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Abstract

Technological advances in psychological research have enabled large-scale studies of human behavior and streamlined
pipelines for automatic processing of data. However, studies of infants and children have not fully reaped these benefits
because the behaviors of interest, such as gaze duration and direction, still have to be extracted from video through a
laborious process of manual annotation, even when these data are collected online. Recent advances in computer vision
raise the possibility of automated annotation of these video data. In this article, we built on a system for automatic gaze
annotation in young children, iCatcher, by engineering improvements and then training and testing the system (referred
to hereafter as iCatcher+) on three data sets with substantial video and participant variability (214 videos collected in U.S.
lab and field sites, 143 videos collected in Senegal field sites, and 265 videos collected via webcams in homes; participant
age range = 4 months—3.5 years). When trained on each of these data sets, iCatcher+ performed with near human-level
accuracy on held-out videos on distinguishing “LEFT” versus “RIGHT” and “ON” versus “OFF” looking behavior across
all data sets. This high performance was achieved at the level of individual frames, experimental trials, and study videos;
held across participant demographics (e.g., age, race/ethnicity), participant behavior (e.g., movement, head position),
and video characteristics (e.g., luminance); and generalized to a fourth, entirely held-out online data set. We close by
discussing next steps required to fully automate the life cycle of online infant and child behavioral studies, representing
a key step toward enabling robust and high-throughput developmental research.
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Where infants look, and for how long, has served as a
primary outcome measure for developmental psychology
since the birth of the field (Friedman, 1972; Haith, 1980;
Horowitz et al., 1972; Slater et al., 1984; Teller, 1979).
Experiments measuring infants’ looking behavior have
delivered insights into the developmental origins and
nature of perception (Aslin & Smith, 1988), learning
(Kirkham et al., 2002; Saffran et al., 1996), categorization
(Waxman & Markow, 1995; Xu et al., 1999), preference
for stimuli such as faces (Simion et al., 2008; Valenza
et al., 1996), language processing (Lew-Williams &
Fernald, 2007; Lukyanenko & Fisher, 2016), and under-
standing of domains such as people, objects, and num-
ber (Baillargeon et al., 2016; Feigenson et al., 2004;
Hamlin et al., 2007; Spelke et al., 1992). Yet discovery
in the field is constrained by two key bottlenecks that
slow the pace of empirical research and limit its robust-
ness and generalizability. The first obstacle is recruiting
and testing adequately powered samples of infants
(Byers-Heinlein et al., 2022; Frank et al., 2017; Oakes,
2017). Online platforms such as Lookit (Scott & Schulz,
2017) have been developed to allow families to partici-
pate in studies online via webcam, which enables faster
and more efficient data collection, potentially in a much
more diverse population than ever before.

Nevertheless, even with rapid data collection, a sec-
ond obstacle still looms large: annotating video data
from infants to produce outcome measures such as dura-
tion and direction of gaze. Roughly speaking, it takes an
experienced human annotator 2 to more than 10 times
as long as the duration of a video to generate outcome
labels for that video, depending on the complexity and
resolution of the measures and the characteristics of the
video (e.g., movement, lighting). In this article, we
expand on a promising system designed specifically for
classification of young children’s looking behavior,
iCatcher (Erel et al., 2022; but see also Chouinard et al.,
2019 and Werchan et al., 2022). We demonstrate its suit-
ability for use in developmental research by (a) engi-
neering technical improvements to iCatcher to extract
accurate and robust frame-by-frame labels of gaze
behavior from large video data sets of infants and tod-
dlers in variable environments and (b) showing that the
system’s performance parallels the reliability of “gold-
standard” manual annotation.

iCatcher: Solving the Gaze-Annotation
Bottleneck

In the last decade, new tools in computer vision have
enabled the estimation of gaze behavior given webcam
videos, including OpenFace (Baltrusaitis et al., 2018),
RT-GENE (Fischer et al., 2018), WebGazer (Papoutsaki
et al., 2016), and Opengazer (Zielinski, 2007). These

tools rely on extracting eye features and facial landmarks
(e.g., eyes, nose, mouth) from video, which are then
passed to deep-learning models to predict gaze direc-
tion. However, these approaches have been developed
for relatively still adult faces, not squirming infants, and
require high-quality video data, a condition that
is often not met in online developmental studies (cf.
Werchan et al., 2022). They also often require some
manual labor and/or show reduced performance when
videos contain variation in superficial features such as
lighting conditions. Erel and colleagues (2022) impro-
ved these solutions by creating an openly available pro-
gram, iCatcher, a neural-network approach rooted in
computer-vision methods and specifically designed for
the needs of research with infants and young children.
iCatcher showed higher accuracy in estimating real-time
gaze location relative to prior approaches by applying
one key insight: Successive video frames are not inde-
pendent from one another. iCatcher uses a moving win-
dow of five frames to estimate the gaze direction of the
center frame (LEFT, RIGHT, or AWAY) and does so itera-
tively throughout a video recording of a child’s face. This
feature of the network architecture (among others)
allows the neural network to be trained to classify eye
gaze in a set of participant videos with somewhat higher
accuracy than RT-GENE and dramatically higher accu-
racy than OpenFace.

Open Questions About Accuracy
and Robustness to Video, Participant,
and Experiment Variability

For iCatcher to become a viable tool for studies of cog-
nitive development, particularly as the field is moving
toward online data collection from more representative
participant samples, iCatcher must be accurate (perform-
ing with near-human accuracy), robust (accurate over
sources of video, experiment, and participant variabil-
ity), and usable (accessible to all researchers in the
field). Here, we focus on accuracy and robustness, leav-
ing the challenge of usability for future work.

First, iCatcher should be able to support studies of
infants and children tested in the lab, in the field, and
at home (Tsuji et al., 2021). Erel et al. (2022) showed
that iCatcher delivered human-level performance in one
video data set, drawn from one lab, in which all par-
ticipants were tested in the same setup (holding view-
ing distance, screen size, camera position, lighting, and
backdrop constant). However, labs vary substantially
in their methods and setups for in-person testing.
Online testing introduces even more variability (for
examples of still frames from webcam videos, see Fig.
1¢). Ideally, iCatcher could be used to support online
research on the Lookit platform (Scott & Schulz, 2017)
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Fig. 1. Still frames from the (a) California Black and White (California-BW), (b) Senegal, and (¢) Lookit data sets. Children’s faces in Figs.
la and 1b have been blurred to protect participant identity. Families featured in Fig. 1c gave explicit permission for pictures and videos to
be shared for public use.

and tolerate the many sources of variability in the
resulting videos.

Second, iCatcher needs to perform with high accuracy
for children of varying age, race, and ethnicity. The video
data set in Erel et al. (2022) included children ages 1.5
to 6 years in a majority-White sample recruited from one
geographic area, leaving open possible gaps in perfor-
mance for younger infants or children of different races
and ethnicities. Given that looking behavior is a pre-
dominant dependent measure used for studies of infants
in the first 18 months of life (e.g., Aslin, 2007, Oakes,
2012), and perhaps the easiest video-based measure to
implement in large-scale unmoderated web experiments,
it is vital to investigate whether iCatcher can be used to
study a diverse range of infants within their first year of
life. And although the field of developmental psychology
tends to study White children from middle- or upper-
class backgrounds (Roberts et al., 2020), online research
has the potential to enable many more families to par-
ticipate in science by lowering the time and energy cost
for participation. In our view, iCatcher should support
this goal of broadening participation and thus be held
to a standard of robustness for children of varying demo-
graphics (i.e., a tool that provides human-like accuracy
for White infants but not participants of other races is
not a usable tool).

Third, iCatcher should deliver accurate annotations of
looking behavior for studies across experimental para-
digms, research questions, dependent variables, and

annotation guidelines. Our goal, therefore, was to
develop, train, and test a new version of iCatcher (referred
to hereafter as iCatcher+) on three data sets collected in
substantially different settings (online vs. in the lab vs.
outside of the lab), on different topics (intuitive physics
vs. language comprehension), in participants varying in
age and race/ethnicity, and with different protocols for
annotating looking behavior.

Present Research

In sum, iCatcher holds promise for solving the problem
of automated gaze annotation from videos of infant and
child participants, but its accuracy has not been tested on
more diverse and challenging data sets, and its perfor-
mance has not been evaluated in the terms most relevant
to researchers in developmental psychology. Here, we
tackle these aims and show that iCatcher+ can be used
to reliably annotate infants’ and young children’s looking
behavior at home, in the lab, and in the field; in partici-
pants of varying race, ethnicity, and age; and in videos
that vary substantially in background, screen size, viewing
distance, participant pose, and luminance. In anticipation
of the challenges presented by the three data sets in this
work, we made several technical improvements to the
architecture presented by Erel et al. (2022). Then, we
subjected iCatcher+ to a training and testing regime that
balances key participant demographic variables such as
age, race/ethnicity, and gender. The network was trained
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from human annotations to classify looking behaviors as
directed toward the left or right side of the stimulus dis-
play (LEFT vs. RIGHT) or away from the stimuli (AWAY)
and then tested on held-out videos.

