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Abstract—The famous Cannonball Run, a cross-country driving 
challenge from New York City to Los Angeles, highlights the 
unique challenges of long-distance electric vehicle (EV) route 
planning. The time record for an internal combustion vehicle is 
25 hours, 39 minutes. Compare this to the EV record of 42 hours, 
17 minutes, achieved with a Tesla Model S, which elucidates the 
complexities inherent to optimal EV route planning. To bridge 
this divide, our study introduces a system designed for real-time 
vehicle-to-cloud (V2C) interaction aimed at enhancing online 
long-distance EV route planning. Our approach integrates four 
pivotal components: (i) a real-time route data processing 
module, (ii) an energy consumption module that works for 
different road conditions, (iii) an EV charge time prediction 
module grounded on real EV charging data, and (iv) a 
comprehensive optimization module using a Mixed-Integer 
Linear Programming (MILP). In applying this system to the 
Cannonball Challenge, our simulation results surpass the real-
world EV time record. Importantly, our integrated system's 
potential extends beyond this challenge, offering robust 
solutions for personal and commercial EV long-distance drives. 
 
Keywords: Electric vehicles, Optimized Routing, Charging stations, 
Charging time, V2X 
 

NOMENCLATURE  
A. Indices !  Index of the pass-through point along the 

route and the corresponding charging station 
of each point with the shortest detour distance. 

B. Routing Data Processing Module  "!"#$%&(!) Detour distance to access a charging station 
between point !  and the next point ! + 1. "'()(!) Distance from point !  to a charging station. ")(*'(!) Distance from a charging station to the next 
point ! + 1. "'(*'(!) Distance from point !  and the next point ! + 1. #!"#$%&  Detour speed. $!"#$%&(!) Detour time to access the charging station 
between point !  and the next point ! + 1. %!"#$%&  Average detour consumption power. &!"#$%&(!) Energy consumption for detouring to the 
charging station between point !  and the next 
point ! + 1. '  Numbers of the routing path partition 
segment. 

"(!) Distance of the route segment from point !  to ! + 1. ((!) Road type from point !  to ! + 1. $#&+-.(!) Predicted traffic durations from point !  to ! +1. 
C. Energy Consumption Module  %#  Road traction power. %!  Power demand. )  Vehicle mass. *  Front area. +&  Rolling resistance coefficient. ,/  Air drag coefficient. -0  Transmission efficiency. -1!  Electrical machine efficiency. -&  Efficiency of regenerative braking. #  Vehicle speed. .  Road slope. /  Air density. 0  Gravitational acceleration. %23  Average power consumption for highway 

driving. %%4  Average power consumption for urban 
driving. 123  Fitting parameter used in the highway average 
power consumption calculation. 223  Fitting parameter used in the highway average 
power consumption calculation. 323  Fitting parameter used in the highway average 
power consumption calculation. 423  Fitting parameter used in the highway average 
power consumption calculation. 1%4  Fitting parameter used in the urban average 
power consumption calculation. 2%4  Fitting parameter used in the urban average 
power consumption calculation. 3%4  Fitting parameter used in the urban average 
power consumption calculation. 4%4  Fitting parameter used in the urban average 
power consumption calculation. 

D. Nonlinear Charging Module 56,(7) Battery SOC at the time 7. ,'  Battery nominal capacity. ∆$  Sampling duration. +'(56,(7)) Nonlinear relationship between charging 
power vs. SOC curve. 
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+)(56,(7)) Cumulative charging time as the vehicle 
charges from 5% to 56,(7). $)  Charging duration. 56,+&&-5"  Initial SOC of an EV when it has just arrived 
at the charging station. 56,6"+5"  Final SOC of an EV when it leaves the 
charging station. 

E. Optimization Module  9  Total travel time for long-distance EV driving. $!&-5-78(!)  Time to travel from point !  to the next point ! + 1. $.2+&8-78(!) Charging duration at charging station !  while 
charging is required. #(!)  Vehicle’s average speed from point !  to ! + 1. $.2+&8-78(!) Charging duration at the charging station !  56,6"+5"(!)  SOC of an EV when it just arrived at the 
charging station !. 56,6"+5"(!) SOC of an EV when it leaves the charging 
station !. $$5"&2"+!(!)  Overhead time required for charging at the 
charging station !. :!);"9#&+  Constant parameter approximating the extra 
duration demanded by charging activities, 
aside from the detour time. ,(!) Binary variable indicating whether the EV is 
sent to charge at the charging station !. 56,:#+&#  SOC of an EV when it is at the starting 
location. 56,-7+6  Minimal SOC required for the EV to reach its 
destination. 56,:#+8"	1-7  Lower bound of the SOC for the EV except 
the start and final locations. 56,:#+8"	1+9  Upper bound of the SOC expect the start and 
final locations. &.$1(!) Energy consumption from point !  to ! + 1. #23	1+9  Maximal speed of an EV on highway. #%4	1+9  Maximal speed of an EV in urban areas. ,<-7-#-+6  EV's initial capacity. 56=7$3  Current SOH of the EV. ,4+#  Current battery capacity of the EV. &<&"  Energy consumption due to preconditioning. &$5"&2"+!(!)  Energy consumed due to detouring for 
charging and the process of battery 
preconditioning from point !  to ! + 1. #8&-!  Grid that represents the discretized velocity 
range of the EV. >=  Length of this velocity grid. ?-  Binary array that represents the selection of 
velocities from point !  to ! + 1. 56,8&-!  Grid that represents the discretized SOC range 
of the EV. >:$.  Dimension of the SOC grid vector. @6"+5",-  Binary array that represents the SOC when the 
EV just leaves at the charging station !. @+&&-5",-  Binary array that represents the SOC when the 
EV just arrived at the charging station !. $.2+&8-78	8&-!  Grid that represents the discretized function of 
the cumulative charging time as the vehicle 
charges from 5% to a target 56,. 

 

I. INTRODUCTION  
In this section, we start by setting the stage with the context 
of our problem. We introduce and highlight the challenges to 

the problem and review the state-of-art approach. Finally, we 
conclude with the contributions of this work.  
 
A. Background and Motivation: 
The Paris Climate Accord has delineated a critical target: to 
limit long-term global warming to below 1.5 degrees Celsius. 
Achieving this benchmark necessitates a drastic 50% 
reduction in carbon dioxide and other greenhouse gas 
emissions by 2030 [1]. One pivotal avenue to realizing this 
ambition is through the electrification of the transportation 
sector, which currently shoulders over 16% of global 
emissions [2]. Thanks to proactive governmental policies 
globally, there has been a discernible surge in the adoption of 
electric vehicles (EVs) [3], progressively challenging the 
dominance of traditional internal combustion engine vehicles 
[4] [5]. Because electric motors convert a high percentage of 
electrical energy from the grid into power to drive the wheels 
[6], EVs are more energy-efficient than traditional gasoline 
or diesel cars and produce fewer greenhouse gases and 
pollutants [7]. However, the Cannonball Run, a popularized 
and unsanctioned cross-country trek from New York City to 
Los Angeles, serves as a vivid illustration of the challenges 
facing long-distance travel with EVs. While a gasoline-
powered vehicle set the record of 25 hours and 39 minutes 
[8], EVs, despite their rapid technological maturation, have 
longer journey durations. The current EV record stands at 42 
hours and 17 minutes [9]. This stark contrast underscores an 
important query: how can we harness and optimize EVs for 
long-distance travel to enable time efficiency? 
 
