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ABSTRACT

Deep Learning (DL) techniques are increasingly being incorporated
in critical software systems today. DL software is buggy too. Recent
work in SE has characterized these bugs, studied fix patterns, and
proposed detection and localization strategies. In this work, we
introduce a preventative measure. We propose design by contract
for DL libraries, DL Contract for short, to document the properties
of DL libraries and provide developers with a mechanism to identify
bugs during development. While DL Contract builds on the tradi-
tional design by contract techniques, we need to address unique
challenges. In particular, we need to document properties of the
training process that are not visible at the functional interface of
the DL libraries. To solve these problems, we have introduced mech-
anisms that allow developers to specify properties of the model
architecture, data, and training process. We have designed and im-
plemented DL Contract for Python-based DL libraries and used it
to document the properties of Keras, a well-known DL library. We
evaluate DL Contract in terms of effectiveness, runtime overhead,
and usability. To evaluate the utility of DL Contract, we have de-
veloped 15 sample contracts specifically for training problems and
structural bugs. We have adopted four well-vetted benchmarks from
prior works on DL bug detection and repair. For the effectiveness,
DL Contract correctly detects 259 bugs in 272 real-world buggy pro-
grams, from well-vetted benchmarks provided in prior work on DL
bug detection and repair. We found that the DL Contract overhead
is fairly minimal for the used benchmarks. Lastly, to evaluate the
usability, we conducted a survey of twenty participants who have
used DL Contract to find and fix bugs. The results reveal that DL
Contract can be very helpful to DL application developers when
debugging their code.
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1 INTRODUCTION

Deep learning is a popular tool for solving complex software devel-
opment problems such as NLP and vision, but research has shown
that deep learning models also have unique bugs [33, 36, 37, 66]. To
address this, SE researchers have focused on detecting and localiz-
ing these bugs [46, 57, 62]. In this work, we explore an alternative
approach to improve the reliability of deep learning software, de-
sign by contract (DbC). Traditional DbC [19, 41, 43, 48] provides
support for writing preconditions and postconditions at APIs. How-
ever, prior work does not provide mechanisms for documenting
properties of the model architecture, data, and training process,
which are crucial for applying DbC to deep learning APIs. Recent
research has proposed techniques for inferring these properties, but
DbC aims to provide specification mechanisms for programmers.

We propose a DbC methodology for deep learning libraries,
called DL Contract. It exposes meta-level properties of the DL train-
ing process and model structure as variables, called ML variable, for
use in writing contracts. Unlike grey-box contracts [23] that expose
part of the program, ML variable provides a higher-level abstraction
of the training process and model structure. They are similar to
specification-only fields [27] in object-oriented programs [42, 49],
but abstract away from the details of the DL model.

We have developed DL Contract for Python and a runtime as-
sertion checking framework for DL Contract. We have applied con-
tracts to key API methods of the Keras library and evaluated them
using four benchmarks for deep learning bug detection from prior
works [52, 57, 62, 65], comprising 272 Keras codes. Our results show
that the Keras library with contracts can identify 95% of such bugs
during runtime checking. Additionally, we have evaluated the anno-
tation overhead of DL Contract and found it to be zero for users of
DL libraries. This means that users do not need to add any contract
annotations to their code in order to benefit from our approach. We
have also added 15 contracts to the model compilation and training
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Buggy Code with poor result (Training Accuracy: 9.86%)

Keras without any debugging tools

(x_train, y_train), (x_test, y_test) =
x_train.astype("float32")
x_test = x_test.astype("float32")
x_train = np.expand_dims(x_train, -1)

x_test = np.expand_dims(x_test, -1)

x_train =

y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
model = keras.Sequential([

keras.Input(shape=(28, 28, 1)),
layers.Conv2D(32, kernel_size=(3,
layers.MaxPooling2D(pool_size=(2,
Conv2D (64, kernel_size=(3,
.MaxPooling2D(pool_size=(2,
Flatten(),
layers.Dropout(0.5), @
layers.Dense(10, activation:"relu”@
@model.Compile(lOSS:"binar‘yfcr‘ossentl‘opy",
metrics=["accuracy"])
@ model.fit(x_train, y_train, batch_size=128, epochs=15,
validation_split=0.1)
model.evaluate(x_test, y_test, verbose=0)

2)),
layers.
layers
layers.

2)),

score =

optimizer="adam",

3), activation="relu"),

3), activation="relu"),

keras.datasets.mnist.load_data() [Epoch 15/15 422/422 - 225 52msistep

loss: 1.5425 - accuracy: 0.0988 - val_loss: 1.5425 - val_accuracy: 0.0978.
316.7 seconds

DeepLocalize

Batch 19 layer 6: Error in Delta Weights, terminating training; @
858.57 seconds

UMLAUT
[<Critical: Missing Softmax layer before loss>, <Warning: Last model layer
has nonlinear activation> <_§ 42.91 seconds

DeepDiagnosis
'Batch 19 layer 6: Error in Delta Weights, terminating training;@
Change the activation function at layer: 8. 35.03 seconds

AUTOTRAINER

Your model still has training problems [‘explode’] are still exist,

you can try other solutions: Use 'he_uniform' as the kernel
initializer. Using 'tanh’ activation in each layers' activation;
Use'BatchNormalization' layers after each Dense layers in the
model. 631.55 seconds

NeuraLint

Learne@A last layer activation is required to transform logits
nto probabilities for classification problem (missing sigmoid). Loss
should be correctly defined, connected to layer according to input

State-of-the-art debugging tools

DL Contract annotated Keras library !

conditions (i.e.shape and type)-post_activation. 9.11 seconds

Contract Violation: compile(). activation_function for multiclass should not be relu:

Contract Violation: compile() activation_function for multiclass, should be softmax,
Contract Violation for Sequential:fit(). data should be normalized, training data should not be within 0.0 and 255.0 ;

loss should be categorical_crossentropy
5.33 seconds

Figure 1: Buggy code [2, 3, 6, 7, 9] achieves 9.78% training accuracy. Similar correct code [10] achieves ~ 99% training accuracy.

methods of the Keras API and evaluated 257 correct programs, find-
ing 18 false positives due to the randomness effect during training.
To evaluate the usability of the contract-enabled Keras library, we
conducted a user study with 20 participants with varying levels of
expertise in DL application development. We found that DL Con-
tract enabled Keras is very helpful to developers in debugging DL
software. Also, writing DL Contract and integrating DL Contract
with Keras is an easier process for the API designers. Our evalua-
tion also shows that the runtime overhead of checking contracts is
fairly minimal. We obtained that the runtime overhead increases by
around 15% compared to the baseline. DL Contract can be disabled
during production to result in zero overhead.
Our contributions are as follows:

o A novel methodology for writing and checking contracts for
deep learning libraries by specifying DL APIs with precon-
ditions and postconditions.

o A framework [15] that is extensible and generalized to differ-
ent classes of DL bugs and maps contract violation as a bug,
symptoms as the constraint to check, and contract violation
messages as suggestions to fix bugs.

o The notion of specifying DL-specific contracts by abstracting
the DL model architecture, its data properties, and training
behavior.

o A collection of 15 contracts that prevents prevalent training
problems and structural bugs in DL programs.

e An annotated version of Keras with the DL Contract as a
virtual environment (@Keras) [11]. Developers can use this
@Keras environment for debugging without any annotation
overhead and minimal runtime overhead (x15%).
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2 MOTIVATION

To highlight the difficulty in specifying deep learning APIs and
the need for DL Contract, consider a simple Convolutional Neural
Network (CNN) code shown in Fig. 1. This code is intended for
digit classification when implemented correctly, as outlined in the
Keras documentation [10], it achieves 99% training accuracy on
the MNIST dataset. In the correct version, images are normalized
to the range [0,1] before being processed by a Sequential model
with a specific layer architecture. The model is configured using
the Compile API and trained using the Fit AP, and the evaluate
APl is used to calculate the loss and accuracy.