We show that the network generalizes to held-out
videos from the same data set as training, with near-
human trial-level performance for LEFT and RIGHT
looks (with room to grow for frame-by-frame perfor-
mance for the data set collected online) and lower per-
formance for AWAY. In addition, we show that the failure
modes and confidence scores produced by the model
are interpretable, which allows iCatcher+ to be incorpo-
rated in more efficient machine-assisted research proto-
cols. Finally, we show that the network generalizes not
only to held-out videos from the same data set it was
trained on but also to videos from a novel, fourth data
set collected online using different methods and stimuli.
Throughout the article, we present the model’s perfor-
mance in terms relevant to developmental psychologists,
including frame-by-frame, trial-level, and video-level
comparisons between human-to-human reliability and
human-to-iCatcher+ reliability. We end by discussing the
potential impact of this tool for the field of developmen-
tal psychology, giving recommendations for develop-
mental labs hoping to adopt this tool, and previewing
steps to further improve accuracy and generalizability.

Method

Nontechnical overview of approach

There are two key tasks in the current research: (a)
improving the iCatcher model and designing a training
regime appropriate for the video classification problem
at hand and (b) testing its performance on videos it has
not seen before. In this section, we define key terms and
describe the iCatcher+ model and procedures for evalu-
ating it in general, nontechnical terms. A more detailed
technical description of the architecture can be found
in Erel et al. (2022) and the following section titled
“Model Overview.”

“Model structure” consists of defining a specific task
for the model to perform, breaking the problem of solv-
ing it into a series of subproblems, and then designing
an architecture to solve each subproblem in turn. For
this project, the (human and machine) rater’s task is to
label whether a participant is looking toward the left or
right side on the screen or away from the screen in each
frame of the video. iCatcher+ does this by detecting all
the potential faces in a particular video frame, choosing
the face most likely to be the participant’s face, extract-
ing the pixel values and other information from that face
patch, and mapping the features from a stack of five
consecutive video frames to a label for the middle frame,

corresponding to the participant looking LEFT, RIGHT,
or AWAY (Fig. 2). These steps may give researchers an
intuition for what could drive differences between model
and human performance: For example, although it is
trivial for humans to find a participant’s face in a frame,
iCatcher+ has to be trained explicitly to correctly reject
face-like patches (e.g., dolls, body parts) and faces that
are not the participant’s face (e.g., faces of caregivers
and siblings).

“Model training” consists of tuning the network to the
specific kinds of data it is learning to label, by using
feedback to adjust model weights. During training, we
compared the model’s labels with human rater(s) trained
to reliably perform this task and assume the human can
generate the correct label. Feedback consists of compar-
ing the network’s guesses with the ground truth (the
human rater’s label) and updating its weights in an effort
to increase accuracy. After model training is “model
evaluation.” During model evaluation, we provided
iCatcher+ with new frames to label with no further feed-
back and compared its responses with human raters.
This allowed us to test the accuracy of the model and
to collect information about its failure modes (the infor-
mation it has failed to learn during training).

There are several important considerations for model
evaluation. First, the model needs to be evaluated on
independent data to show that the model did not just
memorize the correct labels for a particular set of
frames. Instead, some video and annotation data are
used to train the model, and other videos are “held out”
of the training set so that they can be used for testing
the model. Second, because we wanted to compare
model and human reliability, we no longer assumed that
a single human rater is 100% correct during testing. In
fact, human raters do not agree 100% of the time, and
the extent to which two trained raters disagree provides
a data-set-specific benchmark for performance (hard
data sets have lower interrater reliability; see Table 2 in
Results section). Instead of comparing human and
model annotations, we compared two kinds of agree-
ment: agreement between two human raters (human-
human) and between a human rater and the model
(human-model). Human-human agreement is already
a common measure of reliability in developmental
psychology.

How different should the evaluation videos be from
the training videos? As aforementioned, testing the
model on the same frames it was trained on is not useful
for evaluating generalization (i.e., how well iCatcher+
classifies new videos). At the other extreme, it is not
reasonable, at least in early stages, to expect iCatcher+
to reliably annotate videos that are from a completely
different distribution (e.g., comparing performance on
videos of newborns tested in a crib with 4-year-old
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Fig. 2. Overview of iCatcher+ architecture, including the (a) face detector, (b) face classifier, and (¢) gaze classifier, using frames from the

Lookit data set as an example.

children tested outdoors on a playground). Thus, we
began with a test of narrow generalization by evaluating
the model on held-out videos within each of the three
data sets. We then present one case study of far gener-
alization in which the model trained on webcam videos
collected asynchronously on the Lookit platform is tested
on a separate data set of webcam videos collected via
synchronous video conferencing.

Finally, the question of how well the model performs
relative to a human rater can only be answered with
respect to specific outcome metrics and specific mea-
sures of interrater reliability: Although the model gener-
ates a label for every frame, this is rarely the actual
dependent measure of interest. In this article, we use
outcome measures familiar to developmental psycholo-
gists, such as total looking time over the course of a trial
or percentage looking to the right or left side of the
screen. We show that trial-level human-model reliability
is within the range of human—human reliability reported
in studies from developmental psychology, and thus the
model can be considered as reliable as a trained human
annotator when it comes to trial-level measures. In the

following sections, we provide a more detailed overview
of the data sets, model, and training and testing regime.

Data set overview

Past research has already shown that iCatcher can be
trained to reliably classify one video data set, but for
the current research, we wanted to include video data
sets with different and more variable video and partici-
pant characteristics. We chose three video data sets, one
collected in the lab and in the field using a mobile test-
ing trailer in the United States (California Black and
White Video [California-BW]), one collected in the field
using a mobile testing tent in Senegal (Senegal), and
one from the Lookit online platform (Lookit), across a
sample of infants and young children ages 4 months to
3.5 years. An overview of the three data sets is shown
in Table 1, and example frames from each data set are
shown in Figure 1. We briefly discuss the features of
the entirely held-out data set, collected via Zoom, used
in this article to test for far generalization in the Results
section.
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Table 1. Overview of Data Sets

California Black and White Video

Senegal Lookit

Number of children 214 children, 214 videos

and videos

Research setting University campus lab and
mobile lab brought into
communities

Research topic Language comprehension

15-39 months (M = 24.40,
SD = 6.46)

107 (50%) female, 107 (50%)
male

112 White, 42 multiracial, 42
Latine, 13 Asian, 5 Black

Children sitting in caregivers’ lap

Participant age range
Participant gender
Participant race/

ethnicity
Participant posture

Black and white videos, 720 x 480
pixels

Video characteristics

Stimuli presented at 36 x 50 cm
per picture in the university lab
and at a smaller standardized
ratio in the mobile lab;
participants seated 3 ft away

Screen characteristics

143 children, 143 videos

Community spaces in

Language comprehension
20-42 months (M = 30.90,

Children sitting in

Color videos, 640 x 400

Stimuli presented on

83 children, 265 videos

Homes of participating families
participating villages

Intuitive physics
4-14 months (M = 9.03,

SD = 6.41) SD = 2.33)

64 (45%) female, 79 (55%) 44 (53%) female, 39 (47%) male
male

143 Black 62 White, 15 multiracial, 3 Latine,

3 Asian, 1 Black

Children mostly held over
caregivers’ shoulder (94%
of videos with this starting
position)

Color videos, 640 %480 pixels

caregivers’ lap

pixels
Variable screen size (laptop

and desktop computer screens)
and viewing distance

a 17-in. laptop at a
viewing distance of
approximately 2 ft

One challenge in automating gaze classification is that
every lab follows idiosyncratic annotation procedures.
Because the model learns to infer exactly three classes
of behavior (i.e., looking LEFT, RIGHT, and AWAY), it is
important to understand how the human annotations
were generated in each data set and how these annota-
tions should be mapped to each of the three categories.
The manuals used to train human annotators for the
three data sets are openly available at https://osf.io/
zgcb9/ (California-BW, Senegal) and https://osf.io/42hpq
(Lookit). Each human rater was trained using these man-
uals on a set of example videos until they obtained at
least 90% frame-by-frame agreement before working on
the videos in this data set. Across all data sets, human
raters were naive to experimental conditions and the stim-
uli displayed and annotated each video independently
from other raters. Disagreements between raters were not
resolved before training and testing with iCatcher+. Each
data set also specifies frames to be included for analysis:
calibration sequences and experimental trials in which
stimuli were shown on the screen, and participant gaze
direction is of analytical interest. We excluded from
analysis all other video segments, including setup time,
intertrial intervals, and pauses, which did not contain
relevant looking behaviors (see Fig. 3a, white portions
of timeline for Human 1 and Human 2 annotations).

