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Abstract 9 

Extreme water levels (EWLs) resulting from tropical and extratropical cyclones pose significant 10 

risks to coastal communities and their interconnected ecosystems. To date, physically-based 11 

models have enabled accurate characterization of EWLs despite their inherent high computational 12 

cost. However, the applicability of these models is limited to data-rich sites with diverse13 

morphologic and hydrodynamic characteristics. The dependence on high quality spatiotemporal 14 

data, which is often computationally expensive, hinders the applicability of these models to regions 15 

of either limited or data-scarce conditions. To address this challenge, we present a computationally 16 

efficient deep learning framework, employing Long Short-Term Memory (LSTM) networks, to 17 

predict the evolution of EWLs beyond site-specific training stations. The framework, named 18 

LSTM-Station Approximated Models (LSTM-SAM), consists of a collection of bidirectional 19 

LSTM models enhanced with a custom attention layer mechanism embedded in the model 20 

architecture. Moreover, the LSTM-SAM framework incorporates a transfer learning approach that 21 
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is applicable to target (tide-gage) stations along the U.S. Atlantic Coast. The LSTM-SAM 22 

framework demonstrates satisfactory performance with “transferable” models achieving average 23 

Kling-Gupta Efficiency (KGE), Nash-Sutcliffe Efficiency (NSE), and Root-Mean Square Error 24 

(RMSE) ranging from 0.78 to 0.92, 0.90 to 0.97, and 0.09 to 0.18 at the target stations, respectively. 25 

Following these results, the LSTM-SAM framework can accurately predict not only EWLs but 26 

also their evolution over time, i.e., onset, peak, and dissipation, which could assist in large-scale 27 

operational flood forecasting, especially in regions with limited resources to set up high fidelity 28 

physically-based models. 29 

Keywords: long short-term memory networks, transfer learning, extreme water level, tropical 30 

cyclones31 

1. Introduction 32 

About 11% of the world's population (890 million people) currently resides in low-lying areas, 33 

and according to the Intergovernmental Panel on Climate Change, this number is projected to 34 

exceed 1 billion by the year 2050 (Pörtner et al. 2019; Glavovic et al. 2022). Low-lying areas are 35 

particularly vulnerable to weather and climate disasters which are responsible for severe 36 

socioeconomic and environmental impacts (Zscheischler et al. 2020; Rainey et al. 2021). The 37 

United States, accounting for 1.6% of the current global population (129 million people) in low-38 

lying areas (Office for Coastal Management, 2024), has reported more than 377 weather and 39 

climate disasters since 1980 (NOAA-NCEI 2024). In the same period, total reported losses exceed 40 

$2.67 trillion when adjusted for the 2024 Consumer Price Index (NOAA-NCEI 2024). Among 41 

these disasters, six of the world’s costliest hu42 

in the United States (Douris and Kim 2021; Sanders et al. 2022). Hurricanes (or tropical cyclones) 43 
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are responsible for coastal flood hazards characterized by extreme water levels (EWLs) and 44 

exacerbated by climate-related impacts, including regional sea level rise and anthropogenic 45 

activities (Hino and Nance 2021; Khojasteh et al. 2021). 46 

EWLs in estuarine and coastal systems arise from various flood drivers, including 47 

precipitation, river discharge, storm surge, tides, and waves. Yet, these drivers do not necessarily 48 

act in isolation but rather synergize resulting in compound flooding (Wahl et al. 2017; Muis et al. 49 

2019; Parker et al. 2023). Compound flood (CF) hazards, and their associated risk to coastal 50 

communities, are particularly severe when flood drivers co-occur or unfold in close succession 51 

(Arns et al. 2020; Almar et al. 2021). For example, storm surge can co-occur with extreme 52 

precipitation events during tropical cyclones (TCs) (Wahl et al. 2015; Bevacqua et al. 2019), high 53 

tide can coincide with the peak of a storm surge (Thomas et al. 2019; Marsooli and Wang 2020), 54 

peak river flow and storm surge can co-occur along estuarine systems (Moftakhari et al. 2019; 55 

Muñoz et al. 2020), and waves and storm surge can interact nonlinearly (Rueda et al. 2016; Serafin 56 

et al. 2017a); thereby amplifying the effects of CF events. It has been noted that changes in 57 

storminess would also play a major role in future EWLs (Santiago-Collazo et al. 2019). This is 58 

corroborated by the increasing frequency and intensity of TCs along with the rise of sea levels and 59 

ocean temperatures over the past 35 years (Anderson et al. 2021; Ghanbari et al. 2021; 60 

Bloemendaal et al. 2022).  61 

TCs have been responsible for 60% of flood-induced population displacements in the United 62 

States (1985 to 2021), especially in densely inhabited coastal cities along the Gulf of Mexico and 63 

the Atlantic Coast (Brakenridge 2021; Tate et al. 2021; Wing et al. 2022). Recognizing the 64 

heightened risks to coastal communities, it has become imperative for researchers and practitioners 65 

to rely on either physically-based or data-driven modeling approaches to characterize EWLs in 66 
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terms of peak magnitude and timing. Physically-based models are commonly used to estimate 67 

EWLs based on simplified hydrometeorological processes governed by the conservation of mass 68 

and momentum equations (Santiago-Collazo et al. 2019; Bates 2023). The accuracy of these 69 

models depends on the availability and quality of several spatiotemporal datasets to appropriately 70 

characterize input and forcing conditions, topography and bathymetry, land surface roughness, and 71 

other key morphologic characteristics (Jafarzadegan et al. 2021; Alipour et al. 2022; Bates 2022a). 72 

Nevertheless, such models are often constrained by limited spatial scope and/or high 73 

computational demands necessary to solve large-scale flood dynamics (Bilskie et al. 2021; Muñoz 74 

et al. 2021). While physically-based models developed with a lower spatial resolution (e.g., cell-75 

grid size and digital elevation model resolution) can cover broader areas and reduce computational 76 

time, they can lead to less accurate predictions due to a lack of detailed spatiotemporal information 77 

around key morphological and hydrodynamic variables in narrow tidal inlets and river channels 78 

(Saksena and Merwade 2015; Fraehr et al. 2022).  79 

In contrast, data-driven models such as neural networks (NN) can discern intricate or hidden 80 

patterns in large datasets and predict storm surges and EWLs with reduced computational demands 81 

when compared to those of physically-based models (Muñoz et al. 2021). Importantly, data-driven 82 

models offer rapid and efficient forecasting solutions at large scales (Lee et al. 2021; Hamitouche 83 

and Molina 2022; Hamidi et al. 2023) and have the ability to generalize or identify patterns from 84 

the data they are trained on. In addition, these models can be updated over time which improves 85 

their predictions as more and new information becomes available. The fact that NN models are 86 

inherently adept at capturing nonlinear associations in complex systems makes them reliable 87 

candidates for EWL prediction (Tedesco et al. 2023). Particularly, deep learning approaches like 88 

long short-term memory (LSTM) networks, a variant of the recurrent neural network (RNN), learn 89 
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nonlinear relationships and patterns from sequential time-series data, to enhance prediction 90 

accuracy in hydrological and coastal contexts (Li et al. 2021; Zhang et al. 2022).  91 

