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Abstract—The famous Cannonball Run, a cross-country driving
challenge from New York City to Los Angeles, highlights the
unique challenges of long-distance electric vehicle (EV) route
planning. The time record for an internal combustion vehicle is
25 hours, 39 minutes. Compare this to the EV record of 42 hours,
17 minutes, achieved with a Tesla Model S, which elucidates the
complexities inherent to optimal EV route planning. To bridge
this divide, our study introduces a system designed for real-time
vehicle-to-cloud (V2C) interaction aimed at enhancing online
long-distance EV route planning. Our approach integrates four
pivotal components: (i) a real-time route data processing
module, (ii) an energy consumption module that works for
different road conditions, (iii) an EV charge time prediction
module grounded on real EV charging data, and (iv) a
comprehensive optimization module using a Mixed-Integer
Linear Programming (MILP). In applying this system to the
Cannonball Challenge, our simulation results surpass the real-
world EV time record. Importantly, our integrated system's
potential extends beyond this challenge, offering robust
solutions for personal and commercial EV long-distance drives.

Keywords: Electric vehicles, Optimized Routing, Charging stations,
Charging time, V2X

NOMENCLATURE
A. Indices
i Index of the pass-through point along the
route and the corresponding charging station
of each point with the shortest detour distance.
B.  Routing Data Processing Module

Dgetour (D) Detour distance to access a charging station
between point i and the next point i + 1.

Dpye (i) Distance from point i to a charging station.

Deonp (1) Distance from a charging station to the next
point i + 1.

Dponp (D) Distance from point i and the next point i + 1.

Vietour Detour speed.

taetour (D) Detour time to access the charging station

between point i and the next point i + 1.
Pyetour Average detour consumption power.
Egetour () Energy consumption for detouring to the
charging station between point i and the next
point i + 1.
N Numbers of the routing path partition
segment.

D@)
R()

ttraffic(i)

Distance of the route segment from point i to
i+1.

Road type from point i to i + 1.

Predicted traffic durations from point i to i +

C. Energy Consumption Module

P,
P,
m
Ay
fr
Cp
nr
Nma
Nr

Road traction power.

Power demand.

Vehicle mass.

Front area.

Rolling resistance coefficient.

Air drag coefficient.

Transmission efficiency.

Electrical machine efficiency.

Efficiency of regenerative braking.

Vehicle speed.

Road slope.

Air density.

Gravitational acceleration.

Average power consumption for highway
driving.

Average power consumption for urban
driving.

Fitting parameter used in the highway average
power consumption calculation.

Fitting parameter used in the highway average
power consumption calculation.

Fitting parameter used in the highway average
power consumption calculation.

Fitting parameter used in the highway average
power consumption calculation.

Fitting parameter used in the urban average
power consumption calculation.

Fitting parameter used in the urban average
power consumption calculation.

Fitting parameter used in the urban average
power consumption calculation.

Fitting parameter used in the urban average
power consumption calculation.

D. Nonlinear Charging Module

S0C(k)

Cp

At
fr(SOC(K))

Battery SOC at the time k.

Battery nominal capacity.

Sampling duration.

Nonlinear relationship between charging
power vs. SOC curve.
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fe(S0C(k)) Cumulative charging time as the vehicle
charges from 5% to SOC (k).

te Charging duration.

SO0Carrive Initial SOC of an EV when it has just arrived
at the charging station.

S0Ceave Final SOC of an EV when it leaves the

charging station.

E.  Optimization Module

tdriving (l)

tcharging (L)

Total travel time for long-distance EV driving.
Time to travel from point i to the next point
i+1.

Charging duration at charging station i while
charging is required.

V(@) Vehicle’s average speed from point i to i + 1.

tenarging () Charging duration at the charging station i

SO0Ceqve (D) SOC of an EV when it just arrived at the
charging station i.

S0Ceqve(D) SOC of an EV when it leaves the charging
station i.

tovernhead (D) Overhead time required for charging at the
charging station i.

Time,yira Constant parameter approximating the extra
duration demanded by charging activities,
aside from the detour time.

Cc(i) Binary variable indicating whether the EV is
sent to charge at the charging station i.

SOCstart SOC of an EV when it is at the starting
location.

S0Cina Minimal SOC required for the EV to reach its
destination.

S0Cstqge min  Lower bound of the SOC for the EV except
the start and final locations.

S0Cstage max  Upper bound of the SOC expect the start and
final locations.

Ecom (D) Energy consumption from point i to i + 1.

Viw max Maximal speed of an EV on highway.

Vb max Maximal speed of an EV in urban areas.

Chinitial EV's initial capacity.

SOH,,on Current SOH of the EV.

Chat Current battery capacity of the EV.

Eyre Energy consumption due to preconditioning.

Eyvernead (D) Energy consumed due to detouring for
charging and the process of battery
preconditioning from point i to i + 1.

Vyria Grid that represents the discretized velocity
range of the EV.

ny Length of this velocity grid.

v; Binary array that represents the selection of
velocities from point i to i + 1.

S0Cyriq Grid that represents the discretized SOC range
of the EV.

Ngoe Dimension of the SOC grid vector.

Sleave,i Binary array that represents the SOC when the
EV just leaves at the charging station i.

Sarrive,i Binary array that represents the SOC when the

tcharging grid

EV just arrived at the charging station i.

Grid that represents the discretized function of
the cumulative charging time as the vehicle
charges from 5% to a target SOC.

I. INTRODUCTION

In this section, we start by setting the stage with the context
of our problem. We introduce and highlight the challenges to

the problem and review the state-of-art approach. Finally, we
conclude with the contributions of this work.

A. Background and Motivation:

The Paris Climate Accord has delineated a critical target: to
limit long-term global warming to below 1.5 degrees Celsius.
Achieving this benchmark necessitates a drastic 50%
reduction in carbon dioxide and other greenhouse gas
emissions by 2030 [1]. One pivotal avenue to realizing this
ambition is through the electrification of the transportation
sector, which currently shoulders over 16% of global
emissions [2]. Thanks to proactive governmental policies
globally, there has been a discernible surge in the adoption of
electric vehicles (EVs) [3], progressively challenging the
dominance of traditional internal combustion engine vehicles
[4] [5]. Because electric motors convert a high percentage of
electrical energy from the grid into power to drive the wheels
[6], EVs are more energy-efficient than traditional gasoline
or diesel cars and produce fewer greenhouse gases and
pollutants [7]. However, the Cannonball Run, a popularized
and unsanctioned cross-country trek from New York City to
Los Angeles, serves as a vivid illustration of the challenges
facing long-distance travel with EVs. While a gasoline-
powered vehicle set the record of 25 hours and 39 minutes
[8], EVs, despite their rapid technological maturation, have
longer journey durations. The current EV record stands at 42
hours and 17 minutes [9]. This stark contrast underscores an
important query: how can we harness and optimize EVs for
long-distance travel to enable time efficiency?