However, as shown in Fig. 1, the code snippet contains three
bugs (on lines 19, 20, and 22) which result in low accuracy and
high training time. These bugs are specific to DL programs [62]
and may not cause crashes. For example, on line 19, the incorrect
activation function, ‘relu’ is used in the last layer of the Dense
API [2, 5, 6]. Additionally, on line 20, the incorrect loss function of
‘binary_crossentropy’ is applied in the Compile API [2, 3, 9]. Lastly,
on lines 5 and 6, the data is not normalized before being fed into
the Fit API [6, 7].

This example also illustrates another challenge for specifying
DL APIs. All DL APIs work on a shared DL model, where early
APIs construct the model and later APIs, such as fit, compile, and
evaluate, make use of it. To write pre/postconditions for DL APIs,
having access to only the formal parameters and return values of
the APIs is not sufficient. Correct usage depends on the model state
at the point of the API call. DL Contract addresses these challenges
and can help prevent such bugs by providing a clear specification
of the intended behavior of deep learning APIs.
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3 DEEP LEARNING CONTRACTS

In the DL Contract approach, we abstract the data properties, ex-
pected output, model architecture, and training behavior of a DNN
model and specify the properties of DL APIs connected via a com-
putation graph. We gather and inspect necessary conditions from
three sources (details in §4.1). We filter out the obligations from
the DL app developer as preconditions and expectations from DL
software in as postconditions, Here, we use a novel runtime asser-
tion check in DL computation. In the contract checker modules
first parse those contracts and translate them into templates. Those
templates are validated to handle the exception if it occurs. If a
contract is violated, the user receives a contract violation message
Otherwise, the API returns the normal execution output. Thus, our
proposed solution generalizes to other bugs and model categories
in this way. It would be easy for library developers to specify the
contracts for other types of bugs following these procedures of DL
Contract.

Next, we present the design and usage of DL Contract, including
examples and our approach for abstracting DL related properties.

3.1 Writing Deep Learning Contract

DL Contract uses an annotation-based approach [18, 28] to add
contracts to DL APIs, which allows library developers to add con-
tracts without modifying compilers and build tools. This means that
software using DL APIs does not need to be modified. DL library
developers can add preconditions that must be satisfied before the
APl is called and postconditions that the API guarantees to be true
upon completion.

3.1.1 Syntax. To use contracts in a deep learning library, it is nec-
essary to annotate the API with @contract and @new_contract.
This allows library developers to create expressions for checking
specified contracts. DL Contract can check types such as tensors
and model objects, as well as simple data types like strings, floats,
numbers, arrays, and booleans. It utilizes logical operators like
AND(,) and OR(|) and allows for arithmetic and comparison expres-
sions. Additionally, DL Contract can be used to check constraints
of various model properties during training and abstraction.

3.1.2  Illustrative Example. To create a contract, a library devel-
oper annotates a DL API using @contract and @new_contract.
Inside @contract, the developer defines types and functions for
checking contracts. Using @new_contract, the developer writes
functions for performing computations necessary for a contract
and for checking preconditions and postconditions. For instance,
in Example 3.1, a contract is imposed as a precondition on the
Keras training function Fit to ensure that data is within a speci-
fied range before training. To prevent this type of bug, a function
data_normalization is declared as a contract definition using the
@contract annotation (line 8) using the parameter x. Inside the
@contract annotation, in the data_normalization function (line
2), the developer further computes to get the range of training data,
declared as normalization_interval as a ML variable (line 3).
The developer can specify the appropriate range of the ML variable
within the contract checker function. The condition is checked on
line 4 and if the contract is violated, a suggestion to fix the issue is
raised on line 7.
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@new_contract
def data_normalization(x):
normalization_interval = np.max(x) - np.min(x)
if(normalization_interval>2.0):
msg = "Data should be normalized before training,train and
test data should be divided by value " + str(np.max(x))
raise ContractException(msg)
@contract(x="data_normalization’)
def fit(self, x=None, y=None,...):

Example 3.1: A contract on Fit API inside Keras library

1]
2|
3
4]
5 |
6|
7|
8]
91

When a buggy DL program makes use of this annotated API, DL

Contract will throw the following error.
| ContractViolated: Data should be normalized before training, train and test
data should be divided by value 255.0.

Example 3.2 illustrates the use of DL Contract to prevent over-
fitting bugs [46], in which a model has high training accuracy but
low test accuracy. A contract is specified on the validation loss and
training loss to check for increasing differences in validation loss
and decreasing differences in training loss [57], which is a common
cause of overfitting. This expectation is encoded as a postcondition.

1 | @new_contract

2 | def overfitting(history):

3 i=e

4 while i<=(len(history.epoch)-2):

5 epochNo = i + 2

6 diff_loss = history['loss'J[i + 1] - history['loss'][i]
7 diff_val_loss = history['val_loss'I[i + 1] -

8 history['val_loss 'I[il

9 i +=1

10 if(diff_val_loss>0.0):

11 if(diff_loss<=0.0):

12 msg = "After Epoch"+str(epochNo)+",diff_val_loss="
13 +str('%.4f' % diff_val_loss)+"and diff_loss="
14 +str('%.4f' % diff_loss) + "causes overfitting"
15 raise ContractException(msg)

16 | @contract(returns=’overfitting’)

17 | def fit(self, x=None, y=None,...): return self.history

Example 3.2: Overfitting Contract on Fit API

To prevent overfitting, a contract can be added to the output
of the Fit method in Keras using @contract and a postcondition
can be checked using the overfitting function specified with
returns (line 16). In this function, the contract writer uses the
obtained history object to compute diff_loss and diff_val_-
loss (line 6-7) and checks if the difference between validation
loss of consecutive epochs tends to increase while the difference
between training loss continues to decrease. If this condition is not
met, a contract violation message is thrown and when a buggy DL
program uses this annotated API, DL Contract will throw an error.

\ ContractViolated: After Epoch: 11, diff_val_loss = 0.34 and diff_loss = -0.12
causes overfitting.

3.2 DL Contract Approach

Next, we present our approach and describe the technical chal-
lenges in DL contract checking, such as the need for context-aware
ML variable (§3.2.1), assertion techniques (§3.2.2), and support for
contracts across multiple APIs in the ML pipeline (§3.2.3). Also, we
discuss our technique’s support for post-training contract checking
(§3.2.4).

3.2.1 Abstraction of DL-specific Properties to Contracts. To enforce
DbC technique for deep learning APIs, a mechanism is needed to
capture model abstraction, data properties, and training behavior
beyond just the formal parameters and return values of the DL APIs.
Standard contracts only enforce constraints on the values of formal
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parameters and return values of an API method or attributes of an
API class. Additionally, machine learning APIs are not isolated, but
connected through a computational graph [16]. Therefore, specify-
ing contracts on one API with its formal parameters alone is not
sufficient in the DL-specific settings.

Fig. 2 describes a scenario in which the developer wants to add a
contract to the method dense to ensure that the activation function
for the last layer is not relu [8]. Additionally, the developer wants
to check the appropriate loss function parameter for the Compile
API Fig. 2. The problem with this scenario is that the conventional
Design by Contract (DbC) technique cannot specify this contract on
amodel’s API without causing false alarms in correct codes because
it only allows for checking contracts on each API of a model.