A growing body of research is demonstrating that LSTM networks can predict EWLs and aid 92 

in flood susceptibility assessments, barrage integrity, riverine flood level forecast, and surge 93 

prediction (Tiggeloven et al. 2021; Fang et al. 2021; Kardhana et al. 2022; Merizalde et al. 2023a; 94 

Liu et al. 2023). LSTM networks are designed to recognize sequence-to-sequence patterns and 95 

selectively retain information over time, which in turn enhances its predictive accuracy by utilizing 96 

memorized patterns (Hewamalage et al. 2021; Lindemann et al. 2021). On the global scale, LSTM 97 

networks outperformed other NN models designed for surge prediction at 92% of 1,276 tide 98 

stations across regions of Europe, Africa, Australia, the Pacific, and the United States (Tiggeloven 99 

et al. 2021). In addition, LSTM networks can be integrated with spatial NN algorithms to improve 100 

the modeling of geographical correlations (Gavahi et al. 2021) and even designed to capture spatial 101 

flood characteristics (Fang et al. 2021). Unlike physically-based models that are typically confined 102 

and developed using site-specific information, LSTM networks can be trained using geographical 103 

characteristics, morphological and hydrodynamic features, and forcing drivers at different scales. 104 

The resulting learned patterns can then be generalized and applied to neighboring regions through 105 

transfer learning (TL) techniques. 106 

TL addresses the challenge of either data scarce or insufficient training data by leveraging 107 

gained knowledge from data-rich training domains and applying it to other (target) domains that 108 

share similar characteristics or features (Shen 2018; Tan et al. 2018; F. Zhuang et al. 2021). 109 

Moreover, TL can be used to expedite decision-making processes and circumvent time constraints 110 

associated with the development and training of NN models. Several studies have implemented 111 

TL techniques in NN models to estimate urban flood levels (Zhao et al. 2021; Seleem et al. 2023), 112 
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predict significant wave height (Obara and Nakamura 2022), conduct land cover mapping 113 

(Mahdianpari et al. 2018), and compound flood hazard characterization of nearby regions to the 114 

training domain (Muñoz et al. 2021). However, creating a data-driven model with effective 115 

generalization capabilities beyond its training domain still remains a significant hurdle 116 

(Bentivoglio et al. 2022; Bates 2022b). While maintaining consistency in location enhances the 117 

accuracy and lead-time of model predictions (Altunkaynak and Kartal 2021), this limits the 118 

geographical areas suitable for effectively applying TL techniques. Therefore, NN models should 119 

learn patterns from nonlinear interactions among inputs features and further benefit from120 

mechanisms that ensure accurate model predictions at target domains. 121 

In the present study, we introduce a comprehensive framework that (i) accurately predicts the 122 

evolution of extreme water levels beyond training domains, and (ii) addresses the underlying 123 

limitations attributed to transfer learning techniques. The proposed framework, named LSTM - 124 

Station Approximated Models (LSTM-SAM), achieves these two objectives by gathering learned 125 

patterns from neighboring tide-gage stations of the U.S. Atlantic Coast and optimizing the LSTM 126 

models with an attention layer mechanism during the training phase. The remainder of the 127 

manuscript continues as follows. Section 2 presents the study area, data availability, data 128 

processing, and model architecture. Results of the proposed LSTM-SAM framework are shown in 129 

section 3 and discussed in section 4. Lastly, section 5 presents the conclusions of this study as well 130 

as future work. 131 
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2. Methods 132 

2.1 Study area 133 

The proposed LSTM-SAM framework is trained using time-series data from 5 strategically 134 

selected tide-gage stations located along the U.S. Atlantic Coast. These stations are Atlantic City, 135 

NJ (NOAA ID: 8534720), Sewells Point, VA (8638610), Beaufort, NC (8656483), Fort Pulaski, 136 

GA (8670870) and Trident Pier, FL (8721604) (Figure 1). The training stations are selected based 137 

on two criteria: (i) they have been hit by hurricane events within a radius of 60 km of the landfall 138 

location, and (ii) they have over 70% consecutive water level (WL) data spanning at least 40 years. 139 

The latter ensures that the training stations contain EWLs attributed to either TCs (hurricanes) or 140 

extra-TCs (Nor’easter winter storms) to effectively train and validate the LSTM-SAM framework. 141 

We then implement a TL approach in the framework and transfer nonlinear patterns from training 142 

to target stations in order to predict the evolution of EWLs. Most of the target stations are directly 143 

exposed to the Atlantic Ocean and located in-between the training stations (Figure 1). Those 144 

stations include: 1) Montauk, NY (NOAA ID: 8510560), 2) Sandy Hook, NJ (8656483), 3) Lewes, 145 

DE  (8557380), 4) Ocean City, MD (8570283), 5) Kiptopeke, VA (8632200), 6) Duck, NC 146 

(8656483), 7) Oregon Inlet Marina, NC (8652587), 8) USCG Station Hatteras, NC (8654467), 9) 147 

Wrightsville Beach, NC (8658163), 10) Springmaid Pier, SC (8661070), 11) Charleston, SC 148 

(8665530), 12) Mayport, FL (8720218), 13) Lake Worth Pier, FL (8722670), and 14) Virginia 149 

Key, FL (8723214). 150 
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151 

Figure 1: Location of training and target stations along the U.S. Atlantic Coast. (a) Selected 152 

training and target stations (numbered from 1 to 14) are shown with colored and black circles, 153

respectively. (b) For each training station, percentage of water level data completeness obtained 154 

from the NOAA’s Tides & Current portal. (c) Relevant hurricane’s best tracks within a 60 km 155 

radius of the hurricane’s landfall locations. 156 

1: Location of traocation of

ning and target staand targ

respectively. (b) Fpectively. (b) 

from the NOAfrom the55

radius of 156156



9 

2.2 Data availability 157 

We retrieve WL data from the National Oceanic and Atmospheric Administration (NOAA)’s 158 

Tides & Currents portal (https://tidesandcurrents.noaa.gov/map/index.html) and complement these 159 

with legacy data from the University of Hawaii Sea Level Center 160 

(https://uhslc.soest.hawaii.edu/data/?rq), particularly for stations where WL records are not 161 

available. Meteorological and wave data are obtained from the European Centre for Medium-162 

Range Weather Forecasts Reanalysis dataset (ERA5, version 5) produced by the Copernicus 163 