The quest to minimize travel time is of paramount
consequence for both individual travelers and commercial
entities. For individuals, shorter trips translate to efficient use
of time and alleviate the 'range anxiety' often associated with
longer EV journeys [10]. For commercial operations, like
long-haul logistics, minimizing travel time is crucial as time
directly equates to operational costs and service quality.
Delays in deliveries can result in a ripple effects across
supply chains, disrupting operations, incurring costs, and
potentially damaging reputations [11]. Hence, an efficient
EV routing strategy can be a game-changer for both sectors,
ensuring not only timely travel but also optimized fleet
utilization and reduced operational costs.

However, minimizing the total travel time for EVs on long-
distance trips presents a complex challenge arising from the
inherent characteristics of electric vehicles. These challenges
include limited battery range, longer charging times
compared to gasoline vehicles, and the necessity for longer
detours to access charging stations, which are less ubiquitous
than traditional fuel stations [12]. Despite significant
investments like the Bipartisan Infrastructure Deal [13] and
the National Electric Vehicle Infrastructure (NEVI) Formula
Program [14] aiming to enhance the charging infrastructure,
comprehensive solutions to these challenges are still lacking.
For instance, while increasing speed can linearly reduce
travel time, it also results in a cubic increase in power
consumption. This imbalance could lead to quicker battery
depletion, necessitating detours for recharging and
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subsequently extending the total travel time. Identifying the
optimal driving speed that achieves a balance between energy
efficiency and time efficiency is therefore critical.
Additionally, the process of determining which charging
stations to use is not straightforward. The choice of a
charging point should consider not only the detour distance
but also the current SOC of the EV to ensure sufficient energy
levels, avoid unnecessary charging, and minimize detour
time for accessing charging stations. Furthermore, the
nonlinear characteristics of the charging curve suggest that
charging to a high SOC, such as 100%, may not always be
the most time-efficient strategy. Determining the optimal
amount of charge to be added at each stop to ensure the fastest
charging speed is a key component of efficient route planning.

Given this context, this study is dedicated to exploring the
nature and strategy of minimizing the total travel time for
long-distance EV driving by addressing the following pivotal
questions:
1. How fast should we drive?
2. When should we charge our EV, and at which
charging points?
3. To what SOC level should we charge our EVs at
these points?

B. Literature Review:

Early endeavors in EV routing relied on foundational models
and predominantly focused on specific application scenarios.
These initial efforts were epitomized by the Electric Vehicle
Routing Problem (E-VRP) and its various iterations [15].
Many such studies examined the dispatching of an EV fleet
for goods transportation. One notable variant is the E-VRP
with a time windows, where each customer node has a fixed
delivery time window. This introduces sets of upper and
lower bound constraints to the problem [16] [17] [18]. Other
versions of E-VRP consider charging at depots, customer
locations, or dedicated charging stations [19] [20] [21].
Given the constraints set by the aforementioned time
windows, dispatch operators need to exhibit increased
intelligence in vehicle scheduling. This not only caters to
delivery needs but also includes refueling plans at specific
locations and times. However, these foundational methods
simply adapt previous research paradigms and neglect
essential real-world dynamic elements such as real-time
traffic conditions, the intricate relationship between speed
and energy consumption, and the nonlinear charging
dynamics specific to EVs. For the following three paragraphs,
a more detailed discussion regarding these three aspects is
included, shedding light on the intricacies and advancements
in each area.

With the rise of real-time data, transportation paradigms
underwent a transformation, reshaping route planning
dynamics and significantly enhancing decision-making,
addressing some limitations of earlier methods [22]. For
instance, [23] estimated traffic speed using crowd sensing
techniques, leveraging signal towers and smart devices
within vehicles. In [24], the authors harvested traffic incident

data through the Bing Maps REST service, merging historical
trajectory data with real-time traffic incident information to
predict traffic flow and sidestep obstructed routes. Yet,
despite these advancements, the unique challenges inherent
to EV routing largely remained unaddressed. In this case,
Vehicle-to-Everything (V2X) communication technology is
a promising potential solution [25]. With real-time updates
and predictions regarding road conditions, traffic duration,
and even charging station availability, vehicles can adapt
instantaneously, optimizing their operations in alignment
with real-world scenarios [26]. However, no literature
presents an easy and efficient way to integrate V2X into EV
long-distance driving route planning.

The advancement in leveraging real-time data naturally leads
to a reevaluation of energy consumption models. Various
energy consumption models are fundamental to modern EV
routing strategies. While simplistic constant consumption
models [27] are favored for their straightforwardness, they
frequently fall short in mirroring real-world dynamics. In
pursuit of a more realistic portrayal of EV energy
consumption rates, many studies have incorporated distinct
drive or speed cycles, deriving energy consumption from the
vehicle's longitudinal dynamic model. For instance, [28]
employed the New European Driving Cycle, simulating both
city and suburban driving conditions, and determined energy
consumption by considering kinetic energy and motor
resistance. In contrast, [29] moved away from fixed drive
cycles, opting instead for link-based speeds. Basso, et al. [30]
offered a meticulous link and mass-based energy
consumption rate model grounded in acceleration,
deceleration, and speed metrics. However, such intricate
models come with their complexities, making them
challenging for applications like long-distance travel. The
need for an accurate EV energy/power consumption model is
indisputable. However, the model must be straightforward or
amenable to reformulation for its practical use in EV route
planning. Thus, it is necessary to address this challenge by
crafting a model that adeptly merges these dimensions.

As EV adoption has proliferated, the nuances associated with
charging have become evident [31]. Notably, the charging
rate of EVs is not uniform. It is crucial to accurately predict
battery charging time by considering the battery’s nonlinear
charging profile [32]. In the existing literature, most works
assume a constant charging rate for computational benefits,
including all aforementioned studies. Integrating the
nonlinear nature of battery charging into EV operational
optimization presents a formidable challenge. This
integration necessitates meticulously crafted model
formulations to guarantee both computational efficiency and
optimality [33]. For the development of realistic EV routing
systems, several studies have delved into the nonlinear power
curve. For instance, [34] incorporated a constant current
constant voltage (CCCV) curve and proportionally reduced
the current when the state of charge (SOC) surpassed 80%,
aiming to curtail the total power consumption. Nonetheless,
the simple CCCV charging profile is no longer typical in the
EV industry for fast charging scenarios. Hecht, et al. [35]
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introduced a route planning system, which utilizes recently
reported experimental data on EV fast charging curves.
However, this work does not offer an effective strategy to
embed the EV nonlinear charging profile into optimization
with low computational cost. Consequently, there remains a
discernible gap in the literature when it comes to accurately
modeling and incorporating contemporary EV nonlinear
charging profiles into route planning strategies.