The quest to minimize travel time is of paramount 
consequence for both individual travelers and commercial 
entities. For individuals, shorter trips translate to efficient use 
of time and alleviate the 'range anxiety' often associated with 
longer EV journeys [10]. For commercial operations, like 
long-haul logistics, minimizing travel time is crucial as time 
directly equates to operational costs and service quality. 
Delays in deliveries can result in a ripple effects across 
supply chains, disrupting operations, incurring costs, and 
potentially damaging reputations [11]. Hence, an efficient 
EV routing strategy can be a game-changer for both sectors, 
ensuring not only timely travel but also optimized fleet 
utilization and reduced operational costs. 
 
However, minimizing the total travel time for EVs on long-
distance trips presents a complex challenge arising from the 
inherent characteristics of electric vehicles. These challenges 
include limited battery range, longer charging times 
compared to gasoline vehicles, and the necessity for longer 
detours to access charging stations, which are less ubiquitous 
than traditional fuel stations [12]. Despite significant 
investments like the Bipartisan Infrastructure Deal [13] and 
the National Electric Vehicle Infrastructure (NEVI) Formula 
Program [14] aiming to enhance the charging infrastructure, 
comprehensive solutions to these challenges are still lacking. 
For instance, while increasing speed can linearly reduce 
travel time, it also results in a cubic increase in power 
consumption. This imbalance could lead to quicker battery 
depletion, necessitating detours for recharging and 
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subsequently extending the total travel time. Identifying the 
optimal driving speed that achieves a balance between energy 
efficiency and time efficiency is therefore critical. 
Additionally, the process of determining which charging 
stations to use is not straightforward. The choice of a 
charging point should consider not only the detour distance 
but also the current SOC of the EV to ensure sufficient energy 
levels, avoid unnecessary charging, and minimize detour 
time for accessing charging stations. Furthermore, the 
nonlinear characteristics of the charging curve suggest that 
charging to a high SOC, such as 100%, may not always be 
the most time-efficient strategy. Determining the optimal 
amount of charge to be added at each stop to ensure the fastest 
charging speed is a key component of efficient route planning. 
 
Given this context, this study is dedicated to exploring the 
nature and strategy of minimizing the total travel time for 
long-distance EV driving by addressing the following pivotal 
questions: 

1. How fast should we drive? 
2. When should we charge our EV, and at which 

charging points? 
3. To what SOC level should we charge our EVs at 

these points? 
 
B. Literature Review: 
Early endeavors in EV routing relied on foundational models 
and predominantly focused on specific application scenarios. 
These initial efforts were epitomized by the Electric Vehicle 
Routing Problem (E-VRP) and its various iterations [15]. 
Many such studies examined the dispatching of an EV fleet 
for goods transportation. One notable variant is the E-VRP 
with a time windows, where each customer node has a fixed 
delivery time window. This introduces sets of upper and 
lower bound constraints to the problem [16] [17] [18]. Other 
versions of E-VRP consider charging at depots, customer 
locations, or dedicated charging stations [19] [20] [21]. 
Given the constraints set by the aforementioned time 
windows, dispatch operators need to exhibit increased 
intelligence in vehicle scheduling. This not only caters to 
delivery needs but also includes refueling plans at specific 
locations and times. However, these foundational methods 
simply adapt previous research paradigms and neglect 
essential real-world dynamic elements such as real-time 
traffic conditions, the intricate relationship between speed 
and energy consumption, and the nonlinear charging 
dynamics specific to EVs. For the following three paragraphs, 
a more detailed discussion regarding these three aspects is 
included, shedding light on the intricacies and advancements 
in each area. 
 
With the rise of real-time data, transportation paradigms 
underwent a transformation, reshaping route planning 
dynamics and significantly enhancing decision-making, 
addressing some limitations of earlier methods [22]. For 
instance, [23] estimated traffic speed using crowd sensing 
techniques, leveraging signal towers and smart devices 
within vehicles. In [24], the authors harvested traffic incident 

data through the Bing Maps REST service, merging historical 
trajectory data with real-time traffic incident information to 
predict traffic flow and sidestep obstructed routes. Yet, 
despite these advancements, the unique challenges inherent 
to EV routing largely remained unaddressed. In this case, 
Vehicle-to-Everything (V2X) communication technology is 
a promising potential solution [25]. With real-time updates 
and predictions regarding road conditions, traffic duration, 
and even charging station availability, vehicles can adapt 
instantaneously, optimizing their operations in alignment 
with real-world scenarios [26]. However, no literature 
presents an easy and efficient way to integrate V2X into EV 
long-distance driving route planning. 
 
The advancement in leveraging real-time data naturally leads 
to a reevaluation of energy consumption models. Various 
energy consumption models are fundamental to modern EV 
routing strategies. While simplistic constant consumption 
models [27] are favored for their straightforwardness, they 
frequently fall short in mirroring real-world dynamics. In 
pursuit of a more realistic portrayal of EV energy 
consumption rates, many studies have incorporated distinct 
drive or speed cycles, deriving energy consumption from the 
vehicle's longitudinal dynamic model. For instance, [28] 
employed the New European Driving Cycle, simulating both 
city and suburban driving conditions, and determined energy 
consumption by considering kinetic energy and motor 
resistance. In contrast, [29] moved away from fixed drive 
cycles, opting instead for link-based speeds. Basso, et al. [30] 
offered a meticulous link and mass-based energy 
consumption rate model grounded in acceleration, 
deceleration, and speed metrics. However, such intricate 
models come with their complexities, making them 
challenging for applications like long-distance travel. The 
need for an accurate EV energy/power consumption model is 
indisputable. However, the model must be straightforward or 
amenable to reformulation for its practical use in EV route 
planning. Thus, it is necessary to address this challenge by 
crafting a model that adeptly merges these dimensions. 
 
As EV adoption has proliferated, the nuances associated with 
charging have become evident [31]. Notably, the charging 
rate of EVs is not uniform. It is crucial to accurately predict 
battery charging time by considering the battery’s nonlinear 
charging profile [32]. In the existing literature, most works 
assume a constant charging rate for computational benefits, 
including all aforementioned studies. Integrating the 
nonlinear nature of battery charging into EV operational 
optimization presents a formidable challenge. This 
integration necessitates meticulously crafted model 
formulations to guarantee both computational efficiency and 
optimality [33]. For the development of realistic EV routing 
systems, several studies have delved into the nonlinear power 
curve. For instance, [34] incorporated a constant current 
constant voltage (CCCV) curve and proportionally reduced 
the current when the state of charge (SOC) surpassed 80%, 
aiming to curtail the total power consumption. Nonetheless, 
the simple CCCV charging profile is no longer typical in the 
EV industry for fast charging scenarios. Hecht, et al. [35] 
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introduced a route planning system, which utilizes recently 
reported experimental data on EV fast charging curves. 
However, this work does not offer an effective strategy to 
embed the EV nonlinear charging profile into optimization 
with low computational cost. Consequently, there remains a 
discernible gap in the literature when it comes to accurately 
modeling and incorporating contemporary EV nonlinear 
charging profiles into route planning strategies. 
 
