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Abstract

Extreme water levels (EWLs) resulting from tropical and extratropical cyclones pose significant
risks to coastal communities and their interconnected ecosystems. To date, physically-based
models have enabled accurate characterization of EWLs despite their inherent high computational
cost. However, the applicability of these models is limited to data-rich sites with diverse
morphologic and hydrodynamic characteristics. The dependence on high quality spatiotemporal
data, which is often computationally expensive, hinders the applicability of these models to regions
of either limited or data-scarce conditions. To address this challenge, we present a computationally
efficient deep learning framework, employing Long Short-Term Memory (LSTM) networks, to
predict the evolution of EWLs beyond site-specific training stations. The framework, named
LSTM-Station Approximated Models (LSTM-SAM), consists of a collection of bidirectional
LSTM models enhanced with a custom attention layer mechanism embedded in the model

architecture. Moreover, the LSTM-SAM framework incorporates a transfer learning approach that
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is applicable to target (tide-gage) stations along the U.S. Atlantic Coast. The LSTM-SAM
framework demonstrates satisfactory performance with “transferable” models achieving average
Kling-Gupta Efficiency (KGE), Nash-Sutcliffe Efficiency (NSE), and Root-Mean Square Error
(RMSE) ranging from 0.78 t0 0.92, 0.90 to 0.97, and 0.09 to 0.18 at the target stations, respectively.
Following these results, the LSTM-SAM framework can accurately predict not only EWLs but
also their evolution over time, i.e., onset, peak, and dissipation, which could assist in large-scale
operational flood forecasting, especially in regions with limited resources to set up high fidelity

physically-based models.

Keywords: long short-term memory networks, transfer learning, extreme water level, tropical

cyclones

1. Introduction

About 11% of the world's population (890 million people) currently resides in low-lying areas,
and according to the Intergovernmental Panel on Climate Change, this number is projected to
exceed 1 billion by the year 2050 (Portner et al. 2019; Glavovic et al. 2022). Low-lying areas are
particularly vulnerable to weather and climate disasters which are responsible for severe
socioeconomic and environmental impacts (Zscheischler et al. 2020; Rainey et al. 2021). The
United States, accounting for 1.6% of the current global population (129 million people) in low-
lying areas (Office for Coastal Management, 2024), has reported more than 377 weather and
climate disasters since 1980 (NOAA-NCEI 2024). In the same period, total reported losses exceed
$2.67 trillion when adjusted for the 2024 Consumer Price Index (NOAA-NCEI 2024). Among
these disasters, six of the world’s costliest hurricane events resulted in over $50 billion in damages

in the United States (Douris and Kim 2021; Sanders et al. 2022). Hurricanes (or tropical cyclones)
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are responsible for coastal flood hazards characterized by extreme water levels (EWLs) and
exacerbated by climate-related impacts, including regional sea level rise and anthropogenic

activities (Hino and Nance 2021; Khojasteh et al. 2021).

EWLs in estuarine and coastal systems arise from various flood drivers, including
precipitation, river discharge, storm surge, tides, and waves. Yet, these drivers do not necessarily
act in isolation but rather synergize resulting in compound flooding (Wahl et al. 2017; Muis et al.
2019; Parker et al. 2023). Compound flood (CF) hazards, and their associated risk to coastal
communities, are particularly severe when flood drivers co-occur or unfold in close succession
(Arns et al. 2020; Almar et al. 2021). For example, storm surge can co-occur with extreme
precipitation events during tropical cyclones (TCs) (Wahl et al. 2015; Bevacqua et al. 2019), high
tide can coincide with the peak of a storm surge (Thomas et al. 2019; Marsooli and Wang 2020),
peak river flow and storm surge can co-occur along estuarine systems (Moftakhari et al. 2019;
Muioz et al. 2020), and waves and storm surge can interact nonlinearly (Rueda et al. 2016; Serafin
et al. 2017a); thereby amplifying the effects of CF events. It has been noted that changes in
storminess would also play a major role in future EWLs (Santiago-Collazo et al. 2019). This is
corroborated by the increasing frequency and intensity of TCs along with the rise of sea levels and
ocean temperatures over the past 35 years (Anderson et al. 2021; Ghanbari et al. 2021;

Bloemendaal et al. 2022).

TCs have been responsible for 60% of flood-induced population displacements in the United
States (1985 to 2021), especially in densely inhabited coastal cities along the Gulf of Mexico and
the Atlantic Coast (Brakenridge 2021; Tate et al. 2021; Wing et al. 2022). Recognizing the
heightened risks to coastal communities, it has become imperative for researchers and practitioners
to rely on either physically-based or data-driven modeling approaches to characterize EWLs in

3
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terms of peak magnitude and timing. Physically-based models are commonly used to estimate
EWLs based on simplified hydrometeorological processes governed by the conservation of mass
and momentum equations (Santiago-Collazo et al. 2019; Bates 2023). The accuracy of these
models depends on the availability and quality of several spatiotemporal datasets to appropriately
characterize input and forcing conditions, topography and bathymetry, land surface roughness, and
other key morphologic characteristics (Jafarzadegan et al. 2021; Alipour et al. 2022; Bates 2022a).
Nevertheless, such models are often constrained by limited spatial scope and/or high
computational demands necessary to solve large-scale flood dynamics (Bilskie et al. 2021; Mufioz
et al. 2021). While physically-based models developed with a lower spatial resolution (e.g., cell-
grid size and digital elevation model resolution) can cover broader areas and reduce computational
time, they can lead to less accurate predictions due to a lack of detailed spatiotemporal information
around key morphological and hydrodynamic variables in narrow tidal inlets and river channels

(Saksena and Merwade 2015; Fraehr et al. 2022).

