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Abstract— Stochastic computing (SC) is an unconventional
approach for performing computation by logic circuits, where
data is represented and processed in the form of pseudorandom
bit-streams. Due to its main advantages, i.e., low-area hardware
and fault tolerance, SC is emerging in several applications
including image processing and neural networks. The design
process for SC, however, is challenging. This paper introduces
FUNSC, a design automation software tool, which efficiently
generates SC circuits for computing mathematical functions. The
tool features a user-friendly graphical user interface (GUI) that
accepts input functions in their mathematical expressions and
allows users to adjust the hardware complexity versus
computational accuracy trade-off. To generate SC circuits for a
desired function, FUNSC employs a two-step process: first, it
approximates the function using a polynomial derived from
Maclaurin series expansion, and then it applies Horner’s Rule or
Double-NAND Expansion rearrangements to map the polynomial
to an SC circuit and displays generated schematic in the GUIL. Our
results demonstrate that the generated SC circuits achieve low
error rates while successfully computing eligible functions.

Keywords— Stochastic computing, design automation software
tool, Horner’s Rule, Double-NAND expansion

[. INTRODUCTION

Stochastic computing (SC) is an alternative to traditional
binary computation where real values are represented as
random (pseudorandom) bit-streams [1,2]. The value for a
variable is encoded by the percentage of s in its representing
bit stream. Computation under this framework provides
advantages such as: 1) implementing certain computations with
much lower cost circuits than their conventional counterparts,
2) built-in fault tolerance, and 3) dynamic configuration of
accuracy by adjusting the length of the bit-streams. Due to these
advantages, SC has been considered as an alternative to binary
computation for various applications such as neural networks
[3,4], image processing [5], digital filters [6], and control
systems [7].

Multiplication is the most common computation to
demonstrate the area efficiency of SC circuits. While a
conventional 8-bit binary multiplier requires more than 100
logic gates, a single 2-input AND gate can implement
multiplication in the SC context. As depicted in Fig. 1(a), when
the two random bit-streams S, and Sg are fed as inputs into the
AND gate and the bit-stream S¢is produced as output, a bit of
S¢ 1s 1 if and only if the corresponding bits in S, and Sy are also
1. Thus, the probability of a 1 occurring in S¢ is equal to the
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Fig 1. In the SC context: (a) a simple AND gate computes multiplication,
i.e., Pc =paXpg, (b) a simple NAND gate computes one minus
multiplication, i.e., pc = 1 — (p4 X pp)-

multiplication of the probabilities of 1’s occurring in S4 and Sp,
i.e.,, pc = pa X pg provided S, and Sy are not correlated. For
the example shown in Fig. 1(a), since p, = 0.5 and pz = 0.8,
for the output p, = 0.4.

Similarly, as shown in Fig. 1(b), a NAND gate computes
one minus the multiplication of its inputs, i.e., p =1 —
(pa X pg). For the example shown in Fig. 1(b), since p, = 0.5
and pg = 0.8, the NAND’s output calculates p, = 1 — (0.5 %
0.8) = 0.6.

Because of the benefits and applications of SC, a number
of prior works have developed systematic design methods for
SC circuits targeting particular class of functions or circuit
properties. Reference [8] is the first attempt at the systematic
synthesis of SC circuits for the computation of mathematical
functions. The approach, which was subsequently expanded
upon in [9] as ReSC, generates SC circuits that rely on Bernstein
polynomials. However, functions which yield either 0 or 1
within the open interval (0,1) are not suitable for this method.
As a different approach, STRAUSS [10] uses spectral
transforms for designing SC circuits for the computation of
mathematical functions. This technique is only applicable for
functions with elements of the Fourier transform within the unit
interval and needs external polynomial fitting tools to
approximate other functions. In addition to combinational
circuits, there are proposed techniques [11,12] for the design of
sequential SC circuits. These techniques can design sequential
SC circuits specifically limited to the computation of rational
functions. Reference [13] introduces a method based on program
synthesis. This approach involves iterative exploration of a high-
dimensional design space, which imposes a limitation on
synthesizing SC circuits with a small number of gates.

In this paper, we present FUNSC, an implemented design
automation tool that generates SC circuits for mathematical
function computation. FUNSC offers a user-friendly graphical
user interface (GUI) where users can input information for their
desired function. The tool then automatically generates and
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visually presents the schematic of an SC circuit capable of
computing the input function to the specified accuracy level.

This paper is organized as follows. In the next section,
Section II, we briefly explain two rearrangement methods used
in the algorithm of our software. In Section III, we introduce
the algorithm, technical aspects, and usage of FUNSC. In
Section IV, we present results used for the evaluation of the
software. Finally, we conclude the paper in Section V.