Current research predominantly addresses short-distance EV 
routing, where the battery range is often adequate for the 
journey with minimal mid-trip charging, focusing primarily 
on route planning and energy efficiency [36] [37]. In contrast, 
long-distance EV driving requires more charging stops and 
demands meticulous management to avoid unexpected 
vehicle shutdowns and ensure time efficiency [38]. Thus, it 
is important to consider more factors such as charging 
locations, charging profiles, battery SOC, and sophisticated 
vehicle energy consumption models. While the long-distance 
EV driving planning problem involves more variables and 
constraints, it is computationally more complex and requires 
a more efficient optimization method for real-time 
applications. 
 
In summary, existing studies in EV route planning primarily 
focus on short-distance travel, often neglecting the unique 
challenges of long-distance journeys. There is a notable lack 
of comprehensive systems that integrate real-time data, such 
as V2X connectivity, with advanced energy consumption 
models and EV nonlinear charging behaviors. Furthermore, 
most current methods do not adequately balance the intricate 
realities of EV behavior with the need for low computational 
cost in real-time applications. Our study aims to address these 
gaps by understanding their nature and developing an 
integrated, efficient, and practical strategy for long-distance 
EV driving planning. 
 
C. Contributions 
Our research uniquely addresses the challenge of minimizing 
total travel time for long-distance EV driving, a topic not 
comprehensively explored in existing literature. We bridge 
this gap by discussing the nature of long-distance EV driving 
and developing an integrated framework focused on 
optimizing travel time. Our pivotal contributions include: 
 
1. Development of an integrated and comprehensive 

system for EV long-distance routing and recharging: We 
present a system that integrates real-time V2C 
interactions with route data processing, energy 
consumption modeling, and charging time prediction. 

2. Development of a charging time prediction model: Our 
research introduces a new model for predicting charging 
time, taking into consideration the nonlinear charging 
profile of electric vehicles. This model is adaptable 
enough to accommodate various nonlinear charging 
profiles. 

3. Formulation of the travel time minimization problem in 
a Mixed-Integer Linear Programming (MILP) format: 
We formulate the problem of minimizing total travel 

time into a MILP framework. This approach ensures low 
computational cost, making it suitable for real-time 
applications in long-distance EV driving planning. 

 
D. Organization of the paper: 
The remainder of this paper is organized as follows. Section 
II discusses the methodologies for the problem. Section III 
analyzes the simulation results of the proposed system. 
Section IV summarizes the key conclusions of this study. 
 
II. METHODOLOGY  
In this section, an overview of the system is initially 
presented to elucidate the functionality of each component 
within the proposed framework. Subsequently, the 
methodologies employed within each component are 
explored in detail in the ensuing subsections. 
 
A. System overview 
In pursuit of optimizing long-distance EV driving planning, 
this study amalgamates four different modules. Fig. 1 
presents a summarized schematic representation of the 
proposed system's architecture and flow. As shown in Fig. 1, 
the proposed system takes vehicle type, approximate weight, 
current time and location, required stops, and batteries' SOC 
and SOH as inputs. These four modules run in the cloud, and 
they are (i) a real-time route data processing module, (ii) an 
EV energy consumption module that works for different road 
conditions, (iii) an EV charge time prediction module 
grounded on real EV charging data, and (iv) an optimization 
module. 

 
Fig. 1. Frame and flow chart of the proposed system. 

 
1. Real-time Route Data Processing Module:  The 

process initiates with the acquisition of real-time 
road data from the Google Maps API [39], using the 
current time and location, along with specified 
stops/destinations, to yield a rudimentary routing 
path characterized by longitude and latitude data. 
This initial path undergoes refinement via data 
processing, segmenting it into distinct portions. This 
segmentation aids in formulating a matrix that 
encapsulates the distance, charging station detailer 
time and energy consumption, road type, and 
ongoing traffic conditions of each segment. This 
matrix becomes the foundation for the EV long-

Real-time route
data processing

module

Optimization
module

EV energy
consumption

module

EV charging
time prediction

module

Current time and
location, and

stops

SOC
SOH

Vehicle type and
approximated weight
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distance driving optimization, with further 
intricacies of the module discussed in Section II.B. 

 
2. Energy Consumption Module: This module refines 

the energy model by accounting for the vehicle's 
specific characteristics and the type of road it 
traverses. It quantifies the interplay between driving 
speed and energy expenditure under various 
conditions. Acting as the cornerstone of the 
optimization module, it computes the vehicle's 
optimal speed for each road segment, informed by 
inputs such as vehicle type and estimated weight. 
An in-depth exposition of the module's development 
is provided in Section II.C. 

 
3. Charge Time Prediction Module: In parallel, 

addressing the intricate nature of EV nonlinear 
charging behavior, a charging time prediction model 
is also formulated. This model draws from a real EV 
charging dataset for accuracy. The main function of 
the module is to accurately predict the charging 
duration with a given starting and ending SOC of 
charging with a given nonlinear charging profile. 
The details of this module are further discussed in 
Section II.D. 

 
4. Optimization Module: By utilizing the linearization 

methods, we convert the original nonlinear 
optimization problem into the MILP framework, 
which is essential for achieving real-time 
optimization capabilities. Ultimately, leveraging the 
insights from the EV energy consumption model, 
the charging time prediction model, as well as real-
time parameters like the current SOC and state of 
health (SOH) of the EV, the MILP optimization 
strategy determines the ideal charging strategy and 
speed schedules to minimize the overall travel time. 
The details of the optimization approach are further 
elucidated in Section II.E. 

 
According to the design of our proposed system, initiation 
can occur in real-time by human operators or higher tier 
dispatching systems. The routing and data process module, 
informed by real-time traffic data, determines the optimal 
route and potential charging station selection. This, coupled 
with the energy consumption and charging time prediction 
modules, enables our optimization module to formulate the 
best strategy based on current conditions. Utilizing the 
concept of Model Predictive Control (MPC) [40], the system 
conducts reruns at short intervals, such as every 5 minutes, 
considering the entire trip as the predictive horizon to bolster 
robustness. During each rerun, the system incorporates the 
latest traffic conditions and vehicle states to manage 
uncertainties and external disturbances, like unexpected 
traffic changes. The system is also designed to recalibrate and 
initiate a rerun if deviations from the planned route occur. 

B. Routing and Data Process Module: 
The routing and data processing module is executed in a 
series of steps: 
 
1. Basic Routing Path Acquisition: Given the current time, 
location, and predefined stops or destinations, the system 
retrieves the route polyline via the Google Maps API. A more 
detailed demonstration of the basic routing path acquisition 
is presented in Fig. 8 in Section III.B.1). 
 
2. Polyline Decoding: The acquired polyline is decoded, 
yielding specific latitude and longitude coordinates that 
define the primary routing path. 
 
3. Routing Path Partition: The routing path undergoes 
segmentation to maintain granularity. The Haversine distance 
between subsequent pass-through points is confined to under 
30 miles for enhanced precision. Further details on the 
selection process of partition interval are provided in Section 
III.B.3).  
 
4. Charging Facility Location Acquisition: The Google Maps 
API aids the system in scanning the surroundings of each 
point, pinpointing available charging stations. A more 
detailed demonstration of the charging facility location 
acquisition in Fig. 9 in Section III.B.1). 
 