To solve such problem, we design a way to write DL Contract
using functions that allows to compute subset of meta-information
with ML variable abstracting model architecture, data properties,
training behavior. Fig. 2 shows one way to solve this challenge us-
ing DL Contract. In this solution, activation, and loss_func are
computed in specified @new_contract contract_checker func-
tions where activation is the parameter of last layer Dense API
and loss_func is the parameter of Compile API. This is how DL
Contract mechanism enables specifying and checking contract with
abstracted model properties which works on any stage of computa-
tion graph pipeline.

3.22 DL Contract Runtime Assertion Technique. A model is more
than what the configuration script defines. Many properties of the
model only become tractable during training. As a result, a DL Con-
tract must enable a runtime assertion technique that allows enforc-
ing contracts beyond formal parameters, unlike traditional contract
checkers. Furthermore, it must be possible to impose contracts on
different pipeline stages of the modeling, i.e., data preprocessing,
during model building, and training, etc. To that end, we propose
a DL Contract checker with such capabilities by enabling library
developers to annotate APIs. Eventually, DL Contract annotations
benefit end-users to check their model, data properties, and training
behavior at different stages in the DL pipeline.

Our method outlined in Algorithm 1 shows the steps involved in
parsing and checking contracts in a library. It consists of two steps:
registering new contracts defined by the library developer and pars-
ing and validating newly defined contracts applied to the functions
defined by the library developer. The framework inspects the library
code base to find custom user-defined contracts defined as functions
with the @new_contract annotation. The usage of @new_contract
on a function invokes the register_new_contract method, which
stores a reference to the function in a dictionary. This way of an-
notating contracts allows writing contracts using abstracted DL
properties as discussed in section 3.2.1. For instance, if a library
developer writes a contract with any of the properties of model
object and checks as a precondition before model compilation or
before model training, our technique allows doing that in this way
(more details in Example 3.3) which is different than the traditional
way of writing contract. The contract_checker method is used
to intercept and validate such contracts applied to user-defined
functions with the @contract annotation before the function is
executed. The method parses the annotation reference, obtains a
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Algorithm 1 DL Contract Checker

1: procedure CONTRACT_CHECKER (USERFREF, ANNOTEREF)
2 fArgs « formal_arguments(userFRef)

3 argContrDict « parse_contract(annotateRef)
4 for each (fArg, cond) in argContrDict do

5: aArg « actual_arguments(fArg, userFRef)

6: template « parse_template(cond)

7 template.check_contract(aArg)

8

returnCondition « parse_contract (annoteRef)

9: aArgs « actual_arguments(userFRef)
10: result « userFRef (aArgs)
11: returnTemplate < parse_template(returnCondition)
12: returnTemplate.check_contract (result)
13: return result

14: procedure REGISTER_NEW_CONTRACT (FUNCREF)
15: identifier «— get FuncName (funcRef)

16: newContRegister[identifier] « funcRef
17: procedure PARSE_TEMPLATE (COND)

18: if len(cond) > 1 then

> @new_contract

> multiple conditions

19: subclauses «[ ]

20: for ¢ € cond do

21: subclauses « parse_template(c)

22: return And(subclauses)

23: if istype(cond) then > if it is cond type
24: return CheckType(cond)

25: if cond € newContRegister then > if it is callable
26: return CheckCallable (newContRegister[cond])

dictionary of conditions applied to the function’s arguments, and
validates the conditions using the visitor design pattern.

Consider a contract, @contract (loss=‘str,contract_func’).
It validates the loss function and the validation takes place in-
side a user-defined contract, contract_func. The contract body is
stored in argContrDict as <loss, (str,contract_func)>. Then,
it obtains the value for the argument loss. The method parse_-
template is used to obtain a validation tree for the conditions by
composing validation classes (in Algorithm 2). In the example of
loss contract, an And class is obtained, with each condition as a sub-
clause. If the first condition, str, is satisfied, a CheckType validation
class is returned. If the second condition is a user-defined function,
a CheckCallable validation class is returned. The composed vali-
dation tree is returned in a template variable. Each validation class
implements the method check_contract. To validate the template,
check_contract is invoked on the root validation class, which is
And. If validation fails for any subclause, And raises an exception.
The argument on which a contract is imposed is validated. If precon-
ditions are satisfied, the postconditions are validated. The returned
result of the user function is validated as per written contracts.

3.2.3 Contextualized Inter-API Call Contracts. The next challenge
is to ensure that DL Contract can be written involving multiple APIs
at different stages of the DL pipeline. To solve this problem, DL Con-
tract is designed to write multiple functions using @new_contract
annotations that take formal parameters across multiple DL APIs.
For example, when the number of the target class is 2 (i.e., binary
classification), the activation function of the last layer should not
be softmax or relu [3, 5, 9] (which is a type of contract within
the same Dense API) and loss function should be ‘binary_cross-
entropy’ [2, 3] (which is an inter-argument contract with different
APIs, i.e., between last layer and Compile API). Although the best
activation function for hidden layers is ReLu [30], if ReLu is used
on the last layer, it will set all the negative output to zero, thus
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model = keras.Sequential([
keras.Input(shape=(28, 20, 1)),
layers.Conv2D(32, kernel_size=(3,
layers.MaxPooling2D(pool_size=(2,
layers.Conv2D(64, kernel_size=(3,
layers.MaxPooling2D(pool_size=(2,
layers.Flatten(),
layers.Dropout(0.8),
layers.Dense (10, tivation="

model.compile(loss="binary_crossentropy",

3), activation="relu"),
2)),
3), activation="relu"),
2)),

"), 1)
optimizer="adam",
metrics=["accuracy"])
model.fit(x_train, y_train, batch_size=128, epochs=15,
validation_split=0.1)
model.evaluate(x_test, y_test, verbose=0)

Buggy DL Code

score =

Computation Graph for DL model compilation
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DL Contract Annotation using activation, loss functions

@new_contract
def contract_checkerd(nodel):
last_layer_output_class = int(str((model.layers[len(model.layers) - 1]).output_shape).split(',').pop(-1).strip(')"))
activation_func = str(model.layers[len(nodel.layers) - 11. getattribute (‘activation')).split()[1]
if (last_layer_output_class >= 3):
if (activation_func not in ‘softmax'):

msgl= 'For multiclass classification activation_func should be softmax'
print(msgl)
@new_contract
def contract_checker2( N
print(loss)
if (loss not in ‘categorical_crossentropy'):

msg2 = 'loss_function should be categorical crossentropy'
print(msg2)
raise ContractException(msg_combined)
@contract(self="'model, contract_checkerl')
@contract(loss='str, contract_checker2')
def compile(self,
optimizer='rmsprop',
oss=None,

Dense API has activation parameter

metrics=None,
loss_weights=None,
sanple_weight_mode=None,
weighted_metrics=None,
**kwargs) :

Compile

Compile API has loss parameter

lo: ary_crossentropy'

Conv2D Conv2D

kernel (3x3x1x32)
bias (32)
activation = relu
filters = 32
kernel_size = 3, 3

bias (64)

MaxPooling2D
filters = 64

kernel (3x3x32x64)
activation = relu

kernel_size = 3, 3

kernel (1600x10)
bias (10)
activation = relu
units = 10

Dropout

MaxPooling2D Flatten

Figure 2: DL Contract approach using activation and loss functions involving multiple APIs in DL computation graph

Algorithm 2 Check Contract

__getattribute__('activation')).split()[1]

1: class CHECKCONTRACT

2 procedure ABSTRACT CHECK_CONTRACT (VALUE)
3: end class

4: class CHECKCALLABLE(CHECKCONTRACT)

5: procedure INIT (FUNCREF)

6 callable « funcRef

7 procedure CHECK_CONTRACT (VALUE)

8 if callable(value) raised exception then
9 raise contractException()

10: end class

11: class AND(CHECKCONTRACT)

12: procedure INIT (SUBCLAUSES)

