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Abstract— Stochastic computing (SC) is an unconventional 
approach for performing computation by logic circuits, where 
data is represented and processed in the form of pseudorandom 
bit-streams. Due to its main advantages, i.e., low-area hardware 
and fault tolerance, SC is emerging in several applications 
including image processing and neural networks. The design 
process for SC, however, is challenging. This paper introduces 
FUNSC, a design automation software tool, which efficiently 
generates SC circuits for computing mathematical functions. The 
tool features a user-friendly graphical user interface (GUI) that 
accepts input functions in their mathematical expressions and 
allows users to adjust the hardware complexity versus 
computational accuracy trade-off. To generate SC circuits for a 
desired function, FUNSC employs a two-step process: first, it 
approximates the function using a polynomial derived from 
Maclaurin series expansion, and then it applies Horner’s Rule or 
Double-NAND Expansion rearrangements to map the polynomial 
to an SC circuit and displays generated schematic in the GUI. Our 
results demonstrate that the generated SC circuits achieve low 
error rates while successfully computing eligible functions.  

Keywords— Stochastic computing, design automation software 
tool, Horner’s Rule, Double-NAND expansion 

I. INTRODUCTION 
Stochastic computing (SC) is an alternative to traditional 

binary computation where real values are represented as 
random (pseudorandom) bit-streams [1,2]. The value for a 
variable is encoded by the percentage of 1s in its representing 
bit stream. Computation under this framework provides 
advantages such as: 1) implementing certain computations with 
much lower cost circuits than their conventional counterparts, 
2) built-in fault tolerance, and 3) dynamic configuration of 
accuracy by adjusting the length of the bit-streams. Due to these 
advantages, SC has been considered as an alternative to binary 
computation for various applications such as neural networks 
[3,4], image processing [5], digital filters [6], and control 
systems [7]. 

Multiplication is the most common computation to 
demonstrate the area efficiency of SC circuits. While a 
conventional 8-bit binary multiplier requires more than 100 
logic gates, a single 2-input AND gate can implement 
multiplication in the SC context.  As depicted in Fig. 1(a), when 
the two random bit-streams 𝑆𝑆𝐴𝐴 and 𝑆𝑆𝐵𝐵 are fed as inputs into the 
AND gate and the bit-stream 𝑆𝑆𝐶𝐶is produced as output, a bit of 
𝑆𝑆𝐶𝐶  is 1 if and only if the corresponding bits in 𝑆𝑆𝐴𝐴 and 𝑆𝑆𝐵𝐵 are also 
1. Thus, the probability of a 1 occurring in 𝑆𝑆𝐶𝐶  is equal to the 

multiplication of the probabilities of 1’s occurring in 𝑆𝑆𝐴𝐴 and 𝑆𝑆𝐵𝐵, 
i.e., 𝑝𝑝𝐶𝐶 = 𝑝𝑝𝐴𝐴 × 𝑝𝑝𝐵𝐵  provided 𝑆𝑆𝐴𝐴  and 𝑆𝑆𝐵𝐵  are not correlated. For 
the example shown in Fig. 1(a), since 𝑝𝑝𝐴𝐴 = 0.5 and 𝑝𝑝𝐵𝐵 = 0.8, 
for the output 𝑝𝑝𝐶𝐶 = 0.4. 

Similarly, as shown in Fig. 1(b), a NAND gate computes 
one minus the multiplication of its inputs, i.e., 𝑝𝑝𝐶𝐶 = 1 −
(𝑝𝑝𝐴𝐴 × 𝑝𝑝𝐵𝐵). For the example shown in Fig. 1(b), since 𝑝𝑝𝐴𝐴 = 0.5 
and 𝑝𝑝𝐵𝐵 = 0.8, the NAND’s output calculates 𝑝𝑝𝐶𝐶 = 1 − (0.5 ×
0.8) = 0.6. 