5. Identify the Charging Facility with the Shortest Detour 
Distance: For each designated pass-through point, distances 
between point i and the next junction point ! + 1 ("!"#!(!)), 
point !  to a charging station ("!"$(!)), and from a charging 
station to the next junction point ! + 1  ( "$"#!(!) ) are 
computed using Haversine distances. To save costs 
associated with Google's API services, the Haversine 
distance is utilized to reduce frequent API calls. The added 
detour distance for a charging station, relative to passing 
through point !, is formulated as: 
 "%&'()*(!) = "!"$(!) + "$"#!(!)−"!"#!(!) (1) 
 
Subsequently, charging stations with the minimal detour 
distances for their related pass-through points are cataloged. 
 
6. Road and Traffic Information Acquisition: Through the 
Google Maps API, the system determines exact distances 
between neighboring pass-through points. Concurrently, it 
gathers data concerning road types and predicted traffic 
durations based on expected arrival times. 
 
7. Road Type Identification: Each road segment connecting 
two successive pass-through points undergoes categorization 
as “highway” or “city road” based on inherent characteristics. 
 
8. Detour Distance Acquisition and Calculation: Using the 
Google Maps API, in tandem with the aforementioned detour 
distance equation, the detour distances of each potential 
charging station and junction points are computed as shown 
in Fig. 2.  
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Fig. 2. Detour distance acquisition and calculation. 

 
9. Detour Time and Energy Consumption Calculation: 
Recognizing that detours invariably lead an EV away from 
its original path, we postulate the detour speed to be 30 mph 
to approximate the average local driving speed [41]. From the 
deduced detour distances ("%&'()*(!)) and speeds ($%&'()*), 
we directly estimate the detour time (%%&'()*(!)) for each 
segment, using the equation, 
 %%&'()*(!) = "%&'()*(!)$%&'()* (2) 
 
Furthermore, based on the detour time and speed, the 
additional energy consumption, &%&'()*(!) , resulting from 
detours is computed as, 
 &%&'()*(!) = '%&'()* 	%%&'()*(!) (3) 
 
Here, '%&'()*  is the average detour consumption power and 
calculated based on Eq (7). 
 
In a culmination of these steps, the foundational routing path 
is divided into N segments, with each approximately 
covering 30 miles. The outcome is a comprehensive matrix 
detailing exact distances ("(!)), road types ()(!)), predicted 
traffic durations (%'*+-.(!)) between pass-through points, 
and, where charging is needed, the associated detour time 
( %%&'()*(!) )) and energy consumption (&%&'()*(!) ). This 
matrix serves as a crucial input for the charging schedule and 
speed optimization module. 
 
C. EV Energy Consumption Module: 
For optimal speed planning, it is important to have an EV 
energy consumption model that maps the energy 
consumption with a given road type and speed. 
 
The study uses a basic EV model as a baseline to calculate 
the instantaneous power consumption. The formulation of the 
vehicle power consumption model can be expressed as [42], 

 '' = *	+	,*	$	-./(0) + 0.5	1/	2	3	$0+*	$	 4$4% +*	+	$	/!5(0) (4) 
 

'% = B''	61	62% ,			'' > 0''6* ,			'' ≤ 0 (5) 
 
Here, parameters including *  (mass), 2  (front area), ,*  
(rolling resistance coefficient), 1/  (air drag coefficient), 61  
(transmission efficiency), 62%  (electrical machine 
efficiency), and 6*  (efficiency of regenerative braking) are 
derived based on vehicle type and weight. Variables $  and 0  
represent vehicle speed and road slope, respectively, while 3  
and +  stand for air density and gravitational acceleration. The 
variable ''  signifies the road traction power that opposes 
road friction, air drag, and gravitational forces. The eventual 
power demand '%  of an EV, factoring in transmission 
efficiency, electrical machine efficiency, and the efficiency 
of regenerative braking, is computed from ''. 
 
Driving conditions can be mapped with specific driving cycle 
profiles [43]. For instance, the EPA Highway Fuel Economy 
Test (EHFET) profile typifies highway conditions, while the 
Urban Dynamometer Driving Schedule (UDDS) reflects 
urban driving conditions [44]. Adjusting the speed profiles of 
these cycles enables establishing the relationship between 
average power consumption and average speeds across 
diverse road conditions. 
 
Fig. 3 visualizes the adaptation of the original EHFET cycle 
speed profile to generate multiple speed profiles. Upon 
determining the average speed for each profile and utilizing 
the baseline EV model, along with specified vehicle 
parameters, one can determine the average power demand 
across varying average speeds for typical highway conditions. 
For this study, which is focused on long-distance travel, road 
slope impacts over time are assumed to be negligible and set 
to zero.  

 
Fig. 3. Multiple speed profiles derived by scaling the 

EHFET cycle's original speed profile. 
 
Fig. 4, using parameters from the new Tesla Model S as an 
example, employs a cubic function to trace the relationship 
between average power consumption and driving speed on 
highways. The fitted cubic relationship is justified by physics, 
since power to overcome air drag scales with speed cubed 
(see Eq. (4)).  The same procedure applied to the UDDS cycle 
produces the consumption model for urban driving. As a 
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result, we obtain the following two equations to calculate the 
average power consumption for highway ('34) and average 
power consumption for urban driving (')5), respectively, 
 

for highways: 
 '34 = 834$0 + 934$" + -34$ + 434 (6) 

 
for urban areas: 

 ')5 = 8)5$0 + 9)5$" + -)5$ + 4)5 (7) 
 
Here, $  is the vehicle average velocity, and  834, 934, -34, 434, 8)5, 9)5, -)5  and 4)5  are fitting parameters. 

 
Fig. 4. The average speed vs. average power consumption 

for a highway driving condition. 
 
This study categorizes driving conditions into highway and 
urban segments, using the EHFET and UDDS cycles, 
respectively. However, it is worth noting that employing 
more specific driving cycle data tailored to varied road types 
and real-time traffic conditions and classifying them into 
more categories to build the energy consumption model can 
further improve the precision of the energy consumption 
model across diverse conditions. 
 
D. EV Nonlinear Charging Module: 
The EV charging rate is influenced by SOC and temperature 
[32]. With battery preconditioning, we assume EVs are 
charged at a consistent and optimal temperature. The focus 
of this section is to model the charging rate-SOC relationship 
for accurate charging duration estimation. This subsection 
describes a method to estimate charging duration based on 
the initial SOC ( :;16&+7& ) and the desired end SOC 
( :;1+**-7& ). This method specifically accounts for the 
nonlinear charging profile inherent to EVs, using the Tesla 
Model S as an illustrative example. 
 
The nonlinear charging behavior of an EV is captured 
through a curve relating charging power to SOC [45]. Fig. 5 
showcases the real-world nonlinear relationship between 
charging power vs. SOC curve, denoted as ,!. This curve was 
derived from the average charger power of experiments from 
a 2023 Tesla Model S that was charged from 5% to 90% SOC 

using Tesla V3 (i.e. 250 kW maximum power) superchargers. 
Incorporating the Tesla Model S's nominal capacity, 1!  (in 
kWh), we can express the vehicle's SOC (in %) as, 
 :;1(<) = :;1(< − 1) + 100%,!(:;1(< − 1))3600	1! ∆%	 (8) 
 
Here, ,!  indicates the charging power (in KW) for a specific 
SOC, while ∆%  (in seconds) represents the sampling duration. 
 

 
Fig. 5. Charging power vs. SOC. 

