.

[5] G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in 2017 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). Los Alamitos,
CA, USA: IEEE Computer Society, jul 2017, pp. 2261–2269. [Online].
Available: https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.243

[6] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in 2016

IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Los Alamitos, CA, USA: IEEE Computer Society, jun 2016, pp.
2818–2826. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/CVPR.2016.308

[7] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in 2015 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). Los Alamitos, CA, USA: IEEE
Computer Society, jun 2015, pp. 1–9. [Online]. Available: https:
//doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298594

[8] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An
extremely efficient convolutional neural network for mobile devices,”
in 2018 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR). Los Alamitos, CA, USA: IEEE Computer
Society, jun 2018, pp. 6848–6856. [Online]. Available: https:
//doi.ieeecomputersociety.org/10.1109/CVPR.2018.00716

[9] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). Los Alamitos, CA, USA: IEEE Computer Society, jun 2018,
pp. 4510–4520. [Online]. Available: https://doi.ieeecomputersociety.org/
10.1109/CVPR.2018.00474

[10] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable
convolutional networks,” in Proceedings of the IEEE International

Conference on Computer Vision (ICCV). Venice, Italy: IEEE, Oct 2017,
pp. 764–773.

[11] G. Rizos, K. Hemker, and B. Schuller, “Augment to prevent: Short-text
data augmentation in deep learning for hate-speech classification,” in
Proceedings of the 28th ACM International Conference on Information

and Knowledge Management, ser. CIKM ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 991–1000. [Online].
Available: https://doi.org/10.1145/3357384.3358040

[12] J. Munoz-Bulnes, C. Fernandez, I. Parra, D. Fernández-Llorca, and
M. A. Sotelo, “Deep fully convolutional networks with random data
augmentation for enhanced generalization in road detection,” in 2017

IEEE 20th International Conference on Intelligent Transportation Sys-

tems (ITSC), IEEE. Los Alamitos, CA, USA: IEEE Computer Society,
2017, pp. 366–371.

[13] P. Dollár, R. Appel, S. Belongie, and P. Perona, “Fast feature pyramids
for object detection,” IEEE transactions on pattern analysis and machine

intelligence, vol. 36, no. 8, pp. 1532–1545, 2014.
[14] D. Lowe, “Object recognition from local scale-invariant features,” in

Proceedings of the Seventh IEEE International Conference on Computer

Vision, vol. 2, 1999, pp. 1150–1157 vol.2.
[15] W. Wang, J. Dai, Z. Chen, Z. Huang, Z. Li, X. Zhu, X. Hu, T. Lu, L. Lu,

H. Li, X. Wang, and Y. Qiao, “Internimage: Exploring large-scale vision
foundation models with deformable convolutions,” in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), June 2023, pp. 14 408–14 419.
[16] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “Yolact: Real-time instance

segmentation,” in 2019 IEEE/CVF International Conference on Com-

puter Vision (ICCV). Seoul, Korea: IEEE, 2019, pp. 9156–9165.
[17] ——, “Yolact++ better real-time instance segmentation,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 44, no. 2, p. 1108–1121, feb 2022.
[Online]. Available: https://doi.org/10.1109/TPAMI.2020.3014297

[18] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An
imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, Eds. Canada: Curran Associates, Inc., 2019, pp. 8024–
8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[19] Y. Wei, H. Xiao, H. Shi, Z. Jie, J. Feng, and T. S. Huang, “Revisiting
dilated convolution: A simple approach for weakly- and semi-supervised
semantic segmentation,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), June 2018.
[20] C. Chu, F. Chen, D. Xu, and Y. Wang, RECOIN: A Low-Power

Processing-in-ReRAM Architecture for Deformable Convolution. New
York, NY, USA: Association for Computing Machinery, 2021, p.
235–240. [Online]. Available: https://doi.org/10.1145/3453688.3461480

[21] X. Zhu, H. Hu, S. Lin, and J. Dai, “Deformable convnets v2: More
deformable, better results,” 2018.

[22] Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng, “Dual path
networks,” in Advances in Neural Information Processing Systems,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran Associates,
Inc., 2017. [Online]. Available: https://proceedings.neurips.cc/paper/
2017/file/f7e0b956540676a129760a3eae309294-Paper.pdf

[23] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” 2017.

654

Authorized licensed use limited to: William & Mary. Downloaded on September 09,2024 at 18:12:11 UTC from IEEE Xplore. Restrictions apply.