13: subclauses « subclauses

14: procedure CHECK_CONTRACT (VALUE)

15: for sc € subclauses do

16: if sc.check_contract(value) raised exception then
17: raise contractException()

18: end class
19: class CHECKTYPE(CHECKCONTRACT)

20: procedure INIT (TYPE)

21: expected_type « type

22: procedure CHECK_CONTRACT (VALUE)

23: actual_type « getActualT ype(value)
24: if actual_type ¢ expected_type then
25: raise contractException()

26: end class

6
7 if (last_layer_output >= 3):
8

if (activation_func not in 'softmax'):

9 msgl= 'For multiclass classification activation_func
10 should be softmax'
11 raise ContractException(msgl)

12 | @new_contract

13 | def contract_checkerfunc2(loss):

14 if (loss not in 'categorical_crossentropy '):

15 msg2 = 'loss should be categorical crossentropy'
16 raise ContractException(msg2)

17 | @contract(self="model, contract_checkerfunc1’)

18 | @contract(loss=’str, contract_checkerfunc2’)

19 | def compile(self,optimizer=’rmsprop’,loss=None,metrics=None,...):

Example 3.3: Last layer activation and loss function contract
on Keras Compile API

Example 3.3 shows last layer activation and loss function contract
applied to Keras Compile API, which asserts before Compile API
execution. Here, contract_checker1 has been annotated with
model object type on line 17 and contract_checker2 has been
annotated using loss parameter with string type on line 18. Here,
last_layer_output and activation_func are computed on line
3 and line 5 from model object. The loss function has been a formal
parameter of Compile API and contract_checkerfunc2 checks
the condition on line 14 and shows a message with suggestions

to fix if a contract violation occurs for both Dense and Compile
APIs. As those specified contacts are ANDed one after another

leading to an accuracy problem. To prevent such kinds of problems
in model architecture, library developers can write DL Contract
using the activation and loss function for the binary and multi-class
classification according to the experts’ suggestion [2, 3]. Our insight
is that such types of contracts can be added to deep learning model-
compilation API, i.e., Keras Compile, exposing objects capturing
the entire model properties.

1 | @new_contract

2 | def contract_checkerfunci(model):

3 last_layer_output = int(str((model.layers[len(model.layers)
4 | - 1]1).output_shape).split(',').pop(-1).strip(')"'))

5]

activation_func = str(model.layers[len(model.layers) - 1].

for one contract (last layer activation and loss function), ‘con-
tract_checkerfunc?’ is only executed if ‘contract_checkerfunc?’ is
executed. Since ‘contract_checkerfunc1’ checks whether the num-
ber of classes > 3, then ‘checkerfunc2’ would also know if the
program runs a multiclass classification. In Example 3.3, on lines
17-18, ‘contract_checkerfuncl’ and ‘contract_checkerfunc2’ have
been enforced together. A case of that contract violation is shown
below,

| ContractViolated: For multiclass classification activation_func should be
softmax, loss should be categorical crossentropy.
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3.24 Post-training Contracts. The challenge of capturing DNN
training behavior at different stages of the DL pipeline can be ad-
dressed with our proposed DL Contract. Library developers can
specify desired training behavior for their DL software by adding
training-related contracts on properties such as, gradients rate, gra-
dients percentage etc. Training behavior-related properties indicate
the expected output from the DL model, so this is a postcondition.
The root cause behind a training problem could be client obligation
in hidden layers APIs such as activation function, which is a pa-
rameter of Dense API (this is a precondition) We might encounter
such types of preconditions and postconditions in DL-specific set-
tings, and contracts can be specified using @new_contract and
@contract annotations in our proposed approach. To handle such
cases, DL Contract advocates specifying contracts as postconditions
on DL training APIs, e.g., Keras Fit API, which provides detailed
training history. Based on the supplied contract checking function
in @new_contract, we compute relevant training properties from
the history object such as validation accuracy, loss value, gradient
rate etc. Algorithm 1 (lines 8-13) describes how we check and vali-
date postconditions in our framework. Example 3.2 demonstrates
this type of postcondition contract.

4 EVALUATION

In this section, we aim to answer the following research questions:

e RQ1 (Effectiveness): How effective is DL Contract in real
world programs?

e RQ2 (Applicability): Is DL Contract enabled Keras appli-
cable to find performance (i.e., low accuracy, high training
time) bugs?

¢ RQ3 (Efficiency): How efficient is DL Contract for detecting
DL performance bugs in terms of precision and recall?

e RQ4 (Overhead): What is the overhead of the DL Contract
compared to related works in terms of runtime?

e RQ5 (Usability): How useful is the DL Contract enabled
Keras in developing DL Apps?

First, in order to evaluate our approach, we collect contracts
by following the procedure described in §4.1. We implemented DL
Contract (in §4.2) using our proposed approach (in §3.2). Then we
conducted experiments using the setups (in §4.3). Finally, we report
results and analysis (in §4.4).

4.1 Deep Learning Contracts Collection

In this section, we describe the process of contract collection used
in the evaluation. We have identified contracts related to the model,
data, and training properties. These contracts prevent structure and
training bugs, which lead to performance issues (i.e., low accuracy,
high training time). DL libraries like Keras does not provide error
messages for such types of bugs yet. Fig. 3 shows how we collected
the conditions of DL Contract. In 1 , we abstract the data properties,
expected output, model architecture, training behavior of a DNN
model. In 2, we gather and inspect necessary conditions from
three sources. We used the official Keras library documentation [4].
In particular, we followed the selection criterion from DL bugs
from prior works [34, 36, 37] while focusing on the APIs used for
model compilation and training. Again, we collected a list of state-
of-the-art research articles and their benchmarks of buggy and
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Table 1: Collected contracts targeting DNN structural and
logical bugs, improper data, and training problems

Class of bugs

DL Contract

Data bugs|

Data normalization problem

Precondition: normalization_interval<2,
Postcondition: True

Structural and logic bugs

Incorrect activation and loss
function: regression

Incorrect activation and loss
function: binary classification

Precondition: activation="linear[tanh’, loss_func="mse’,
Postcondition: True

Precondition: activation="sigmoid’, loss_func="binary_crossentropy’,
Postcondition: True

Incorrect activation and loss

function: multiclass classifica-

tion
Incorrect activation and loss
Tticl

Precondition: activation="softmax’,
loss_func="categorical_crossentropy’,

Postcondition: True

Precondition: activation="sigmoid’, loss_func="binary_crossentropy’,
P dition: True

function: multilabel
lassi ion

Incorrect activation in hidden
layers

Precondition: activation !=linear,
Postcondition: True

Incorrect hyp

P dition: learn_rate >0.0000007,<0.01, Postcondition: True

Overfitting
High validation accuracy

Precondition: True, Postcondition: diff_val_loss<0, diff_loss<0
Precondition: True,

Postcondition: val_acc_threshold<0.95, diff_val_acc_train_acc<0.05

Precondition: dropout_rate>0.5
di hl < lrelulsi

High dropout rate
Dying relu ion: activation!=" p
Postcondition: zero_gradients_percentage < A

Precondition: activation!= tanh exponential|relu]
Postcondition: gradients_rate > 31, norm_kernel>¢’
Exploding gradient P; dition: activation!="tanh|exp ial|relu|sigmoid’
Postcondition: gradients_rate EG<f3, gradient_valuel=nan
Precondition: True,

Vanishing gradient

Training problem

Oscillating loss
Postcondition: accuracy_fluctuation_rate < 7, val_acc_diff >= &

Slow convergence Precondition: True, Postcondition: acc_diff >= &

RN N
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Figure 3: Methodology to collect deep learning contracts

correct DL programs [34, 36, 37]. The selection criterion for these
articles is that if the work in question solves DL performance bugs
and renders the conditions that lead to these bugs. We filter out
the obligations from DL app developer as preconditions (in 3 ) and
expectation from DL software as postconditions (in 4 ). This process
resulted in the collection of 15 contracts. A detailed table( Table 1)
with collected contracts with corresponding bugs are shared in the
supplementary material [12].