Climate Change Service (https://cds.climate.copernicus.eu/). ERA5 dataset has a spatial resolution 164 

of 31 km that allows for accurate representation of extreme climate events at large scale including 165 

those driven by TCs (Bian et al. 2021). Specifically, we use hourly wind speed and direction at 10 166 

m elevation, atmospheric pressure, sea level pressure, sea surface temperature, air temperature, 167 

precipitation, wave direction, and wave height. In addition, we retrieve data from the U.S. Army 168 

Corps of Engineers (USACE)’s Wave Information Studies (WIS) portal that provides consistent, 169 

hourly, and long-term wave climatology along the U.S. coastlines 170 

(https://wisportal.erdc.dren.mil/#). These aforementioned datasets have been successfully applied 171 

to other NN models that predict hourly non-tidal residuals at tide stations on a global scale with 172 

satisfactory results (Bruneau et al. 2020).  173 

2.3 Data processing  174 

The required data length to effectively train NN models depends on the response time of the 175 

system under analysis. For coastal systems, previous studies recommend at least six years of 176 

training data consisting of complete consecutive sequences (10 days) in order to achieve consistent 177 

proficiency in NN models (Bruneau et al. 2020; Tiggeloven et al. 2021). Following this, we 178 
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conduct data quality control over the training stations and ensure that the time-series contain 179 

complete data sequences to train the LSTM models. Then, we decompose the time-series data of 180 

WL into seasonality, trend, predicted tides, and non-tidal residual (NTR) components using the 181 

Seasonal-Trend decomposition using LOESS (STL) and Unified Tidal Analysis and Prediction 182 

(UTide) packages in Python (Cleveland et al. 1990; Codiga 2011). The STL analysis, adept at 183 

time-series analysis for its outlier resilience, flexible seasonal adjustment, and trend adaptability, 184 

provides comprehensive insights into long-term and seasonal dynamics (Chen et al. 2020). UTide 185 

employs a decision tree algorithm, a recognized method for automatically selecting the most 186 

relevant constituents from 147 tidal constituents, and offers tide prediction correction for records 187 

spanning up to one full (18.6-year) nodal cycle (Codiga 2011; Tiggeloven et al. 2021; Tedesco et 188 

al. 2023). We consider a window size of 40 days and a time step of 3 days for time-series 189 

decomposition in order to ensure that at least one full lunar cycle is covered (Figure S1, 190 

Supplementary material), including both spring and neap tides and the independence of large storm 191 

events by selecting the maximum NTR on a stepped basis (Serafin and Ruggiero 2014; Rashid et 192 

al. 2024; Moftakhari et al. 2024). The time-series decomposition aids to improve deep learning by 193 

distinguishing clear, recurring patterns from irregular variations; thereby refining the models' 194 

ability to learn from the data and enhancing the accuracy of their predictions (Parker et al. 2023).  195 

In addition to the WL components, we extract meteorological and wave data from the closest 196 

grid pixel of ERA-5 dataset to tide-gage stations. For this, we calculate the minimum square 197 

difference between the latitudes and longitudes of the data points and the specified location, that 198 

is, within a radius of 15.5 km. Next, we use the time-series of WL components, meteorological, 199 

and wave data as relevant input features to the LSTM-SAM framework in order to predict the 200 

target variable (e.g., EWLs and their evolution over time). Both input and target variables are first 201 
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scaled using the “minmaxscaler” function from the sklearn library in Python. This technique 202 

normalizes the range of multisource data and ensures that all features have an identical scale, 203 

typically between 0 and 1 (de Amorim et al. 2023). Also, we create a RNN dataset function that 204 

preprocesses data for LSTM by taking normalized input features (X_norm), corresponding target 205 

values (y_scaled), and a specified look-back period to construct a dataset suitable for sequence 206 

prediction. Moreover, we consider two look-backs of 6 and 24 hours to train the LSTM and 207 

evaluate the effects of different time steps on the model’s prediction performance, i.e., the number 208 

of previous time steps in hours used to predict the next time step.  209 

X_norm and their corresponding y_scaled are sequentially split into a training size of 80% and 210 

a testing size of 20%. Finally, we capture the evolution of EWLs in the training and testing datasets 211 

by focusing our analysis on historic hurricane events and Nor'easter winter storms within a 7-day 212 

window centered around the peak WL. Results of a sensitivity analysis show that longer time-213 

windows favor model’s performance metrics due to multiple non-extreme WLs being accounted 214 

for, whereas shorter ones could not effectively capture the evolution of EWLs across all stations 215 

as they focused more on the peak WL. 216 

2.4 Model architecture 217 

The LSTM-SAM framework consists of bidirectional LSTM (Bi-LSTM) models that are 218 

garnering significant interest within the domain of WL prediction (Bai and Xu 2021; Fang et al. 219 

2021; Zhang et al. 2022). Unlike traditional LSTM models that only rely on previous timesteps, 220 

the advantage of Bi-LSTM models is that input sequences are processed in both forward and 221 

backward directions (Equations 1 to 13 in the Supplementary material). The reader is referred to 222 

the study of Ahmed et al. (2022) for a more detailed explanation of Bi-LSTM. This dual viewpoint 223 
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helps identify and learn features that may not be apparent when the sequence is analyzed in only 224 

one direction.  225 

2.4.1 Bidirectional LSTM network models 226 

The model architecture consists of three LSTM units that are set to vary in intervals of 32 since 227

higher units tend to increase computational complexity (Figure 2a). We consider a “L2” 228 

regularization method to prevent overfitting by penalizing large weights. Also, we include dropout 229 

rates in the model architecture to prevent overfitting by randomly disabling a subset of neurons 230 

during the training process, thereby allowing the LSTM network to develop a more generalized 231 

understanding of the data and improve its performance on new and/or unseen data. The LSTM 232

units use the “tanh” and hard “sigmoid” recurrent activation functions. In addition, we add a 233 

standard dense (fully connected) layer to output the final prediction. The loss functions consist of 234 

both mean absolute error (MAE) and mean squared error (MSE) for different variants of the 235 

models with the “Adam” optimizer as suggested in similar WL prediction studies (Huang et al. 236 

2020). We reserve 30% of the training data for validation of the model’s learning ability during 237 

the training process. An early stopping callback is also employed to monitor the validation loss, 238 

stop training if no improvement is observed for five consecutive epochs, and ultimately prevent 239 

overfitting and/or unnecessary computations.  240 

We consider two training strategies in the LSTM algorithm: (i) train-test (TT) split, and (ii) 241 

time-series cross-validation (CV) split. The first method involves a single split into training (80%) 242 

and testing sets (20%) whereas the second method includes multiple training and testing sets 243 

created sequentially for a more comprehensive evaluation of the model's performance across 244 

different periods (Figure 2b and 2c). Unlike traditional CV strategies, here CV fold does not shuffle 245 

the data and therefore keeps the time sequence invariant (Kingphai and Moshfeghi 2022). We 246 
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consider 10-fold CV to check the model's performance and potentially improve the prediction 247 

accuracy. Moreover, the LSTM model is trained using the training set for that specific split for 248 

each iteration of the loop. As the loop progresses, the size of the training set increases whereas the 249 

validation set consists of data points that come after the training set in time. As a result, the training 250 

and validation process involves learning from past data and validating the model's performance on 251 

unseen future data, respectively. Once all splits are processed, the final model is trained using the 252 

entire dataset. 253 

254 

Figure 2. Schematic of model architecture, training, validation, and transfer learning approach. (a) 255 