Current research predominantly addresses short-distance EV
routing, where the battery range is often adequate for the
journey with minimal mid-trip charging, focusing primarily
on route planning and energy efficiency [36] [37]. In contrast,
long-distance EV driving requires more charging stops and
demands meticulous management to avoid unexpected
vehicle shutdowns and ensure time efficiency [38]. Thus, it
is important to consider more factors such as charging
locations, charging profiles, battery SOC, and sophisticated
vehicle energy consumption models. While the long-distance
EV driving planning problem involves more variables and
constraints, it is computationally more complex and requires
a more efficient optimization method for real-time
applications.

In summary, existing studies in EV route planning primarily
focus on short-distance travel, often neglecting the unique
challenges of long-distance journeys. There is a notable lack
of comprehensive systems that integrate real-time data, such
as V2X connectivity, with advanced energy consumption
models and EV nonlinear charging behaviors. Furthermore,
most current methods do not adequately balance the intricate
realities of EV behavior with the need for low computational
cost in real-time applications. Our study aims to address these
gaps by understanding their nature and developing an
integrated, efficient, and practical strategy for long-distance
EV driving planning.

C. Contributions

Our research uniquely addresses the challenge of minimizing
total travel time for long-distance EV driving, a topic not
comprehensively explored in existing literature. We bridge
this gap by discussing the nature of long-distance EV driving
and developing an integrated framework focused on
optimizing travel time. Our pivotal contributions include:

1. Development of an integrated and comprehensive
system for EV long-distance routing and recharging: We
present a system that integrates real-time V2C
interactions with route data processing, energy
consumption modeling, and charging time prediction.

2. Development of a charging time prediction model: Our
research introduces a new model for predicting charging
time, taking into consideration the nonlinear charging
profile of electric vehicles. This model is adaptable
enough to accommodate various nonlinear charging
profiles.

3. Formulation of the travel time minimization problem in
a Mixed-Integer Linear Programming (MILP) format:
We formulate the problem of minimizing total travel

time into a MILP framework. This approach ensures low
computational cost, making it suitable for real-time
applications in long-distance EV driving planning.

D. Organization of the paper:

The remainder of this paper is organized as follows. Section
I discusses the methodologies for the problem. Section III
analyzes the simulation results of the proposed system.
Section IV summarizes the key conclusions of this study.

[I. METHODOLOGY

In this section, an overview of the system is initially
presented to elucidate the functionality of each component
within the proposed framework. Subsequently, the
methodologies employed within each component are
explored in detail in the ensuing subsections.

A. System overview

In pursuit of optimizing long-distance EV driving planning,
this study amalgamates four different modules. Fig. 1
presents a summarized schematic representation of the
proposed system's architecture and flow. As shown in Fig. 1,
the proposed system takes vehicle type, approximate weight,
current time and location, required stops, and batteries' SOC
and SOH as inputs. These four modules run in the cloud, and
they are (i) a real-time route data processing module, (ii) an
EV energy consumption module that works for different road
conditions, (iii) an EV charge time prediction module
grounded on real EV charging data, and (iv) an optimization
module.

Current time and

location, and
stops

Vehicle type and
approximated weight

Real-time route EV energy EV charging
data processing consumption time prediction
module module module

1]
Optimization
module

|
TS °
Fig. 1. Frame and flow chart of the proposed system.

Cloud

1.  Real-time Route Data Processing Module: The
process initiates with the acquisition of real-time
road data from the Google Maps API [39], using the
current time and location, along with specified
stops/destinations, to yield a rudimentary routing
path characterized by longitude and latitude data.
This initial path undergoes refinement via data
processing, segmenting it into distinct portions. This
segmentation aids in formulating a matrix that
encapsulates the distance, charging station detailer
time and energy consumption, road type, and
ongoing traffic conditions of each segment. This
matrix becomes the foundation for the EV long-
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distance driving optimization, with further
intricacies of the module discussed in Section II.B.

2. Energy Consumption Module: This module refines
the energy model by accounting for the vehicle's
specific characteristics and the type of road it
traverses. It quantifies the interplay between driving
speed and energy expenditure under various
conditions. Acting as the cornerstone of the
optimization module, it computes the vehicle's
optimal speed for each road segment, informed by
inputs such as vehicle type and estimated weight.
An in-depth exposition of the module's development
is provided in Section II.C.

3. Charge Time Prediction Module: In parallel,
addressing the intricate nature of EV nonlinear
charging behavior, a charging time prediction model
is also formulated. This model draws from a real EV
charging dataset for accuracy. The main function of
the module is to accurately predict the charging
duration with a given starting and ending SOC of
charging with a given nonlinear charging profile.
The details of this module are further discussed in
Section II.D.

4. Optimization Module: By utilizing the linearization
methods, we convert the original nonlinear
optimization problem into the MILP framework,
which is essential for achieving real-time
optimization capabilities. Ultimately, leveraging the
insights from the EV energy consumption model,
the charging time prediction model, as well as real-
time parameters like the current SOC and state of
health (SOH) of the EV, the MILP optimization
strategy determines the ideal charging strategy and
speed schedules to minimize the overall travel time.
The details of the optimization approach are further
elucidated in Section II.E.

According to the design of our proposed system, initiation
can occur in real-time by human operators or higher tier
dispatching systems. The routing and data process module,
informed by real-time traffic data, determines the optimal
route and potential charging station selection. This, coupled
with the energy consumption and charging time prediction
modules, enables our optimization module to formulate the
best strategy based on current conditions. Utilizing the
concept of Model Predictive Control (MPC) [40], the system
conducts reruns at short intervals, such as every 5 minutes,
considering the entire trip as the predictive horizon to bolster
robustness. During each rerun, the system incorporates the
latest traffic conditions and vehicle states to manage
uncertainties and external disturbances, like unexpected
traffic changes. The system is also designed to recalibrate and
initiate a rerun if deviations from the planned route occur.

B. Routing and Data Process Module:

The routing and data processing module is executed in a
series of steps:

1. Basic Routing Path Acquisition: Given the current time,
location, and predefined stops or destinations, the system
retrieves the route polyline via the Google Maps API. A more
detailed demonstration of the basic routing path acquisition
is presented in Fig. 8 in Section II1.B.1).

2. Polyline Decoding: The acquired polyline is decoded,
yielding specific latitude and longitude coordinates that
define the primary routing path.

3. Routing Path Partition: The routing path undergoes
segmentation to maintain granularity. The Haversine distance
between subsequent pass-through points is confined to under
30 miles for enhanced precision. Further details on the
selection process of partition interval are provided in Section
111.B.3).