 
Based upon the SOC updating model and the nonlinear 
charging curve, Fig. 6 depicts the curve ,$, which represents 
the cumulative charging time as the vehicle charges from 5% 
to 95% SOC. Notably, the ,$ 	curve is not universal; it varies 
across different vehicle types or brands due to the unique 
charging strategies of individual EV manufacturers. These 
curves can also change with different charging infrastructure 
equipment, due to charger cable current and temperature 
limits [32]. Consequently, it is crucial to establish a library of ,$  curves for various vehicle models and chargers. In 
application, the system will select the appropriate ,$  curve 
based on the provided vehicle type or brand and charger. 
 

 
Fig. 6. Cumulative charging time vs. SOC, when starting at 

5% SOC. 
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Given that ,$  inherently captures the relationship between 
SOC and cumulative charging time, it can inform us about 
the total charging time required for the battery to attain any 
given SOC. Utilizing this relationship allows us to determine 
the duration needed to charge the battery between two SOC 
values. Therefore, the charging duration, %$ , for a Tesla 
Model S transitioning from :;1+**-7&  to :;16&+7&  can be 
computed as, 
 %$ = ,$(:;16&+7&) − ,$(:;1+**-7&) (9) 
 
In this equation, ,$(:;16&+7&)  conveys the total time 
necessary to charge the battery from its starting point (in this 
context, 5%) to :;16&+7&. Similarly, ,$(:;1+**-7&) signifies 
the time required to charge from the starting point to :;1+**-7&. The difference between these times provides the 
duration to charge from :;1+**-7&  to :;16&+7& , which is 
represented by %$ . To verify the accuracy of our charging 
time prediction model, we tested it using 57 charging data 
points obtained from another Tesla vehicle not used for 
model training. The results of the cross-evaluation showed an 
average absolute error of only about 2.3 minutes, 
highlighting the accuracy of the proposed model. 
 
E.  MILP-based Optimization: 
Central to this proposed system is the charging schedule and 
speed optimization module. In this subsection, we first 
formulate the control goal as an optimization problem, and 
detail the cost function, variables, and constraints. Moreover, 
we showcase the linearization methods employed to convert 
the original nonlinear optimization problem into the MILP 
framework, which is essential for achieving real-time 
optimization capabilities. 
 
The objective (>) is to minimize the total travel time for long-
distance EV driving, which is simply the summation of the 
driving time and the additional time taken by charging. The 
optimization problem is formulated as the following, 
 > = S %%*-7-89(!) + %.3+*9-89(!) + %'*+-.(!)#

-:; (10) 
 
Here, ?  signifies the number of road segments, with 	!  
denoting the route node index. The variable %%*-7-89(!) is the 
time to travel from pass-through point !  to the next pass-
through point ! + 1, and %.3+*9-89(!) is the charging duration 
at charging station !  while charging is required. The driving 
time of each road segment !  is expressed as, 
 %%*-7-89(!) = "(!)$(!) (11) 
 
Here, "(!) represents the distance of the route segment from 
node !  to ! + 1, and $(!)  is the vehicle’s average speed on 
that segment. 
 

The time taken by charging, %.3+*9-89(!), is given by, 
 %.3+*9-89(!) =,$U:;16&+7&(!)V− ,$U:;1+**-7&(!)V + %(7&*3&+%(!) (12) 
 
where :;16&+7&(!)  and :;1+**-7&(!)  represent the SOC of 
the EV when it arrives and leaves the charging point  !. Here, 
an additional term, %(7&*3&+%(!), is incorporated into Eq. (12) 
to account for the overhead time required for charging. This 
time encapsulates both detour time and other related 
activities, such as the overhead time to park, plug in, initiate 
a charge session, plug-out, and depart. The representation is 
given as, 
 %(7&*3&+%(!) = (%%&'()*(!) + @!*A&<'*+) ∙ 1(!) (13) 
 
In the equation, @!*A&<'*+  stands as a constant parameter 
approximating the extra duration demanded by charging 
activities, aside from the detour time. Meanwhile, 1(!) is a 
binary variable indicating whether the EV is sent to charge 
during that specific segment. 
 
For the initial route node indexed 1, both :;16&+7&(1)  and :;1+**-7&(1)  equal the vehicle's current SOC, :;1='+*' . 
This results in the initial constraints, 
 :;1+**-7&(1) = :;1='+*' (14) 
 :;16&+7&(1) = :;1='+*' (15) 
 
For the final point, the SOC should exceed a designed value, :;1-8+6, to prevent battery over-discharge. Thus, the final 
constraints are, 
 :;1+**-7&(? + 1) ≥ :;1-8+6 (16) 
 :;16&+7&(? + 1) ≥ :;1-8+6 (17) 
 
The stage constraints capture the dynamics of the battery's 
SOC for stages from ! = 2 to N. 
 :;1='+9&	2+< ≥ :;1+**-7&(!) ≥ :;1='+9&	2-8 (18) 
 :;1='+9&	2+< ≥ :;16&+7&(!) ≥ :;1='+9&	2-8 (19) 
 
In these equations, :;1='+9&	2+<  and :;1='+9&	2-8  represent 
the upper and lower bounds of the SOC, respectively. 
 
According to Eq. (6) and Eq. (7), the energy consumption at 
each segment, &.(2(!) , is determined by multiplying the 
average driving power with the driving time at each segment 
as follows, 
 

for highways: &.(2(!) =(834$(!)0 + 934$(!)" + -34$(!) + 434)"(!)$(!) (20) 
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for urban areas: &.(2(!) =(8)5$(!)0 + 9)5$(!)" + -)5$(!) + 4)5)"(!)$(!) (21) 

 
Besides, we also limit the velocity of the EV based on the 
road type, 
 

for highways: $(!) ≤ $34	2+< (22) 
 

for urban areas: $(!) ≤ $)5	2+< (23) 
 
where $34	2+<  and $)5	2+<  are the maximal driving speeds 
of the EV in highways and urban areas, respectively.  
 
Considering the vehicle's initial capacity (1D-8-'-+6) and its 
SOH, the current battery capacity, 15+', is, 
 15+' = 1D-8-'-+6 	\:;E8(4100 + 80%^ (24) 
 
where :;E8(4  is the current SOH of the EV and is in the 
range of 0 to 100%, and 0% SOH represents the capacity of 
the EV’s battery drop to 80% of its initial capacity. 
 
With the current energy capacity of the EV, the SOC 
changes in each segment due to driving can be updated as, 
 :;16&+7&(!) ≥ :;1+**-7&(!) (25) 
 :;1+**-7&(! + 1) = :;16&+7&(!)−100%&.(2(!) + &(7&*3&+%(!)15+' (26) 
 &(7&*3&+%(!) =U&%&'()*(!) + &?*&V ∙ 1(!) (27) 
 
In this equation, &(7&*3&+%(!) signifies the additional energy 
consumed due to detouring for charging and the process of 
battery preconditioning. The energy expenditure arising from 
the detour is derived using Eq. (3). The term &?*&  is a fixed 
parameter, approximating the energy used during battery 
preconditioning. The binary variable, 1(!), indicates if the 
EV will undergo charging at a given charging station. Battery 
preconditioning is essential to both reduce charging duration 
and to curb potential battery degradation. By maintaining the 
battery pack temperature at an optimal range prior to 
charging, these techniques ensure efficient energy intake. 
Consequently, when an EV is set to charge, there's an extra 
energy demand due to battery preconditioning. 
 