Bidirectional LSTM network model with an attention layer mechanism to improve pattern 256 

recognition. The model employs two data training approaches: (b) train-test split, and (c) time-257 

series cross-validation for model development. (d) Transfer learning approach to predict extreme 258 

water level evolution at target stations (black circles) using models developed in the closest 259 

training stations (colored circles). 260 
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2.4.2 Hyperparameter tuning261 

We conduct hyperparameter tuning to identify optimal values of LSTM units, dropout rate, 262 

and learning rate within specified ranges to train the models (Table 1). We set the tuner search to 263 

a maximum of 300 trials, after which the best hyperparameters are used to train the models. The 264 

model architecture relies on a Bayesian optimization technique for hyperparameter tuning that 265 

inherently functions in a sequential manner and leverages data from previous evaluations to inform 266 

subsequent runs (Wang et al. 2023). Such technique efficiently balances the exploration of new 267 

areas in the hyperparameter space with an emphasis on known suitable regions. This is particularly 268 

useful when each training iteration is computationally intensive since the aforementioned 269 

optimization technique can identify optimal hyperparameters with less time than methods like grid 270 

or random search (Marco et al. 2022). Additionally, its capacity to handle high-dimensional 271 

hyperparameter spaces and integrate prior knowledge about potential hyperparameters makes it a 272 

versatile choice (Bischl et al. 2023). Its proven success in real-world applications and its efficiency 273 

in finding robust hyperparameters with limited evaluations position it as a top choice for many 274 

practitioners (Wang et al. 2023).  275 

Hyperparameters, identified through a rigorous tuning (or calibration) process on site-specific 276 

training data, tend to yield models that perform optimally within particular training domains. 277 

However, these models may not necessarily exhibit the same level of effectiveness across other 278 

target domains, even if both domains share similar morphological and hydrodynamic 279 

characteristics. We address this limitation by focusing on the range of values considered for 280 

hyperparameters. First, we define the values for specific parameters such as batch sizes (32, 64, 281 

128, and 256), look-back times (6 and 24), loss functions (MAE and MSE), and data training 282 

strategies (TT and CV), while allowing other parameters to be determined through hyperparameter 283 
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tuning. We then ensure that combinations of options from the aforementioned parameters occur 284 

precisely once, which in turn facilitates the creation of distinctive models with a unique set of 285 

hyperparameters across the five training stations (Figure 2). 286 

Hence, this tuning process produces a set of suitable Bi-LSTM models with comparable 287 

performance for a given training station. We evaluate model’s performance using several metrics 288 

that are recommended for models predicting WL dynamics (Abbaszadeh et al. 2020; Lee et al. 289 

2021; Muñoz et al. 2022a). Those include the coefficient of determination (R2), Mean Bias Error 290 

(MBE), Root Mean Square Error (RMSE), Kling-Gupta Efficiency (KGE) (Gupta et al., 2009), 291 

and Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970). Based on the evaluation metrics, 292 

there might be a set of “transferable” LSTM models among the suitable ones from the training 293 

station for which inherent pattern recognition capabilities would be adequate for the target stations 294 

(Section 2.4.4). However, an increase in tuning trials poses a risk of overfitting, where models 295 

become excessively tailored to the training data and lose their predictive ability on new datasets. 296 

Here, we specify an appropriate number of tuning trials while employing different combinations 297 

of hyperparameters to generate a spectrum of suitable models for a training domain (Table 1). 298 

Specifically, we develop a total of 32 models at each training. 299 

Table 1: Range of values considered for hyperparameter tuning. 300 

Hyperparameter (3 LSTM units) Range of Tested Values 

LSTM Units 32 - 512 (step of 32) 

Dropout Rate 0.10- 0.50 (step of 0.1) 

Activation Tanh, Sigmoid 

L2 Regularization 1e-6 - 1e-3 (log sampling) 

Learning Rate (Adam Optimizer) 1e-4 - 1e-2 (log sampling) 

Maximum number of trials 300 
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Batch Size (b) 32 - 256 (step of 32) 

Loss Function MAE, MSE

Look-back time (h) 6, 24 

Epochs 500 (with early stopping) 

Validation Split 30% of training data 

2.4.3 Attention layer mechanism 301 

Attention layers are used to address inherent limitations of conventional RNNs (and LSTM)302 

such as the tendency to lose information from earlier segments of extended sequences and 303 

difficulties to train models in areas of sharp and extreme changes (Rithani et al. 2023). These layers 304 

scan through the data, identify key features, and increase their influence in the training process. 305 

Here, we incorporate an attention layer in the model architecture for better model generalization 306 

during the training process. Specifically, the attention layer computes attention scores for each 307 

time step using a weight matrix (Glorot) and bias (zeros) initialization (Equations 14 to 15 in the 308 

Appendix). In addition, we customize this layer using a factor that amplifies the top 10% of the 309 

attention scores (Equation 16). This factor allows the model to focus more on crucial parts of the 310 

sequence, which could be abrupt changes of high or low levels in the data.  311 

The choice of the Glorot initializer for the weight matrix in the attention layer is appropriate 312 

due to the use of tanh and sigmoid activation functions in the LSTM units (Glorot and Bengio 313 

2010; Evangelista and Giusti 2021). The initializer keeps the scale of the gradients approximately 314 

the same in all layers of the LSTM network. Starting with zero biases ensures that all neurons in a 315 

layer initially produce outputs of roughly the same magnitude, which can be a good starting point 316 

for symmetric activation functions like tanh.  317 
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2.4.4 Transfer learning 318 

We conduct TL to predict the evolution of EWLs at selected target stations by leveraging 319 

“gained knowledge” from the closest training stations (Figure 2d). Such knowledge includes 320 

hidden sequential patterns and nonlinear associations among input and target data features that are 321 

stored as model weights (Muñoz et al. 2021; Zhao et al. 2021). Note that most of the target stations 322 

are located in-between two training stations; except Montauk, NY and Sandy Hook, NJ as well as 323 

Lake Worth Pier, FL and Virginia Key, FL that are close to a single training station. Here, the TL 324 

approach consists in training, tuning, and validating Bi-LSTM models at each training station and 325 

subsequently saving the corresponding model weights. We leverage all available Bi-LSTM models 326 