4. Charging Facility Location Acquisition: The Google Maps
API aids the system in scanning the surroundings of each
point, pinpointing available charging stations. A more
detailed demonstration of the charging facility location
acquisition in Fig. 9 in Section II1.B.1).

5. Identify the Charging Facility with the Shortest Detour
Distance: For each designated pass-through point, distances
between point i and the next junction point i + 1 (Dpypp (i),
point i to a charging station (Dp,(i)), and from a charging
station to the next junction point i + 1 (Dgyyp(i)) are
computed using Haversine distances. To save costs
associated with Google's API services, the Haversine
distance is utilized to reduce frequent API calls. The added
detour distance for a charging station, relative to passing
through point i, is formulated as:

Dyetour (1) = Dpac(i) + Deanp (i) — Dponp(@) - (1)

Subsequently, charging stations with the minimal detour
distances for their related pass-through points are cataloged.

6. Road and Traffic Information Acquisition: Through the
Google Maps API, the system determines exact distances
between neighboring pass-through points. Concurrently, it
gathers data concerning road types and predicted traffic
durations based on expected arrival times.

7. Road Type Identification: Each road segment connecting
two successive pass-through points undergoes categorization
as “highway” or “city road” based on inherent characteristics.

8. Detour Distance Acquisition and Calculation: Using the
Google Maps API, in tandem with the aforementioned detour
distance equation, the detour distances of each potential
charging station and junction points are computed as shown
in Fig. 2.
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Fig. 2. Detour distance acquisition and calculation.

9. Detour Time and Energy Consumption Calculation:
Recognizing that detours invariably lead an EV away from
its original path, we postulate the detour speed to be 30 mph
to approximate the average local driving speed [41]. From the
deduced detour distances (Dgeroy (1)) and speeds (Vyerour)s
we directly estimate the detour time (tgepro- (1)) for each
segment, using the equation,

Ddetour (l)

Vdetour

(2)

taetour @@=

Furthermore, based on the detour time and speed, the
additional energy consumption, E;,;0,-(i), resulting from
detours is computed as,

Egetour (D) = Paetour taetour () (3

Here, P10, 15 the average detour consumption power and
calculated based on Eq (7).

In a culmination of these steps, the foundational routing path
is divided into N segments, with each approximately
covering 30 miles. The outcome is a comprehensive matrix
detailing exact distances (D (i)), road types (R(i)), predicted
traffic durations (t:qf5ic(1)) between pass-through points,
and, where charging is needed, the associated detour time
(tagetour(1))) and energy consumption (Egpoy-(1)). This
matrix serves as a crucial input for the charging schedule and
speed optimization module.

C. EV Energy Consumption Module:

For optimal speed planning, it is important to have an EV
energy consumption model that maps the energy
consumption with a given road type and speed.

The study uses a basic EV model as a baseline to calculate
the instantaneous power consumption. The formulation of the
vehicle power consumption model can be expressed as [42],

P.=mgf, Vcos(a) +0.5Cp A p V3

dav
+mV s +mgVsin(a) (4)

PNy Mg, Pe >0
O B )
Nr

Here, parameters including m (mass), A (front area), f.
(rolling resistance coefficient), Cp (air drag coefficient), ny
(transmission  efficiency), 71,4 (electrical machine
efficiency), and 1, (efficiency of regenerative braking) are
derived based on vehicle type and weight. Variables IV and a
represent vehicle speed and road slope, respectively, while p
and g stand for air density and gravitational acceleration. The
variable P; signifies the road traction power that opposes
road friction, air drag, and gravitational forces. The eventual
power demand P; of an EV, factoring in transmission
efficiency, electrical machine efficiency, and the efficiency
of regenerative braking, is computed from P;.

Driving conditions can be mapped with specific driving cycle
profiles [43]. For instance, the EPA Highway Fuel Economy
Test (EHFET) profile typifies highway conditions, while the
Urban Dynamometer Driving Schedule (UDDS) reflects
urban driving conditions [44]. Adjusting the speed profiles of
these cycles enables establishing the relationship between
average power consumption and average speeds across
diverse road conditions.

Fig. 3 visualizes the adaptation of the original EHFET cycle
speed profile to generate multiple speed profiles. Upon
determining the average speed for each profile and utilizing
the baseline EV model, along with specified vehicle
parameters, one can determine the average power demand
across varying average speeds for typical highway conditions.
For this study, which is focused on long-distance travel, road
slope impacts over time are assumed to be negligible and set
to zero.

-

W
10 4

Speed [m/s]
5

0 100 200 300 400 500 600 700
Time [s]
Fig. 3. Multiple speed profiles derived by scaling the
EHFET cycle's original speed profile.

Fig. 4, using parameters from the new Tesla Model S as an
example, employs a cubic function to trace the relationship
between average power consumption and driving speed on
highways. The fitted cubic relationship is justified by physics,
since power to overcome air drag scales with speed cubed
(see Eq. (4)). The same procedure applied to the UDDS cycle
produces the consumption model for urban driving. As a
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result, we obtain the following two equations to calculate the
average power consumption for highway (Py,,) and average
power consumption for urban driving (P, ), respectively,
for highways:
Phw = ath3 + bth2 + ChWV + dhw (6)
for urban areas:

Pub = aubV3 + bubVZ + CubV + dub (7)

Here, V is the vehicle average velocity, and ay,,,, by, Chw,
dpw, Aup, bup, Cup and d,,;, are fitting parameters.
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Fig. 4. The average speed vs. average power consumption
for a highway driving condition.

This study categorizes driving conditions into highway and
urban segments, using the EHFET and UDDS cycles,
respectively. However, it is worth noting that employing
more specific driving cycle data tailored to varied road types
and real-time traffic conditions and classifying them into
more categories to build the energy consumption model can
further improve the precision of the energy consumption
model across diverse conditions.

D. EV Nonlinear Charging Module:

The EV charging rate is influenced by SOC and temperature
[32]. With battery preconditioning, we assume EVs are
charged at a consistent and optimal temperature. The focus
of this section is to model the charging rate-SOC relationship
for accurate charging duration estimation. This subsection
describes a method to estimate charging duration based on
the initial SOC (SOCzqpe ) and the desired end SOC
(SO0C4yrive )- This method specifically accounts for the
nonlinear charging profile inherent to EVs, using the Tesla
Model S as an illustrative example.