Below, we provide a brief overview of each data set,
including specific definitions for the three classes of

looking behaviors to be learned by iCatcher+ (for details,
see Tables S2 and S3 in the Supplemental Material avail-
able online).

California-BW. The California-BW data set, including
214 videos of 214 English- and Spanish-speaking children,
was aggregated from 15 studies conducted in northern
California. The studies measured young children’s gaze
behavior to study their real-time word comprehension.
In the looking-while-listening (IWL) procedure (Fernald
et al., 2008), children view pairs of pictures (e.g., ball and
cookie) on a screen and listen as one of the pictures is
named (“Where is the ball?”). Looks to the target stimulus
from the onset of the key disambiguating word (e.g., “ball”
in “Where is the ball?”) yield high-resolution measures of
speech-processing efficiency and comprehension. Studies
using the LWL procedure have shown that infants’ speech-
processing efficiency increases dramatically over the
course of the second year (Fernald et al., 1998) and that
individual differences in speed of language processing are
related to later verbal and nonverbal skills (Fernald &
Marchman, 2012; Marchman & Fernald, 2008). All research
for this data set was approved by the Stanford University
Institutional Review Board, and informed consent was
obtained from a parent or guardian.

Children were tested in a dark and quiet room in a
developmental lab or mobile testing space (a recreational
vehicle retrofitted for LWL data collection) and video
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Fig. 3. Visualization of data, dependent measures, and agreement in one representative video from the Lookit data set. (a) Frame-by-frame
and (c—d) trial-level agreement between human raters (Human 1 And Human 2) and iCatcher+. Figure 1a shows labels generated by iCatcher+
and by Humans 1 and 2 across all frames in the video, with trial endings marked by vertical dotted lines, and INVALID frames indicated
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.com/yoterel/icatcher_plus/tree/master/plots.

recorded with a night-vision camera, yielding black-and-
white videos of children’s gaze patterns. Auditory stimuli
were produced by a native English- or Spanish-speaking
female speaker in a friendly, child-directed register. Visual
stimuli were projected onto either side of a screen at a
size of 36 x 50 cm per picture at the developmental lab
and presented at a smaller ratio on a 55-in. LED screen
at the mobile testing space. Children were seated on
their caregiver’s lap approximately 3 ft away from the
displays. Cameras were placed in the center directly
below the screen, roughly at the child’s eye level. Adults
wore dark glasses made opaque with dark tape over
the lenses to minimize caregiver interference. Before the
session, experimenters helped the caregiver and child to
get seated in the testing space. During the study, the

experimenter observed the child and caregiver in a con-
trol booth and could communicate with the particilants
if needed through an intercom (see Fig. 1a).

More than 25 research assistants contributed to human
annotation of eye gaze across the 15 studies in this data
set. Each child contributed one video session of 24 to
48 trials, and each trial lasted between 3 and 6 s. Human
raters manually labeled each 33-ms frame as looking to
the left or right picture (LEFT vs. RIGHT for iCatcher+)
or as away or off during gaze shifts between pictures
and during looks away from the screen (both mapped
to the AWAY label). Trials that were excluded because
of child inattention, experimenter error, or external inter-
ference were prescreened by human raters before anno-
tation, and thus all the annotations available for training
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and test come from relatively “clean” trials (for pre-
screening protocol, see https://osf.io/dshkr). All included
trials for each video were annotated by two research
assistants to assess interrater reliability. The detailed
annotation scheme is shared at https://osf.io/zgch9/ and
in Table S2 in the Supplemental Material.

Senegal. The Senegal data set was drawn from a field-
based longitudinal study that assessed real-time word
comprehension using the LWL procedure described above.
Data were collected in partnership with a local nongov-
ernmental organization and participating Wolof-speaking
villages located in a single rural region of Senegal. All
research for this data set was approved by the Stanford
University Institutional Review Board, and informed con-
sent was obtained from a parent or guardian.

Children were assessed in a quiet and low-traffic
indoor community space within each village, although
the level of background activity varied across testing
sites. To reduce visual distraction, a portable 5 x 5 ft
cabana enclosed a small table and a 17-in. laptop com-
puter presenting stimuli. The laptop keyboard was
obscured with a black cover. Children were seated on
their caregiver’s lap at the entrance of the cabana
approximately 2 ft from the laptop display. Visual and
auditory stimuli were designed to be appropriate for the
region (e.g., images showing local animals, objects, and
food described in the Wolof language). Two portable
speakers placed behind the laptop played recordings of
sentences produced by a native Wolof-speaking female
speaker using a register judged to be appropriate for
children of this age range. Children’s gaze behavior was
recorded on a camcorder positioned with a tripod
behind and above the center of the laptop screen. An
experimenter was present to provide technical support
and instructions to participating families. Caregivers
wore opaque glasses to obscure visual stimuli and
reduce the potential for interference (see Fig. 1b).

A Senegalese team of research assistants prescreened
trials for exclusionary criteria and manually rated each
33-ms frame as LEFT, RIGHT, or AWAY following the
protocol described for the California-BW data set above.
Details for this prescreening and annotation scheme are
available at https://osf.io/dshkr and https://osf.io/
zgch9/, respectively, and in Table S2 in the Supplemental
Material. Approximately half of all included trials for
each video were annotated by two research assistants
to measure interrater reliability.

Lookit. The Lookit data set includes 265 videos of 83
infants, tested at home via the Lookit platform (Scott &
Schulz, 2017), in a study of physical understanding. This
study was designed to use the Lookit online develop-
mental lab to conduct dense repeated sampling of infants’

looking behavior. Families were invited to participate in
as many as 12 sessions over 2 months. The primary mea-
sure of this study was preferential looking (left vs. right)
to videos that violated a previously documented early-
emerging physical expectation (e.g., unsupported objects
fall, objects are solid; Baillargeon et al., 2016; Spelke
et al., 1992). In each trial, two videos played simultane-
ously, one on the left side and one on the right side of the
screen. The videos showed a single object in an event
that was either physically plausible (e.g., a hand places a
ball in the middle of an inclined ramp, releases it, and the
ball accelerates down the ramp) or physically implausible
(e.g., upon release, the ball accelerates up the ramp). The
study was approved by the Massachusetts Institute of
Technology Institutional Review Board, and informed
consent was obtained from a parent or guardian before
participation.

In each video from the Lookit data set, participants saw
up to twenty-four 20-s trials while a webcam recorded
their looking behaviors. The video recording of each ses-
sion was a concatenation of separate recordings from each
portion of the experiment (e.g., parental consent, setup,
each trial). No experimenter was present to provide syn-
chronous guidance to caregivers. Instead, caregivers were
provided with detailed instructions for how to set up the
study, such as ensuring infants’ faces were captured in the
webcam feed and illuminated from the front with minimal
backlighting. Caregivers were instructed to face away from
the screen and to hold infants over their shoulders (this
was the starting posture for 94% of videos), although
infants did, in rare cases, sit on their caregiver’s lap or in
chairs by themselves. This resulted in videos that varied
significantly in infant position, viewing distance and video
illumination, resolution, and background (see Fig. 1c).

Twenty-four trained research assistants contributed to
the annotation of this data set. Human raters manually
labeled each frame (at 33-ms intervals) as directed
toward the left or right of the screen (LEFT, RIGHT) or
away from the screen (AWAY). Each video was annotated
by one research assistant, and a random subset of videos
(23%) was annotated by a second rater to assess inter-
rater reliability. The detailed annotation scheme is avail-
able at https://osf.io/pqbng/ and in Table S3 in the
Supplemental Material.

Differences between data sets. These three data sets
were selected because they differ from each other and from
the original data set used in Erel et al. (2022) in important
ways, including research setting (Iab vs. field site vs. online),
study topic (language development vs. intuitive physics),
age range (infants 1 year old or younger vs. 2- and 3-year-
olds), and mode of data collection (experimenter present
vs. absent). In particular, the between-video variability in
the Lookit data set is substantially higher than in the
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California-BW and Senegal data sets in terms of screen size,
backdrop, camera position, child posture and movement,
viewing distance, and lighting—features that were stan-
dardized in the other two data sets. Whereas videos in the
California-BW and Senegal data sets were collected at a
constant frame rate (30 frames per second), all videos in the
Lookit data set were collected at variable frame rates
(because of the usage of webcams and other devices that
do not keep a constant frame rate) but resampled to 30
frames per second for consistency before being annotated
and passed to the iCatcher+ model. Because these three
data sets differ from each other in many ways, it is hard to
pinpoint the cause(s) of differences in classification accu-
racy in the absence of more closely matched data sets, ide-
ally with random assignment (though see the Results
section, wherein we explore the factors that are associated
with better performance).