4.2 Implementation

To implement DL Contract, we extended the open-source package
PyContracts [32]. PyContracts allows developers to declare con-
straints on method parameters and return values. We have extended
PyContracts to support tensor, model types, as existing DL APIs
require additional preconditions and postconditions [39]. We have
addressed all the technical challenges described in §3.2.

4.3 Experimental Setup

To evaluate DL Contract on Keras, we modify the library by im-
porting the extended PyContracts package in library codes. We also
decorate respective Keras APIs with relevant implemented con-
tracts that prevent performance bugs (in §4.1). We have conducted
all the experiments on a machine with a 2 GHz Quad-Core Intel
Core i7 and 32 GB 1867 MHz DDR3 RAM running the macOS 11.14.
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Table 2: Effectiveness of DL Contract in real world programs targeting different class of bugs using collected benchmarks

DL Contracts targeting class of bugs DeepLocalize UMLAUT AUTOTRAINER NeuraLint | #Contract
SO GH | CIF-10 | FMNIST | Blob | Circle | MNIST | CIF-10 | SO | GH Violation

Improper Data Data normalization problem 5 2 1 1 - - - - 1 1 11
Incorrect activation & loss function 17 5 1 1 - - - - 6 5 35

Structural bugs Incorrect activation in hidden layers 3 1 1 1 S - - - - S 6
Incorrect learning rate 1 1 1 1 = = = = = = 4

Overfitting 1 - - - - - - - - - 1

High validation accuracy 2 1 1 1 = = = = = = 5

High dropout rate 1 1 1 1 - - - - 1 - 5

- Dying relu 1 = = = 4 9 23 36 - - 73
Training problem VZnisghing gradient - - - - 16 36 3 35 - - 121
Exploding gradient - - - - 11 18 21 20 - - 70

Oscillating loss 1 - - - 1 3 1 - - - 6

Slow convergence 5 2 & = 28 41 19 42 & & 137

* Numbers represented total contract violations in real world buggy programs from DeepLocalize, UMLAUT, AUTOTRAINER, NeuraLint benchmarks; SO, GH, CIF-10 indicates
benchmark from Stack Overflow, GitHub, CIFAR-10 respectively, “-” indicates contracts are satisfied and did not trigger a violation in buggy programs.

Table 3: Applicability of DL Contract comparing against Keras Callbacks, Deeplocalize [62] and DL Contract (full table [14])

DeepLocalize Buggy Code Correct Code

Benchmark Original TOnNaN ES(’loss’) ES(accuracy’) Union (TOnNaN, ES) DeepLocalize DL Contract Original DL Contract RT
Source # RT RT Bug# RT Bug# RT Bug# RT Bug # RT Bug# RT Bug# RT RT Overhead
StackOverflow 30 42.20 30.15 2 24.92 19 24.76 23 18.53 27 447.05 27 6.41 29 34.60 37.93 0.22
GitHub 11 352.90 439.88 0 299.18 6 269.70 7 160.77 7 2772.77 7 9.23 10 345.04 27.37 0.23

* Total detected bugs in buggy and correct codes (#), Keras debugging TerminateOnNan (TOnNan), EarlyStopping(monitor="loss’) (ES(loss), EarlyStopping(monitor="accuracy’
(ES(accuracy))
Table 4: Applicability of DL Contract, Runtime comparison between UMLAUT callback [57] and DL Contract

Buggy Code Correct Code
Original UMLAUT DL Contract Original UMLAUT DL Contract UMLAUT DL Contract
Benchmark Runtime Bug Runtime Bug Runtime Runtime Runtime Runtime Runtime Overhead Runtime Overhead
A1 (CIFAR-10) 1318.99 Y 8.85 Y 28.52 1376.04 1455.99 1353.81 1.06 0.02
A2 (CIFAR-10) 1483.26 Y 8.93 Y 24.80 1459.21 1384.75 1478.52 0.95 0.01
A3 (CIFAR-10) 1455.93 Y 140.98 Y 23.56 1483.29 1251.69 1497.94 0.84 0.01
B1 CIFAR-10 1493.12 Y 152.57 Y 16.28 1420.40 1049.76 1438.59 0.74 0.01
B2 (CIFAR-10) 1319.18 Y 8.85 Y 26.58 1448.27 792.97 1440.55 0.55 0.01
B3 (CIFAR-10) 1692.83 Y 664.60 Y 669.83 1463.87 795.15 1499.39 0.54 0.02
A1 (F-MNIST) 17.09 Y 7.02 Y 23.25 16.84 15.55 22.76 0.92 0.35
A2 (F-MNIST) 17.04 Y 9.61 Y 18.62 16.36 15.59 24.57 0.95 0.50
A3 (F-MNIST) 15.69 Y 9.61 Y 18.30 16.36 14.34 23.52 0.88 0.44
B1 (F-MNIST) 17.90 Y 9.87 Y 21.06 15.93 14.96 22.92 0.94 0.44
B2 (F-MNIST) 15.96 Y 7.16 Y 18.94 16.96 14.48 23.93 0.85 0.41
B3 (F-MNIST) 17.62 Y 12.31 Y 31.85 15.39 14.85 24.06 0.96 0.56

Benchmark selection: To answer the RQs, we compare and
contrast DL Contract against four recently-published DL perfor-
mance bug localization benchmarks [52, 57, 62, 65]. The DeepLo-
calize’s benchmark proposed by Wardat et al. [62] consists of 41
executable Keras codes with buggy and correct versions of DL pro-
grams from Stack Overflow (30) and GitHub (11). For the UMLAUT
benchmark [57], we followed their procedure. AUTOTRAINER [65]
reported their tool’s results on 495 DL programs where 262 have
training problems Here, we have utilized 4 out of 6 datasets which
are comprised of sequential models. NeuraLint [52] utilized a total
of 63 buggy programs of crash and performance bugs. We have used
16 buggy programs from the benchmark which does not yield crash
bugs. We have considered all 4 of these benchmarks as “unseen”
because we have not seen their buggy and correct programs before
writing and implementing contracts.

Metrics: We recorded the total execution time utilization for all
techniques when analyzing buggy and correct programs from the
benchmarks and computed overhead. Also, we recorded how many
bugs were detected by each approach. For computing the efficiency
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of DL Contract, we utilize performance metrics as precision, recall
following prior work [46, 65].

We consider the benchmarks as ground truth for buggy and
correct programs. Here, a false positive indicates that a bug was
detected in the correct program. True positive represents if a bug is
detected in a buggy program. A false negative indicates that there
is no bug detected in a buggy program. Lastly, if there is no bug
detected in a correct program, we consider that as a true negative.