II. BACKGROUND

The algorithm of the current version of FUNSC software
works based on two polynomial rearrangement methods:
Horner’s Rule [14] and Double-NAND Expansion [15].
Therefore, in this section, we introduce these two
rearrangements before using them in the next section. In the
following two subsections, we separately explain both methods
for a general polynomial, P(x), of degree n, represented by its
power form in (1).

P(x) = ag+ a;x + apx? + -+ a,x" (1)

A. Horner’s Rule

In mathematics and computer science, Horner’s Rule is
used for polynomial evaluation[16]. Based on Horner’s Rule,
P(x) in (1) can be rewritten as:

P(x) = b, (1 —byx (1= byx(.. (1 - bnx)))> 2)

ai

for 0 <i <n. To better

where by = ay and b; = —
aj-1
demonstrate this rearrangement, an example polynomial,
2 1 1 .
Pi(x) = 375Xt sz, and corresponding rearrangement are

shown in Fig. 2.

B. Double-NAND Expansion

The Double-NAND Expansion is another rearrangement
method for polynomials, first proposed in [15]. Again, consider
the polynomial, P(x), represented in (1). Based on Double-
NAND Expansion, (1) P(x) can be rewritten as:

P(x) = 1—b, (1 ~x(1=by( (1~ bnx)))) 3)
1—Z§'{=0ak an

- —a -
1-Yilo ak 1-3720 Gk

An example polynomial, P,(x) = §+ %x + %xz , and its

where b; = for 0<i<nand b, =

corresponding rearrangement based on this approach are shown
in Fig. 3.

III. FUNSC: THE PROPOSED SOFTWARE

In this section, we explain the algorithm and technical
aspects of the FUNSC software for generating SC circuits to
compute mathematical functions. One should note that, in
general, only functions that map unit interval [0,1] to itself can
be implemented by SC circuits.

Example Polynomial:
z2 1 1,
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Fig 2. Example of Horner’s Rule Rearrangement.
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Fig 3. Example of Double-NAND Expansion rearrangement.

A. Algorithm

As the first step, the algorithm utilizes the Maclaurin Series
approximation of a function, f(x), to convert it into a
polynomial. The Maclaurin Series of f(x) is described in (4).

n

™ (4)
Flo) = Z Q) »

n!

m=0

where 7 is the degree of the approximating polynomial.
The variable n should be increased if a more accurate
approximation is needed as this will estimate f(x) with a
polynomial with a higher degree. Note that if the desired
function is a polynomial, it is used directly with no
approximation.

Next, the algorithm verifies whether the generated
polynomial meets requirements for using Horner’s Rule or the
Double-NAND Expansion rearrangement. The requirements
depend on the coefficients of the polynomial. For using
Horner’s rule, the coefficients of the polynomial must alternate
signs and decrease in magnitude as the power increases. On the
other hand, for implementing Double-NAND Expansion, all
coefficients must be positive, and their sum should be less than
or equal to one. FUNSC selects a specific rearrangement based
on which set of requirements is satisfied.
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Once the appropriate rearrangements are determined and its
coefficients are calculated, the corresponding circuit diagram is
generated. We explain this process by continuing the examples
discussed in Figs. 2 and 3, with the result presented in Figs. 4(a)
and 4(b). Note that the process only uses 2-input AND and
NAND gates with SC equations described in Fig. 1.

To convert a rearrangement to a circuit diagram, the
algorithm begins with the innermost parenthesis of a
rearrangement expression. For the example rearrangement in

Fig. 2, Pi(x)= 3(1 — Zx (1 - %x)) , the innermost

parenthesis can be mapped to a NAND gate because its format
is the same as the equation of the NAND gate presented in Fig.

1(b), i.e., 1 —a X b, where a =% and b = x (which is the
input variable). This NAND gate is shown as G1 in Fig. 4(a)
with its inputs connected to x and % Gate G1 can now compute

the value of 1 — %x. The next innermost set of parentheses of
P;(x) also is in the format of a NAND gate, with the inputs
being three values multiplied: %,x, and the output of gate G1.

As three values are multiplied together, the process involves
taking two of the inputs and passing them through an
intermediate AND gate to calculate the product of two of the
three inputs. As shown in Fig. 4(a), gate G1 inputs into an AND

gate, G2, with another input of Z. The output of gate G2 is then

used as an input for gate G3, which is a NAND gate with another
input value of x, resulting in the output of gate G3 being equal

. 3 1 .
to the expression 1 — 2 (1 - Ex). The next innermost set of

parentheses will complete the computation of P; (x), where the
equation represented by the output of gate G3 is being

multiplied by 2 Multiplication is performed by an AND gate, so

the final gate, G4, will be an AND gate with inputs of 2 and the

output of gate G3. With this final gate, the output of G4
represents the computation of P;(x). As shown with this
example, the gates cascade into each other to derive an output
computation.