 Because of the benefits and applications of SC, a number 
of prior works have developed systematic design methods for 
SC circuits targeting particular class of functions or circuit 
properties. Reference [8] is the first attempt at the systematic 
synthesis of SC circuits for the computation of mathematical 
functions. The approach, which was subsequently expanded 
upon in [9] as ReSC, generates SC circuits that rely on Bernstein 
polynomials. However, functions which yield either 0 or 1 
within the open interval (0,1) are not suitable for this method. 
As a different approach, STRAUSS [10] uses spectral 
transforms for designing SC circuits for the computation of 
mathematical functions. This technique is only applicable for 
functions with elements of the Fourier transform within the unit 
interval and needs external polynomial fitting tools to 
approximate other functions. In addition to combinational 
circuits, there are proposed techniques [11,12] for the design of 
sequential SC circuits. These techniques can design sequential 
SC circuits specifically limited to the computation of rational 
functions. Reference [13] introduces a method based on program 
synthesis. This approach involves iterative exploration of a high-
dimensional design space, which imposes a limitation on 
synthesizing SC circuits with a small number of gates.  

In this paper, we present FUNSC, an implemented design 
automation tool that generates SC circuits for mathematical 
function computation. FUNSC offers a user-friendly graphical 
user interface (GUI) where users can input information for their 
desired function. The tool then automatically generates and 
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Fig 1.  In the SC context:  (a) a simple AND gate computes multiplication, 
i.e., 𝑝𝑝𝐶𝐶 = 𝑝𝑝𝐴𝐴 × 𝑝𝑝𝐵𝐵 , (b) a simple NAND gate computes one minus 
multiplication, i.e., 𝑝𝑝𝐶𝐶 = 1− (𝑝𝑝𝐴𝐴 × 𝑝𝑝𝐵𝐵). 
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visually presents the schematic of an SC circuit capable of 
computing the input function to the specified accuracy level. 

 This paper is organized as follows. In the next section, 
Section II, we briefly explain two rearrangement methods used 
in the algorithm of our software. In Section III, we introduce 
the algorithm, technical aspects, and usage of FUNSC. In 
Section IV, we present results used for the evaluation of the 
software. Finally, we conclude the paper in Section V.  

II. BACKGROUND 
The algorithm of the current version of FUNSC software 

works based on two polynomial rearrangement methods: 
Horner’s Rule [14] and Double-NAND Expansion [15]. 
Therefore, in this section, we introduce these two 
rearrangements before using them in the next section. In the 
following two subsections, we separately explain both methods 
for a general polynomial, 𝑃𝑃(𝑥𝑥), of degree n, represented by its 
power form in (1). 

 
𝑃𝑃(𝑥𝑥) = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎2𝑥𝑥2 + ⋯+ 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛  

 

A. Horner’s Rule 
In mathematics and computer science, Horner’s Rule is 

used for polynomial evaluation[16]. Based on Horner’s Rule,  
𝑃𝑃(𝑥𝑥)  in (1) can be rewritten as:  

 
𝑃𝑃(𝑥𝑥) = 𝑏𝑏0 �1 − 𝑏𝑏1𝑥𝑥 �1 − 𝑏𝑏2𝑥𝑥�… (1 − 𝑏𝑏𝑛𝑛𝑥𝑥)��� 

 
where 𝑏𝑏0 = 𝑎𝑎0  and 𝑏𝑏𝑖𝑖 = − 𝑎𝑎𝑖𝑖

𝑎𝑎𝑖𝑖−1
 for 0 < 𝑖𝑖 ≤ 𝑛𝑛 . To better 

demonstrate this rearrangement, an example polynomial, 
𝑃𝑃1(𝑥𝑥) = 2

3
− 1

2
𝑥𝑥 + 1

4
𝑥𝑥2, and corresponding rearrangement are 

shown in Fig. 2. 
 

B. Double-NAND Expansion 
The Double-NAND Expansion is another rearrangement 

method for polynomials, first proposed in [15]. Again, consider 
the polynomial, 𝑃𝑃(𝑥𝑥), represented in (1). Based on Double-
NAND Expansion, (1) 𝑃𝑃(𝑥𝑥) can be rewritten as: 

𝑃𝑃(𝑥𝑥) = 1 − 𝑏𝑏0 �1 − 𝑥𝑥 �1 − 𝑏𝑏1�… (1 − 𝑏𝑏𝑛𝑛𝑥𝑥)��� 

where 𝑏𝑏𝑖𝑖 = 1−∑ 𝑎𝑎𝑘𝑘
𝑖𝑖
𝑘𝑘=0

1−∑ 𝑎𝑎𝑘𝑘𝑖𝑖−1
𝑘𝑘=0

 for 0 ≤ 𝑖𝑖 < 𝑛𝑛  and 𝑏𝑏𝑛𝑛 = 𝑎𝑎𝑛𝑛
1−∑ 𝑎𝑎𝑘𝑘𝑛𝑛−1

𝑘𝑘=0
. 