In contrast, data-driven models such as neural networks (NN) can discern intricate or hidden
patterns in large datasets and predict storm surges and EWLs with reduced computational demands
when compared to those of physically-based models (Munoz et al. 2021). Importantly, data-driven
models offer rapid and efficient forecasting solutions at large scales (Lee et al. 2021; Hamitouche
and Molina 2022; Hamidi et al. 2023) and have the ability to generalize or identify patterns from
the data they are trained on. In addition, these models can be updated over time which improves
their predictions as more and new information becomes available. The fact that NN models are
inherently adept at capturing nonlinear associations in complex systems makes them reliable
candidates for EWL prediction (Tedesco et al. 2023). Particularly, deep learning approaches like

long short-term memory (LSTM) networks, a variant of the recurrent neural network (RNN), learn
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nonlinear relationships and patterns from sequential time-series data, to enhance prediction

accuracy in hydrological and coastal contexts (Li et al. 2021; Zhang et al. 2022).

A growing body of research is demonstrating that LSTM networks can predict EWLs and aid
in flood susceptibility assessments, barrage integrity, riverine flood level forecast, and surge
prediction (Tiggeloven et al. 2021; Fang et al. 2021; Kardhana et al. 2022; Merizalde et al. 2023a;
Liu et al. 2023). LSTM networks are designed to recognize sequence-to-sequence patterns and
selectively retain information over time, which in turn enhances its predictive accuracy by utilizing
memorized patterns (Hewamalage et al. 2021; Lindemann et al. 2021). On the global scale, LSTM
networks outperformed other NN models designed for surge prediction at 92% of 1,276 tide
stations across regions of Europe, Africa, Australia, the Pacific, and the United States (Tiggeloven
et al. 2021). In addition, LSTM networks can be integrated with spatial NN algorithms to improve
the modeling of geographical correlations (Gavahi et al. 2021) and even designed to capture spatial
flood characteristics (Fang et al. 2021). Unlike physically-based models that are typically confined
and developed using site-specific information, LSTM networks can be trained using geographical
characteristics, morphological and hydrodynamic features, and forcing drivers at different scales.
The resulting learned patterns can then be generalized and applied to neighboring regions through

transfer learning (TL) techniques.

TL addresses the challenge of either data scarce or insufficient training data by leveraging
gained knowledge from data-rich training domains and applying it to other (target) domains that
share similar characteristics or features (Shen 2018; Tan et al. 2018; F. Zhuang et al. 2021).
Moreover, TL can be used to expedite decision-making processes and circumvent time constraints
associated with the development and training of NN models. Several studies have implemented
TL techniques in NN models to estimate urban flood levels (Zhao et al. 2021; Seleem et al. 2023),

5
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predict significant wave height (Obara and Nakamura 2022), conduct land cover mapping
(Mahdianpari et al. 2018), and compound flood hazard characterization of nearby regions to the
training domain (Mufoz et al. 2021). However, creating a data-driven model with effective
generalization capabilities beyond its training domain still remains a significant hurdle
(Bentivoglio et al. 2022; Bates 2022b). While maintaining consistency in location enhances the
accuracy and lead-time of model predictions (Altunkaynak and Kartal 2021), this limits the
geographical areas suitable for effectively applying TL techniques. Therefore, NN models should
learn patterns from nonlinear interactions among inputs features and further benefit from

mechanisms that ensure accurate model predictions at target domains.

In the present study, we introduce a comprehensive framework that (i) accurately predicts the
evolution of extreme water levels beyond training domains, and (ii) addresses the underlying
limitations attributed to transfer learning techniques. The proposed framework, named LSTM -
Station Approximated Models (LSTM-SAM), achieves these two objectives by gathering learned
patterns from neighboring tide-gage stations of the U.S. Atlantic Coast and optimizing the LSTM
models with an attention layer mechanism during the training phase. The remainder of the
manuscript continues as follows. Section 2 presents the study area, data availability, data
processing, and model architecture. Results of the proposed LSTM-SAM framework are shown in
section 3 and discussed in section 4. Lastly, section 5 presents the conclusions of this study as well

as future work.
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2. Methods

2.1 Study area

The proposed LSTM-SAM framework is trained using time-series data from 5 strategically
selected tide-gage stations located along the U.S. Atlantic Coast. These stations are Atlantic City,
NJ (NOAA ID: 8534720), Sewells Point, VA (8638610), Beaufort, NC (8656483), Fort Pulaski,
GA (8670870) and Trident Pier, FL (8721604) (Figure 1). The training stations are selected based
on two criteria: (i) they have been hit by hurricane events within a radius of 60 km of the landfall
location, and (ii) they have over 70% consecutive water level (WL) data spanning at least 40 years.
The latter ensures that the training stations contain EWLs attributed to either TCs (hurricanes) or
extra-TCs (Nor’easter winter storms) to effectively train and validate the LSTM-SAM framework.
We then implement a TL approach in the framework and transfer nonlinear patterns from training
to target stations in order to predict the evolution of EWLs. Most of the target stations are directly
exposed to the Atlantic Ocean and located in-between the training stations (Figure 1). Those
stations include: 1) Montauk, NY (NOAA ID: 8510560), 2) Sandy Hook, NJ (8656483), 3) Lewes,
DE (8557380), 4) Ocean City, MD (8570283), 5) Kiptopeke, VA (8632200), 6) Duck, NC
(8656483), 7) Oregon Inlet Marina, NC (8652587), 8) USCG Station Hatteras, NC (8654467), 9)
Wrightsville Beach, NC (8658163), 10) Springmaid Pier, SC (8661070), 11) Charleston, SC
(8665530), 12) Mayport, FL (8720218), 13) Lake Worth Pier, FL (8722670), and 14) Virginia

Key, FL (8723214).
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Figure 1: Location of training and target stations along the U.S. Atlantic Coast. (a) Selected

training and target stations (numbered from 1 to 14) are shown with colored and black circles,

respectively. (b) For each training station, percentage of water level data completeness obtained

from the NOAA’s Tides & Current portal. (¢) Relevant hurricane’s best tracks within a 60 km

radius of the hurricane’s landfall locations.
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2.2 Data availability

We retrieve WL data from the National Oceanic and Atmospheric Administration (NOAA)’s
Tides & Currents portal (https://tidesandcurrents.noaa.gov/map/index.html) and complement these
with  legacy data from the University of Hawaii Sea Level Center
(https://uhslc.soest.hawaii.edu/data/?rq), particularly for stations where WL records are not
available. Meteorological and wave data are obtained from the European Centre for Medium-
Range Weather Forecasts Reanalysis dataset (ERAS, version 5) produced by the Copernicus
Climate Change Service (https://cds.climate.copernicus.eu/). ERAS dataset has a spatial resolution
of 31 km that allows for accurate representation of extreme climate events at large scale including
those driven by TCs (Bian et al. 2021). Specifically, we use hourly wind speed and direction at 10
m elevation, atmospheric pressure, sea level pressure, sea surface temperature, air temperature,
precipitation, wave direction, and wave height. In addition, we retrieve data from the U.S. Army
Corps of Engineers (USACE)’s Wave Information Studies (WIS) portal that provides consistent,
hourly, and  long-term  wave climatology = along  the  U.S. coastlines
(https://wisportal.erdc.dren.mil/#). These aforementioned datasets have been successfully applied
to other NN models that predict hourly non-tidal residuals at tide stations on a global scale with

satisfactory results (Bruneau et al. 2020).