A last key difference between the data sets is the
human-annotation protocols (for a detailed description
of these annotation schemes, see Tables S2 and S3 in
the Supplemental Material). All data sets define prefer-
ential looking between the left versus right side of the
screen to be the primary dependent measure, but there
are also subtle and important differences in the annota-
tion schemes across data sets. First, before gaze annota-
tion, human raters prescreened the California-BW and
Senegal data sets and excluded trials with excessive
participant fussiness, distraction, or caregiver interfer-
ence or insufficient infant attention. The Lookit data set
was not prescreened, so the annotations include trials
in which the infant was fussing or inattentive. Second,
the data sets differ in the treatment of looking behavior
that was not directed to either the left or right stimulus
but nevertheless was still directed toward the screen.
Because the measures of interest in the California-BW
and Senegal data sets were the reaction time of gaze
shifts from a distracter to target image (e.g., gaze shift
from image of cookie to ball upon hearing “Where’s the
ball?”) and the overall the time spent looking at each of
the two specific image locations, these transitional looks
were annotated by humans as “off” (i.e., on the screen
but off-stimulus) and mapped to the iCatcher+ label of
AWAY. In contrast, all looks toward the screen in Lookit
were annotated by humans as either LEFT or RIGHT
(including transitional looks between stimuli). Thus,
although we take looking duration as the sum of the
time within a trial that a participant looks LEFT or RIGHT
in all data sets, in California-BW and Senegal, this
includes only frames in which the participant was look-
ing at one of the two images. Third, in the California-BW
and Senegal data sets, human raters only annotated gaze
fixations that lasted at least three frames (100 ms) and
only annotated gazes as off target or away from the
screen that lasted at least six frames (200 ms). No such

criteria were implemented in the Lookit data set; thus,
gaze shifts could be more frequent or brief.

Model overview

In this section, we provide a general overview of iCatcher+
(for details, see Erel et al., 2022, and the Supplemental
Material). As shown in Figure 2, iCatcher+'s model archi-
tecture consists of three major components, a face detec-
tor, a face classifier, and a gaze classifier, all operating on
five consecutive frames at a time, hereafter referred to as
a “data point.” The goal of the system is to predict the
category of gaze (LEFT, RIGHT, AWAY) for the middle
frame within this moving window of five consecutive
frames. During training, all data points were prepared
during preprocessing, and during evaluation, data points
were created on the fly, enabling the potential for annota-
tion to occur in real time while the experiment is running.
The face detector (Fig. 2a) extracts potential portions of
the image that plausibly contain the participant’s face.
Candidate patches are then fed into the face classifier
(Fig. 2b), which determines whether the patch belongs
to an infant or adult, and if multiple candidate faces are
found, which face is most likely to belong to the partici-
pant. The five selected patches from each data point,
together with their size and x-y position in the frame, are
then fed to iCatcher+’s gaze classifier (Fig. 2¢). This com-
ponent estimates the discrete gaze direction for the mid-
dle frame.

Face detector. Just as in Erel et al. (2022), we used the
face detector provided by OpenCV (Bradski, 2000). This
off-the-shelf detector was not trained by us or tuned
toward extracting infant faces. In addition to returning
potential face patches, the face detector outputs a confi-
dence score between 0 and 1 for each potential face,
which we used to filter out the patches using a threshold
of 0.7 in all our experiments. The output from this compo-
nent is a list of the upper-left and bottom-right coordinates
of the pixels of each candidate patch.

Face classifier. Because the candidate patches from the
face detector may contain adults, body parts, and even
objects, we passed the patches through a face classifier
tasked with selecting the patch most likely to contain the
participant’s face. To this end, a separate neural network
was trained to distinguish between patches of infants and
noninfants. The full architecture and training procedure of
the face classifier are described in the Supplemental Mate-
rial. Furthermore, we added an additional constraint to
protect against selection of face patches from different
people across consecutive frames. To do this, we first fil-
tered the candidate patches to only those likely to contain
infant faces. If more than one candidate patch remained,
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we chose the closest patch relative to the selected patch
from the previous frame (Fig. 2b). Hence it is possible, in
principle, for a wrong face to be selected if the participant
moves out of frame and another child’s face is detected.
During training, if the face classifier could not return a face
patch for one or more of the five frames in the data point,
we disregarded it (see Fig. S1 in the Supplemental Mate-
rial). During testing, if the face classifier did not return a
face, we used a placeholder of all black pixels instead, and
the data point was still considered valid as long as the mid-
dle frame was judged to contain the participant’s face. This
behavior ensures that the data set is “clean” for training yet
quite robust to missing information during evaluation (e.g.,
even if only one frame in a five-frame sequence contains
the infant’s face, we can still classify that frame).

Gaze classifier. Given a data point consisting of five con-
secutive face patches and their spatial information (height,
width, size, and center coordinates), the gaze classifier is
tasked with predicting the gaze direction of the middle
frame. The direction is encoded by three discrete classes:
AWAY, LEFT, and RIGHT. During training, we passed all
data points from the data set through a RandAugment
(Cubuk et al., 2020) block, which performs various random
image-level augmentations. In randomly selected frames,
we also horizontally flipped the five image patches, their
respective spatial information (the Center of Patch x Coor-
dinate), and their label (i.e., LEFT becomes RIGHT, RIGHT
becomes LEFT, and AWAY is kept the same). These aug-
mentations were not activated during evaluation. The gaze
classifier itself is a neural network consisting of a feature
extractor that is a pretrained ResNet18 (He et al., 2016) and
a classifier that consists of three fully connected layers.
Cross-entropy loss was used for optimization. The full
architecture and training procedure are described in the
Supplemental Material.

Classification output. Given a video, iCatcher+ returns
frame-by-frame labels (LEFT, RIGHT, AWAY) for all frames
within that video in which a participant’s face was identi-
fied and a confidence score for each class that sums up to
1 (e.g., 0.1 for LEFT, 0.8 for RIGHT, and 0.1 for AWAY). For
frames in which no face was identified, iCatcher+ returns
a label of INVALID, which can be broken down into the
subcategories of NOFACE (if no faces were detected at all
in that frame) and NOBABYFACE (if faces were detected
by the face detector but no participant faces were found
by the face classifier). For illustrations of this output over-
laid on video data, see https://osf.io/frmgx/.

Data set splitting for training,
validation, and test

In the previous sections, we described iCatcher+’s archi-
tecture and the three video data sets that are the focus

of the current work. In this section, we describe a pro-
cedure for splitting the data to evaluate model perfor-
mance. A “split” in this context is an assignment of each
video in the data set to one of the following subsets:
“training,” “validation,” and “test.” We trained iCatcher+
on the training set, then assessed the quality of the train-
ing procedure using the validation set. The performance
on the validation set provides a rough estimate for the
performance on the test set during training but is not
included in any training or in the final results. The test
set consists of unseen videos, and performance of the
trained model on this test set provides a proxy for model
performance on new videos that are similar to the train-
ing distribution. The test set was not used to improve
iCatcher+ either directly (optimization) or indirectly
(hyper-parameter tuning), thus ensuring that perfor-
mance on the test set is driven only by the model’s ability
to generalize from training.

We used stratified random sampling to assign videos
to the training, validation, and test sets. First, we divided
individual infant participants into mutually exclusive
strata defined by all possible combinations of key demo-
graphic variables. For example, one stratum in the Lookit
data set was defined by “4-6-months old, White, females.”
Next, within each stratum, we assigned a fixed propor-
tion of infants into a training set (approximately 70% for
California-BW and Senegal; 80% for Lookit!) and the
remaining infants to a test set. We further sampled 10%
of the infants within the training set for validation (for
final counts, see Table 2). This procedure ensured that
the multivariate demographic distribution in each data
set reflects that of the overall data set, and that the
test set included infants that did not appear in the train-
ing set. The California-BW data set was split according
to age (in 4-month bins), gender (male or female), race/
ethnicity (White: 7 = 112, 52%; other: n = 102, 48%), and
by preterm birth (<33 weeks’ gestation: 7 = 72 or 34%),
which is a plausible predictor of delays in early language
processing. The Senegal data set, consisting of Black
Senegalese children, was split according to age in
4-month bins and gender (male or female). The Lookit
data set was split according to age (in 3-month bins
because of narrower range, using earliest age of partici-
pation for infants who contributed data to multiple vid-
eos), gender (male or female), and race/ethnicity (White:
n =62, 75%; other: n = 21, 25%).