An example polynomial, 𝑃𝑃2(𝑥𝑥) = 4
5

+ 1
15
𝑥𝑥 + 1

10
𝑥𝑥2 , and its 

corresponding rearrangement based on this approach are shown 
in Fig. 3. 

III. FUNSC: THE PROPOSED SOFTWARE 
In this section, we explain the algorithm and technical 

aspects of the FUNSC software for generating SC circuits to 
compute mathematical functions. One should note that, in 
general, only functions that map unit interval [0,1] to itself can 
be implemented by SC circuits. 

A. Algorithm 
As the first step, the algorithm utilizes the Maclaurin Series 

approximation of a function, 𝑓𝑓(𝑥𝑥) , to convert it into a 
polynomial. The Maclaurin Series of 𝑓𝑓(𝑥𝑥) is described in (4). 

𝑓𝑓(𝑥𝑥) = �
𝑓𝑓(𝑛𝑛)(0)
𝑛𝑛!

𝑥𝑥𝑛𝑛
𝑛𝑛

𝑚𝑚=0

 

 
where n is the degree of the approximating polynomial. 

The variable n should be increased if a more accurate 
approximation is needed as this will estimate 𝑓𝑓(𝑥𝑥)  with a 
polynomial with a higher degree. Note that if the desired 
function is a polynomial, it is used directly with no 
approximation. 

Next, the algorithm verifies whether the generated 
polynomial meets requirements for using Horner’s Rule or the 
Double-NAND Expansion rearrangement. The requirements 
depend on the coefficients of the polynomial. For using 
Horner’s rule, the coefficients of the polynomial must alternate 
signs and decrease in magnitude as the power increases. On the 
other hand, for implementing Double-NAND Expansion, all 
coefficients must be positive, and their sum should be less than 
or equal to one. FUNSC selects a specific rearrangement based 
on which set of requirements is satisfied. 

 
  

Fig 2.   Example of Horner’s Rule Rearrangement. 

 

 
  

Fig 3. Example of Double-NAND Expansion rearrangement. 

 

(1) 

(2) 

(3) 

(4) 
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Once the appropriate rearrangements are determined and its 
coefficients are calculated, the corresponding circuit diagram is 
generated. We explain this process by continuing the examples 
discussed in Figs. 2 and 3, with the result presented in Figs. 4(a) 
and 4(b). Note that the process only uses 2-input AND and 
NAND gates with SC equations described in Fig. 1.  

To convert a rearrangement to a circuit diagram, the 
algorithm begins with the innermost parenthesis of a 
rearrangement expression. For the example rearrangement in 
Fig. 2, 𝑃𝑃1(𝑥𝑥) = 2

3
�1 − 3

4
𝑥𝑥 �1 − 1

2
𝑥𝑥�� , the innermost 

parenthesis can be mapped to a NAND gate because its format 
is the same as the equation of the NAND gate presented in Fig. 
1(b), i.e., 1 − 𝑎𝑎 × 𝑏𝑏 , where 𝑎𝑎 = 1

2
 and 𝑏𝑏 = 𝑥𝑥  (which is the 

input variable). This NAND gate is shown as G1 in Fig. 4(a) 
with its inputs connected to 𝑥𝑥 and 1

2
. Gate G1 can now compute 

the value of 1 − 1
2
𝑥𝑥. The next innermost set of parentheses of  

𝑃𝑃1(𝑥𝑥) also is in the format of a NAND gate, with the inputs 
being three values multiplied: 3

4
, 𝑥𝑥, and the output of gate G1. 

As three values are multiplied together, the process involves 
taking two of the inputs and passing them through an 
intermediate AND gate to calculate the product of two of the 
three inputs. As shown in Fig. 4(a), gate G1 inputs into an AND 
gate, G2, with another input of  3

4
. The output of gate G2 is then 

used as an input for gate G3, which is a NAND gate with another 
input value of 𝑥𝑥, resulting in the output of gate G3 being equal 
to the expression 1 − 3

4
𝑥𝑥 �1 − 1

2
𝑥𝑥�. The next innermost set of 

parentheses will complete the computation of 𝑃𝑃1(𝑥𝑥), where the 
equation represented by the output of gate G3 is being 
multiplied by 2

3
. Multiplication is performed by an AND gate, so 

the final gate, G4, will be an AND gate with inputs of 2
3
 and the 

output of gate G3. With this final gate, the output of G4 
represents the computation of 𝑃𝑃1(𝑥𝑥) . As shown with this 
example, the gates cascade into each other to derive an output 
computation. 