2.3 Data processing

The required data length to effectively train NN models depends on the response time of the
system under analysis. For coastal systems, previous studies recommend at least six years of
training data consisting of complete consecutive sequences (10 days) in order to achieve consistent

proficiency in NN models (Bruneau et al. 2020; Tiggeloven et al. 2021). Following this, we
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conduct data quality control over the training stations and ensure that the time-series contain
complete data sequences to train the LSTM models. Then, we decompose the time-series data of
WL into seasonality, trend, predicted tides, and non-tidal residual (NTR) components using the
Seasonal-Trend decomposition using LOESS (STL) and Unified Tidal Analysis and Prediction
(UTide) packages in Python (Cleveland et al. 1990; Codiga 2011). The STL analysis, adept at
time-series analysis for its outlier resilience, flexible seasonal adjustment, and trend adaptability,
provides comprehensive insights into long-term and seasonal dynamics (Chen et al. 2020). UTide
employs a decision tree algorithm, a recognized method for automatically selecting the most
relevant constituents from 147 tidal constituents, and offers tide prediction correction for records
spanning up to one full (18.6-year) nodal cycle (Codiga 2011; Tiggeloven et al. 2021; Tedesco et
al. 2023). We consider a window size of 40 days and a time step of 3 days for time-series
decomposition in order to ensure that at least one full lunar cycle is covered (Figure SI,
Supplementary material), including both spring and neap tides and the independence of large storm
events by selecting the maximum NTR on a stepped basis (Serafin and Ruggiero 2014; Rashid et
al. 2024; Moftakhari et al. 2024). The time-series decomposition aids to improve deep learning by
distinguishing clear, recurring patterns from irregular variations; thereby refining the models'
ability to learn from the data and enhancing the accuracy of their predictions (Parker et al. 2023).

In addition to the WL components, we extract meteorological and wave data from the closest
grid pixel of ERA-5 dataset to tide-gage stations. For this, we calculate the minimum square
difference between the latitudes and longitudes of the data points and the specified location, that
is, within a radius of 15.5 km. Next, we use the time-series of WL components, meteorological,
and wave data as relevant input features to the LSTM-SAM framework in order to predict the

target variable (e.g., EWLs and their evolution over time). Both input and target variables are first
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scaled using the “minmaxscaler” function from the sklearn library in Python. This technique
normalizes the range of multisource data and ensures that all features have an identical scale,
typically between 0 and 1 (de Amorim et al. 2023). Also, we create a RNN dataset function that
preprocesses data for LSTM by taking normalized input features (X norm), corresponding target
values (y_scaled), and a specified look-back period to construct a dataset suitable for sequence
prediction. Moreover, we consider two look-backs of 6 and 24 hours to train the LSTM and
evaluate the effects of different time steps on the model’s prediction performance, i.e., the number
of previous time steps in hours used to predict the next time step.

X norm and their corresponding y_scaled are sequentially split into a training size of 80% and
a testing size of 20%. Finally, we capture the evolution of EWLs in the training and testing datasets
by focusing our analysis on historic hurricane events and Nor'easter winter storms within a 7-day
window centered around the peak WL. Results of a sensitivity analysis show that longer time-
windows favor model’s performance metrics due to multiple non-extreme WLs being accounted
for, whereas shorter ones could not effectively capture the evolution of EWLs across all stations

as they focused more on the peak WL.

2.4 Model architecture

The LSTM-SAM framework consists of bidirectional LSTM (Bi-LSTM) models that are
garnering significant interest within the domain of WL prediction (Bai and Xu 2021; Fang et al.
2021; Zhang et al. 2022). Unlike traditional LSTM models that only rely on previous timesteps,
the advantage of Bi-LSTM models is that input sequences are processed in both forward and
backward directions (Equations 1 to 13 in the Supplementary material). The reader is referred to

the study of Ahmed et al. (2022) for a more detailed explanation of Bi-LSTM. This dual viewpoint
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helps identify and learn features that may not be apparent when the sequence is analyzed in only

one direction.

2.4.1 Bidirectional LSTM network models

The model architecture consists of three LSTM units that are set to vary in intervals of 32 since
higher units tend to increase computational complexity (Figure 2a). We consider a “L2”
regularization method to prevent overfitting by penalizing large weights. Also, we include dropout
rates in the model architecture to prevent overfitting by randomly disabling a subset of neurons
during the training process, thereby allowing the LSTM network to develop a more generalized
understanding of the data and improve its performance on new and/or unseen data. The LSTM
units use the “tanh” and hard “sigmoid” recurrent activation functions. In addition, we add a
standard dense (fully connected) layer to output the final prediction. The loss functions consist of
both mean absolute error (MAE) and mean squared error (MSE) for different variants of the
models with the “Adam” optimizer as suggested in similar WL prediction studies (Huang et al.
2020). We reserve 30% of the training data for validation of the model’s learning ability during
the training process. An early stopping callback is also employed to monitor the validation loss,
stop training if no improvement is observed for five consecutive epochs, and ultimately prevent
overfitting and/or unnecessary computations.