To account for model uncertainties and avoid battery damage, 
we restrict the SOC for segments ! = 2	to ?  between 10% 
and 90%. Additionally, the charging power ,?  is reduced 

below 10% and above 90% SOC (see Fig. 4), so allowing a 
wider SOC range will not help minimize travel time. 
 
The aforementioned equations define the optimization 
problem in alignment with our control objectives. However, 
the nonlinearities in Eq (11), Eq (12), Eq (20), and Eq (21) 
hinders real-time optimization. To address this, the 
subsequent paragraphs will introduce linearization 
techniques to transform the problem into a MILP framework, 
thus enabling real-time optimization capabilities. 
 
To address the nonlinear equations related to speed and 
energy consumption (Eq (11), Eq (20), and Eq (21)), we 
transform the continuous variable, $(!), by discretizing it 
into a finite series of potential velocities for the EV, 
 $9*-% = [0, 1,⋯ ,$34	2+< − 1,$34	2+<] (28) 
 
where $9*-%  is a grid that represents the discretized velocity 
range of the EV. The length (5@ ) of this velocity grid is 
represented as, 5@ = b$9*-%b (29) 
 
We introduce a binary array, G-, of size 1 × 5@  to represent 
the selection of velocities from a predefined grid for each 
road segment ! . In this representation, G-  is a one-hot 
encoded array, meaning only one element is '1' and the others 
are '0'. For all !, we have, 
 SG-(I) = 18!

A:; (30) 
 
where the '1' at the Ith position indicates the selection of the Ith velocity from the velocity grid, $9*-%. Each road segment 
speed, $(!), is then associated with a unique velocity from 
the grid, converting the following nonlinear equations into 
linear forms, 
 $(!) = $9*-% ∙ G- (31) 
 "(!)$(!) = "(!)$9*-% ∙ G- (32) 
 
This transformation facilitates the linearization of Eq (20) 
and Eq (21) related to energy consumption on different types 
of roads, 
 

For highway: 
 &.(2(!) =U834$9*-%0 + 934$9*-%" + -34$9*-% + 434V "(!)$9*-% ∙ G- (33) 
 

For urban areas: 
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&.(2(!) =U8)5$9*-%0 + 9)5$9*-%" + -)5$9*-% + 4)5V "(!)$9*-% ∙ G- (34) 
 
The nonlinearities in Eq (12) concerning SOC are addressed 
similarly. We discretize the SOC variables, resulting in, 
 :;19*-% =[:;12-8, :;12-8 + 1%,⋯ , :;12+< − 1%, :;12+<] (35) 
 
where :;19*-%  represents the discretized SOC range of the 
EV. The dimension of the SOC grid vector is 5=(., 
 5=(. = b:;19*-%b (36) 
 
We employ two binary arrays, /6&+7&,-  and /+**-7&,- ,  with a 
size 1 × 5=(.  to approximate :;16&+7&(!)  and :;1+**-7&(!). 
In the representations, /6&+7&,-  and /+**-7&,-  are also one-hot 
encoded arrays. These arrays capture SOC deviations within 
a 1% interval, ensuring precision while simplifying the 
equations. For all !, we have, 
 S /6&+7&,-(I) = 18"#$

A:; (37) 
 S /+**-7&,-(I) = 18"#$

A:; (38) 
 :;19*-% ∙ /6&+7&,- ≤ :;16&+7&(!) (39) 
 :;19*-% ∙ /+**-7&,- + 1% ≥ :;1+**-7&(!) (40) 
 :;19*-% ∙ /+**-7&,- ≤ :;19*-% ∙ /6&+7&,- (41) 
 
Subsequently, the function ,$  can be discretized into a grid, %.3+*9-89	9*-%, with a size 1 × 5=(., based on the :;19*-%  as 
depicted in Fig. 7. In essence, for every SOC point within the :;19*-% , there is a one-to-one corresponding point in %.3+*9-89	9*-%. This represents the time spent to charge from 
the SOC upon arrival to the departure SOC. Hence, we can 
establish, 
 ,.U:;16&+7&(!)V = %.3+*9-89	9*-% ∙ /6&+7&,- (42) 
 ,.U:;1+**-7&(!)V = %.3+*9-89	9*-% ∙ /+**-7&,- (43) 
 

 
Fig. 7. The continuous and discrete cumulative charging vs. 
SOC. 
 
In addition, the binary variable, 1(!) , which indicates 
whether the EV is set to be charged at the station, can be 
determinized as follows, 
 1(!) ≥ :;19*-% ∙ /6&+7&,- − :;19*-% ∙ /+**-7&,-100% (44) 
 
Furthermore, Eq (12) can be linearized and rewritten as, 
 %.3+*9-89(!) =%.3+*9-89	9*-% ∙ U/6&+7&,- − /+**-7&,-V + %(7&*3&+%(!) (45) 
 
With the conversion of all nonlinear equations into their 
linear counterparts, our optimization problem effectively 
translates into a classic MILP problem and lets a standard 
MILP solver be able to solve it efficiently. This adaptation 
allows for efficient problem-solving and paves the way for 
real-time optimization capabilities, which are vital for our 
proposed system's effectiveness. The computational 
efficiency and the impact of partition intervals on 
computational time and system performance are thoroughly 
analyzed in Section III.B.3). 
 

III. RESULTS AND DISCUSSION  
To test our proposed system, we consider the challenging 
backdrop of the Cannonball Run. This cross-country race 
serves as our demonstration case, providing a rigorous 
testbed for our model. In the III.A System Setup subsection, 
details of the Cannonball Run are presented alongside our 
model assumptions, vehicle parameters, and other crucial 
factors. Later, in the III.B Performance subsection, we detail 
our primary findings, delve into the nuances of nonlinear 
charging and its influence on routing, and discuss the impact 
of basic routing path partition intervals on decision-making. 
 
A. System setup: 
Cannonball Run Overview: Originating as a clandestine 
coast-to-coast car race from New York City to Los Angeles, 
the Cannonball Run offers an exemplary setting for our 
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system's validation. Spanning approximately 2,800 miles, the 
race presents diverse challenges, making it an apt 
demonstration case. Central to the Cannonball Run ethos is 
minimizing travel time, prompting racers to disregard legal 
speed constraints. Maximizing speed is the key strategy for 
internal combustion engine vehicles. However, the strategy 
is much more nuanced and interesting for EVs. Increasing 
speed decreases travel time linearly but increases power 
consumption cubically. Due to the limited driving range of 
EVs, this means more necessary charging stops. Meanwhile, 
the nonlinear charging curve characteristics suggest that 
charging to a high SOC, such as 90%, may not be time 
optimal. Finally, planning the route and charging stop 
locations is a challenge. 
 
Record-Breaking Run (Benchmark): In a groundbreaking 
achievement, Ryan Levenson and Josh Allan piloted a Tesla 
Model S, setting a new EV Cannonball record with a 
completion time of 42 hours and 17 minutes. The top speed 
of the challengers is reported to reach 155 mph [46]. This 
record will be the benchmark for our proposed system, and it 
accentuates the intense character of the race and the 
efficiencies attainable through optimized EV long-distance 
routing. 
 