We preprocessed each data set to maximize informa-
tion for model training and evaluation. For model train-
ing, we excluded frames for which human raters
disagreed (for breakdown of included and excluded
frames for training, see Fig. S1 in the Supplemental Mate-
rial). Although all included trials in all videos in the
California-BW data set were annotated by two human
raters, only about half the trials in all videos from the
Senegal data set and a random subset (12 = 16) of videos
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Table 2. Summary of Main Results

N videos in
training / % Invalid frames ICC 1CC
validation / flagged by looking percentage
Data set test (V trials) model [95% CI] ~ Comparison % Agreement Cohen’s time right
California 135 /15 / 64 15.01% H1 - H2 97.79% 0.96 0.94 0.99
Black and (1,801 trials ~ [11.37%, 19.14%)] [97.11%, 98.32%]  [0.95,0.97]  [0.91, 0.97]  [0.99, 1.00]
Whlte Video in test set) H1-M 95.11% 0.91 0.90 0.96
(iCatchert) [93.56%, 96.33%]  [0.89,0.93]  0.86,0.94]  [0.93, 0.98]
Senegal 89/9 /45 17.19% H1 - H2 98.05% 0.97 0.94 0.99
(iCatcher+) (576 trials  [13.42%, 21.54%) [97.56%, 98.51%]  [0.96, 0.97]  [0.92,0.97]  [0.98, 1.00]
in test set) H1 - M 90.91% 0.85 0.89 0.95
(87.25%, 93.61%]  [0.80, 0.89]  [0.83, 0.94]  [0.90, 0.98]
Lookit (iCatcher+) 148 /8 / 45 20.66% H1 - H2 90.99% 0.85 0.95 0.89
(1,026 trials  [16.59%, 25.40%) (89.57%, 92.31%]  [0.83, 0.87)  [0.93,0.97]  [0.85, 0.92]
in test se0 H1 - M 85.23% 0.75 0.95 0.81
(83.46%, 86.97%]  [0.72,0.78]  [0.93, 0.97]  [0.73, 0.88]
Lookit (original 148 / 8/ 45 14.89% H1 - H2 90.96% 0.85 0.95 0.89
iCatcher) (1,026 trials ~ [11.64%, 18.69%] [89.57%, 92.31%]  [0.83,0.87)  [0.93, 0.96]  [0.85, 0.92]
in test se0 H1-M 73.68% 0.57 0.85 0.63
[70.21%, 77.12%]  [0.52, 0.62]  [0.81, 0.88]  [0.53, 0.72]
Zoom (iCatcher+ 0/0/063 25.40% H1-M 85.87% 0.46 0.97 —
trained on (712 trials [20.88%, 29.62%] [84.31%, 87.31%]  [0.41, 0.51]  [0.97, 0.98]
Lookit) in test set)

Note: This table shows information about the number of videos in the training/validation/test split, the number of trials in the test set that both
humans (H1 and H2) and the model (M) annotated, percentage of frames that humans rated (i.e., during trials in which looking behavior was of
analytic interest) but was flagged by the model as “INVALID,” and human-human (H1-H2) versus human-model (H1-M) agreement at the level of
frames (percentage agreement, Cohen’s k) and trials (intraclass correlation coefticient [ICC] over looking times and percentage looking to the right),

averaged over videos within each data set. For the four agreement metrics, we present the mean and 95% confidence intervals (Cls) computed
via bootstrapping over 1,000 iterations. Cohen’s « is affected by (a) the number of categories and (b) the distribution of observations over those
categories, so comparisons across data sets on this measure should not be interpreted.

from the Lookit training data set had a second human
annotator. For model evaluation on held-out videos, we
designated the “primary” human rater as “Human 1” to
compute human-model comparison metrics for California-
BW and Senegal. Because there was no designated pri-
mary rater for the Lookit data set, when two human
annotations were available, we randomly selected one
of them to be Human 1.

Overview of dependent measures
and measures of reliability

All videos included up to 48 (California-BW), 44 (Senegal),
and 24 (Lookit) trials of data collected in a single experi-
mental session. We used frame-by-frame annotations from
human raters and iCatcher+ (Fig. 3a) to generate trial-
level dependent measures most relevant to developmen-
tal researchers: preferential looking (PR; proportion
looking toward the right side of the screen relative to total
looking on the screen; Fig. 3¢) and looking time (LT; total
time looking toward the screen for Lookit or toward one
of the two images for California-BW; Fig. 3d). Then we

compared human-human and human-model agreement
using metrics familiar to developmental researchers: per-
centage agreement and Cohen’s k¥ (range = 0-1) over
frames and intraclass correlation coefficient (ICC; range =
0-1) over trials. For precise definitions of these metrics,
see Table S5 in the Supplemental Material. For all of our
results, metrics are always presented with respect to a time
interval in which they were explicitly averaged over (e.g.,
frames, trials, videos). Frames that were not annotated by
one of the annotators (model or human) were not consid-
ered for these comparisons.

Open science practices

The work presented in this article was not formally pre-
registered. However, all training and technical work on
the network was done without access to results from the
test set, which was untouched until training and valida-
tion were complete. Throughout this project, when
we noticed blatant errors in human raters’ annotations
or other missing information that prevented the model
from parsing the annotations (e.g., no trial time stamps,
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mismatches between file names of annotations and vid-
eos), we corrected them.? The dependent measures and
reliability metrics were chosen in advance of the results,
and we did not explore any other measures or metrics,
except for coefficient of individual agreement (Parker
et al., 2020), which we dropped because we could not
find an implemented function from published work. Our
confirmatory results are the comparisons between
human-human and human-model agreement on the
four agreement metrics (percentage agreement, Cohen’s
k, ICC for looking duration and preferential looking).
All data and code required to reproduce the main results
and figures of the article and plots specific to each video
in the test set are available at https://zenodo.org/
record/7232828, which is a snapshot of the repository
found at https://github.com/yoterel/icatcher_plus. The
raw video files for the Lookit data set are available at
https://osf.io/yfrkw/ (public data sharing) and https://
osf.io/t7czb/ (scientific data sharing); all videos in this
set are shared with consent from a legal guardian. The
raw video files for the California-BW and Senegal data
sets are not publicly available given restrictions to pro-
tect participant privacy. The data management plan and
annotation files for all data sets are available at https://
osf.io/ujteb/.

California-BW
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Results

Table 2 and Figure 4 summarize the main findings. For
examples of representative good and poor performance,
see Video S1 in the Supplemental Material.

Comparing buman-buman
and buman-model agreement

Below we compare human-human and human-model
agreement. Note that these comparisons are computed
only over frames that both humans and the model
treated as valid (i.e., for the model, an infant face was
detected; for humans, the infant was not distracted, other
adults and children were not interfering, etc.). We report
more information about invalid frames in the Evaluating
Failure Modes section. See Figure 5 for a scatterplot
comparing human-human agreement to human-model
agreement for all three data sets.

California-BW. iCatcher+ achieved a near-human mean
frame-by-frame agreement of 95.11%, bootstrapped 95%
confidence interval (CI) = [93.56%, 96.33%), over all videos
in the test set (vs. human-human agreement of 97.78%,
95% CI =[97.11%, 98.32%)). For trial-level metrics, iCatcher+
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Fig. 4. (continued on next page)
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Fig. 4. Main results over all videos in the test set of (a) California Black and White Video (California-BW), (b) Senegal, and (¢) Lookit,
calculated over all mutually valid frames (i.e., frames for which both humans and the model provided annotations). (Left) Bar plots show-
ing mean values on evaluation metrics (percentage agreement, Cohen’s k, and intraclass correlation coefficient [ICC] over looking time [LT]
and percentage right [PR]) and bootstrapped 95% confidence intervals. Confusion matrices on the right show the proportion of frames in
the test set that Human 2 agreed with Human 1 (first row) and that iCatcher+ agreed with Human 1 (second row) on classifying looks as
AWAY versus LEFT versus RIGHT (left column) or OFF versus ON (right column). Note that for California-BW (a) and Senegal (b), OFF
means looking at neither image (marked with *), which includes both looking away from the screen and looking in between the stimuli,
versus in Lookit (¢), where OFF exclusively means looking away from the screen.
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Fig. 5. Comparing human-human agreement (horizontal axis) and
human-model agreement (vertical axis) across the test portions of the
three data sets. Each point represents the frame-by-frame percent-
age agreement over all mutually valid frames (i.e., frames that both
the model and the human rater annotated) per video, and the larger
points and error bars indicate the mean percentage agreement, and
the bootstrapped 95% confidence intervals (CIs) over all videos in the
respective test sets.

achieved near-human performance, with best performance
for classifying looks as LEFT or RIGHT (average ICC for
percentage looking = 0.96, 95% CI = [0.93, 0.98] vs. between
humans 0.99, 95% CI = [0.99, 1.00D and lower, although
still excellent, performance for classifying looks as ON (.e.,
toward either image) or OFF (i.e., toward neither image;
average ICC = 0.90, 95% CI = [0.86, 0.94] vs. 0.94, 95% CI =
[0.91, 0.97] between humans).

Senegal. The Senegal data set, relative to the California-
BW data set, included more variability in setting and light-
ing; the viewing distance was also shorter (2 ft vs. 3 fo).
iCatcher+ achieved an average of 91% frame-by-frame
agreement over videos in the test set (90.91%, 95% CI =
[87.25%, 93.61%]) versus human-human agreement of
98.05% (95% CI = [97.56%, 98.51%)). At the level of trials,
iCatcher+ achieved near-human performance on LEFT or
RIGHT classification (ICC = 0.95, 95% CI = [0.90, 0.98] vs.
between humans, ICC = 0.99, 95% CI = [0.98, 1.00]) and
lower but still excellent performance for ON or OFF clas-
sification (ICC = 0.89, 95% CI = [0.83, 0.94] vs. between
humans, ICC = 0.94, 95% CI = [0.92, 0.97]). For both
California-BW and Senegal, iCatcher+ was trained to clas-
sify looks in between the two images as AWAY, which the
model successfully generalized to new videos.