We consider two training strategies in the LSTM algorithm: (i) train-test (TT) split, and (i1)
time-series cross-validation (CV) split. The first method involves a single split into training (80%)
and testing sets (20%) whereas the second method includes multiple training and testing sets
created sequentially for a more comprehensive evaluation of the model's performance across
different periods (Figure 2b and 2¢). Unlike traditional CV strategies, here CV fold does not shuffle

the data and therefore keeps the time sequence invariant (Kingphai and Moshfeghi 2022). We
12
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consider 10-fold CV to check the model's performance and potentially improve the prediction

accuracy. Moreover, the LSTM model is trained using the training set for that specific split for

each iteration of the loop. As the loop progresses, the size of the training set increases whereas the

validation set consists of data points that come after the training set in time. As a result, the training

and validation process involves learning from past data and validating the model's performance on

unseen future data, respectively. Once all splits are processed, the final model is trained using the

entire dataset.
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Figure 2. Schematic of model architecture, training, validation, and transfer learning approach. (a)

Bidirectional LSTM network model with an attention layer mechanism to improve pattern

recognition. The model employs two data training approaches: (b) train-test split, and (c) time-

series cross-validation for model development. (d) Transfer learning approach to predict extreme

water level evolution at target stations (black circles) using models developed in the closest

training stations (colored circles).
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2.4.2 Hyperparameter tuning

We conduct hyperparameter tuning to identify optimal values of LSTM units, dropout rate,
and learning rate within specified ranges to train the models (Table 1). We set the tuner search to
a maximum of 300 trials, after which the best hyperparameters are used to train the models. The
model architecture relies on a Bayesian optimization technique for hyperparameter tuning that
inherently functions in a sequential manner and leverages data from previous evaluations to inform
subsequent runs (Wang et al. 2023). Such technique efficiently balances the exploration of new
areas in the hyperparameter space with an emphasis on known suitable regions. This is particularly
useful when each training iteration is computationally intensive since the aforementioned
optimization technique can identify optimal hyperparameters with less time than methods like grid
or random search (Marco et al. 2022). Additionally, its capacity to handle high-dimensional
hyperparameter spaces and integrate prior knowledge about potential hyperparameters makes it a
versatile choice (Bischl et al. 2023). Its proven success in real-world applications and its efficiency
in finding robust hyperparameters with limited evaluations position it as a top choice for many
practitioners (Wang et al. 2023).

Hyperparameters, identified through a rigorous tuning (or calibration) process on site-specific
training data, tend to yield models that perform optimally within particular training domains.
However, these models may not necessarily exhibit the same level of effectiveness across other
target domains, even if both domains share similar morphological and hydrodynamic
characteristics. We address this limitation by focusing on the range of values considered for
hyperparameters. First, we define the values for specific parameters such as batch sizes (32, 64,
128, and 256), look-back times (6 and 24), loss functions (MAE and MSE), and data training

strategies (TT and CV), while allowing other parameters to be determined through hyperparameter
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tuning. We then ensure that combinations of options from the aforementioned parameters occur
precisely once, which in turn facilitates the creation of distinctive models with a unique set of
hyperparameters across the five training stations (Figure 2).

Hence, this tuning process produces a set of suitable Bi-LSTM models with comparable
performance for a given training station. We evaluate model’s performance using several metrics
that are recommended for models predicting WL dynamics (Abbaszadeh et al. 2020; Lee et al.
2021; Mufioz et al. 2022a). Those include the coefficient of determination (R?), Mean Bias Error
(MBE), Root Mean Square Error (RMSE), Kling-Gupta Efficiency (KGE) (Gupta et al., 2009),
and Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970). Based on the evaluation metrics,
there might be a set of “transferable” LSTM models among the suitable ones from the training
station for which inherent pattern recognition capabilities would be adequate for the target stations
(Section 2.4.4). However, an increase in tuning trials poses a risk of overfitting, where models
become excessively tailored to the training data and lose their predictive ability on new datasets.
Here, we specify an appropriate number of tuning trials while employing different combinations
of hyperparameters to generate a spectrum of suitable models for a training domain (Table 1).
Specifically, we develop a total of 32 models at each training.

Table 1: Range of values considered for hyperparameter tuning.

Hyperparameter (3 LSTM units) Range of Tested Values
LSTM Units 32 - 512 (step of 32)
Dropout Rate 0.10- 0.50 (step of 0.1)
Activation Tanh, Sigmoid
L2 Regularization le-6 - 1e-3 (log sampling)
Learning Rate (Adam Optimizer) le-4 - 1e-2 (log sampling)
Maximum number of trials 300
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Batch Size (b) 32 - 256 (step of 32)
Loss Function MAE, MSE
Look-back time (h) 6, 24
Epochs 500 (with early stopping)
Validation Split 30% of training data

2.4.3 Attention layer mechanism

Attention layers are used to address inherent limitations of conventional RNNs (and LSTM)
such as the tendency to lose information from earlier segments of extended sequences and
difficulties to train models in areas of sharp and extreme changes (Rithani et al. 2023). These layers
scan through the data, identify key features, and increase their influence in the training process.
Here, we incorporate an attention layer in the model architecture for better model generalization
during the training process. Specifically, the attention layer computes attention scores for each
time step using a weight matrix (Glorot) and bias (zeros) initialization (Equations 14 to 15 in the
Appendix). In addition, we customize this layer using a factor that amplifies the top 10% of the
attention scores (Equation 16). This factor allows the model to focus more on crucial parts of the
sequence, which could be abrupt changes of high or low levels in the data.

The choice of the Glorot initializer for the weight matrix in the attention layer is appropriate
due to the use of tanh and sigmoid activation functions in the LSTM units (Glorot and Bengio
2010; Evangelista and Giusti 2021). The initializer keeps the scale of the gradients approximately
the same in all layers of the LSTM network. Starting with zero biases ensures that all neurons in a
layer initially produce outputs of roughly the same magnitude, which can be a good starting point

for symmetric activation functions like tanh.