Similar to Fig. 2, the rearrangement depicted in Fig. 3 can 
be translated into a SC circuit. Fig. 4(b) shows the circuit and 
how parentheses of 𝑃𝑃2(𝑥𝑥) are mapped to the gates in the circuit. 
In this example, as with most Double-NAND Expansion 
rearrangements, all parentheses have the format of 1 − 𝑎𝑎𝑎𝑎 and 
multiply only two values. As a result, encapsulation and 
cascading become simpler, requiring only NAND gates. The 
exception is when a polynomial comprises terms with 
exclusively even or odd powers of 𝑥𝑥 . In such cases, the 
algorithm employs an AND gate to generate 𝑥𝑥2 , which is 
subsequently utilized to generate other terms. We will 
demonstrate this in a later example using the function of 
𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) − 1.  

B. Technical Aspects and Usage  
The FUNSC software is an open-source software created 

in Python 3, and its source code can be found in the 
corresponding GitHub repository of our lab [17]. As a design 

automation software tool, it has the capability to generate 
circuit diagrams for desired mathematical functions 
automatically, based on the basic information provided by its 
user. 

To utilize the software, it is necessary to have the latest 
versions of LaTeX and Python installed, along with the required 
Python libraries imported: Scipy, NetworkX, MatPlotLib, 
Tkinter, Pathlib, SymPy, Pillow, MPMath, Schemdraw, and 
CairoSVG. 

Once the software is downloaded and unzipped, the user 
can simply run the program by opening the executable file 
(Windows only), or by running the file “~/build/gui.py”. Upon 
execution, the GUI will appear to the user with several fields, 
information boxes, and buttons as shown in Fig. 5. 

To begin using FUNSC, the user is to enter the following 
information that the software will then use in its algorithm to 
generate the computing circuit diagram: 

• A single-variable mathematical function in the blue 
text box in the middle of the GUI. This function must 
be an eligible function and written as a python 
expression: i.e., 𝑒𝑒−𝑥𝑥 is written as 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑥𝑥). 

• The independent variable of the function being used in 
the “Variable,” field. By default, we utilize the 

 

 
 

(a) 
 

 
 

(b) 
  

Fig 4. Mapping of Rearranged Polynomials into a Circuit Diagram: (a) 
Horner’s Rule Example from Fig. 2, (b) Double-NAND Expansion 
Example from Fig. 3. 
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variable "𝑥𝑥”, but it is also possible to use other letters 
as variables. 

• The point at which the function is being computed is 
defined in the “Point Est.,” field. 

• And the degree of polynomial estimation in the 
“Degree,” field. This is equal to the value of 𝑛𝑛, in  (4). 

To enhance user convenience, some of the known supported 
functions are shown as blue buttons on the GUI. Along with 
these supported functions, buttons for numbers and operations 
presented in the bottom right of the GUI, give the appearance 
of a calculator. Users can press these buttons for the selected 
button to appear in the function textbox in the middle of the 
GUI. 

Once the required information is added and ready to be 
submitted, the user can press the “Calculate ->” button as 
shown in Fig. 5 and the FUNSC software will begin running its 
algorithm for converting the function. Once the algorithm has 
finished, the software will populate the screen with the 
generated Maclaurin Series, rearranged estimate, value of the 
function at input point, and circuit diagram. 

If the software cannot approximate a given function, an 
error will appear to the user with the approximated information. 

The algorithm's execution flow involves incorporating 
various libraries and codes. When the user clicks the "Calculate 
->" button, the execution process commences by taking the 
equation being approximated and converting it into a Python 
lambda expression. Subsequently, the Maclaurin Series 
Expansion is determined by implementing (4). To assist this 
implementation, the SciPy library is employed to calculate the 

derivative and factorial used in the summation of (4). Each 
coefficient is stored in a Python dictionary, with the 
corresponding term’s degree assigned as the key for each 
coefficient. 