The nonlinear charging behavior of an EV is captured
through a curve relating charging power to SOC [45]. Fig. 5
showcases the real-world nonlinear relationship between
charging power vs. SOC curve, denoted as fp. This curve was
derived from the average charger power of experiments from
a2023 Tesla Model S that was charged from 5% to 90% SOC

using Tesla V3 (i.e. 250 kW maximum power) superchargers.
Incorporating the Tesla Model S's nominal capacity, Cp (in
kWh), we can express the vehicle's SOC (in %) as,

_ , Fo(S0CCk ~ 1))
S0C(k) =S0C(k—1)+ 1OOAwAt (8)

Here, fp indicates the charging power (in KW) for a specific
SOC, while At (in seconds) represents the sampling duration.
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Fig. 5. Charging power vs. SOC.

Based upon the SOC updating model and the nonlinear
charging curve, Fig. 6 depicts the curve f., which represents
the cumulative charging time as the vehicle charges from 5%
to 95% SOC. Notably, the f, curve is not universal; it varies
across different vehicle types or brands due to the unique
charging strategies of individual EV manufacturers. These
curves can also change with different charging infrastructure
equipment, due to charger cable current and temperature
limits [32]. Consequently, it is crucial to establish a library of
fc curves for various vehicle models and chargers. In
application, the system will select the appropriate f, curve
based on the provided vehicle type or brand and charger.
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Fig. 6. Cumulative charging time vs. SOC, when starting at

5% SOC.
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Given that f inherently captures the relationship between
SOC and cumulative charging time, it can inform us about
the total charging time required for the battery to attain any
given SOC. Utilizing this relationship allows us to determine
the duration needed to charge the battery between two SOC
values. Therefore, the charging duration, t., for a Tesla
Model S transitioning from SOCqy,pipe 10 SOCjpqye can be
computed as,

te = fc(S0Cieave) — fc(SOCqrrive) 9

In this equation, f-(SOCjqpe) conveys the total time
necessary to charge the battery from its starting point (in this
context, 5%) to SOCypqpe- Similarly, f-(SOC rrive) signifies
the time required to charge from the starting point to
SOC 4 rive- The difference between these times provides the
duration to charge from SOC,ripe t0 SOCipuye , Which is
represented by t.. To verify the accuracy of our charging
time prediction model, we tested it using 57 charging data
points obtained from another Tesla vehicle not used for
model training. The results of the cross-evaluation showed an
average absolute error of only about 2.3 minutes,
highlighting the accuracy of the proposed model.

E.  MILP-based Optimization:

Central to this proposed system is the charging schedule and
speed optimization module. In this subsection, we first
formulate the control goal as an optimization problem, and
detail the cost function, variables, and constraints. Moreover,
we showcase the linearization methods employed to convert
the original nonlinear optimization problem into the MILP
framework, which is essential for achieving real-time
optimization capabilities.

The objective (J) is to minimize the total travel time for long-
distance EV driving, which is simply the summation of the
driving time and the additional time taken by charging. The
optimization problem is formulated as the following,

N

] = Z tdriving (l) + tcharging (l) + ttraffic(i) (10)

i=1

Here, N signifies the number of road segments, with i
denoting the route node index. The variable tgyiping () is the
time to travel from pass-through point i to the next pass-
through point i + 1, and tcpqyging (i) is the charging duration
at charging station i while charging is required. The driving
time of each road segment i is expressed as,

D(i
tariving = ﬂ (11)

Here, D (i) represents the distance of the route segment from
node i to i + 1, and V(i) is the vehicle’s average speed on
that segment.

The time taken by charging, tcparging (1), is given by,

teharging =

fc( )_fC(

where SOCqpe (1) and SOCyyipe (i) represent the SOC of
the EV when it arrives and leaves the charging point i. Here,
an additional term, t,,erpeqq (£), 1S incorporated into Eq. (12)
to account for the overhead time required for charging. This
time encapsulates both detour time and other related
activities, such as the overhead time to park, plug in, initiate
a charge session, plug-out, and depart. The representation is
given as,

) + toverhead (l) (12)

tovernead (1) = (tgetour () + Timegyrq) * (13)

In the equation, Time,y:, stands as a constant parameter
approximating the extra duration demanded by charging
activities, aside from the detour time. Meanwhile, C(i) is a
binary variable indicating whether the EV is sent to charge
during that specific segment.

For the initial route node indexed 1, both SOC;4,. (1) and
SOC4rrive(1) equal the vehicle's current SOC, SOCq; gyt -
This results in the initial constraints,

= S50Cstare (14)
= 50Cstart (15)

For the final point, the SOC should exceed a designed value,
SO0Csinai, to prevent battery over-discharge. Thus, the final
constraints are,

= SOCfinal (16)
= SOCfinal (17)

The stage constraints capture the dynamics of the battery's
SOC for stages from i = 2 to NV.

SOCstage max = 2 SOCstage min (18)
SO Cstage max = 2 SOCstage min (19)

In these equations, SO Ctqge max a0d SOCsiqge min TEPresent
the upper and lower bounds of the SOC, respectively.

According to Eq. (6) and Eq. (7), the energy consumption at
each segment, E,,,, (i), is determined by multiplying the
average driving power with the driving time at each segment
as follows,

for highways:
Ecom @)=

(ahw 3 + bhw 2 + Chw

r ) 2D (20)
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for urban areas:
Ecom (l) =

(aup 3+ by 2+ cup

v 2D oy

Besides, we also limit the velocity of the EV based on the
road type,

for highways:
= Vhw max (2 2)

for urban areas:
< Vub max (2 3)

where Vi, max a0d Vi max are the maximal driving speeds
of the EV in highways and urban areas, respectively.

Considering the vehicle's initial capacity (Cp;p;tiq;) and its
SOH, the current battery capacity, Cpq;, 1S,

SOH
Tnow 80%) (24)

Coat = Chinitiar ( 100

where SOH,,,,, is the current SOH of the EV and is in the
range of 0 to 100%, and 0% SOH represents the capacity of
the EV’s battery drop to 80% of its initial capacity.

With the current energy capacity of the EV, the SOC
changes in each segment due to driving can be updated as,

> (25)

Ecom (l) + Eoverhead (l)

100% (26)
Cbat
Eoverneaa @ =
(Edetour(i) + Epre) ) (27)

In this equation, E, ., peqaq (8) signifies the additional energy
consumed due to detouring for charging and the process of
battery preconditioning. The energy expenditure arising from
the detour is derived using Eq. (3). The term E,,. is a fixed
parameter, approximating the energy used during battery
preconditioning. The binary variable, C (i), indicates if the
EV will undergo charging at a given charging station. Battery
preconditioning is essential to both reduce charging duration
and to curb potential battery degradation. By maintaining the
battery pack temperature at an optimal range prior to
charging, these techniques ensure efficient energy intake.
Consequently, when an EV is set to charge, there's an extra
energy demand due to battery preconditioning.