We collected the real-world time elapsed between the program
entry and program exit using the python time module. We collected
this information for both correct and buggy programs five times to
reduce randomness, following [61, 65]. To isolate the other process
and void interference in this experiment, we executed only one
program under analysis in a standalone environment inside the IDE.
We start recording the time from the beginning of a DL program
until the first contract violation has been thrown, and the rest of the
execution is halted in the buggy program. For the correct program
and if there is no contract violation, we obtained the elapsed time
until the complete execution of the program.
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4.4 Results and Analysis

4.4.1 RQI (Effectiveness). To demonstrate the effectiveness of DL
Contract in real-world programs, we have utilized 4 benchmarks
of DL performance bugs. Table 2 shows the results of DL Contract
targeting different class of bugs. We have developed a total of 15
contracts and annotated on model compilation and training Keras
APIs using DL Contract approach targeting different classes of bugs
related to improper data, structural bugs, and training problems. In
particular, each row represents the number of contract violations
in buggy programs where DL Contract successfully detected bugs
and terminated the program execution. We observe that in the last
‘Contract Violation’ column, those 15 contracts trigger a total of
474 contract violation messages in 272 buggy programs. In Table 2,
“-” indicates contracts were used but did not trigger a violation for
that class of bugs. For example, AUTOTRAINER mainly focuses on
training problems, which is why there is no contract violation in-
volving structural and improper data-related bugs. Those contracts
(postcondition) violations have been triggered by DL Contract using
abstracted training properties. DeepLocalize, UMLAUT, NeuraLint
benchmarks consist of structural and data bugs, that precondition
violation triggers using ML variable related to model abstraction.
DL Contract did not detect bugs in 13 out of 272 programs. We have
investigated these undetected bugs and discussed in §4.4.2. We
also evaluated that the same 15 contracts were used in 257 correct
programs in benchmarks. We found 18 contract violations as false
positives, mainly due to randomness factor [55, 67] during training.
In summary, DL Contract is efficient in real-world DL programs.

4.4.2 RQ2 (Applicability). Table 3, 4, 5, and 6 show the applicability
of DL Contract on real-world benchmarks comprising of perfor-
mance bugs in DL software. Each table highlights and summarizes
the results of Buggy and Correct programs.

Table 3 shows the summary of the results [14] of deploying
the DeepLocalize benchmark. Please refer to supplementary mate-
rial [15] for more details. Table 3 shows that DL Contract can detect
39 out of 41 buggy programs with precise contract violation
messages. Out of these results, 29 are from Stack Overflow and 9 out
from GitHub. Also, when compared with Keras and DeepLocalize
callbacks. Keras debugging techniques TerminateOnNan, EarlyStop-
ping(monitor="loss’), EarlyStopping(monitor="accuracy’) and DeepLo-
calize can detect 2, 24, 28, 32, and 34 respectively [62]. Again, 2
out of 41 were not detected from DeepLocalize [62] benchmark.
5052800582 and GH[2] were missed because generalized contracts
cannot be applied on weight initialization and optimizer. Finally,
regarding bug detection speed, DL Contract is 200 times faster than
DeepLocalize and 11 times faster than Keras callbacks.

Table 4 shows that DL Contract applies to all 12 buggy pro-
grams from the UMLAUT benchmark. In terms of computation
overhead, we observed DL Contract has lower runtime than UM-
LAUT (in §4.4.4). Lastly, we have manually verified the contract
breaches reported by DL Contract and found no false alarms for
buggy programs.

Table 5 shows that DL Contract has detected 195 bugs in 203
buggy programs in the AUTOTRAINER benchmark. While AUTO-
TRAINER reports the symptoms of 5 training problems, DL Contract
detects bugs as postcondition violations. We observed that both ap-
proaches detect the Slow Change in accuracy (SC) more often than
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the other four symptoms. 8 out of 203 buggy programs in AUTO-
TRAINER [65] benchmark were not detected due to the randomness
in DNN training. In terms of runtime, DL Contract is slightly faster
than AUTOTRAINER. In particular, DL Contract takes on average
241.19 seconds, while AUTOTRAINER 248.43 seconds. Lastly, out of
188 correct programs, DL Contract misdetected 3 programs.
Further investigation revealed that those misdetections were due
to data normalization issues, unsupported by AUTOTRAINER.

Table 6 shows how DL Contract performs on 16 bugs compared
to the NeuraLint tool. DL Contract detected 13 out of 16 bugs in
the NeuraLint benchmark. 3 out of 16 from the NeuraLint bench-
mark [52] were missed because we investigated that we had no
layer properties related contracts written. NeuraLint detects 14
out of 16 bugs but DL Contract requires less time than NeuraLint.
In particular DL Contract on average required 5.10 seconds while
NeuraLint 9.80 seconds. These buggy programs use common API
methods such as Compile and Fit, which were annotated with 15
DL Contracts. These 272 buggy programs have common root causes
and symptoms. For instance, AUTOTRAINER [65] benchmark con-
sists of 203 buggy programs, with 5 different training problems. By
writing 5 contracts on the fit method targeting those problems, DL
Contract detects 195 out of 203 bugs. In summary, DL Contract is
applicable to detect performance bugs in real-world buggy programs
with good accuracy.

4.4.3 RQ3 (Efficiency). We have measured the efficiency of DL
Contract using 4 benchmarks DeepLocalize [62], UMLAUT [57],
AUTOTRAINER [65], NeuraLint [52] (in Table 7). We have eval-
uated 257 correct (clean) real-world programs and found 18 false
positives. We have found 10 FPs in DeepLocalize, 0 in UMLAUT,
3 in AUTOTRAINER, and 5 in NeuraLint benchmark. In terms of
efficiency, our evaluation results show that DL Contract has similar
accuracy to UMLAUT (12 TPs and no FPs) but has lower time con-
sumption (in Fig. 4). Regarding the AUTOTRAINER benchmark, DL
Contract could not detect bugs due to the accuracy threshold [65]
(0.6) due to randomness factor during training. Regarding the Neu-
raLint benchmark, we observed 3 FN. As DL Contract does not have
contracts on layer properties yet. Compared to other tools using
DeepLocalize benchmark, we found DeepLocalize, AUTOTRAINER,
UMLAUT, NeuraLint, DeepDiagnosis [61] resulted in 19, 14, 14, 35
TP and 22, 27, 23, 6 FN respectively [13]. DeepDiagnosis reported
70 FP and 67 FN in correct codes from AUTOTRAINER benchmark.
In summary, DL Contract efficiently detects performance bugs in
real-world buggy programs.

Superiority of DL Contract: Prior work specifically DeepLocal-
ize [62], UMLAUT [57], AUTOTRAINER [65], DeepDiagnosis [61]
and NeuraLint [52] are not comprehensive enough to detect dif-
ferent classes of structural and training bugs. Furthermore, these
approaches depend on specific implementations such as model for-
mat (h5), semantic change in model architecture, and rely upon
additional debugging or verification facilities, e.g., Keras callbacks
(DeepLocalize, UMLAUT, AUTOTRAINER), and Groove model checker
(NeuraLint). Also, DeepLocalize, UMLAUT, NeuraLint did not com-
pute FP and FN. AUTOTRAINER computed FP, FN only with AU-
TOTRAINER benchmark. All 4 baseline techniques did not com-
pare against any other benchmarks except their own benchmarks.
DeepLocalize [55] invokes callbacks after each epoch and computes



Design by Contract for Deep Learning APls

ESEC/FSE 23, December 3-9, 2023, San Francisco, CA, USA

Table 5: Applicability of DL Contract, Runtime (RT) comparison with AUTOTRAINER [65] (AT) and DL Contract (DLC)

Buggy Correct

Benchmark AT DLC Overhead Overhead

Detected Symp # Py dition Violation # Original AT DLC AT DLC
Dataset # VG EG DR SC oL RT VG EG DR SC oL RT # RT Sym # RT Viol # RT Runtime Runtime
Blob 48 12 10 8 29 4 13.83 6 5 4 30 1 11.95 39 8.62 0 9.22 0 11.79 0.070 0.368
Circle 71 10 10 9 43 7 16.50 10 8 9 41 3 11.54 36 16.06 0 12.28 2 16.27 0.235 0.013
CIFAR-10 46 5 8 3 28 2 1302.06 5 16 37 43 0 487.43 35 1186.50 0 1898.54 0 1528.16 0.600 0.288
MNIST 38 8 3 4 21 8 688.02 8 13 23 19 1 423.55 78 466.22 0 535.90 2 535.51 0.149 0.149
Total/ Avg 203 35 31 24 121 21 505.10 29 42 73 133 5 233.62 188 419.35 0 613.99 4 522.93 0.464 0.247