Lookit. The Lookit data set, relative to California-BW and
Senegal, included more sources of variability (lighting,
resolution, camera angle and position, screen size, dis-
tance and position of the participant, background, trials
during which the infant was fussy or distracted). Both

human-human and human-model frame-by-frame agree-
ment were lower for Lookit than for the two other data
sets (see Table 2). iCatcher+ achieved a mean frame-by-
frame agreement of 85.23% (95% CI = [83.46%, 86.97%))
over all videos (vs. human—-human agreement of 90.99%,
95% CI = [89.57%, 92.31%)]) and a trial-level ICC of 0.95
(95% CI = [0.93, 0.97) for LT (vs. human-human ICC of
0.95, 95% CI =[0.93, 0.97] and 0.81 (95% CI = [0.73, 0.88])
for percentage looking to the right (vs. human—human ICC
of 0.89, 95% CI = [0.85, 0.92)).

In contrast to the California-BW and Senegal data sets,
in the Lookit data set, both humans and the model were
more accurate at classifying looks as ON versus OFF than
LEFT versus RIGHT (human-human average ICCs for
looking duration: 0.95, 95% CI = [0.93, 0.97] vs. for direc-
tion: 0.89, 95% CI = [0.85, 0.92], #(44) = 3.45, p = .0012,
two-tailed, paired ¢ test; human—-model: 0.95, 95% CI =
[0.93, 0.97] vs. 0.81, 95% CI = [0.73, 0.88], #(44) = 3.35,
p =.0017, two-tailed, paired ¢ test). We speculate that it
was easier for humans and the model to tell whether the
infant was looking at the screen than whether the infant
was looking left or right, which involved classifying
ambiguous frames when the infants were transitioning
from looking at one side of the screen to the other.

When viewing distance and angle, camera and video
resolution, and testing environment were held relatively
constant in the California-BW and Senegal data sets,
iCatcher+ showed excellent performance. Although per-
formance was somewhat worse for the Lookit data set,
the fact that it still approached human-level performance
is striking because of the vast variability in viewing dis-
tance and angle, screen size, camera resolution, and
participant positioning. We note that this is the intended
goal of training: to introduce variability that the model
is likely to see later on and to fine-tune the model to be
robust to these features.

Unlike California-BW and Senegal, which consisted
of videos from entire experimental sessions, the Lookit
data set contained videos from individual trials that were
concatenated during postprocessing. Thus, when the
model averages across a moving window of five frames
for classification, this moving window within trials con-
tains frames continuous in time, but the same moving
window across trials contains frames that skip across
intertrial intervals and thus can introduce discontinuity
in participant pose, gaze behavior, background, and
camera angle. To explore whether this lowered perfor-
mance, we calculated the average agreement for
between-trials versus within-trials intervals per video.
Accuracy was indeed lower for between-trials intervals:
When the moving window scrolled over a trial boundary,
frame-by-frame agreement dropped by an average of
5%, H(44) = 4.88, p < .001, two-tailed, paired ¢ test (see
Fig. S10 in the Supplemental Material).
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Comparing iCatcher+ with original iCatcher. We also
compared the performance of iCatcher+ with the original
version of the model published in Erel et al. (2022) on the
Lookit data set. We focused on the online Lookit data set
for this comparison because the original iCatcher model
has already been tested on a lab data set in Erel et al. We
found that on every metric, iCatcher+ outperformed the
original model (see Table 2). This suggests that the techni-
cal improvements of the model—including (a) features
such as participants’ face position and distance relative to
the camera and random augmentations of frames during
training and (b) an improved face classifie—are impor-
tant for robust and accurate classification in videos col-
lected online.

Predicting performance given
participant, video, and model outputs

In the previous section, we reported that iCatcher+
achieved good performance for two data sets collected
by a researcher in a lab or in the field in older infants and
toddlers (California-BW and Senegal) and a data set col-
lected without a researcher present at all in a home setting
in younger infants (Lookit). To assess the viability of this
model as a tool that developmental psychologists can use,
we care not only about average performance across the
entire test set but also about performance over variability
in participant characteristics such as age, gender, race/
ethnicity, skin tone, and eye color; participant behaviors
such as head movement and position; and video-level
features such as luminance and pixel density.

Figures S6 through S8 in the Supplemental Material
show all of these features plotted against human-model
agreement, and Figure S9 in the Supplemental Material
shows all of these features plotted against human—-human
agreement. Descriptively, average performance was rea-
sonably robust (> 80% agreement) when looking at vari-
ability for each feature. Although there is still room to
grow for frame-by-frame classification accuracy for the
Lookit data set (although note human-level performance
for both preferential and duration looking in Table 2),
these findings suggest that the gap in performance
between the model and human raters is not driven only
by lower accuracy on videos with participants of a cer-
tain demographic or videos with a certain set of image-
level features.

For every annotated frame, iCatcher+ generates a label
and a confidence score. One open question is whether
this learned confidence metric actually corresponds to
model accuracy. If this confidence score can be used as
a way of separating easy versus difficult frames, then
iCatcher+ should be less confident for videos that it clas-
sified incorrectly. This was true for all three data sets (see
Fig. 6): iCatcher+ provided higher confidence scores for

frames that it ultimately labeled correctly than frames
that it labeled incorrectly; Lookit: #(1698.21) = 56.32, p <
.001; California-BW: #(2321.22) = 63.26, p < .001; Senegal:
1(1325.50) = 48.02, p < .001 (all two-tailed, Welch’s ¢ test,
p values generated via permutation).

We ran lasso regressions (Tibshirani, 1996) to explore
which predictors were most important for predicting
model performance for each data set and across data
sets. For this analysis, we chose to study model perfor-
mance at its finest possible level of granularity (frame-
by-frame percentage agreement in every trial) to
maximize sensitivity. We found that participant and
video features, such as face position and density, and
human-human agreement were selected as important
predictors. Nevertheless, a simple statistical model with
iCatcher+’s reported confidence as the sole predictor
(along with a random intercept for subject) already
explained 62.9% (conditional R*) of the variance in
human-model agreement compared with 67.0% of
explained variance in the “best” model, suggesting that
other predictors explain only a small portion (=4%) of
the unique variance in model performance. For details,
see the Supplemental Material. On balance, these results
show that we achieved near-human performance on the
dependent measures that matter most to developmental
psychologists (LT, percentage looking to the left vs. right,
that aggregates over frames within a trial), and that con-
fidence scores can be used to identify trials that are
likely to contain inaccurate annotations. In future work,
these scores could guide decisions about whether and
when automated gaze coding should be supplemented
with human annotation. For example, a future tool can
allow researchers to specify a confidence threshold—all
trials or videos that fall under this threshold can then be
flagged for closer inspection by humans.

Evaluating failure modes

In the two above sections, we reported good model per-
formance in all data sets across variability in video and
participant characteristics. We also showed that confi-
dence scores from the model are interpretable and
strongly predict accuracy. In this section, we dig deeper
into the model’s failure modes in a qualitative way. For
each data set, we inspected the human and model annota-
tions for 40 videos with low frame-by-frame accuracy
(lowest 15 for California-BW and Lookit, lowest 10 for
Senegal). For each video, we identified frames in which
the iCatcher+ classification of looking behavior differed
from one or both human raters. We then inspected the
video segments corresponding with these frames and
summarized what was happening in the video during
these segments and what may have caused the disagree-
ments between iCatcher+ and the human raters (for the
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and confidence score (inside bounding box) overlaid on a video frame. (b) Confidence scores, computed per trial, for
frames that the model ultimately labeled correctly (i.e., agreeing with humans, H1-M Agree) versus incorrectly (H1-M
Disagree) across all data sets. Error bars indicate bootstrapped 95% confidence intervals. (¢) Relating model confidence
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raw, tabulated, qualitative data, see https://osf.io/zquys).
Overall, we found two general failure cases (no faces
detected, faces detected but labeling was incorrect),
which we describe below. We also observed cases in
which iCatcher+ classifications agreed with annotations
from Human 2 more so than from Human 1 when the
two human coders did not agree (agreement and other
metrics were always calculated between Human 1 and
the modeD).