To account for model uncertainties and avoid battery damage,
we restrict the SOC for segments i = 2 to N between 10%
and 90%. Additionally, the charging power f, is reduced

below 10% and above 90% SOC (see Fig. 4), so allowing a
wider SOC range will not help minimize travel time.

The aforementioned equations define the optimization
problem in alignment with our control objectives. However,
the nonlinearities in Eq (11), Eq (12), Eq (20), and Eq (21)
hinders real-time optimization. To address this, the
subsequent paragraphs will introduce linearization
techniques to transform the problem into a MILP framework,
thus enabling real-time optimization capabilities.

To address the nonlinear equations related to speed and
energy consumption (Eq (11), Eq (20), and Eq (21)), we
transform the continuous variable, V (i), by discretizing it
into a finite series of potential velocities for the EV,

Vgrid =[0,1,, Vawmax — 1, Viw max] (28)

where Vg,.q is a grid that represents the discretized velocity
range of the EV. The length (n,) of this velocity grid is
represented as,

ny = |Vgrid| (29)

We introduce a binary array, v;, of size 1 X ny, to represent
the selection of velocities from a predefined grid for each
road segment i. In this representation, v; is a one-hot
encoded array, meaning only one element is '1' and the others
are'0'". For all i, we have,

z =1 (30)

where the '1' at the jth position indicates the selection of the
jth velocity from the velocity grid, V4. Each road segment
speed, V (i), is then associated with a unique velocity from
the grid, converting the following nonlinear equations into
linear forms,

= Vgria " (31)
D) D)
B Vgrid (32)

This transformation facilitates the linearization of Eq (20)
and Eq (21) related to energy consumption on different types
of roads,

For highway:

Ecom (i) =
D(i)

(ath;rid + bawVgria + ChwVria + dhw) v (33)
grid

For urban areas:
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Ecom(i) =
D(i)
(aung3rid + bypVgria + CunVgria + dyp) A (34)
grid

The nonlinearities in Eq (12) concerning SOC are addressed
similarly. We discretize the SOC variables, resulting in,

SOCgrid =
[SOCp1in, SOCpin + 1%, +++,SOCppar — 1%, S0C 10, ] (35)

where SOCg,.;q represents the discretized SOC range of the
EV. The dimension of the SOC grid vector is ng,,

Ngoc = |SOCgrid | (36)

We employ two binary arrays, Siegpe; and Sgpripe i, With a
size 1 X ng,. to approximate SOCypqye (i) and SOCypripe ().
In the representations, S;eqpe; and Sgrpipe; are also one-hot
encoded arrays. These arrays capture SOC deviations within
a 1% interval, ensuring precision while simplifying the
equations. For all i, we have,

Nsoc
Z Slo(wp,i(/‘) =1 (37)
=1
Nsoc
z Sm‘rivo,i(j) =1 (38)
j=1

SOCgrid * Sleave,i < SOC!U(:L'B(i) (39)

SOCgTid * Sarrive,i +1% = SOC('(I')'fL'é’([) (40)
SOCgrl’d *Sarrivei < SOCgrl’d * Sleave,i (4’1)

Subsequently, the function f, can be discretized into a grid,
tenarging gria> With a size 1 X ng,., based on the SOC, 4 as
depicted in Fig. 7. In essence, for every SOC point within the
S§0Cyyiq , there is a one-to-one corresponding point in
tcharging gria- Lhis represents the time spent to charge from
the SOC upon arrival to the departure SOC. Hence, we can
establish,

fc(SOCmavv(i)) = tcharging grid * Sleave,i (42)

fc(SOCm‘mm(i)) = Ccharging grid " Sarrive,i (43)
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Fig. 7. The continuous and discrete cumulative charging vs.

SOC.

In addition, the binary variable, C(i), which indicates
whether the EV is set to be charged at the station, can be
determinized as follows,

SOCqria " Sicave,; = SO0Cgria * Sarrive,i
100%

c@) = (44)

Furthermore, Eq (12) can be linearized and rewritten as,

techarging @ =

tcharging grid * (Sleavm‘ - Sm'riw,z') + toverneaa(!)  (45)

With the conversion of all nonlinear equations into their
linear counterparts, our optimization problem effectively
translates into a classic MILP problem and lets a standard
MILP solver be able to solve it efficiently. This adaptation
allows for efficient problem-solving and paves the way for
real-time optimization capabilities, which are vital for our
proposed system's effectiveness. The computational
efficiency and the impact of partition intervals on
computational time and system performance are thoroughly
analyzed in Section II1.B.3).

III. RESULTS AND DISCUSSION

To test our proposed system, we consider the challenging
backdrop of the Cannonball Run. This cross-country race
serves as our demonstration case, providing a rigorous
testbed for our model. In the III.A System Setup subsection,
details of the Cannonball Run are presented alongside our
model assumptions, vehicle parameters, and other crucial
factors. Later, in the III.B Performance subsection, we detail
our primary findings, delve into the nuances of nonlinear
charging and its influence on routing, and discuss the impact
of basic routing path partition intervals on decision-making.

A. System setup:

Cannonball Run Overview: Originating as a clandestine
coast-to-coast car race from New York City to Los Angeles,
the Cannonball Run offers an exemplary setting for our
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system's validation. Spanning approximately 2,800 miles, the
race presents diverse challenges, making it an apt
demonstration case. Central to the Cannonball Run ethos is
minimizing travel time, prompting racers to disregard legal
speed constraints. Maximizing speed is the key strategy for
internal combustion engine vehicles. However, the strategy
is much more nuanced and interesting for EVs. Increasing
speed decreases travel time linearly but increases power
consumption cubically. Due to the limited driving range of
EVs, this means more necessary charging stops. Meanwhile,
the nonlinear charging curve characteristics suggest that
charging to a high SOC, such as 90%, may not be time
optimal. Finally, planning the route and charging stop
locations is a challenge.

Record-Breaking Run (Benchmark): In a groundbreaking
achievement, Ryan Levenson and Josh Allan piloted a Tesla
Model S, setting a new EV Cannonball record with a
completion time of 42 hours and 17 minutes. The top speed
of the challengers is reported to reach 155 mph [46]. This
record will be the benchmark for our proposed system, and it
accentuates the intense character of the race and the
efficiencies attainable through optimized EV long-distance
routing.

Assumptions and scenario settings: Our simulation hinges

on these specific foundational settings:

1. The EV departs with a fully charged battery: SOCy;qrr =
100%.

2. The SOC at the destination must be greater than 5%:
S0Csing = 5%

3. To avert overcharging or excessive depletion, the SOC
boundaries are set at: SOCsqge min = 10% and
SO0Cstage max = 90%.