Assumptions and scenario settings:  Our simulation hinges 
on these specific foundational settings: 
1. The EV departs with a fully charged battery: :;1='+*' =100%. 
2. The SOC at the destination must be greater than 5%: :;1-8+6 = 5% 
3. To avert overcharging or excessive depletion, the SOC 

boundaries are set at: :;1='+9&	2-8 = 10%  and :;1='+9&	2+< = 90%. 
4. With a Tesla vehicle and its charging network, the extra 

time spent on parking, setting up chargers, and initiating 
a charge session is approximately 1 minute: TimeCDEFG =1 min.  

5. The energy required for battery preconditioning is about 
1 kWh: &?*& = 1  kWh. The estimated 1 kWh energy 
consumption, based on our test data, is used for 
demonstration purposes only. Considering that 
preconditioning energy consumption is influenced by 
ambient temperature [47], integrating predicted 
temperature data as a parameter for each charging point 
could offer a more accurate approximation. 

6. Though we do not condone it in practice, we disregard 
the legal speed limits in simulation for a fair comparison 
to the benchmark. The max speeds are set at 130 mph for 
highways and 70 mph for urban areas: $34	2+< = 130 
mph and $)5	2+< = 70 mph. 

7. The departure time is 10 PM in New York City to avoid 
traffic.  

8. All the Tesla V3 superchargers can supply a maximum 
of 250 kW of charging power. 

9. The traffic data fetched from Google Maps API is 
presumed to portray actual traffic conditions accurately. 

10. The model, rooted in Tesla Model S parameters, 
effectively gauges average energy consumption based on 
set average speeds and road classifications. 

 
Vehicle Model and Parameters: Our simulation adopts the 
Tesla Model S as the EV archetype. Relevant parameters 
are elaborated in the following table. 
 

TABLE I. 
Parameters of a Tesla Model S [48] [49] 

Parameters Values 
Air drag Coefficient (Cd) 0.2 
Rolling Resistance Coefficient (f) 2.34	m"  
Mass (m) 2934	kg 
Motor Efficiency (ηH) 85% 
Transmission Efficiency (ηI) 95% 
Regenerative Efficiency (ηJ) 65% 
Battery capacity (Cp) 100 kWh 
Battery State of Health (SOH) 100% 

 
B. Performance: 

1) Main results: 
In the Cannonball Run challenge, vehicles commence their 
journey from the Red Ball Garage in New York City and 
culminate at the Portofino Hotel in Redondo Beach, near Los 
Angeles, without any prescribed intermediary stops. Given a 
set departure time of 10:00 PM local time, and specified start 
and end locations, our system uses the Google Maps API to 
derive an initial routing path, illustrated in Fig. 8. In this 
representation, the green and red markers denote the starting 
and ending points respectively, while the blue trajectory 
marks the planned route. 
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Fig. 8. The basic routing path from New York City's Red Ball Garage to the Portofino Hotel in Redondo Beach near Los Angeles 
using Google Map API. 

 
Fig. 9. All the pass-through points and nearby charging stations with minimized detour distances. 

 
 
To facilitate our optimization, we segmented this route into 
intervals of approximately 30 miles, resulting in a series of 
pass-through points, depicted as dark blue dots in Fig. 9. 
Leveraging the methodology elaborated in Section II.B, we 
then identified nearby charging stations for each pass-
through point, striving for minimal detour distances. These 
selected charging stations are highlighted using blue markers 
in Fig. 9. Consequently, the detour distances for the entire 
trip ranged from a minimum of 0.005 miles to a maximum of 
49.5 miles, with an average of 6.9 miles. Furthermore, we 
extracted essential data such as the actual detour distances 
required to access each charging station, along with the 
distance, road types, and estimated travel times between each 
sequential pair of pass-through points. This data is then 
employed for optimizing charging schedules and travel 
speeds. 
 

Upon executing the optimization using the provided data and 
models, we determined the optimal driving speed for each 
segment between junction pass-through points. These 
findings are depicted in Fig. 10. Notably, speeds selected for 
the initial and ending two segments fall below 70 mph. The 
rationale behind this is their classification as urban zones 
based on the available road data, where speed limits are 
capped at 70 mph. Conversely, for the intervening segments, 
chosen speeds oscillate between 92.87 mph and 130 mph, 
which matches the intuition that the optimizer is trying to 
minimize total trip time. The fluctuation in driving speed is 
not arbitrary but stems from an energy conservation 
perspective. Naturally, adopting higher speeds truncates 
driving durations, yet increases energy consumption. To 
minimize the total travel time, it is imperative to factor in the 
time spent on charging. When driving at reduced speeds, the 
EV consumes less energy, leading to less frequent need for 
charging and thus curtails the total charging time. This 
strategy is particularly beneficial when either the detour to a 
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charging station is excessively lengthy or when the charging 
rate within a specific SOC range is subdued. 
 
The energy consumption across each segment is depicted in 
Fig. 11. Notably, energy consumption does not consistently 
correlate with the driving speed of a segment. This observed 
variance is attributed to the figure reflecting total energy 
consumption, which encompasses energy expended due to 
battery preconditioning and detours made for charging. As 
such, segments requiring charging inherently register 
elevated energy consumption. On average, the segments 
manifest an energy consumption of approximately 25.56 
kWh. Using the Tesla Model S as a benchmark, with its 100 
kWh battery capacity, this data suggests that the EV would 
expend around 25.56% of its battery capacity to traverse a 
30-mile segment under the optimized strategy. Note that the 
energy efficiency is seemingly low (853 Wh/mile), 
particularly due to the vehicle’s ultra-high speed along 
segments. The efficiency will obviously improve when real-
world speed limits are applied. 
 

 
Fig. 10. Chosen speed for the point-to-point segments. 

 
Fig. 11. Total energy consumption for the point-to-point 
segments with roughly 30-mile intervals. 
 
The arrive and leave SOC of the EV at each pass-through 
point are presented in Fig. 12. Here, we can see that the SOC 
at the starting point is 100% SOC following our initial 
constraint. By the journey's end, the SOC dwindles to 5.16%, 
strategically positioned just above the lower threshold of our 
terminal stage constraint, such that no charging time is waste 

for unused energy. A closer inspection of Fig. 12 reveals 
points where the arrival and departure SOCs are equal. This 
indicates that the EV bypassed charging at these points. Upon 
arrival to the stations, the SOCs are all near 10%, which is 
the lower band of the SOC in the stage constraints. On the 
other hand, the average departure SOC is about 37.7%. This 
observation reflects that the system is trying to capture the 
max charging power where the curve is at the highest, as seen 
in Fig. 5. 
 

 
Fig. 12. Arrive and leave SOC crossing pass-through points. 
 
While the arrival SOC at each point is almost identical, a 
higher leave SOC leads to a longer charging time, as shown 
in Fig. 13. Here, we use the term "pure charging time" to 
represent the charging time just used to charge the EV, and 
the word "charging added time" to represent the charging 
time involved with the detour time and extra duration 
demanded by charging activities. Variations in these times 
are influenced by the detour lengths to each chosen charging 
station. The shortest detour to a proximate charging station 
per segment is plotted in Fig. 14. Some segments, notably 
those associated with points 13 and 55, entail notably lengthy 
detours. Nevertheless, our algorithm adeptly circumvents 
these conditions by strategically bypassing these zones rather 
than unnecessarily charging the EV at these stations.  
 