No face found (“INVALID”). The first failure case is
when iCatcher+ failed to detect any face in the frame and
thus could not even get started with annotation (average
proportion of #15%-20% of frames in each data set; see
Table 2). Through visual inspection, a majority of invalid
frames were frames in which the participant was par-
tially or completely turned away from the screen or the

participant’s face was partially or completely occluded
(e.g., due to participants rubbing their eyes, putting their
hands in their mouths, lowering their face into a caregiv-
er’s shoulder, or cases where participants were positioned
partially or fully outside of the camera’s view, and moved
so close to camera that parts of their faces were off screen;
for examples from one Lookit video, see Fig. 3b). Because
iCatcher+ needs to detect a face first in order to return a
label (AWAY/LEFT/RIGHT) for that face, the model returns
a label of INVALID for these frames; in fact, in many of
these cases, the participant was not looking toward the
screen. A smaller portion of invalid frames was from vid-
eos with dark lighting or shadows that made infants’ eye
movements difficult to track. There were also a few cases
with poor video quality (e.g., the video was grainy or part
of the video frame was blurry; see Video S1 in the Supple-
mental Material).
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To test whether these cases, in part, drive underper-
formance of the model, we compared frame-by-frame
agreement over all valid frames in the test set when we
replaced all frames labeled by iCatcher+ as INVALID
(i.e., NOFACE or NOBABYFACE) with the label AWAY.
Across all data sets, we found that replacing INVALID
frames with AWAY increased ON versus OFF perfor-
mance (for agreement on AWAY, from 76.13% to 83.04%
for California-BW, 78.87% to 82.41% for Senegal, and
76.92% to 88.82% for Lookit), at the expense of a 5% to
10% hit in performance on classifying LEFT versus
RIGHT (see Figs. S3-S5 in the Supplemental Material).
Thus, for all three data sets, iCatcher+ can either achieve
near-human frame-by-frame performance on LEFT ver-
sus RIGHT classification or near-human performance on
ON versus OFF classification but currently cannot
accomplish both simultaneously.

Face found but incorrect label. The remaining failure
cases are those in which the face selector and classifier
identified a face but outputted an incorrect label. We
found that these failure cases could be roughly catego-
rized as (a) edge looking behavior and (b) movement.
First, there were instances in which the infant looked very
far to the left or right such that the model classified these
looks as AWAY, whereas human raters classified these
looks as LEFT versus RIGHT, or in Lookit, cases in which
the infant was looking toward the center of the screen, in
between the stimuli, and the model and humans disagreed
about whether that look corresponded to looking in the
right versus left side of the screen. Second, disagreements
occurred during frames with a lot of movement, generated
either by the child or by the caregiver repositioning the
child. In one additional instance (the video in Fig. 2),
other children were present in the video and the infant’s
face was partially occluded, resulting in labels of the other
children’s looks as opposed to the infant’s looks.

Far generalization to entirely beld-out
online data set

So far, our results show that when iCatcher+ is trained
on a specific data set, it can generalize to held-out vid-
eos from that same data set. How would the model
perform on an entirely new data set with no further
retraining? To answer this question, we conducted a test
of far generalization as a proxy for what developmental
researchers can expect if they use iCatcher+ on their
own online data set. We took the network that was
trained on the Lookit videos and, with no further train-
ing, ran inference on a different set of webcam videos
(hereafter referred to as Zoom). The Zoom data set con-
sisted of 63 videos from infants ages 7 to 10 months that
roughly matched the demographics of the participants

in the Lookit data set (74% White, 26% other), collected
via synchronous video conferencing and recorded at a
higher resolution than the Lookit videos (1280 x 720
pixels for Zoom vs. 640 x 480 pixels for Lookit). The goal
of the Zoom study was to evoke different degrees of
habituation and dishabituation of looking times as a
target for computational modeling (Cao et al., 2022). In
this study, participants saw six pairs of familiarization
and test events. Each familiarization consisted of a pre-
sentation of a visual stimulus at the center of the screen
for varying durations, and the test event consisted of a
presentation of either the previously shown familiariza-
tion stimulus or a completely new stimulus. A naive
human rater annotated looking times for each trial. For
details about the annotation scheme for the Zoom data
set, see Table S4 in the Supplemental Material (coding
procedures available at https://osf.io/yqr6b).

Despite differences in the research topic (intuitive
physics in Lookit, habituation/dishabituation in Zoom),
primary dependent measure (preferential looking in
Lookit, looking duration in Zoom), and primary body
posture (infants held over their caregivers’ shoulders in
Lookit, infants sat on their caregivers’ laps or in a high
chair in Zoom; 57% high chair, 40% lap, 3% other), the
model trained only on the Lookit videos performed well
on the Zoom data set (Table 2). Although iCatcher+ had
never seen a video from the Zoom data set before evalu-
ation, it achieved average human-model frame-by-frame
agreement of 85.87% (95% CI = [84.31%, 87.31%)),
roughly equal to the same metric in the Lookit videos.
Most importantly, iCatcher+ produced trial-level looking
times, the dependent variable used in this experiment,
that were comparable with human-generated looking
times (Fig. 7a; ICC = 0.97, 95% CI = [0.97, 0.98]D and
comparable with performance on the same measure in
the Lookit test set (Table 2; ICC = 0.95, 95% CI = [0.93,
0.97D. Although high overall agreement could, in prin-
ciple, hide failure to perform well on a small fraction of
videos, instead we found that iCatcher+ showed good
correspondence with human annotations across all
videos in the Zoom data set (Fig. 7b). This suggests that
the pretrained Lookit model (available at https://github
.com/yoterel/icatcher_plus) can be used with no further
retraining for automated, reliable annotation of new vid-
eos collected via Lookit or over live video conferencing,
especially for studies that use looking duration as the
primary dependent measure.

Discussion

Developmental psychology aspires to build and test
theories of the mind by studying infants and young
children. In the past decade, the field has developed
techniques for collecting data faster than ever before,
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Fig. 7. Correspondence between trial-level looking time (LT) generated by a human rater versus iCatcher+ in the Zoom data set (a) across
all videos and (b) broken down per video. Note that this comparison was conducted on mutually valid frames (i.e., excluding frames in
which iCatcher+ could not detect a face and frames that a human rater deemed unusable for reasons such as caregiver interference, web-

cam lag, and experimenter error).

potentially from a vastly larger and broader set of par-
ticipants. Our toolkit has expanded to include online
testing (Chuey et al., 2021; Scott & Schulz, 2017), large-
scale replication (Frank et al., 2017), and meta- and
mega-analysis of existing data (Koile & Cristia, 2021;
Tsuji et al., 2017). Developmental psychology has also
partnered with the field of computational cognitive sci-
ence to formalize theories about knowledge and learn-
ing and design tests of those theories (Lake et al., 2017;
Shu et al., 2021; Smith et al., 2019; Tenenbaum et al.,
2011). But for the field to make the most of these tools,
researchers need a faster way of annotating looking
behavior—the primary measure in developmental behav-
ioral studies—from video, including videos collected
online. In this article, we built on iCatcher (Erel et al.,
2022), a system for gaze classification previously trained
and tested on one data set collected in the lab and tested
its performance on three other data sets, chosen to rep-
resent diverse research settings (university labs, in field
sites, in homes) and participants (varying in age, race,
and ethnicity).

Overall, we found that iCatcher+ achieved excellent
performance on classifying looking behavior as LEFT
versus RIGHT, with near-human frame-by-frame perfor-
mance on the data sets collected in a university lab set-
ting or a mobile lab setting in various field sites
(California-BW, Senegal) and somewhat lower frame-by-
frame accuracy on the data set collected online (Lookit).
Even so, we consider the Lookit results to be a success
because despite many sources of between-videos vari-
ability, trial-level human-model agreement, aggregated

across frames, approached human performance, with
room to grow. We found that performance did not vary
substantially by age, gender, race and ethnicity, lighting
conditions, face movement and position, and face pixel
density; the single best predictor of accuracy was model
confidence. The most common failure case was that
iCatcher+ could not detect a face in the frame (and
returned a label of INVALID), and inspection of these
frames revealed that these are time points during which
infants were turned away from the screen or covering
their faces. Across all data sets, by swapping out these
INVALID frames with the label AWAY, we found that
iCatcher+ could classify ON versus OFF looks, or LEFT
versus RIGHT looks, with near-human accuracy, but not
both at the same time. Most compellingly, the model that
was trained on the Lookit data set returned reliable
annotations for a fourth, entirely held-out data set of
videos from online research that it had never seen
before. From these findings, we conclude that iCatcher+
meets the criteria of accuracy and robustness stipulated
in the introduction, and thus we believe that this tool
can be adopted by developmental psychologists to sup-
plement or replace human annotation sometime in the
near future.