Similar to Fig. 2, the rearrangement depicted in Fig. 3 can
be translated into a SC circuit. Fig. 4(b) shows the circuit and
how parentheses of P, (x) are mapped to the gates in the circuit.
In this example, as with most Double-NAND Expansion
rearrangements, all parentheses have the format of 1 — ab and
multiply only two values. As a result, encapsulation and
cascading become simpler, requiring only NAND gates. The
exception is when a polynomial comprises terms with
exclusively even or odd powers of x. In such cases, the
algorithm employs an AND gate to generate x?, which is
subsequently utilized to generate other terms. We will
demonstrate this in a later example using the function of
sec(x) — 1.

B. Technical Aspects and Usage

The FUNSC software is an open-source software created
in Python 3, and its source code can be found in the
corresponding GitHub repository of our lab [17]. As a design

3
a= Z'b =G1
G2 — AND (M-AND)

a=g.b=x

=2 b=0G1
a=gzb=

G2 - NAND (M-NAND)
—T

P00 = 1—%<1—x(1‘§<1_%x))>

[
G1— NAND (M-NAND)

a=g.b=x

(b)

Fig 4. Mapping of Rearranged Polynomials into a Circuit Diagram: (a)
Horner’s Rule Example from Fig. 2, (b) Double-NAND Expansion
Example from Fig. 3.

automation software tool, it has the capability to generate
circuit diagrams for desired mathematical functions
automatically, based on the basic information provided by its
user.

To utilize the software, it is necessary to have the latest
versions of LaTeX and Python installed, along with the required
Python libraries imported: Scipy, NetworkX, MatPlotLib,
Tkinter, Pathlib, SymPy, Pillow, MPMath, Schemdraw, and
CairoSVG.

Once the software is downloaded and unzipped, the user
can simply run the program by opening the executable file
(Windows only), or by running the file “~/build/gui.py”. Upon
execution, the GUI will appear to the user with several fields,
information boxes, and buttons as shown in Fig. 5.

To begin using FUNSC, the user is to enter the following
information that the software will then use in its algorithm to
generate the computing circuit diagram:

e A single-variable mathematical function in the blue
text box in the middle of the GUI. This function must
be an eligible function and written as a python
expression: i.e., e ¥ is written as exp (—x).

e The independent variable of the function being used in
the “Variable,” field. By default, we utilize the
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Fig 5. FUNSC’s GUI Upon Execution for e™*.

variable "x”, but it is also possible to use other letters
as variables.

e The point at which the function is being computed is
defined in the “Point Est.,” field.

e And the degree of polynomial estimation in the
“Degree,” field. This is equal to the value of n, in (4).

To enhance user convenience, some of the known supported
functions are shown as blue buttons on the GUI. Along with
these supported functions, buttons for numbers and operations
presented in the bottom right of the GUI, give the appearance
of a calculator. Users can press these buttons for the selected
button to appear in the function textbox in the middle of the
GUL

Once the required information is added and ready to be
submitted, the user can press the “Calculate ->” button as
shown in Fig. 5 and the FUNSC software will begin running its
algorithm for converting the function. Once the algorithm has
finished, the software will populate the screen with the
generated Maclaurin Series, rearranged estimate, value of the
function at input point, and circuit diagram.

If the software cannot approximate a given function, an
error will appear to the user with the approximated information.

The algorithm's execution flow involves incorporating
various libraries and codes. When the user clicks the "Calculate
->" button, the execution process commences by taking the
equation being approximated and converting it into a Python
lambda expression. Subsequently, the Maclaurin Series
Expansion is determined by implementing (4). To assist this
implementation, the SciPy library is employed to calculate the

derivative and factorial used in the summation of (4). Each
coefficient is stored in a Python dictionary, with the
corresponding term’s degree assigned as the key for each
coefficient.

Once the Maclaurin Series Expansion is determined, the
algorithm verifies its coefficients pattern to determine which
rearrangement type fits the expansion. This is where an error
appears for functions that do not fit any rearrangement type that
is not currently supported. If the expansion fits a supported
rearrangement type (currently only Horner’s Rule or Double-
NAND Expansion), the rearrangement is then calculated using
the conversions to the proper rearrangement. These conversions
are the ones presented in Equations (2) and (3). Similar to the
coefficients of Maclaurin Series Expansion, the rearrangement
coefficients are also calculated and stored in a Python
dictionary with the key being the polynomial term’s degrees
assigned to the coefficients.

After the rearrangement coefficients are determined, they
are mapped to a circuit diagram using Schemdraw and the
process explained in Section III.A. The algorithm will take the
rearrangement type of a function and its calculated coefficients
to determine the type of gate the coefficient will be input into
as well as the order. For example, in a Horner’s Rule
rearrangement, the innermost parentheses will always be a
NAND gate and outermost gate will change depending on if the
coefficient by equals one or another value. The rest of the gates
between the innermost and outermost gates will alternate
between AND and NAND gates when conforming to the fan-in
constraint of two. The code uses this to predict which gate will
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TABLE L.