(e.g., 32 models) and transfer them to the target stations in order to predict the evolution of EWLs 327 

within the predefined 7-day window (Section 2.3). Among these models, we identify 328 

“transferable” Bi-LSTM models based on the criteria that both KGE and NSE are above a 329 

threshold value of 0.70 at the target stations. This threshold ensures that each transferable model 330 

adequately accounts for the magnitude and timing of EWLs while also keeping its inherent pattern 331 

recognition capabilities on new input data that has not yet been observed at the target stations (e.g., 332 

those associated with future extreme events). Lastly, we assess the performance of transferable 333 

models at the target stations with identical evaluation metrics including R2, MBE, RMSE, KGE, 334 

and NSE. 335 

3. Results  336 

3.1 Assessment of bidirectional LSTM network models 337 

We first assess the performance of Bi-LSTM models at the training stations with and without 338 

the attention layer mechanism incorporated in the model architecture. For this, we consider the 339 

y leveragingveraging

owledge includdge includes

t data features that ata features 

most of the targetmost of the tar

and Sandy Hook, NSandy Hook

ingle training statioe trainin

TM models at eachmodels at e

 We leverage all ave leverage al

tations in order to pns in order 

ection 2.3). Amoon 2.3). A

on the criteria ththe criteria

stations. Ths. Thisis thret

gnitude and timing oude and tim

new input data that put data 

future extremee extreme eve

et stations with idestation

sultsts

3.1 Assessment oAssessment o

We first We3838

the atten339339

https://www.zotero.org/google-docs/?o3XfJK


18 

models’ ability to capture: (i) peak and timing of EWLs, and (ii) evolution of EWLs for selected 340 

historic TCs (hurricanes) and extra-TCs (Nor'easter winter storms). 341 

3.1.1 Extreme water levels 342 

For convenience, we will focus on model predictions obtained from Fort Pulaski (FP), GA 343

since this training station has been reporting complete consecutive hourly data from 1975 to 344 

present (Figure 3). Predictions of EWLs and associated RMSE, average peak error, and KGE 345 

metrics suggest that Bi-LSTM models with the attention layer (e.g., hereinafter referred to as Bi-346 

LSTM-ATT) can capture the magnitude and timing of peak WLs with a higher accuracy than those 347 

without this layer (Figure 3b). Note that this includes the two most EWL events contained in the 348

testing set (e.g., Hurricane Matthew (2016) and Hurricane Irma (2017)). More than half of Bi-349 

LSTM models achieve a median RMSE, absolute peak error, and mean bias of 0.18 m, 0.68 m, 350 

and -0.11 m, respectively (Figure 3c to 3f and Table S1). Also, these models achieve very low to 351 

moderate performances with a median KGE and NSE of 0.50 and 0.15, respectively (Table S1). 352 

In contrast, the models’ performance substantially improves after integrating the attention layer 353 

mechanism in the model architecture. In that regard, half of Bi-LSTM-ATT models show a 354 

reduction in the median RMSE, absolute peak error, and mean bias by 27% (0.13 m), 36% (0.44 355 

m), and 55% (-0.05 m) with respect to the Bi-LSTM models only (Figure 3g to 3j and Table S2).356 

Also, these models achieve a median KGE and NSE of 0.67 and 0.56, respectively (Table S2). 357 
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358 

Figure 3. Assessment of models’ performance in the testing set at Fort Pulaski (FP), GA. (a, b) 359 

Annual maximum water levels in the training set (80%), and testing set (20%) in addition to 360 

predictions with/out the attention layer mechanism. The Bi-LSTM and Bi-LSTM-ATT models are 361 

categorized into (c, g) look-back times of 6 h and 24 h, (d, h) loss functions focused on Maximum 362

Absolute Error (MAE) and Mean Square Error, (MSE) (e, i) Train-Test (TT) and Cross Validation 363 

(CV) fold strategies, and (f, j) a collective unit to compare their overall performance. 364 
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At the remaining training stations, we evaluate predictions of EWLs derived from Bi-LSTM-366 

ATT models only (Table S2). The models at Atlantic City (AC), NJ station achieve satisfactory 367 

model performance with a median KGE of 0.84 despite the relatively low median NSE of 0.36. 368 

The median RMSE and mean bias in this training station are 0.07 and 0 m, respectively. Training 369 

station Sewells Point (SW), VA has the best performing models with a relatively high median 370 

KGE and NSE of 0.92 and 0.80, respectively. These models achieve a median RMSE and mean 371 

bias of 0.05 m and -0.02 m, respectively. Similarly, results at Beaufort (BF), NC station perform 372 

satisfactorily with median KGE and NSE of 0.86 and 0.69, respectively. Also, this training station 373 

shows a median RMSE and mean bias of 0.05 m and -0.01 m, respectively. Lastly, the models of 374 

training station Trident Pier (TD), FL achieve a moderate to satisfactory performance with median 375 

KGE and NSE of 0.78 and 0.51, respectively. The models show a median RMSE and mean bias 376 

of -0.07 m and -0.03 m, respectively. 377 

3.1.2 Evolution and peak of extreme water levels 378 

Next, we assess the performance of Bi-LSTM-ATT models to predict the evolution of EWLs 379 

including the magnitude and timing of the peaks (Figure 4). The top-two Bi-LSTM-ATT models 380 

of AC predict the evolution of EWLs associated with a Nor’easter storm with relatively high 381 

accuracy. These models achieve KGE of 0.89 and 0.82 and NSE of 0.96 and 0.94 (Figure 4a). In 382 

contrast, the top-two models of SW capture the evolution of EWLs and almost perfectly match the 383 

magnitude of the peak associated with Hurricane Joaquin (2015) (Figure 4b). These models 384 

achieve KGE of 0.98 and 0.98 and NSE of 0.99 to 0.99. Similarly, the top-two models of BF 385 

achieve satisfactory KGE of 0.96 and 0.95 and NSE of 0.98 and 0.98. These models capture the 386 

evolution and almost perfectly match the magnitude of the peak associated with Hurricane Dorian 387 

(2019) (Figure 4c). The top-two models of FP can predict the evolution of EWLs but underpredict 388 
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the peak associated with Hurricane Matthew (2016) (Figure 4d and 4f). These models achieve 389 

KGE of 0.87 and 0.85 and NSE of 0.91 and 0.88.  390 

Lastly, the top-two models of TD capture the evolution of EWLs even though the second model 391 

overpredicts the magnitude of the peak associated with Hurricane Nicole (2022) (Figure 4e). These 392 

models achieve KGE of 0.72 and 0.70 and NSE of 0.84 and 0.93. Regarding the peak time 393 

difference (Figure 4f), all Bi-LSTM-ATT models developed for AC and BF stations show a 1-h 394 

lead difference and a perfect match with respect to the observed peak, respectively. Six models of 395 