16


https://www.zotero.org/google-docs/?E14GhP
https://www.zotero.org/google-docs/?1wZVri
https://www.zotero.org/google-docs/?1wZVri

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

2.4.4 Transfer learning

We conduct TL to predict the evolution of EWLs at selected target stations by leveraging
“gained knowledge” from the closest training stations (Figure 2d). Such knowledge includes
hidden sequential patterns and nonlinear associations among input and target data features that are
stored as model weights (Mufioz et al. 2021; Zhao et al. 2021). Note that most of the target stations
are located in-between two training stations; except Montauk, NY and Sandy Hook, NJ as well as
Lake Worth Pier, FL and Virginia Key, FL that are close to a single training station. Here, the TL
approach consists in training, tuning, and validating Bi-LSTM models at each training station and
subsequently saving the corresponding model weights. We leverage all available Bi-LSTM models
(e.g., 32 models) and transfer them to the target stations in order to predict the evolution of EWLs
within the predefined 7-day window (Section 2.3). Among these models, we identify
“transferable” Bi-LSTM models based on the criteria that both KGE and NSE are above a
threshold value of 0.70 at the target stations. This threshold ensures that each transferable model
adequately accounts for the magnitude and timing of EWLs while also keeping its inherent pattern
recognition capabilities on new input data that has not yet been observed at the target stations (e.g.,
those associated with future extreme events). Lastly, we assess the performance of transferable
models at the target stations with identical evaluation metrics including R?2, MBE, RMSE, KGE,

and NSE.

3. Results

3.1 Assessment of bidirectional LSTM network models

We first assess the performance of Bi-LSTM models at the training stations with and without
the attention layer mechanism incorporated in the model architecture. For this, we consider the
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models’ ability to capture: (i) peak and timing of EWLs, and (ii) evolution of EWLs for selected

historic TCs (hurricanes) and extra-TCs (Nor'easter winter storms).

3.1.1 Extreme water levels

For convenience, we will focus on model predictions obtained from Fort Pulaski (FP), GA
since this training station has been reporting complete consecutive hourly data from 1975 to
present (Figure 3). Predictions of EWLs and associated RMSE, average peak error, and KGE
metrics suggest that Bi-LSTM models with the attention layer (e.g., hereinafter referred to as Bi-
LSTM-ATT) can capture the magnitude and timing of peak WLs with a higher accuracy than those
without this layer (Figure 3b). Note that this includes the two most EWL events contained in the
testing set (e.g., Hurricane Matthew (2016) and Hurricane Irma (2017)). More than half of Bi-
LSTM models achieve a median RMSE, absolute peak error, and mean bias of 0.18 m, 0.68 m,
and -0.11 m, respectively (Figure 3¢ to 3f and Table S1). Also, these models achieve very low to
moderate performances with a median KGE and NSE of 0.50 and 0.15, respectively (Table S1).
In contrast, the models’ performance substantially improves after integrating the attention layer
mechanism in the model architecture. In that regard, half of Bi-LSTM-ATT models show a
reduction in the median RMSE, absolute peak error, and mean bias by 27% (0.13 m), 36% (0.44
m), and 55% (-0.05 m) with respect to the Bi-LSTM models only (Figure 3g to 3j and Table S2).

Also, these models achieve a median KGE and NSE of 0.67 and 0.56, respectively (Table S2).
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Figure 3. Assessment of models’ performance in the testing set at Fort Pulaski (FP), GA. (a, b)

Annual maximum water levels in the training set (80%), and testing set (20%) in addition to

predictions with/out the attention layer mechanism. The Bi-LSTM and Bi-LSTM-ATT models are

categorized into (c, g) look-back times of 6 h and 24 h, (d, h) loss functions focused on Maximum

Absolute Error (MAE) and Mean Square Error, (MSE) (e, 1) Train-Test (TT) and Cross Validation

(CV) fold strategies, and (f, j) a collective unit to compare their overall performance.
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At the remaining training stations, we evaluate predictions of EWLs derived from Bi-LSTM-
ATT models only (Table S2). The models at Atlantic City (AC), NJ station achieve satisfactory
model performance with a median KGE of 0.84 despite the relatively low median NSE of 0.36.
The median RMSE and mean bias in this training station are 0.07 and 0 m, respectively. Training
station Sewells Point (SW), VA has the best performing models with a relatively high median
KGE and NSE of 0.92 and 0.80, respectively. These models achieve a median RMSE and mean
bias of 0.05 m and -0.02 m, respectively. Similarly, results at Beaufort (BF), NC station perform
satisfactorily with median KGE and NSE of 0.86 and 0.69, respectively. Also, this training station
shows a median RMSE and mean bias of 0.05 m and -0.01 m, respectively. Lastly, the models of
training station Trident Pier (TD), FL achieve a moderate to satisfactory performance with median
KGE and NSE of 0.78 and 0.51, respectively. The models show a median RMSE and mean bias

of -0.07 m and -0.03 m, respectively.

3.1.2 Evolution and peak of extreme water levels

Next, we assess the performance of Bi-LSTM-ATT models to predict the evolution of EWLs
including the magnitude and timing of the peaks (Figure 4). The top-two Bi-LSTM-ATT models
of AC predict the evolution of EWLs associated with a Nor’easter storm with relatively high
accuracy. These models achieve KGE of 0.89 and 0.82 and NSE of 0.96 and 0.94 (Figure 4a). In
contrast, the top-two models of SW capture the evolution of EWLs and almost perfectly match the
magnitude of the peak associated with Hurricane Joaquin (2015) (Figure 4b). These models
achieve KGE of 0.98 and 0.98 and NSE of 0.99 to 0.99. Similarly, the top-two models of BF
achieve satisfactory KGE of 0.96 and 0.95 and NSE of 0.98 and 0.98. These models capture the
evolution and almost perfectly match the magnitude of the peak associated with Hurricane Dorian

(2019) (Figure 4c¢). The top-two models of FP can predict the evolution of EWLs but underpredict
20
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the peak associated with Hurricane Matthew (2016) (Figure 4d and 4f). These models achieve
KGE 0f 0.87 and 0.85 and NSE of 0.91 and 0.88.