[24] X. Dai, P. Zhang, B. Wu, H. Yin, F. Sun, Y. Wang, M. Dukhan,
Y. Hu, Y. Wu, Y. Jia, P. Vajda, M. Uyttendaele, and N. K. Jha,
“Chamnet: Towards efficient network design through platform-aware
model adaptation,” in Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), June 2019.
[25] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,

Y. Jia, and K. Keutzer, “Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), June 2019.
[26] S. Huai, L. Zhang, D. Liu, W. Liu, and R. Subramaniam, “Zerobn:

Learning compact neural networks for latency-critical edge systems,” in
2021 58th ACM/IEEE Design Automation Conference (DAC), 2021, pp.
151–156.

[27] S. Zhang, S. Zhang, Z. Qian, J. Wu, Y. Jin, and S. Lu, “Deepslicing:
Collaborative and adaptive cnn inference with low latency,” IEEE

Transactions on Parallel and Distributed Systems, vol. 32, no. 9, pp.
2175–2187, 2021.

[28] Q. Huang, D. Wang, Y. Gao, Y. Cai, Z. Dong, B. Wu, K. Keutzer, and
J. Wawrzynek, “Algorithm-hardware co-design for deformable convolu-
tion,” 2020.

[29] Q. Huang, D. Wang, Z. Dong, Y. Gao, Y. Cai, T. Li, B. Wu,
K. Keutzer, and J. Wawrzynek, CoDeNet: Efficient Deployment of

Input-Adaptive Object Detection on Embedded FPGAs. New York,
NY, USA: Association for Computing Machinery, 2021, p. 206–216.
[Online]. Available: https://doi.org/10.1145/3431920.3439295

[30] NVIDIA, “Memory statistics - texture,” 2015. [Online]. Available: https:
//docs.nvidia.com/gameworks/content/developertools/desktop/analysis/
report/cudaexperiments/kernellevel/memorystatisticstexture.htm

[31] N. Cornelis and L. Van Gool, “Fast scale invariant feature detection and
matching on programmable graphics hardware,” in 2008 IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition

Workshops, 2008, pp. 1–8.
[32] D. Maung, Y. Shi, and R. Crawfis, “Procedural textures using tilings

with perlin noise,” in 2012 17th International Conference on Computer

Games (CGAMES), 2012, pp. 60–65.
[33] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays,

P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár, “Microsoft coco:
Common objects in context,” 2015.

[34] X. Wu, M. Kruse, P. Balaprakash, H. Finkel, P. Hovland, V. Taylor, and
M. Hall, “Autotuning polybench benchmarks with llvm clang/polly loop
optimization pragmas using bayesian optimization,” in 2020 IEEE/ACM

Performance Modeling, Benchmarking and Simulation of High Perfor-

mance Computer Systems (PMBS), 2020, pp. 61–70.
[35] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in 2017

IEEE International Conference on Computer Vision (ICCV). Venice,
Italy: IEEE, 2017, pp. 2980–2988.

[36] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network for
instance segmentation,” in 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR). Los Alamitos, CA, USA:
IEEE Computer Society, jun 2018, pp. 8759–8768. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00913

[37] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on

computer vision, Springer. Amsterdam, Netherlands: IEEE, 2016, pp.
21–37, to appear. [Online]. Available: http://arxiv.org/abs/1512.02325

[38] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” in
2017 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). Los Alamitos, CA, USA: IEEE Computer Society, jul 2017,
pp. 6517–6525. [Online]. Available: https://doi.ieeecomputersociety.org/
10.1109/CVPR.2017.690

[39] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). Los Alamitos,
CA, USA: IEEE Computer Society, jun 2016, pp. 779–788. [Online].
Available: https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.91

[40] M. Treml, J. Arjona-Medina, T. Unterthiner, R. Durgesh, F. Fried-
mann, P. Schuberth, A. Mayr, M. Heusel, M. Hofmarcher, M. Widrich,
B. Nessler, and S. Hochreiter, “Speeding up semantic segmentation for
autonomous driving,” in NIPS 2016 Proceedings. USA: Openreview,
12 2016.

[41] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A deep
neural network architecture for real-time semantic segmentation,” arXiv

preprint arXiv:1606.02147, vol. abs/1606.02147, 2016.

[42] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in con-
text,” in Computer Vision – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele,
and T. Tuytelaars, Eds. Cham: Springer International Publishing, 2014,
pp. 740–755.

[43] H. Liu, R. A. R. Soto, F. Xiao, and Y. J. Lee, “Yolactedge: Real-
time instance segmentation on the edge,” in 2021 IEEE International

Conference on Robotics and Automation (ICRA), IEEE. Xi’an, China:
IEEE, 2021, pp. 9579–9585.