As a result, the total travel time using our proposed system is 
37.61 hours, which shaves off roughly 5 hours compared to 
the EV record set in 2021 – an improvement of 11%. It's 
worth noting that the 37.61 hours of travel time we achieved, 
as well as the EV record set in 2021, resulted from 
exceptionally high driving speeds that violate traffic 
regulations. When we restrict the vehicle to legally 
permissible speed limits for every road segment of the entire 
trip, the fastest travel time our system can achieve is 46 hours 
and 11 mins—just 3 hour and 54 minutes slower than the 
Cannonball Run EV record. 
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Fig. 13. Charging time crossing pass-through points. 
 

 
Fig. 14. Detour distance to the charging stations crossing 
pass-through points. 
 

2) Impacts of the nonlinear charging power profile: 
This subsection is dedicated to illustrating the importance of 
the nonlinear charging power profile in the optimization of 
EV route planning and charge scheduling. For comparative 
purposes, we incorporate a constant charging power profile 
into our optimization framework. The constant power is set 
at 159.9 kW, representative of the average charging power 
observed in Fig. 5, to facilitate a meaningful benchmark 
comparison. 
 

 
Fig. 15. Arrive and leave SOC crossing pass-through points 
while a constant charging power profile is used. 
 

Fig. 15 illustrates the leave and arrive SOC patterns resulting 
from this optimization, which employs the constant charging 
power profile. One striking feature of these results is the 
consistent clustering of the departure SOC around the 90% 
mark, coinciding with the upper limit set within our stage 
constraints. Notably, using the constant charging power 
profile prescribes a total of 13 charging stops for the EV, a 
significant reduction compared to the 48 instances produced 
by the optimization result using the nonlinear charging power 
profile, as presented in Fig. 12. Besides, the total traveling 
time is 40.43 hours, which is 2.82 hours longer than the 
results we obtained using the nonlinear charging profile. 
 
We can see fewer charging stops and longer total travel time 
under the constant power profile. The result is due to the lack 
of specialized SOC zones, which offer varying charging rates 
in a nonlinear charging profile. Under this simplified 
assumption, the strategy defaults to maximizing the charge at 
each opportunity, aiming to extend the range between stops, 
given the added time and energy expenditure necessitated by 
detours to charging stations and battery preconditioning. 
However, this overlooks the nuanced efficiencies of real-
world charging, where charging to full capacity at every stop 
is neither practical nor efficient. This contrasts with the 
nonlinear approach, where the charging strategy is tailored to 
exploit faster charging rates at lower SOCs and avoid 
inefficiencies at higher SOCs, mirroring actual EV charging 
behavior and leading to a more efficient journey. 
 

3) Impact of basic routing path partition intervals: 
This subsection analyzes the sensitivity of the route partition 
intervals on overall system performance. We assessed 
intervals ranging from 10 to 80 miles. 
 
Fig. 16 reveals a clear trend: shorter partition intervals 
correspond to reduced overall travel times. Specifically, a 10-
mile partition yields a travel time of just 36.02 hours. In stark 
contrast, an 80-mile interval closely mirrors the benchmark 
time of approximately 42.6 hours. 
 

 
Fig. 16. Partition interval vs. Total travel time. 

 
This phenomenon can be attributed to several key factors: 
1. Higher charging power in low SOC range: Shorter 

partition intervals permit EVs to depart charging stations 
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with lower SOC levels without the concern of depleting 
the battery before the subsequent charging point. As Fig. 
17 illustrates, EVs with partition intervals ranging from 
10 to 30 miles predominantly remain within the SOC 
bracket that facilitates rapid charging. 

2. Higher average driving speed: Increased charging 
opportunities empower the EV to maintain higher speeds, 
even when these speeds demand increased energy 
consumption. The upper subplot in Fig. 18 indicates that 
a smaller partition interval directly translates to a higher 
average trip speed. The optimization logic leans toward 
charging the EV if the additional charging time, induced 
by elevated energy usage, is less than time savings from 
swifter driving. 

3. Shorter total detour distances: The lower subplot in 
Fig. 18 suggests that shorter intervals yield reduced 
aggregate detour distances when charging is required. 
Shorter partition intervals provide more charging 
stations for selection. With the enlarged solution space, 
the system can deftly steer the EV clear of stations 
demanding extensive detours. Conversely, when choices 
are constricted and charging is imperative to prevent 
battery depletion, the system's flexibility is 
compromised. It is worth noting that the Haversine 
calculations have higher accuracy over shorter spans and 
on more linear roadways. Extended intervals could 
inadvertently underestimate detour distances and lead to 
suboptimal station selections. 
 

 
Fig. 17. Partition interval vs. Average leave and arrive SOC 
for charging cases. 
 

 
Fig. 18. Partition interval vs. Average Speed and total detour 
time. 
 
However, choosing the smallest partition interval is not 
without some costs. As the upper subplot in Fig. 19 illustrates, 
the computation times increase exponentially with 
decreasing intervals. The surge in decision variables, 
especially binary ones, boosts the computational burden, 
especially when employing MILP for problem-solving. 
Further, the proliferation of pass-through points and charging 
stations triggers an increased need for Google Maps API 
queries, thereby elevating the associated monetary costs. 
Given the estimated cost of the Google Maps API at $5 per 
1,000 requests, the costs across varying partition intervals are 
depicted in the lower subplot in Fig. 19. 
 
As a result, we selected a 30-mile partition interval for the 
main results to balance performance, accuracy, and cost. This 
decision adeptly balances travel time optimization, 
computational efficiency, and the costs tied to API queries. 
However, for racing purposes, where costs aren't a primary 
concern, the 10-mile partition interval may be the most 
favorable choice, yielding the shortest total travel time of 
36.02 hours. 
 

 
Fig. 19. Partition interval vs. Total computational time and 
total monetary cost of using Google Maps API. 
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IV. CONCLUSION  
In this work, our primary goal is to understand the nature and 
develop strategies for minimizing total travel time in long-
distance EV driving. We develop a comprehensive 
framework that synergizes real-time V2C interactions, route 
data processing, energy consumption modeling, and a novel 
charging time prediction model. Notably, our charging time 
model adeptly accommodates various nonlinear charging 
profiles. By transforming the optimization challenge into a 
MILP framework, our system achieves low computational 
cost, facilitating real-time application. This framework 
enabled us to tackle crucial questions effectively: How fast 
should we drive? When and where should we charge our EV? 
And to what SOC level should we charge at these points? 
 
As a result, our proposed system not only outperformed 
existing real-world records for EVs set in the Cannonball 
Challenge by 11% but also underscored the critical impact of 
nonlinear charging profiles on route optimization. This 
comparison between strategies derived from nonlinear versus 
constant charging profiles demonstrates the necessity of 
accounting for nonlinear charging dynamics. Importantly, 
our framework is adaptable to a wide range of applications 
beyond competitive scenarios like the Cannonball Challenge. 
Its potential extends from personal road trips to commercial 
logistics, including long-haul trucking. Furthermore, the 
approach is particularly relevant to the evolving field of 
autonomous driving [50], transitioning from traditional 
human-centric constraints [51] to more sophisticated, 
vehicle-centric operational paradigms. 
 
In future studies, by leveraging V2X and the Open Charge 
Point Interface (OCPI) protocol, we can incorporate a 
broader set of real-time data and integrate more factors, such 
as weather conditions and waiting times at charging stations, 
to enhance system performance. Besides, exploring battery 
degradation minimization as part of a multi-objective 
optimization problem presents a valuable direction. 
Additionally, adapting the proposed system for broader 
logistics fleet management also presents a promising avenue 
for exploration. 
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