Lastly, the top-two models of TD capture the evolution of EWLs even though the second model
overpredicts the magnitude of the peak associated with Hurricane Nicole (2022) (Figure 4¢). These
models achieve KGE of 0.72 and 0.70 and NSE of 0.84 and 0.93. Regarding the peak time
difference (Figure 4f), all Bi-LSTM-ATT models developed for AC and BF stations show a 1-h
lead difference and a perfect match with respect to the observed peak, respectively. Six models of
SW station show a 1-h lag difference whereas two models of TP station show a 1-h lead difference
with respect to the observed peak. Thirteen and ten models developed for FP stations show a 1-h
lag difference and 1-h lead difference with respect to the observed peak, respectively. Overall, the

time difference between observed and predicted peak WL is 1 h for all trained models.
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Figure 4. Assessment of models’ performance to predict the evolution and peak of extreme water

levels in the testing set. Predictions of the top-two Bi-LSTM-ATT models from the Train Test

(TT) and/or Cross Validation (CV) split strategies at (a) Atlantic City, NJ (AC), (b) Sewells Point,

VA (SW), (c) Beaufort, NC (BF), (d) Fort Pulaski, GA (FP), and (e) Trident Pier, FL (TD). (f)

Observed and predicted peak time differences among the five training stations and 32 Bi-LSTM-

ATT models.
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3.2 Assessment of transfer learning approach

After evaluating the models’ performance, we proceed with the assessment of transferable
models from the closest training stations to target stations. For example, we transfer the pretrained
Bi-LSTM and Bi-LSTM-ATT models and their associated model weights from Sewells Point, VA
to the target station at Duck, NC (Figure 2d). Since most of the extreme events at Sewells Point,
VA, including Hurricane Isabel (2003), Irene (2011) and Sandy (2012), are in the training set, the
performance of all Bi-LSTM models are satisfactory, with metrics comparable to Bi-LSTM-ATT
models (Table S3). Here, the goal is to predict the evolution of EWLs for relevant extreme events
such as Hurricane Isabel (2003) and Dorian (2019) (Figure 5). Based on the threshold value of
0.70 (Section 2.4.4), there are no transferable Bi-LSTM models that can predict the evolution of
both storm events. For Hurricane Isabel, the two best models achieve low KGE of -0.98 and -1.03
and NSE of -0.50 and -0.54 (Figure 5a). Although these two models show a better performance
for Hurricane Dorian, they still achieve moderate KGE of 0.55 and 0.54 and NSE of 0.43 and 0.41
(Figure 5d). In contrast, the top-two transferable Bi-LSTM-ATT models achieve high KGE of 0.94
and 0.93 and NSE of 0.97 and 0.97 when predicting EWLs triggered by Hurricane Isabel (Figure
5b). For Hurricane Dorian, the top-two transferable Bi-LSTM-ATT models achieve a relatively
high KGE of 0.72 and 0.74 as well as NSE of 0.93 and 0.93 (Figure Se).

Furthermore, we assess the models’ performance in terms of R? and RMSE for both extreme
events and compare model predictions from the best transferable Bi-LSTM and Bi-LSTM-ATT
models using a one-to-one plot (Figure Sc and 5f). Bi-LSTM models have poor generalization of
EWLs with low predictive accuracy (R? < 0.50) and high error (RMSE > 0.30). In contrast, the Bi-
LSTM-ATT models can predict the evolution of EWLs with a high predictive accuracy (R? > 0.95)

and low error within an acceptable range (RMSE < 0.15 m). In general, RMSEs below 0.20 m are
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430  desirable for hurricane storm surge modeling (Muis et al. 2016). Following this analysis, we
431  hereafter present the results derived from Bi-LSTM-ATT models only.
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3.3 LSTM-SAM framework

Once the Bi-LSTM-ATT models and TL approach have been assessed at selected training and
target stations (Section 3.1 and 3.2), we introduce the LSTM-SAM framework to accurately
predict the evolution of EWLs at target stations in the U.S. Atlantic Coast (Figure 2d). As
mentioned before, we set a time window of 7-day centered around the peak to characterize the
evolution of EWLs at the target stations and leverage the 32 Bi-LSTM-ATT models developed at
each training station. Note that instead of considering the top-two transferable Bi-LSTM models
at the target stations (Figure 5), the LSTM-SAM framework identifies a set of transferable models
for which KGE and NSE are above 0.70 when evaluated with respect to TCs or extra-TCs events
(Figure 6). For practical flood prediction purposes and decision-making support, Bi-LSTM-ATT
models achieving the smallest peak deviation among the transferable models are considered as the
optimal ones at each target station (e.g., models with the closest prediction to the peak WL).

There are 3 transferable models from training station AC to the target station in Montauk, NY
that accurately predict EWL evolution of The Perfect Storm (1991) and Hurricane Sandy (2012)
(Figure 6a and 6b). These models achieve satisfactory performances such as an average KGE and
NSE above 0.75. Likewise, there are 21 transferable models from AC and SW that predict EWL
evolution of Hurricane Isabel (2003) and Sandy (2012) at the target station in Kiptopeke, VA
(Figure 6¢ and 6d). These models achieve an average KGE and NSE above 0.80. At the target
station located in Duck, NC, LSTM-SAM identifies 14 transferable models from SW and BF that
predict EWL evolution of Hurricane Isabel (2003) and Dorian (2019) (Figure 6e and 6f). These
models show satisfactory performances with average KGE and NSE above 0.75. Similarly, the

framework identifies 14 transferable models from TD to the target station in Lake Worth Pier, FL
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460 that accurately predict EWL evolution of both Hurricane Dorian (2019) and Nicole (2022) (Figure
461  6gand 6h). The models achieve average KGE and NSE above 0.85.
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Figure 6. Extreme water level prediction for relevant hurricanes and Nor’easter winter storms in
the U.S. Atlantic Coast. Each row panel shows two extreme events at the target stations, the
number of transferable models, and their average performance in terms of KGE and NSE. These
stations are (a, b) Montauk, NY, (c, d) Kiptopeke, VA, (e, f) Duck, NC, and (g, h) Lake Worth
Pier, FL. The dashed red, blue, and gray lines represent observed water levels, optimal model, and

water level predictions from all transferable models.