* Count (#), Vanishing Gradient (VG), Explode Gradient (EG), Dying Relu (DR), Slow Change in Accuracy (SC), Oscillating Loss (OL), Symptom (Sym), Contract Violation(Viol)
Table 6: Applicability of DL Contract, Runtime overhead comparison with NeuraLint [52] and DL Contract

Buggy Code Correct Code
Original NeuraLint DL Contract Original NeuraLint DL Contract Runtime Overhead Runtime Overhead
Benchmark Runtime Bug | Runtime | Bug | Runtime Runtime Runtime Runtime NeuraLint DL Contract
50555434 2.73 Y 18.72 Y 4.77 2.66 6.29 478 1.37 0.80
34311586 3.17 Y 9.62 Y 4.81 3.09 3.18 5.12 0.03 0.66
50079585_1 2.88 Y 18.02 Y 5.11 2.75 6.52 4.92 1.37 0.79
51749207 2.80 Y 17.89 Y 4.87 268 5.89 4.84 1.20 0.81
58844149 3.03 Y 8.46 Y 5.06 2.89 6.28 5.01 117 0.73
33969059 5.20 Y 5.20 Y 6.53 2.62 2.64 463 0.01 0.77
44322611 2.93 Y 8.80 N 4.94 2.62 2.69 462 0.02 0.76
55776436 3.11 Y 1078 Y 5.27 3.04 3.06 5.15 0.01 0.69
60566498 2.87 Y 1657 Y 474 2.74 7.38 486 1.69 0.77
GH 1 2.90 Y 5.13 Y 5.04 2.96 7.71 4.97 1.60 0.68
GH 2 2.83 Y 5.52 N 491 2.80 6.94 4.86 1.48 0.74
GH 3 3.05 Y 5.51 Y 4.96 3.00 6.70 4.89 1.23 0.63
GH 4 443 Y 8.50 N 6.44 404 137.13 5.99 32.94 043
GH5 2.78 Y 7.42 Y 4.88 2.78 638 4.82 1.30 0.74
GH 6 274 N 5.20 Y 469 268 6.14 4.66 1.29 0.74
GH7 2.72 N 539 Y 459 271 5.97 461 1.20 0.70
Total/Average 3.14 14 9.80 13 5.10 2.88 13.81 4.92 2.99 0.72
Table 7: DL Contract efficiency on different buggy and correct 35
benchmarks 3.0
=
g 25
DL Contract £
Benchmark FP | TP | FN | TN | Precision | Recall g 20
DeepLocalize 10 39 2 31 0.80 0.95 g
UMLAUT 0 12 0 12 1.00 1.00 € 15
AUTOTRAINER 31 195 8 | 185 0.98 0.96 g
NeuraLint 5] 13] 3| 11 0.72 0.81 10
0.5
. : . , 0 —
metrics to detect numeric bugs which take lots of time. AUTO- ~DLoc  DLC UM DLC ~ AT DLC " NL DLC
TRAINER [58] requires the model in a specific format and needs Deeplocalize (DLoc) UMLAUT (UM) AUTOTRAINER (AT) NeuraLint (NL)
Benchmark Benchmark Benct k Bencl k

to finish the training to detect bugs and then provide solutions as
fixes. In the case of UMLAUT [50], without a semantic change of
model, the tool will report a false alarm. NeuraLint [48] requires
graph computation from the model and performs static checking
with some specified rules which yield a longer runtime.

4.4.4 RQ4 (Overhead). We have computed the runtime overhead
of DL Contract using UMLAUT, DeepLocalize, NeuraLint, and AU-
TOTRAINER benchmark. Figure 4 shows the runtime overhead of
DL Contract. DL Contract (DLC) runtime overhead is lower than
the one of all approaches. In particular, DL Contract is 4.31, 3.69,
1.85, and 4.15 times more efficient in terms of runtime overhead
than DeepLocalize, UMLAUT, AUTOTRAINER, and NeuraLint. The
runtime overhead of DL Contract is minimal because the technique
only checks model structure-related preconditions before model
compilation API and training-related postconditions before train-
ing. Unlike techniques DeepLocalize, UMLAUT, AUTOTRAINER,
that rely on Keras callbacks, DL Contract does not invoke model
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Figure 4: Comparison of runtime overhead

compilation or training APIs multiple times to monitor metrics pe-
riodically during or after training. Specifically, NeuraLint requires
graph computation from model and performs static checking with
some specified rules, yielding longer runtime. Also, We measured
that the runtime overhead increases by around 15% compared to
the baseline Keras. In summary, DL Contract incurs less runtime
overhead compared to existing deep learning debugging tools.

4.4.5 RQ5 (Usability). We have evaluated the usability of DL Con-
tract annotated Keras in terms of its usefulness to find and fix bugs
while developing DL programs. Also, we evaluate separately the
efforts of API designers to write and integrate DL Contract. To that
end, we perform a user study following IRB guidelines and collected
feedback on using DL Contract annotated Keras.
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RQ5.1 (Usefulness): How useful is the DL Contract enabled
Keras in developing DL Apps?

RQ5.2 (Easiness) : How easy is to write DL Contract and inte-
grate it with DL library APIs?

Participants: After following similar procedure [24, 57] from
prior work we recruited 20 participants from university mailing lists
for our study (17 Ph.D., 2 MS students, and a Post-doc). Participants
were asked to self classify their level of expertise from 1 - beginner
to 5 - expert and we obtained their expertise level: programming
(u = 3.3,0 = 1.0), debugging (1 = 2.9,0 = 1.4), using existing
neural networks (¢ = 2.9, ¢ = 1.1), and developing new DNNs (u =
2.5,0 = 1.2), and developing other ML algorithms (¢ = 2.7, 0 = 1.3).
So, the average/mean (y) of the expertise levels is more than 2.5 in
all of the 20 selected participants.

Study Design, Procedure and Tasks: Participants completed
an hour-long online study on their machines. Each participant com-
pleted two sessions with corresponding tasks. After each session,
participants completed survey questions online via Qualtrics. For
RQ5, in session 1, we provided the necessary environment to ex-
ecute buggy programs in regular Keras (baseline condition) and
DL Contract enabled Keras. We provided 3 buggy versions of ran-
domly chosen real-world programs with 3 different performance
bugs related to model architecture, data properties, and training
behavior. The buggy programs have low accuracy and high train-
ing time issues. We asked the participants to execute the buggy
programs using both regular Keras and DL Contract enabled Keras.
Then, we asked participants to detect and fix the buggy programs
by using the outputs from both regular Keras and DL Contract-
enabled Keras. Finally, we asked participants the survey questions
regarding their experience using DL Contract. For RQ5, in session 2,
we first provide tutorial to participants on how to write contracts
on Keras API. Then, we asked them to write 3 similar contracts
with instructions. After completing the sessions, participants filled
up a survey indicating their experience while using DL Contract
enabled Keras to detect and fix bugs as a DL application developer.
In that survey, participants also shared their experience about the
writing process of DL Contract as a library developer. The details
of the survey questions for session 1 and session 2 are provided in
the supplementary material [15].