Once the Maclaurin Series Expansion is determined, the 
algorithm verifies its coefficients pattern to determine which 
rearrangement type fits the expansion. This is where an error 
appears for functions that do not fit any rearrangement type that 
is not currently supported. If the expansion fits a supported 
rearrangement type (currently only Horner’s Rule or Double-
NAND Expansion), the rearrangement is then calculated using 
the conversions to the proper rearrangement. These conversions 
are the ones presented in Equations (2) and (3). Similar to the 
coefficients of Maclaurin Series Expansion, the rearrangement 
coefficients are also calculated and stored in a Python 
dictionary with the key being the polynomial term’s degrees 
assigned to the coefficients. 

After the rearrangement coefficients are determined, they 
are mapped to a circuit diagram using Schemdraw and the 
process explained in Section III.A. The algorithm will take the 
rearrangement type of a function and its calculated coefficients 
to determine the type of gate the coefficient will be input into 
as well as the order. For example, in a Horner’s Rule 
rearrangement, the innermost parentheses will always be a 
NAND gate and outermost gate will change depending on if the 
coefficient 𝑏𝑏0 equals one or another value. The rest of the gates 
between the innermost and outermost gates will alternate 
between AND and NAND gates when conforming to the fan-in 
constraint of two. The code uses this to predict which gate will 

 
Fig 5. FUNSC’s GUI Upon Execution for 𝑒𝑒−𝑥𝑥. 
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be used for each coefficient and then utilizes Schemdraw to 
generate a circuit diagram by adding gates in order. 

Finally, once a circuit diagram is generated by Schemdraw, 
it is exported as an SVG file and then placed on the 
corresponding box of the GUI for the user's viewing. To ensure 
future accessibility, both the Maclaurin Series Expansion and 
the circuit diagram are saved as PNG and SVG files in the 
"~/assets" folder within the software installation directory. 

IV. RESULTS 
We evaluated the performance of SC circuits generated by 

the FUNSC software for various mathematical functions, 
including those listed in the GUI. In this section, we present the 
result for four specific functions: 𝑒𝑒−𝑥𝑥 , 𝑥𝑥

2

10
+ 𝑥𝑥

15
+ 4

5
, tanh (𝑥𝑥), 

and sec(𝑥𝑥) − 1 . The first two functions use Horner’s Rule 
while the next two use Double-NAND Expansion. 

Table I provides a comparison of the Maclaurin Series and 
rearranged polynomials obtained through both theory and the 
FUNSC tool for these functions. The results in Table I 
demonstrate that the outputs from FUNSC align with their 
respective theoretical expressions. However, it is important to 
note that the precision of the coefficients is not exact. The 
FUNSC software employs a precision of 0.0001 (one hundred 
thousandth) for its coefficients, which may explain slight 
differences observed in some coefficients compared to their 
theoretical counterparts. For instance, the coefficient inputted 
into gate G4 for tanh (𝑥𝑥)   should ideally be 0.4, but it is 
presented as 0.3999. Table II illustrates the generated circuit 
diagram with the calculated coefficients for all four example 
functions. 

Table III shows the mean absolute error of the example SC 
circuits obtained from Montecarlo simulation. For each 
function, the error is computed by averaging the absolute 
computational errors when input x changes from 0 to 1 in 0.01 
steps, and the length of bit-streams is 1024 bit. Although the 
error is low, it can be further decreased by increasing the degree 
of approximating McLaurin series or the length of bit-streams. 

 Additionally, for evaluating the computational 
performance of FUNSC for the example circuits, we collected 
the values of functions computed by the circuits at eleven 
equally separated points in the unit interval [0,1]. To visualize 
the computational accuracy of the generated circuits, Fig. 6 
presents a side-by-side representation of the exact values of the 
functions (depicted by the blue line) alongside their computed 
values (represented by the red points). 

TABLE III.  MEAN ABSOLUTE ERROR (MAE) FOR COMPUTING EXAMPLE 
FUNCTIONS USING SC CIRCUITS GENERATED BY FUNSC SOFTWARE. 

Function 𝑒𝑒−𝑥𝑥 tanh(x) 𝑥𝑥2

10
+

𝑥𝑥
15

+
4
5

 sec(x) − 1 

Error 0.0008 0.0140 0. 0040 0.0053 

 

TABLE I.  THEORETICAL VS. GENERATED VALUES OF MACLAURIN SERIES AND REARRANGED POLYNOMIALS FOR FUNSC FUNCTIONS. 