Results of the remaining target stations show average KGE and NSE ranging from 0.70 to 0.99
(Figure S2, Supplementary material). It is worth noting that we leverage WL data from the training
station AC to predict the complete evolution of Hurricane Sandy (2012) at the target station in
Sandy Hook, NJ (Figure S2b). This demonstrates the transfer model capability to predict EWL
evolution even when tide-gauges fail or become inoperative. However, there are three target
stations for which no Bi-LSTM-ATT models are completely transferable given the criteria that
both NSE and KGE should be above 0.70 within the 7-day window (Section 2.4.4). Specifically,
the LSTM-SAM framework does not identify any transferable models from SW and BF stations
to the target station in Oregon Inlet, NC that can accurately capture the evolution of EWLs of
Hurricane Floyd (1999) and Irene (2011) (Figure 7a and 7b). Similarly, the framework does not
identify transferable models from SW and BF stations to USCG Station Hatteras, NC for Hurricane
Matthew (2016) and Dorian (2019) (Figure 7c and 7d). Lastly, there are no transferable models
from TD station to Virginia Key, Florida for Hurricane Irma (2017) and Nicole (2022) (Figure 7e
and 7f). However, note that some Bi-LSTM-ATT models can effectively capture the peak WL
within a shorter time window centered around the peak (e.g., +1 day); hence, the relatively low
KGE and NSE at the target stations are explained by an overprediction of WLs occurring before

and after the peak WL. Therefore, the LSTM-SAM framework considers the model with the
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486  highest KGE and NSE as the optimal models for those three target stations (Figure S2,

487  Supplementary material).
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489  Figure 7. Extreme water level prediction for relevant hurricane events in the U.S. Atlantic Coast.
490  Each row panel shows two extreme events at the target stations, total number of models, and their
491  average performance in terms of KGE and NSE. These stations are (a, b) Oregon Inlet Marina,

492 NC, (c, d) USCG Station Hatteras, and (e, f) Virginia Key, FL. The dashed red, blue, and gray

28



493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

lines represent observed water levels, optimal model, and water level predictions from all available

Bi-LSTM-ATT models developed at the corresponding training stations.

4. Discussion

Physically-based models can accurately predict EWLs; however, they are site-specific and not
transferable to other domains, even with similar characteristics, due to their need for detailed
topographic and bathymetric (topobathy) data (Santiago-Collazo et al. 2019; Bates 2022b). A
feasible alternative to overcome this limitation consists in leveraging state-of-the-art deep learning
models, such as LSTM networks, given their effectiveness for learning dynamic and/or sequential
data including nonlinear interactions and hidden patterns from hydrometeorological input features
(Tedesco et al. 2023). Conveniently, LSTM networks enable time-series prediction even in
absence of geographical information or catchment characteristics that may remain quasi-invariant
for a relatively long time (e.g., average slope, length, width, catchment size, among other input
features). Although model transferability is still challenging (Zhao et al. 2021; Kratzert et al.
2024), adequate feature engineering procedures (Merizalde et al. 2023) and improvement of LSTM
models’ architecture (e.g., attention layer mechanisms) can increase the effectiveness of TL
approaches over untrained (target) sites having similar hydrodynamic and morphologic features to
the corresponding training areas. This in turn will help advance flood prediction efforts in large
scale domains with high accuracy and less computational time (Ding et al. 2020; Li et al. 2021,
Nearing et al. 2024). Here we present one of the first applications of TL to EWL prediction in

coastal domains, and to our knowledge, the first outside the hydrological context.
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4.1 Application of the LSTM-SAM framework

The proposed LSTM-SAM framework is trained on sequential WL data from tide-gage stations
and follows a time-series decomposition in order to obtain hidden patterns and nonlinear
associations such as seasonality, trend, harmonic tides, and NTR components (Section 2.3).
Moreover, these input features are complemented with hydrometeorological data from reanalysis
datasets. As a result, the framework is capable of applying learned knowledge to selected target
stations and predicting the evolution of EWLs (Section 2.4.1). We ensure that Bi-LSTM networks
are robustly calibrated through hyperparameter tuning, which resulted in 32 distinctive models
across five training stations and a unique set of hyperparameters per model (Section 2.4.2). We
argue that this method preserves inherent pattern recognition capabilities for each model (e.g.,
model weights) and increases the chances for identifying effective transferable models to target
stations.

Conventional Bi-LSTM models show poor performance to predict EWLs at the training station
particularly when there exist more extreme events in the test set (Figure 3a and 3b). This is partly
due to a sequential training (80%) and test (20%) split given that the frequency and magnitude of
EWLs is expected to increase by the end of the century (Santiago-Collazo et al. 2019; Bloemendaal
et al. 2022; Boumis et al. 2023). In contrast, leveraging randomly selected subsamples in each
batch during the calibration process facilitates a quicker model convergence (De la Fuente et al.
2024) and prevents anomalies in the training data. Nevertheless, training Bi-LSTM models on
sequential data ensures that temporal relationships are fully considered in the learning process.
Since these models are in general most effective in capturing changing trends of cyclic patterns
(Wang et al. 2022), they do ignore some nuanced information of rare and abrupt changes during

the training process. Therefore, there is a higher chance of incorrect estimation of equally rare but
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more extreme data values in testing sets which limits the model's ability to accurately predict
EWLs.

Following this, we introduce a custom attention layer in the Bi-LSTM architecture (Section
2.4.3), which significantly improves the models’ ability to capture TCs and extra-TC events
(Figure 3b). Since hyperparameter tuning is predominantly inclined toward identifying the optimal
set of model parameters that result in the most accurate EWL prediction in the training set, there
is no guarantee that this optimal set leads to improved performance on unseen (test) sets (Tran et
al. 2020). Therefore, by amplifying the top 10% of the attention scores, the model's ability to
internally focus on the most relevant time steps is substantially improved and leads to more
accurate EWL predictions. Moreover, the attention layer mechanism allows the models to perform
identical operations consistently beyond the training set and therefore generalizing unseen data
with similar characteristics in the test set. Since Bi-LSTM-ATT outperforms conventional Bi-
LSTM models (Figure 3f to 3h), the proposed LSTM-SAM framework demonstrates the ability to
effectively predict the evolution of EWLs even when higher WLs attributed to more frequent TCs
and extra-TCs are expected.