SW station show a 1-h lag difference whereas two models of TP station show a 1-h lead difference 396 

with respect to the observed peak. Thirteen and ten models developed for FP stations show a 1-h 397 

lag difference and 1-h lead difference with respect to the observed peak, respectively. Overall, the 398 

time difference between observed and predicted peak WL is ±1 h for all trained models. 399 
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400 

Figure 4. Assessment of models’ performance to predict the evolution and peak of extreme water 401 

levels in the testing set. Predictions of the top-two Bi-LSTM-ATT models from the Train Test 402 

(TT) and/or Cross Validation (CV) split strategies at (a) Atlantic City, NJ (AC), (b) Sewells Point, 403 

VA (SW), (c) Beaufort, NC (BF), (d) Fort Pulaski, GA (FP), and (e) Trident Pier, FL (TD). (f) 404

Observed and predicted peak time differences among the five training stations and 32 Bi-LSTM-405 

ATT models.  406 
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3.2 Assessment of transfer learning approach 407 

After evaluating the models’ performance, we proceed with the assessment of transferable 408 

models from the closest training stations to target stations. For example, we transfer the pretrained 409 

Bi-LSTM and Bi-LSTM-ATT models and their associated model weights from Sewells Point, VA 410 

to the target station at Duck, NC (Figure 2d). Since most of the extreme events at Sewells Point, 411 

VA, including Hurricane Isabel (2003), Irene (2011) and Sandy (2012), are in the training set, the 412 

performance of all Bi-LSTM models are satisfactory, with metrics comparable to Bi-LSTM-ATT 413 

models (Table S3). Here, the goal is to predict the evolution of EWLs for relevant extreme events 414 

such as Hurricane Isabel (2003) and Dorian (2019) (Figure 5). Based on the threshold value of 415 

0.70 (Section 2.4.4), there are no transferable Bi-LSTM models that can predict the evolution of 416 

both storm events. For Hurricane Isabel, the two best models achieve low KGE of -0.98 and -1.03 417 

and NSE of -0.50 and -0.54 (Figure 5a). Although these two models show a better performance 418 

for Hurricane Dorian, they still achieve moderate KGE of 0.55 and 0.54 and NSE of 0.43 and 0.41 419 

(Figure 5d). In contrast, the top-two transferable Bi-LSTM-ATT models achieve high KGE of 0.94 420 

and 0.93 and NSE of 0.97 and 0.97 when predicting EWLs triggered by Hurricane Isabel (Figure 421 

5b). For Hurricane Dorian, the top-two transferable Bi-LSTM-ATT models achieve a relatively 422 

high KGE of 0.72 and 0.74 as well as NSE of 0.93 and 0.93 (Figure 5e).  423 

Furthermore, we assess the models’ performance in terms of R2 and RMSE for both extreme 424 

events and compare model predictions from the best transferable Bi-LSTM and Bi-LSTM-ATT425 

models using a one-to-one plot (Figure 5c and 5f). Bi-LSTM models have poor generalization of 426 

EWLs with low predictive accuracy (R2 < 0.50) and high error (RMSE > 0.30). In contrast, the Bi-427 

LSTM-ATT models can predict the evolution of EWLs with a high predictive accuracy (R2 > 0.95) 428 

and low error within an acceptable range (RMSE < 0.15 m). In general, RMSEs below 0.20 m are 429 
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desirable for hurricane storm surge modeling (Muis et al. 2016). Following this analysis, we 430 

hereafter present the results derived from Bi-LSTM-ATT models only.  431 

432

Figure 5. Assessment of transfer learning approach from Sewells Point, VA (training station) to 433 

Duck, NC (target station). Prediction of extreme water level evolution using the top-two (a, d) Bi-434 

LSTM, and (b, e) Bi-LSTM-ATT models for Hurricane Isabel (2003) and Dorian (2019). (c, f) 435 

One-to-one comparison of top-two model predictive capabilities based on the aforementioned 436 

hurricane events.437 
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3.3 LSTM-SAM framework 438 

Once the Bi-LSTM-ATT models and TL approach have been assessed at selected training and 439 

target stations (Section 3.1 and 3.2), we introduce the LSTM-SAM framework to accurately 440 

predict the evolution of EWLs at target stations in the U.S. Atlantic Coast (Figure 2d). As 441 

mentioned before, we set a time window of 7-day centered around the peak to characterize the 442 

evolution of EWLs at the target stations and leverage the 32 Bi-LSTM-ATT models developed at 443 

each training station. Note that instead of considering the top-two transferable Bi-LSTM models 444 

at the target stations (Figure 5), the LSTM-SAM framework identifies a set of transferable models 445 

for which KGE and NSE are above 0.70 when evaluated with respect to TCs or extra-TCs events 446 

(Figure 6). For practical flood prediction purposes and decision-making support, Bi-LSTM-ATT 447 

models achieving the smallest peak deviation among the transferable models are considered as the 448 

optimal ones at each target station (e.g., models with the closest prediction to the peak WL). 449 

There are 3 transferable models from training station AC to the target station in Montauk, NY 450 

that accurately predict EWL evolution of The Perfect Storm (1991) and Hurricane Sandy (2012) 451 

(Figure 6a and 6b). These models achieve satisfactory performances such as an average KGE and 452 

NSE above 0.75. Likewise, there are 21 transferable models from AC and SW that predict EWL 453 

evolution of Hurricane Isabel (2003) and Sandy (2012) at the target station in Kiptopeke, VA 454 

(Figure 6c and 6d). These models achieve an average KGE and NSE above 0.80. At the target 455 

station located in Duck, NC, LSTM-SAM identifies 14 transferable models from SW and BF that 456 

predict EWL evolution of Hurricane Isabel (2003) and Dorian (2019) (Figure 6e and 6f). These 457 

models show satisfactory performances with average KGE and NSE above 0.75. Similarly, the 458 

framework identifies 14 transferable models from TD to the target station in Lake Worth Pier, FL 459 
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that accurately predict EWL evolution of both Hurricane Dorian (2019) and Nicole (2022) (Figure 460 

6g and 6h). The models achieve average KGE and NSE above 0.85. 461 

 462 462462
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Figure 6. Extreme water level prediction for relevant hurricanes and Nor’easter winter storms in 463 

the U.S. Atlantic Coast. Each row panel shows two extreme events at the target stations, the 464 

number of transferable models, and their average performance in terms of KGE and NSE. These 465 

stations are (a, b) Montauk, NY, (c, d) Kiptopeke, VA, (e, f) Duck, NC, and (g, h) Lake Worth 466 

Pier, FL. The dashed red, blue, and gray lines represent observed water levels, optimal model, and 467 

water level predictions from all transferable models. 468 

Results of the remaining target stations show average KGE and NSE ranging from 0.70 to 0.99 469 

(Figure S2, Supplementary material). It is worth noting that we leverage WL data from the training 470 

station AC to predict the complete evolution of Hurricane Sandy (2012) at the target station in471 