Results and Discussion: RQ5.1 (Usefulness): For all 3 buggy
programs in session 1, none of the participants was able to find
any of the bugs in the baseline condition (regular Keras). That is
because Keras does not inform users about such types of perfor-
mance bugs. However, participants were able to detect and fix the
bugs by following DL Contract enabled Keras’s contract violation
messages. Furthermore, survey responses indicate that DL Contract
enabled Keras helps participants to detect and fix bugs efficiently.
In particular, on a 5-point Likert scale questions (1 = Not helpful to
5 = Very Helpful), participants rated their experience on questions.
Participants indicated that, DL Contract enabled Keras was very
helpful to 65% (u = 4.55, 0 = 0.67) in detecting bugs in deep learn-
ing programs that yield unexpected performance (low accuracy,
high training time). 25% rated helpful (rating 4), and 10% of par-
ticipants rated reasonably helpful (rating 3). Therefore, 90% of the
participants responded positively (rating > 3) regarding this criteria.
Likewise, 95% of participants rated positively (rating > 3) about the
message from DL Contract fixing those bugs (¢ = 4.75, 0 = 0.54).
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Figure 5: Survey results with participants ratings on how
useful is DL Contract enabled Keras in developing DL Apps

Again, 90% of the participants rated positively (rating > 3) specifi-
cally, 55% of the participants indicates that it would be very useful
to develop DL applications (¢ = 4.45, o = 0.67). If participants are
involved in doing a class or research project that requires DNNs,
80% rated positively especially, 55% of the participants rated DL
Contract enabled Keras as very helpful (¢ = 4.30, 0 = 0.90).

RQ5.2 (Easiness): Regarding how easy is to write DL Contract on
top of Keras APIs, we have obtained that 65% of the participants
rates the writing process of a contract to Keras positively (Rating
> 3). Regarding the rating of the writing process of a contract
to Keras, the participants’ rating (u = 3.8,0 = 0.67) is moderate
(35%), easy (50%), very easy(15%) as illustrated in Fig. 6. About
the integration of the written contract with Keras library, 60% of
the participants rated positively (4 = 3.75, 0 = 0.69). The detailed
breakdown rating of integration of the written contract with Keras
library, the participants’ ratings is moderate 40%), easy (45%), very
easy(15%) as shown in Fig. 6. In summary, we have evaluated that
DL Contract enabled Keras is very helpful to developers in debugging
DL software, and writing and integrating DL Contract is very easy to
API designers.

Q5: Rate how difficult it was to write a
contract to DL Contract enabled Keras.
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Figure 6: Survey results with participants ratings on how easy
is to write DL Contract on DL library APIs

4.5 Limitations

Our proposed DL Contract approach has been evaluated primar-
ily on problems related to multilabel, multiclass, binary classifica-
tion, and regression with various structural and logical bugs in the
sequential DNN model architecture and common training issues.
Further research is needed to apply and evaluate our approach for
other types of bugs and model categories. Despite this, the concept
of using contracts in deep learning is not limited to Keras and can
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be extended to other DL libraries. While our paper illustrates the
idea of deep learning contracts for Keras, our contribution can be
generalized to other DL libraries like TensorFlow, PyTorch. We
focused on Keras to keep the implementation effort manageable
and leverage this library’s large body of benchmarks.

4.6 Threats to Validity

Our proposed approach may be affected by external threats, such
as imprecise precondition and postcondition definitions obtained
from library documentation, Stack Overflow posts, and GitHub com-
mits. However, we have adopted definitions from recent research
studies [37, 46, 66] to mitigate this. Threshold parameters may also
cause false positives in some new real-world programs. Additionally,
implementation using PyContracts may have unforeseen internal
threats, but our general open-source framework can be extended
using reproducible package [15] with detailed results.

5 RELATED WORK

Specification of Deep Neural Networks: The closest related
ideas in the specification of DNNs include [31, 58, 59]. While [58]
provides an overview of the opportunities and challenges of for-
malizing and reasoning about DNN properties, it does not propose
any methodology for writing and checking specifications for deep
learning libraries. In contrast, [31] presents a technique for com-
puting input and layer properties from a feed-forward network
using input-output characterizations as formal contracts. Addi-
tionally, [59] introduces a method for repairing neural network
classifiers by inferring the correct specifications. Both [31] and [59]
propose inference techniques, while our technique proposes a spec-
ification and checking technique that enables the specification of
DL libraries and checks those contracts in client code using those
libraries, thus preventing bugs and providing fix suggestions. Re-
cently, an empirical study [38] reports categories of required ML
contracts, which may help designers of contract languages.

Deep Learning Testing, Debugging, and Repairing: Prior
work on DL testing, debugging, and repairing includes DeepLo-
calize [62], MODE [46], AUTOTRAINER [65], DeepDiagnosis[61],
DeepFD[25], Ariadne [29], Lagouvardos [40], Nikanjam et al. [52],
SHAPETRACER [44], and Tensfa [63]. These approaches focus on
detecting and localizing bugs, but DL Contract supports documen-
tation of expected behavior. While DL Contract checker can also
double as a bug detection tool, in the long term, developers would
also benefit from the documentation and write more correct DL pro-
grams. Empirical studies [26, 34, 36, 37, 56, 64, 66] have motivated
the need for DL bug repair, but none propose a DbC methodology
like DL Contract.

Existing DbC Methodology: Existing DbC frameworks for
Python, such as PyContracts [32], Pylint [1], and PyTA [45], do not
have the capability to check contracts for properties of models and
data, or monitor training behavior of DL models. These frameworks
do not address the technical challenges of checking contracts be-
yond API parameters, contracts involving multiple APIs at different
stages of the ML pipeline, and contracts on intermediate properties
to specify desired training behavior. Additionally, DL Contract’s use
of runtime assertions is distinct from checking runtime properties,
such as interpreting statecharts [47]. To the best of our knowledge,
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the concept of applying DbC over the DL computational graph and
specifying DL-specific contracts is novel.

API Misuse Detection: There have been some API misuse
detection techniques such as, [60], which examines the usage of
machine learning (ML) cloud APIs in open-source applications. This
work finds that many of these applications contain API misuses
that degrade their functionality and performance, leading to the
development of automated checkers for identifying such misuses.
[52] tackles API Misuse (APIM) bugs statically by some rules that
occur when practitioners misunderstand the usage of deep learning
APIs. Such misusage leads to inconsistencies between the designed
DL program and the API’s usage conditions, potentially resulting
in reduced effectiveness or runtime exceptions. Existing API mis-
use detection methods may not be suitable for checking contracts
written by library API designers that capture properties of models,
data, and training behavior at various program points during run-
time. To address this limitation, our approach overcomes technical
challenges associated with checking contracts beyond formal API
parameters, handling contracts involving multiple APIs at different
stages of the ML pipeline, and specifying intermediate properties
for desired training behavior.

6 CONCLUSIONS AND FUTURE WORK

In this work, we proposed a novel method for checking contracts for
deep learning libraries by specifying DL APIs with preconditions
and postconditions. Our approach is extensible and generalizable,
allowing for the abstraction of model architecture, data properties,
and training behavior. We developed 15 sample DL contracts target-
ing common bugs and found they effectively prevented structural
bugs and training problems. Additionally, our user study showed the
usability of DL Contract when applied to the Keras library. We have
submitted an API design proposal for its incorporation in future
releases of Keras. Possible future work includes static validation,
unit testing, and inferring contracts for additional libraries. With
ongoing research on decomposing DNN into modules [35, 53, 54],
we intend to write contracts for the expected behavior of a DNN
module effectively. We want to explore writing contracts to pre-
vent nonfunctional bugs such as fairness bugs [20, 21]. We would
also like to extend our approach to prevent additional types of
bugs in different stages of the ML pipeline [22]. We can adapt tech-
niques [50, 51] for collecting contracts from mined models with
improved performance in terms of accuracy and training time.

7 DATA AVAILABILITY

The replication packages and results are available in this reposi-
tory [17] that can be leveraged by further research.
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