We also observe comparable performance across all metrics for all Bi-LSTM-ATT models
developed on the specified options of lookbacks, batch sizes, loss functions, and data training
strategy (Table 2). It is worth noting that a higher batch size of 128 sample points shows the highest
performance of all models in terms of KGE and NSE, suggesting that they capture both peak and
timing of EWLs with higher accuracy. However, more than half of the models developed on a
smaller batch size of 32 sample points have very low NSE scores, which tend toward inaccurate
timing of EWLs’ predictions. In addition, lower performance for models developed with 24-hour

lookbacks compared to 6-hour lookbacks suggests that considering more previous time steps does
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not necessarily improve the model’s predictive accuracy. Furthermore, the identical performance
for both data training strategies as well as the loss functions suggests that either of these options
are suitable to train the models.

Although most of the trained Bi-LSTM-ATT models can predict EWLs at the nearby target
station, we observe that models with KGE and NSE above 0.70 demonstrate robust generalization
capabilities of EWL evolution from onset, peak, to dissipation (Figure 4). NSE show a higher
accuracy for predictions with correct timing despite the over- or underprediction of WLs (Figure
7e and 7f). In addition, an extended window size renders minor discrepancies in the timing of peak
WLs such as 1-h lead or 1-h lag negligible in the overall prediction performance. On the other
hand, KGE improve when the magnitude of predictions closely aligns with actual events, even if
the prediction timing is inconsistent with actual WL observations (Figure 7c and 7d).

The low performance at target stations located at Oregon Inlet Marina, NC (NOAA ID:
8652587) and USCG Station Hatteras, NC (NOAA ID: 8654467) might be attributed to the
geographic location of the tide-gages (Figure 2d). Unlike target stations that are directly exposed
to the Atlantic Ocean, these stations are located behind Bodie’s and Cape Hatteras’ islands of the
Outer Banks barrier island chain. Coastal areas surrounding the target stations experience about 1
m of mean tidal range on the ocean side and 0.3 m behind the island (Velasquez-Montoya et al.
2020). In addition, these areas benefit from vast coastal wetlands and protection infrastructure such
as the Herbert C. Bonner bridge that alters tidal dynamics and attenuates storm surges and waves
(Velasquez-Montoya et al. 2021, 2022). Consequently, these site-specific conditions significantly
differ from those of nearby training stations including Sewells Point, VA (NOAA ID: 8638610)

and Beaufort, NC (NOAA ID: 8656483).
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Nevertheless, Bi-LSTM-ATT models have the potential to capture the peak WL which is
crucial for supporting flood emergency response and decision-making. In fact, the optimal models
for those target stations correctly capture the peaks of Hurricane Floyd (1999), Irene (2011),
Matthew (2016), and Dorian (2019) (Figure 7a to 7d). Similarly, the evolution of EWLs at Virginia
Key, Florida (NOAA ID: 8723214) is overestimated (Figure 3e and 3f). Nevertheless, the models
can effectively capture the peaks of Hurricane Irma (2017) and Nicole (2022). The tide-gage is
located at the entrance of Biscayne Bay close to the Bear Cut bridge, which is most likely
responsible for WL being less representative of extreme events. The relatively lower water surface
elevation of this station during Hurricane Irma compared to Trident Pier, FL (NOAA ID: 8721604)

has also been noted in another study (Alarcon et al. 2022).

4.2 Limitations and future work

The waves and atmospheric variables obtained from ERAS have a spatial resolution of
approximately 31 km. This level of resolution may not correctly account for local variability; hence
higher resolution data might improve the performance of LSTM-SAM framework. There are
instances where wave components for target stations like Lewes, DE, and Charleston, SC needed
to be complemented with those derived from the WIS portal data. As a result, some errors could
have been introduced in the input features, reducing the accuracy of EWL predictions.
Interestingly, these target stations have the lowest number of transferable models from the training
stations (Figure S2). More advanced deep learning models like Transformers have attention
mechanisms built into their design (Boussioux et al. 2022) and could be a worth-exploring
alternative to the proposed Bi-LSTM-ATT models for predicting EWL evolution in coastal areas.

We plan to extend the LSTM-SAM framework to inland target stations by taking into account the
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contribution of river discharge for accurate prediction of total WLs in coastal to inland transition
zones (Serafin et al. 2017b; Bilskie and Hagen 2018; Mufioz et al. 2022b; Yin et al. 2022). Future
work should focus on predicting spatiotemporal WL variability and flood inundation extent by

combining Bi-LSTM-ATT and Convolutional Neural Networks (Gavahi et al. 2021).

5. Conclusion

In the present study, we characterize the evolution of extreme water levels (EWLs) at tide-gage
stations distributed along the U.S. Atlantic Coast. To achieve this, we identify 5 training stations
that were hit by historic hurricane events and contain complete consecutive hourly data spanning
at least 40 years. Then, we leverage available WL and hydrometeorological time-series data to
train bidirectional Long Short-Term Memory (Bi-LSTM) network models for each training station.
Furthermore, we incorporate an attention layer mechanism in the model architecture and a transfer
learning (TL) approach with the goal effectively predicting the evolution of EWLs at target (tide-
gage) stations. The models highlight the significance of a longer batch size in enhancing model
performance, while challenging the assumed benefits of longer look-back periods. The collection
of models with the attention layer mechanism and TL approach is referred to as the LSTM-Station

Approximated Models (LSTM-SAM) framework and is effectively applied to 14 target stations.

The LSTM-SAM framework predicts the onset, peak, and dissipation of multiple EWL events
emerging from tropical cyclones (hurricanes) and extratropical cyclones (Nor’easter storms) with
high accuracy. For this, the framework identifies “transferable” models based on KGE and NSE
above 0.70 in order to ensure an accurate generalization of EWLs. Under these criteria, the LSTM-

SAM framework demonstrates satisfactory performance with transferable models achieving

average KGE, NSE, and RMSE ranging from 0.78 to 0.92, 0.90 to 0.97, and 0.09 to 0.18 at the
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target stations, respectively. Following these results, we conclude that the LSTM-SAM framework
can accurately predict not only EWLs but also their evolution over time, which could assist in
large-scale operational flood predictions like the National Water Model (NWM) or Coastal
Emergency Risk Assessment (CERA). Future work should focus on predicting spatiotemporal WL
variability and flood inundation extent by combining Bi-LSTM-ATT and Convolutional Neural

Networks.
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