Sandy Hook, NJ (Figure S2b). This demonstrates the transfer model capability to predict EWL 472 

evolution even when tide-gauges fail or become inoperative. However, there are three target 473 

stations for which no Bi-LSTM-ATT models are completely transferable given the criteria that 474 

both NSE and KGE should be above 0.70 within the 7-day window (Section 2.4.4). Specifically, 475 

the LSTM-SAM framework does not identify any transferable models from SW and BF stations 476 

to the target station in Oregon Inlet, NC that can accurately capture the evolution of EWLs of 477 

Hurricane Floyd (1999) and Irene (2011) (Figure 7a and 7b). Similarly, the framework does not 478 

identify transferable models from SW and BF stations to USCG Station Hatteras, NC for Hurricane 479 

Matthew (2016) and Dorian (2019) (Figure 7c and 7d). Lastly, there are no transferable models 480 

from TD station to Virginia Key, Florida for Hurricane Irma (2017) and Nicole (2022) (Figure 7e 481 

and 7f). However, note that some Bi-LSTM-ATT models can effectively capture the peak WL 482 

within a shorter time window centered around the peak (e.g., ±1 day); hence, the relatively low 483 

KGE and NSE at the target stations are explained by an overprediction of WLs occurring before 484 

and after the peak WL. Therefore, the LSTM-SAM framework considers the model with the 485 
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highest KGE and NSE as the optimal models for those three target stations (Figure S2, 486 

Supplementary material). 487 

488 

Figure 7. Extreme water level prediction for relevant hurricane events in the U.S. Atlantic Coast. 489 

Each row panel shows two extreme events at the target stations, total number of models, and their 490

average performance in terms of KGE and NSE. These stations are (a, b) Oregon Inlet Marina, 491 

NC, (c, d) USCG Station Hatteras, and (e, f) Virginia Key, FL. The dashed red, blue, and gray 492 
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lines represent observed water levels, optimal model, and water level predictions from all available 493 

Bi-LSTM-ATT models developed at the corresponding training stations. 494 

4. Discussion 495 

Physically-based models can accurately predict EWLs; however, they are site-specific and not 496 

transferable to other domains, even with similar characteristics, due to their need for detailed 497 

topographic and bathymetric (topobathy) data (Santiago-Collazo et al. 2019; Bates 2022b). A 498 

feasible alternative to overcome this limitation consists in leveraging state-of-the-art deep learning 499 

models, such as LSTM networks, given their effectiveness for learning dynamic and/or sequential 500 

data including nonlinear interactions and hidden patterns from hydrometeorological input features 501 

(Tedesco et al. 2023). Conveniently, LSTM networks enable time-series prediction even in 502 

absence of geographical information or catchment characteristics that may remain quasi-invariant 503 

for a relatively long time (e.g., average slope, length, width, catchment size, among other input 504 

features). Although model transferability is still challenging (Zhao et al. 2021; Kratzert et al. 505 

2024), adequate feature engineering procedures (Merizalde et al. 2023) and improvement of LSTM 506 

models’ architecture (e.g., attention layer mechanisms) can increase the effectiveness of TL 507 

approaches over untrained (target) sites having similar hydrodynamic and morphologic features to 508 

the corresponding training areas. This in turn will help advance flood prediction efforts in large 509 

scale domains with high accuracy and less computational time (Ding et al. 2020; Li et al. 2021; 510 

Nearing et al. 2024). Here we present one of the first applications of TL to EWL prediction in 511 

coastal domains, and to our knowledge, the first outside the hydrological context. 512 
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4.1 Application of the LSTM-SAM framework 513 

The proposed LSTM-SAM framework is trained on sequential WL data from tide-gage stations 514 

and follows a time-series decomposition in order to obtain hidden patterns and nonlinear 515 

associations such as seasonality, trend, harmonic tides, and NTR components (Section 2.3). 516 

Moreover, these input features are complemented with hydrometeorological data from reanalysis 517 

datasets. As a result, the framework is capable of applying learned knowledge to selected target 518 

stations and predicting the evolution of EWLs (Section 2.4.1). We ensure that Bi-LSTM networks 519 

are robustly calibrated through hyperparameter tuning, which resulted in 32 distinctive models 520 

across five training stations and a unique set of hyperparameters per model (Section 2.4.2). We 521 

argue that this method preserves inherent pattern recognition capabilities for each model (e.g., 522 

model weights) and increases the chances for identifying effective transferable models to target 523 

stations. 524 

Conventional Bi-LSTM models show poor performance to predict EWLs at the training station 525 

particularly when there exist more extreme events in the test set (Figure 3a and 3b). This is partly 526 

due to a sequential training (80%) and test (20%) split given that the frequency and magnitude of 527 

EWLs is expected to increase by the end of the century (Santiago-Collazo et al. 2019; Bloemendaal 528 

et al. 2022; Boumis et al. 2023). In contrast, leveraging randomly selected subsamples in each 529 

batch during the calibration process facilitates a quicker model convergence (De la Fuente et al. 530 

2024) and prevents anomalies in the training data. Nevertheless, training Bi-LSTM models on 531 

sequential data ensures that temporal relationships are fully considered in the learning process. 532 

Since these models are in general most effective in capturing changing trends of cyclic patterns 533 

(Wang et al. 2022), they do ignore some nuanced information of rare and abrupt changes during 534 

the training process. Therefore, there is a higher chance of incorrect estimation of equally rare but 535 
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more extreme data values in testing sets which limits the model's ability to accurately predict 536 

EWLs.  537 

Following this, we introduce a custom attention layer in the Bi-LSTM architecture (Section 538 

2.4.3), which significantly improves the models’ ability to capture TCs and extra-TC events 539 

(Figure 3b). Since hyperparameter tuning is predominantly inclined toward identifying the optimal 540 

set of model parameters that result in the most accurate EWL prediction in the training set, there 541 

is no guarantee that this optimal set leads to improved performance on unseen (test) sets (Tran et 542 

al. 2020). Therefore, by amplifying the top 10% of the attention scores, the model's ability to 543 

internally focus on the most relevant time steps is substantially improved and leads to more 544 

accurate EWL predictions. Moreover, the attention layer mechanism allows the models to perform 545 

identical operations consistently beyond the training set and therefore generalizing unseen data 546 

with similar characteristics in the test set. Since Bi-LSTM-ATT outperforms conventional Bi-547 