4. With a Tesla vehicle and its charging network, the extra
time spent on parking, setting up chargers, and initiating
a charge session is approximately 1 minute: Timegy, =
1 min.

5. The energy required for battery preconditioning is about
1 kWh: E,,, = 1 kWh. The estimated 1 kWh energy
consumption, based on our test data, is used for
demonstration purposes only. Considering that
preconditioning energy consumption is influenced by
ambient temperature [47], integrating predicted
temperature data as a parameter for each charging point
could offer a more accurate approximation.

6. Though we do not condone it in practice, we disregard
the legal speed limits in simulation for a fair comparison
to the benchmark. The max speeds are set at 130 mph for
highways and 70 mph for urban areas: Vy,,, 0 = 130
mph and V,,; mar = 70 mph.

7. The departure time is 10 PM in New York City to avoid
traffic.

8. All the Tesla V3 superchargers can supply a maximum
of 250 kW of charging power.

9. The traffic data fetched from Google Maps API is
presumed to portray actual traffic conditions accurately.

10. The model, rooted in Tesla Model S parameters,
effectively gauges average energy consumption based on
set average speeds and road classifications.

Vehicle Model and Parameters: Our simulation adopts the
Tesla Model S as the EV archetype. Relevant parameters
are elaborated in the following table.

TABLE L.
Parameters of a Tesla Model S [48] [49]

Parameters Values
Air drag Coefficient (Cd) 0.2
Rolling Resistance Coefficient (f) 2.34 m?
Mass (m) 2934 kg
Motor Efficiency () 85%
Transmission Efficiency (n) 95%
Regenerative Efficiency (ng) 65%
Battery capacity (Cp) 100 kWh
Battery State of Health (SOH) 100%

B. Performance:

1) Main results:

In the Cannonball Run challenge, vehicles commence their
journey from the Red Ball Garage in New York City and
culminate at the Portofino Hotel in Redondo Beach, near Los
Angeles, without any prescribed intermediary stops. Given a
set departure time of 10:00 PM local time, and specified start
and end locations, our system uses the Google Maps API to
derive an initial routing path, illustrated in Fig. 8. In this
representation, the green and red markers denote the starting
and ending points respectively, while the blue trajectory
marks the planned route.
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To facilitate our optimization, we segmented this route into
intervals of approximately 30 miles, resulting in a series of
pass-through points, depicted as dark blue dots in Fig. 9.
Leveraging the methodology elaborated in Section II1.B, we
then identified nearby charging stations for each pass-
through point, striving for minimal detour distances. These
selected charging stations are highlighted using blue markers
in Fig. 9. Consequently, the detour distances for the entire
trip ranged from a minimum of 0.005 miles to a maximum of
49.5 miles, with an average of 6.9 miles. Furthermore, we
extracted essential data such as the actual detour distances
required to access each charging station, along with the
distance, road types, and estimated travel times between each
sequential pair of pass-through points. This data is then
employed for optimizing charging schedules and travel
speeds.
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Fig. 9. All the pass-through points and nearby charging stations with minimized detour distances.

ALK
Starting location

Upon executing the optimization using the provided data and
models, we determined the optimal driving speed for each
segment between junction pass-through points. These
findings are depicted in Fig. 10. Notably, speeds selected for
the initial and ending two segments fall below 70 mph. The
rationale behind this is their classification as urban zones
based on the available road data, where speed limits are
capped at 70 mph. Conversely, for the intervening segments,
chosen speeds oscillate between 92.87 mph and 130 mph,
which matches the intuition that the optimizer is trying to
minimize total trip time. The fluctuation in driving speed is
not arbitrary but stems from an energy conservation
perspective. Naturally, adopting higher speeds truncates
driving durations, yet increases energy consumption. To
minimize the total travel time, it is imperative to factor in the
time spent on charging. When driving at reduced speeds, the
EV consumes less energy, leading to less frequent need for
charging and thus curtails the total charging time. This
strategy is particularly beneficial when either the detour to a
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charging station is excessively lengthy or when the charging
rate within a specific SOC range is subdued.

The energy consumption across each segment is depicted in
Fig. 11. Notably, energy consumption does not consistently
correlate with the driving speed of a segment. This observed
variance is attributed to the figure reflecting total energy
consumption, which encompasses energy expended due to
battery preconditioning and detours made for charging. As
such, segments requiring charging inherently register
elevated energy consumption. On average, the segments
manifest an energy consumption of approximately 25.56
kWh. Using the Tesla Model S as a benchmark, with its 100
kWh battery capacity, this data suggests that the EV would
expend around 25.56% of its battery capacity to traverse a
30-mile segment under the optimized strategy. Note that the
energy efficiency is seemingly low (853 Wh/mile),
particularly due to the vehicle’s ultra-high speed along
segments. The efficiency will obviously improve when real-
world speed limits are applied.
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Fig. 11. Total energy consumption for the point-to-point
segments with roughly 30-mile intervals.

The arrive and leave SOC of the EV at each pass-through
point are presented in Fig. 12. Here, we can see that the SOC
at the starting point is 100% SOC following our initial
constraint. By the journey's end, the SOC dwindles to 5.16%,
strategically positioned just above the lower threshold of our
terminal stage constraint, such that no charging time is waste

for unused energy. A closer inspection of Fig. 12 reveals
points where the arrival and departure SOCs are equal. This
indicates that the EV bypassed charging at these points. Upon
arrival to the stations, the SOCs are all near 10%, which is
the lower band of the SOC in the stage constraints. On the
other hand, the average departure SOC is about 37.7%. This
observation reflects that the system is trying to capture the
max charging power where the curve is at the highest, as seen
in Fig. 5.
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Fig. 12. Arrive and leave SOC crossing pass-through points.

While the arrival SOC at each point is almost identical, a
higher leave SOC leads to a longer charging time, as shown
in Fig. 13. Here, we use the term "pure charging time" to
represent the charging time just used to charge the EV, and
the word "charging added time" to represent the charging
time involved with the detour time and extra duration
demanded by charging activities. Variations in these times
are influenced by the detour lengths to each chosen charging
station. The shortest detour to a proximate charging station
per segment is plotted in Fig. 14. Some segments, notably
those associated with points 13 and 55, entail notably lengthy
detours. Nevertheless, our algorithm adeptly circumvents
these conditions by strategically bypassing these zones rather
than unnecessarily charging the EV at these stations.