Limitations and qualifications

The current research has limitations and qualifications.
First, although we have shown good performance on
held-out videos sampled from the same distribution as
the training set (i.e., performance on Lookit videos,
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given a network trained only on Lookit videos) and
generalization to a separate data set (i.e., performance
on Zoom data set, given a network trained on Lookit
videos), this generalization surely has a limit. The high
performance in the Zoom data set, although promising,
could have been driven by the higher resolution of the
videos, the presence of an experimenter to monitor for
setup and data quality, and/or other features. We empha-
size again that in the absence of random assignment
across these features, it is not possible to pinpoint the
cause(s) of differences or similarities in performance
across the data sets presented in this article. Within each
data set, we found that performance for both humans
and the model was relatively robust to participant demo-
graphics, video luminance, participant pose and move-
ment, and pixel density of the face (affected by camera
resolution, viewing distance, and head size; see Figs. S6
and S7 in the Supplemental Material). However, it is
plausible that there are video features that affect annota-
tion accuracy we were unable to examine in the current
article, including screen size (constant for California-BW
and Senegal and not collected for Lookit or Zoom) and
camera resolution (not available for California-BW or
Senegal and not collected for Lookit or Zoom). We
emphasize that because iCatcher+ ultimately processes
images at the pixel level, developmental researchers
whose setups or participants differ substantially from
the data sets in this article should expect a drop in
performance.

Second, our qualitative error analysis has shown that
the face classifier works best when the participant’s face
is not covered up, in shadow, or moving quickly. Infants
and toddlers cannot be instructed to avoid these behav-
iors. If developmental labs seek to add iCatcher+ to their
research protocols, they will have to consider how to
maximize the quality of their video data and whether or
when human raters should be included in the process.

Third, by design, iCatcher+ was trained to classify
looking behavior into three categories (LEFT, RIGHT,
and AWAY) over an entire trial rather than as a continu-
ous vector projected to a point on the screen or looking
to different areas of interest over time. Thus, it is best
suited for experiments that use duration looking and
preferential looking as primary dependent measures.
However, this framework could plausibly be extended
to include more precise classification over continuous
space (e.g., see Werchan et al., 2022) and time (e.g.,
looking behavior time-locked to the onset of a stimulus
or in anticipation of an outcome). We leave this direction
to future research and welcome contributions to the
open-source codebase (https://github.com/yoterel/
icatcher_plus).

Ongoing and future work

Fine-tuning to calibration frames before annotation.
When humans annotate videos of infant looking behavior,
they are instructed to inspect a series of calibration frames
in which the participant’s gaze was attracted to different
locations on the screen or on and off the screen. With
compelling enough calibration stimuli, the direction of an
infant’s gaze can be reliably expected to fall on specific
locations on the screen at specific time intervals. Human
raters use these calibration frames to make judgments
about edge cases (e.g., In Frame X, is the infant looking
below or at the bottom of the screen?). Currently, iCatcher+
does not take advantage of this strategy—the model is not
provided with any information about the specific video to
be annotated before classification. However, future ver-
sions of the model could leverage the technique of net-
work personalization in which a pretrained model is
fine-tuned using a few frames to specialize the model for
that particular participant and research setting. This pro-
cess involves adjusting the weights of the pretrained
model in response to frames from the to-be-classified
video. Park et al. (2019) introduced FAZE (few—shot adap-
tive gaze estimation), a framework using model-agonistic
metalearning (Finn et al., 2017) that takes this approach
and reports promising results on videos of adults. The
authors reported boosts in accuracy of gaze classification
faces that the network was not trained on when the net-
work was first fine-tuned to a small (fewer than nine)
number of randomly selected frames of the new face. In
the future, we can imagine adding metalearning to the
iCatcher+ pipeline in which the model is either given ran-
dom frames or high-quality calibration frames from a new
video before classification.

Building out the tool. Although the current iCatcher+
codebase is open source and freely available at https://
github.com/yoterel/icatcher_plus, it still has a way to go
before it is a user-friendly tool. Command-line interfaces
can present an obstacle for researchers with less techni-
cal knowledge and experience, and as the tool continues
to evolve, distributing releases over github likewise
requires skills that some researchers may not possess.
Thus, we are currently working on designing a web app
that will be accessible to researchers regardless of techni-
cal training.

Integration with Lookit. So far, Erel et al. (2022) and
the current article have shown that iCatcher+ can be
adopted as a tool for annotating videos of gaze behavior
once these videos have been collected. However, as
mentioned in the introduction, iCatcher can also run in
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“online mode,” wherein the model classifies gaze behavior
from an incoming video stream in real time. In Erel et al.,
the authors reported performance using this “live” mode,
which classified a video frame every ~42 ms (or 24 frames
per second, close to the actual frame rate of the videos).
Our tests have shown iCatcher+ can process each frame
faster, roughly every =22 ms (45 frames per second) using
a midtier GPU (NVIDIA GeForce RTX 2060) or every =59
ms (17 frames per second) without one. This can allow
integration into Lookit or other frameworks for fully auto-
mated data collection and enable experimental designs,
including infant-contingent stimulus presentation, that are
currently not possible to run on Lookit. Although fully
automated online data collection of gaze behavior in
infants and children remains a distant goal, the current
work represents a critical move forward.

Considerations for developmental
researchers interested in using
iCatcher+

Overall, we believe that iCatcher+ can be adopted by
developmental psychologists in the very near future to
supplement or replace human annotation for many
research programs. It performs with near-human accu-
racy, and its failure modes and confidence scores are
interpretable: iCatcher+ reports when it cannot detect a
face in general or an infant face specifically and provides
lower confidence scores for frames it is likely to misclas-
sify. We envision a pipeline of automated annotation
that takes a video and an event file including time stamps
and types of each trial (e.g., expected, unexpected, tar-
get object on the left) and then returns (a) frame-by-
frame (or time bin-by-time bin) annotations of gaze
behavior (either LEFT/RIGHT/AWAY, or ON/OFF, and
NOFACE, NOBABYFACE) and (b) confidence scores
(0-1) for each annotation. Developmental-psychology
labs can then take this information and design appropri-
ate protocols for interpreting and analyzing these data.

iCatcher+ will not eliminate all barriers to analyzing
infant and toddler gaze data, but we expect that most
labs will be able to adapt their practices to smoothly
transition to machine labeling. Many of these changes
can be initiated immediately: For instance, labs can
modify their data-collection protocols and instructions
to minimize the chances that infants’ faces will be par-
tially or fully occluded (a key failure mode of iCatcher+).
Second, labs should consider stimulus-presentation
methods that automatically produce event time stamps.
Tools with these capacities include jsPsych (de Leeuw,
2015), pyHab (Kominsky, 2019), Psychtoolbox (Borgo
et al., 2012), and Lookit (Scott & Schulz, 2017). Lookit
users should consider feeding each trial of data to the
model individually rather than a video of concatenated

trials because of drops in performance when the model
averages discontinuous frames from different trials.
Third, labs should consider how they would interpret
iCatcher+ output, potentially in combination with human
ratings. For example, a lab protocol could stipulate that
a human rater go back to annotate trials for which the
mean iCatcher+ confidence score falls below 0.85
or a face was not found for more than half the frames.
The protocol could also define thresholds for excluding
trials or participants from further analysis using these
metrics.

Finally, when possible, labs should explicitly evaluate
the trade-offs of time and expense for hand-coding data
versus running more participants to compensate for the
potential added noise of machine labeling. Erel et al.
(2022) showed that it is possible to replicate a key result
from an LWL study, originally generated from human-
rated video data, using iCatcher. In the current work,
the human-level ICC scores for both dependent mea-
sures (preferential looking and duration looking) for
held-out videos from the California-BW, Senegal, and
Lookit data sets, and for the entirely held-out Zoom data
set, suggest that researchers should expect iCatcher+ to
be as accurate as a trained human rater across trials but
worse than a human rater at the level of frames. How-
ever, the impact of noise (from human or machine raters)
will vary across phenomena and paradigms. Because
there is currently no consistent reporting of effect sizes
or standards for reporting the reliability of LT data in
published developmental research, it is difficult to pre-
dict how many additional participants should be run for
a study using iCatcher+ annotation for a given effect or
method. However, it may be more efficient to collect
and automatically label data from more infants than it
would be to hand-code a smaller sample. With iCatcher+
and these new research protocols in hand, this frame-
work can enable rapid, adequately powered research
into the origins of the human mind for all developmental
scientists.
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Notes

1. The Lookit sample contained many fewer unique children (83
vs. 214 in California-BW vs. 143 in Senegal), thus we sampled a
greater proportion to ensure sufficient variability in the training
set.

2. In the Lookit data set, 11 files required changes to the trial or
looking-behavior labels (e.g., missing “instructions,” extra “left,”
frame numbers contained a letter); 12 files were missing annota-
tion of final “end,” so we needed to verify total number of frames;
and one annotation file was discarded and reannotated by a new
person because it was missing annotations for a majority of the
trials. In the California-BW data set, one file required a change
in label because of a typo, and a small number of files required
the manual addition of a new time stamp to indicate the start
time of the experiment. In the Senegal data set, all video files
were trimmed by 2 s to 11 s to sync the first frame of the time
stamp with the first frame of the video. Although human annota-
tors for all data sets were well trained, this process revealed to
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us an even greater need for automated gaze annotation, which
minimizes opportunity for human error.
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