LSTM models (Figure 3f to 3h), the proposed LSTM-SAM framework demonstrates the ability to 548 

effectively predict the evolution of EWLs even when higher WLs attributed to more frequent TCs 549 

and extra-TCs are expected.  550 

We also observe comparable performance across all metrics for all Bi-LSTM-ATT models 551 

developed on the specified options of lookbacks, batch sizes, loss functions, and data training 552 

strategy (Table 2). It is worth noting that a higher batch size of 128 sample points shows the highest 553 

performance of all models in terms of KGE and NSE, suggesting that they capture both peak and 554 

timing of EWLs with higher accuracy. However, more than half of the models developed on a 555 

smaller batch size of 32 sample points have very low NSE scores, which tend toward inaccurate 556 

timing of EWLs’ predictions. In addition, lower performance for models developed with 24-hour 557 

lookbacks compared to 6-hour lookbacks suggests that considering more previous time steps does 558 
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not necessarily improve the model’s predictive accuracy. Furthermore, the identical performance 559 

for both data training strategies as well as the loss functions suggests that either of these options 560 

are suitable to train the models. 561 

Although most of the trained Bi-LSTM-ATT models can predict EWLs at the nearby target 562 

station, we observe that models with KGE and NSE above 0.70 demonstrate robust generalization 563 

capabilities of EWL evolution from onset, peak, to dissipation (Figure 4). NSE show a higher 564 

accuracy for predictions with correct timing despite the over- or underprediction of WLs (Figure 565 

7e and 7f). In addition, an extended window size renders minor discrepancies in the timing of peak 566 

WLs such as 1-h lead or 1-h lag negligible in the overall prediction performance. On the other 567 

hand, KGE improve when the magnitude of predictions closely aligns with actual events, even if 568 

the prediction timing is inconsistent with actual WL observations (Figure 7c and 7d). 569 

The low performance at target stations located at Oregon Inlet Marina, NC (NOAA ID: 570 

8652587) and USCG Station Hatteras, NC (NOAA ID: 8654467) might be attributed to the 571 

geographic location of the tide-gages (Figure 2d). Unlike target stations that are directly exposed 572 

to the Atlantic Ocean, these stations are located behind Bodie’s and Cape Hatteras’ islands of the 573 

Outer Banks barrier island chain. Coastal areas surrounding the target stations experience about 1 574 

m of mean tidal range on the ocean side and 0.3 m behind the island (Velasquez-Montoya et al. 575 

2020). In addition, these areas benefit from vast coastal wetlands and protection infrastructure such 576 

as the Herbert C. Bonner bridge that alters tidal dynamics and attenuates storm surges and waves 577 

(Velasquez-Montoya et al. 2021, 2022). Consequently, these site-specific conditions significantly 578 

differ from those of nearby training stations including Sewells Point, VA (NOAA ID: 8638610) 579 

and Beaufort, NC (NOAA ID: 8656483). 580 
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Nevertheless, Bi-LSTM-ATT models have the potential to capture the peak WL which is 581 

crucial for supporting flood emergency response and decision-making. In fact, the optimal models 582 

for those target stations correctly capture the peaks of Hurricane Floyd (1999), Irene (2011), 583 

Matthew (2016), and Dorian (2019) (Figure 7a to 7d). Similarly, the evolution of EWLs at Virginia 584 

Key, Florida (NOAA ID: 8723214) is overestimated (Figure 3e and 3f). Nevertheless, the models 585 

can effectively capture the peaks of Hurricane Irma (2017) and Nicole (2022). The tide-gage is 586 

located at the entrance of Biscayne Bay close to the Bear Cut bridge, which is most likely 587 

responsible for WL being less representative of extreme events. The relatively lower water surface 588 

elevation of this station during Hurricane Irma compared to Trident Pier, FL (NOAA ID: 8721604) 589 

has also been noted in another study (Alarcon et al. 2022).  590 

4.2 Limitations and future work 591 

The waves and atmospheric variables obtained from ERA5 have a spatial resolution of 592 

approximately 31 km. This level of resolution may not correctly account for local variability; hence 593 

higher resolution data might improve the performance of LSTM-SAM framework. There are 594 

instances where wave components for target stations like Lewes, DE, and Charleston, SC needed 595 

to be complemented with those derived from the WIS portal data. As a result, some errors could 596 

have been introduced in the input features, reducing the accuracy of EWL predictions. 597 

Interestingly, these target stations have the lowest number of transferable models from the training 598 

stations (Figure S2). More advanced deep learning models like Transformers have attention 599 

mechanisms built into their design (Boussioux et al. 2022) and could be a worth-exploring 600 

alternative to the proposed Bi-LSTM-ATT models for predicting EWL evolution in coastal areas. 601 

We plan to extend the LSTM-SAM framework to inland target stations by taking into account the 602 
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contribution of river discharge for accurate prediction of total WLs in coastal to inland transition 603 

zones (Serafin et al. 2017b; Bilskie and Hagen 2018; Muñoz et al. 2022b; Yin et al. 2022). Future 604 

work should focus on predicting spatiotemporal WL variability and flood inundation extent by 605 

combining Bi-LSTM-ATT and Convolutional Neural Networks (Gavahi et al. 2021). 606 

5. Conclusion  607 

In the present study, we characterize the evolution of extreme water levels (EWLs) at tide-gage 608 

stations distributed along the U.S. Atlantic Coast. To achieve this, we identify 5 training stations 609 

that were hit by historic hurricane events and contain complete consecutive hourly data spanning 610 

at least 40 years. Then, we leverage available WL and hydrometeorological time-series data to 611 

train bidirectional Long Short-Term Memory (Bi-LSTM) network models for each training station. 612 

Furthermore, we incorporate an attention layer mechanism in the model architecture and a transfer 613 

learning (TL) approach with the goal effectively predicting the evolution of EWLs at target (tide-614 

gage) stations. The models highlight the significance of a longer batch size in enhancing model 615 

performance, while challenging the assumed benefits of longer look-back periods. The collection 616 

of models with the attention layer mechanism and TL approach is referred to as the LSTM-Station 617 

Approximated Models (LSTM-SAM) framework and is effectively applied to 14 target stations.  618 

The LSTM-SAM framework predicts the onset, peak, and dissipation of multiple EWL events 619 

emerging from tropical cyclones (hurricanes) and extratropical cyclones (Nor’easter storms) with620 

high accuracy. For this, the framework identifies “transferable” models based on KGE and NSE 621 

above 0.70 in order to ensure an accurate generalization of EWLs. Under these criteria, the LSTM-622 

SAM framework demonstrates satisfactory performance with transferable models achieving 623 

average KGE, NSE, and RMSE ranging from 0.78 to 0.92, 0.90 to 0.97, and 0.09 to 0.18 at the 624 
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target stations, respectively. Following these results, we conclude that the LSTM-SAM framework 625 

can accurately predict not only EWLs but also their evolution over time, which could assist in 626 

large-scale operational flood predictions like the National Water Model (NWM) or Coastal 627 

Emergency Risk Assessment (CERA). Future work should focus on predicting spatiotemporal WL 628 

variability and flood inundation extent by combining Bi-LSTM-ATT and Convolutional Neural 629 

Networks. 630 
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