As a result, the total travel time using our proposed system is
37.61 hours, which shaves off roughly 5 hours compared to
the EV record set in 2021 — an improvement of 11%. It's
worth noting that the 37.61 hours of travel time we achieved,
as well as the EV record set in 2021, resulted from
exceptionally high driving speeds that violate traffic
regulations. When we restrict the vehicle to legally
permissible speed limits for every road segment of the entire
trip, the fastest travel time our system can achieve is 46 hours
and 11 mins—just 3 hour and 54 minutes slower than the
Cannonball Run EV record.
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2) Impacts of the nonlinear charging power profile:

This subsection is dedicated to illustrating the importance of
the nonlinear charging power profile in the optimization of
EV route planning and charge scheduling. For comparative
purposes, we incorporate a constant charging power profile
into our optimization framework. The constant power is set
at 159.9 kW, representative of the average charging power
observed in Fig. 5, to facilitate a meaningful benchmark
comparison.

SOC [%]

0 10 20 30 40 50 60 70 80
Point

Fig. 15. Arrive and leave SOC crossing pass-through points
while a constant charging power profile is used.

Fig. 15 illustrates the leave and arrive SOC patterns resulting
from this optimization, which employs the constant charging
power profile. One striking feature of these results is the
consistent clustering of the departure SOC around the 90%
mark, coinciding with the upper limit set within our stage
constraints. Notably, using the constant charging power
profile prescribes a total of 13 charging stops for the EV, a
significant reduction compared to the 48 instances produced
by the optimization result using the nonlinear charging power
profile, as presented in Fig. 12. Besides, the total traveling
time is 40.43 hours, which is 2.82 hours longer than the
results we obtained using the nonlinear charging profile.

We can see fewer charging stops and longer total travel time
under the constant power profile. The result is due to the lack
of specialized SOC zones, which offer varying charging rates
in a nonlinear charging profile. Under this simplified
assumption, the strategy defaults to maximizing the charge at
each opportunity, aiming to extend the range between stops,
given the added time and energy expenditure necessitated by
detours to charging stations and battery preconditioning.
However, this overlooks the nuanced efficiencies of real-
world charging, where charging to full capacity at every stop
is neither practical nor efficient. This contrasts with the
nonlinear approach, where the charging strategy is tailored to
exploit faster charging rates at lower SOCs and avoid
inefficiencies at higher SOCs, mirroring actual EV charging
behavior and leading to a more efficient journey.

3) Impact of basic routing path partition intervals:
This subsection analyzes the sensitivity of the route partition
intervals on overall system performance. We assessed
intervals ranging from 10 to 80 miles.

Fig. 16 reveals a clear trend: shorter partition intervals
correspond to reduced overall travel times. Specifically, a 10-
mile partition yields a travel time of just 36.02 hours. In stark
contrast, an 80-mile interval closely mirrors the benchmark
time of approximately 42.6 hours.

43

=o— Total travel time >
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Partition interval [mile]
Fig. 16. Partition interval vs. Total travel time.

This phenomenon can be attributed to several key factors:
1. Higher charging power in low SOC range: Shorter
partition intervals permit EVs to depart charging stations
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with lower SOC levels without the concern of depleting
the battery before the subsequent charging point. As Fig.
17 illustrates, EVs with partition intervals ranging from
10 to 30 miles predominantly remain within the SOC
bracket that facilitates rapid charging.

2. Higher average driving speed: Increased charging
opportunities empower the EV to maintain higher speeds,
even when these speeds demand increased energy
consumption. The upper subplot in Fig. 18 indicates that
a smaller partition interval directly translates to a higher
average trip speed. The optimization logic leans toward
charging the EV if the additional charging time, induced
by elevated energy usage, is less than time savings from
swifter driving.

3. Shorter total detour distances: The lower subplot in
Fig. 18 suggests that shorter intervals yield reduced
aggregate detour distances when charging is required.
Shorter partition intervals provide more charging
stations for selection. With the enlarged solution space,
the system can deftly steer the EV clear of stations
demanding extensive detours. Conversely, when choices
are constricted and charging is imperative to prevent
battery depletion, the system's flexibility is
compromised. It is worth noting that the Haversine
calculations have higher accuracy over shorter spans and
on more linear roadways. Extended intervals could
inadvertently underestimate detour distances and lead to
suboptimal station selections.
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Fig. 17. Partition interval vs. Average leave and arrive SOC
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However, choosing the smallest partition interval is not
without some costs. As the upper subplot in Fig. 19 illustrates,
the computation times increase exponentially with
decreasing intervals. The surge in decision variables,
especially binary ones, boosts the computational burden,
especially when employing MILP for problem-solving.
Further, the proliferation of pass-through points and charging
stations triggers an increased need for Google Maps API
queries, thereby elevating the associated monetary costs.
Given the estimated cost of the Google Maps API at $5 per
1,000 requests, the costs across varying partition intervals are
depicted in the lower subplot in Fig. 19.

As a result, we selected a 30-mile partition interval for the
main results to balance performance, accuracy, and cost. This
decision adeptly balances travel time optimization,
computational efficiency, and the costs tied to API queries.
However, for racing purposes, where costs aren't a primary
concern, the 10-mile partition interval may be the most
favorable choice, yielding the shortest total travel time of
36.02 hours.
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Fig. 19. Partition interval vs. Total computational time and
total monetary cost of using Google Maps API.
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IV. CONCLUSION

In this work, our primary goal is to understand the nature and
develop strategies for minimizing total travel time in long-
distance EV driving. We develop a comprehensive
framework that synergizes real-time V2C interactions, route
data processing, energy consumption modeling, and a novel
charging time prediction model. Notably, our charging time
model adeptly accommodates various nonlinear charging
profiles. By transforming the optimization challenge into a
MILP framework, our system achieves low computational
cost, facilitating real-time application. This framework
enabled us to tackle crucial questions effectively: How fast
should we drive? When and where should we charge our EV?
And to what SOC level should we charge at these points?

As a result, our proposed system not only outperformed
existing real-world records for EVs set in the Cannonball
Challenge by 11% but also underscored the critical impact of
nonlinear charging profiles on route optimization. This
comparison between strategies derived from nonlinear versus
constant charging profiles demonstrates the necessity of
accounting for nonlinear charging dynamics. Importantly,
our framework is adaptable to a wide range of applications
beyond competitive scenarios like the Cannonball Challenge.
Its potential extends from personal road trips to commercial
logistics, including long-haul trucking. Furthermore, the
approach is particularly relevant to the evolving field of
autonomous driving [50], transitioning from traditional
human-centric constraints [51] to more sophisticated,
vehicle-centric operational paradigms.

In future studies, by leveraging V2X and the Open Charge
Point Interface (OCPI) protocol, we can incorporate a
broader set of real-time data and integrate more factors, such
as weather conditions and waiting times at charging stations,
to enhance system performance. Besides, exploring battery
degradation minimization as part of a multi-objective
optimization problem presents a valuable direction.
Additionally, adapting the proposed system for broader
logistics fleet management also presents a promising avenue
for exploration.
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