[44] D. G. Lowe, “Object recognition from local scale-invariant features,”
in Computer Vision, IEEE International Conference on, vol. 2. Los
Alamitos, CA, USA: IEEE Computer Society, sep 1999, p. 1150.
[Online]. Available: https://doi.ieeecomputersociety.org/10.1109/ICCV.
1999.790410

[45] G. Bradski, K. Konolige, V. Rabaud, and E. Rublee, “Orb: An efficient
alternative to sift or surf,” in 2011 IEEE International Conference

on Computer Vision (ICCV 2011). Los Alamitos, CA, USA: IEEE
Computer Society, nov 2011, pp. 2564–2571. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/ICCV.2011.6126544

[46] M. Jaderberg, K. Simonyan, A. Zisserman, and k. kavukcuoglu,
“Spatial transformer networks,” in Advances in Neural Information

Processing Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama,
and R. Garnett, Eds., vol. 28. Montreal, Canada: Curran Associates,
Inc., 2015. [Online]. Available: https://proceedings.neurips.cc/paper/
2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf

[47] X. Wang, T. Kong, C. Shen, Y. Jiang, and L. Li, “Solo: Segmenting
objects by locations,” in European Conference on Computer Vision,
Springer. USA: Springer, 2020, pp. 649–665.

[48] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable
{detr}: Deformable transformers for end-to-end object detection,”
in International Conference on Learning Representations. Vienna:
Openreview, 2021. [Online]. Available: https://openreview.net/forum?
id=gZ9hCDWe6ke

[49] X. Wang, K. C. K. Chan, K. Yu, C. Dong, and C. C. Loy, “Edvr: Video
restoration with enhanced deformable convolutional networks,” 2019.

[50] A. Siarohin, E. Sangineto, S. Lathuiliere, and N. Sebe, “Deformable
gans for pose-based human image generation,” in 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR).
Los Alamitos, CA, USA: IEEE Computer Society, jun 2018, pp.
3408–3416. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/CVPR.2018.00359

[51] M. Kraus and M. Strengert, “Depth-of-field rendering by pyramidal
image processing,” in Computer graphics forum, vol. 26, no. 3. Wiley
Online Library, 2007, pp. 645–654.

[52] R. M. Bastos, S. D. Lew, C. A. Beeson, and J. E. Demers Jr, “Depth-of-
field effects using texture lookup,” Dec. 13 2005, uS Patent 6,975,329.

[53] B. A. Barsky, D. R. Horn, S. A. Klein, J. A. Pang, and M. Yu, “Camera
models and optical systems used in computer graphics: Part i, object-
based techniques,” in Computational Science and Its Applications —

ICCSA 2003, V. Kumar, M. L. Gavrilova, C. J. K. Tan, and P. L’Ecuyer,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 246–
255.

[54] N. Birkbeck, M. Sofka, and S. K. Zhou, “Fast boosting trees for
classification, pose detection, and boundary detection on a gpu,” in
CVPR 2011 WORKSHOPS, 2011, pp. 36–41.

[55] S. Muralidharan, M. Shantharam, M. Hall, M. Garland, and B. Catan-
zaro, “Nitro: A framework for adaptive code variant tuning,” in 2014

IEEE 28th International Parallel and Distributed Processing Sympo-

sium, 2014, pp. 501–512.
[56] E. H. Phillips and M. Fatica, “Implementing the himeno benchmark

with cuda on gpu clusters,” in 2010 IEEE International Symposium on

Parallel and Distributed Processing (IPDPS), 2010, pp. 1–10.
[57] A. Ukarande, S. Patidar, and R. Rangan, “Locality-aware cta scheduling

for gaming applications,” ACM Trans. Archit. Code Optim., vol. 19,
no. 1, dec 2021. [Online]. Available: https://doi.org/10.1145/3477497

[58] S. Ahn, J.-W. Chang, and S.-J. Kang, “An efficient accelerator design
methodology for deformable convolutional networks,” in 2020 IEEE

International Conference on Image Processing (ICIP), 2020, pp. 3075–
3079.

[59] C. Chu, F. Chen, D. Xu, and Y. Wang, RECOIN: A Low-Power

Processing-in-ReRAM Architecture for Deformable Convolution. New
York, NY, USA: Association for Computing Machinery, 2021, p.
235–240. [Online]. Available: https://doi.org/10.1145/3453688.3461480

[60] D. Xu, C. Chu, C. Liu, Y. Wang, H. Li, X. Li, and K.-T. Cheng, “Energy-
efficient accelerator design for deformable convolution networks,” 2021.

655

Authorized licensed use limited to: William & Mary. Downloaded on September 09,2024 at 18:12:11 UTC from IEEE Xplore. Restrictions apply.