Function Replacement Type Maclaurin Series Polynomial Rearrangement Equation 

𝒆𝒆−𝒙𝒙 Horner’s Expansion 

Theoretical: −
𝑥𝑥5

5! +
𝑥𝑥4

4! −
𝑥𝑥3

3! +
𝑥𝑥2

2! − 𝑥𝑥 + 1 1 − 𝑥𝑥 �1 −
𝑥𝑥
2
�1−

𝑥𝑥
3 �1−

𝑥𝑥
4 �1−

𝑥𝑥
5��

�� 

FUNSC: −0.0083𝑥𝑥5 + 0.0417𝑥𝑥4 − 0.1667𝑥𝑥3 + 0.5𝑥𝑥2 − 𝑥𝑥 + 1.0 1 − 𝑥𝑥 �1− 0.5𝑥𝑥 �1− 0.3333𝑥𝑥�1 − 0.25𝑥𝑥(1− 0.2𝑥𝑥)��� 

𝐭𝐭𝐭𝐭𝐭𝐭 𝐡𝐡(𝒙𝒙) Horner’s Expansion 

Theoretical: −
17𝑥𝑥7

315 +
2𝑥𝑥5

15 −
𝑥𝑥3

3 + 𝑥𝑥 𝑥𝑥 �1 −
𝑥𝑥2

3
�1−

2𝑥𝑥2

5 �1−
17𝑥𝑥2

42 ��� 

FUNSC: −0.0539𝑥𝑥7 + 0.1333𝑥𝑥5 + 0.3333𝑥𝑥3 + 𝑥𝑥 𝑥𝑥 �1 − 0.3333𝑥𝑥2�1− 0.3999𝑥𝑥2(1− 0.4045𝑥𝑥2)�� 

𝒙𝒙𝟐𝟐

𝟏𝟏𝟏𝟏 +
𝒙𝒙
𝟏𝟏𝟏𝟏 +

𝟒𝟒
𝟓𝟓 

Double-NAND 
Expansion 

Theoretical: 𝑥𝑥2

10 +
𝑥𝑥

15 +
4
5 1 −

1
5
�1− 𝑥𝑥 �1−

2
3 �1−

3𝑥𝑥
4 ��� 

FUNSC: 0.1𝑥𝑥2 + 0.0667𝑥𝑥 + 0.8 1− 0.2 �1− 𝑥𝑥�1− 0.6667(1− 0.75𝑥𝑥)�� 

𝐬𝐬𝐬𝐬𝐬𝐬(𝒙𝒙) − 𝟏𝟏 Double-NAND 
Replacement 

Theoretical: 61𝑥𝑥6

720 +
5𝑥𝑥4

24 +
𝑥𝑥2

2  𝑥𝑥2 �1−
1
2
�1− 𝑥𝑥2 �1−

7
12�1 −

61𝑥𝑥2

210 �
��� 

FUNSC: 0.0848𝑥𝑥6 + 0.2084𝑥𝑥4 +  0.5𝑥𝑥2 𝑥𝑥2 �1 − 0.5 �1− 𝑥𝑥2�1− 0.5832(1− 0.2907𝑥𝑥2)��� 

 
TABLE II.  GENERATED CIRCUIT DIAGRAMS FOR FUNSC FUNCTIONS. 
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V. CONCLUSION 
Systematic approaches for synthesis of SC circuits have 

been proposed in prior work. In this paper, we take a step 
further by presenting an implemented design automation 
software tool that generates SC circuits for mathematical 
functions. The software features a user-friendly GUI that allows 
users to specify an input function and adjust the trade-off 
between computational accuracy and hardware complexity of 
the generated circuits. 

The current version of FUNSC supports functions that 
satisfy the introduced requirements of Horner’s Rule and 
Double-NAND Expansion, as specified by their Maclaurin 
Series Expansion.  In our future work, we plan to enhance 
FUNSC by integrating additional synthesis methods into the 
software. This expansion will allow a wider range of functions 
to be eligible for automatic circuit generation. By incorporating 
these new methods, we aim to further improve the capabilities 
and versatility of the software in generating SC circuits for 
various mathematical functions. 
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Fig 6. MATLAB Simulation Results. Theoretical function values (blue line) are compared to computed values (red dots). 
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