THEORETICAL VS. GENERATED VALUES OF MACLAURIN SERIES AND REARRANGED POLYNOMIALS FOR FUNSC FUNCTIONS.

Function Replacement Type Maclaurin Series Polynomial Rearrangement Equation
- x5 x*t X x x x x
Theoretical: _§+E_i+__x+1 1_x<1_5<1_§(1_z(1_§)>>>
e™* Horner’s Expansion
FUNSC: —0.0083x° + 0.0417x* — 0.1667x> + 0.5x2 — x + 1.0 1-x (1 —0.5x (1 —0.3333x(1 — 0.25x(1 — 0.2x))))
17x7  2x5 x? 2x2< 17x2>
Theoretical: - - x|1-——(1-——(1-
35 15 3t ( 3 ( 5 42
tanh(x) Horner’s Expansion
FUNSC: —0.0539x7 + 0.1333x° + 0.3333x° + x x (1 —0.3333x%(1 - 0.3999x2(1 — 0.4045x2)))
. x*  x 1 2 3x
Theoretical: 4= 1—§ 1-x 1—5(1—7)
¥ x4 Double-NAND 10 155
10 + 15 + 5 Expansion
FUNSC: 0.1x% + 0.0667x + 0.8 1-02(1-x(1-0.6667(1 - 0.75x)) )
6 4 1 7 61x?
Theoretical: &.;_Si_'__ x| 1—=|1-—x2 (1 __(1 __X>>
-1 Double-NAND 720 © 24 2 12 210
seclx Replacement
FUNSC: 0.0848x° + 0.2084x* + 0.5x7 x? (1 -05(1-x°(1-05832(1 - 0.2907x2))))

be used for each coefficient and then utilizes Schemdraw to
generate a circuit diagram by adding gates in order.

Finally, once a circuit diagram is generated by Schemdraw,
it is exported as an SVG file and then placed on the
corresponding box of the GUI for the user's viewing. To ensure
future accessibility, both the Maclaurin Series Expansion and
the circuit diagram are saved as PNG and SVG files in the
"~/assets" folder within the software installation directory.

IV. RESULTS

We evaluated the performance of SC circuits generated by
the FUNSC software for various mathematical functions,
including those listed in the GUI. In this section, we present the

2
result for four specific functions: e ™, :—0 + % + g, tanh (x),

and sec(x) — 1. The first two functions use Horner’s Rule
while the next two use Double-NAND Expansion.

Table I provides a comparison of the Maclaurin Series and
rearranged polynomials obtained through both theory and the
FUNSC tool for these functions. The results in Table I
demonstrate that the outputs from FUNSC align with their
respective theoretical expressions. However, it is important to
note that the precision of the coefficients is not exact. The
FUNSC software employs a precision of 0.0001 (one hundred
thousandth) for its coefficients, which may explain slight
differences observed in some coefficients compared to their
theoretical counterparts. For instance, the coefficient inputted
into gate G4 for tanh (x) should ideally be 0.4, but it is
presented as 0.3999. Table II illustrates the generated circuit
diagram with the calculated coefficients for all four example
functions.

Table III shows the mean absolute error of the example SC
circuits obtained from Montecarlo simulation. For each
function, the error is computed by averaging the absolute
computational errors when input x changes from 0 to 1 in 0.01
steps, and the length of bit-streams is 1024 bit. Although the
error is low, it can be further decreased by increasing the degree
of approximating McLaurin series or the length of bit-streams.

TABLE II. GENERATED CIRCUIT DIAGRAMS FOR FUNSC FUNCTIONS.

Function Circuit Diagram

0.25 0.3333 0.5

0.3999 0.3333

0.4045
tan h(x) x -_ ' ' )

2 x4 0.6667 02
To + ' + 3 073 . .. . fix)

0.5832 0.5

s_ei(x) x 7 B; B; B; B; 0

TABLE III. MEAN ABSOLUTE ERROR (MAE) FOR COMPUTING EXAMPLE
FUNCTIONS USING SC CIRCUITS GENERATED BY FUNSC SOFTWARE.

2
Functi - tanh L x -1
unction e anh (x) 0 + = + : sec(x)
Error 0.0008 0.0140 0. 0040 0.0053
Additionally, for evaluating the computational

performance of FUNSC for the example circuits, we collected
the values of functions computed by the circuits at eleven
equally separated points in the unit interval [0,1]. To visualize
the computational accuracy of the generated circuits, Fig. 6
presents a side-by-side representation of the exact values of the
functions (depicted by the blue line) alongside their computed
values (represented by the red points).
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Fig 6. MATLAB Simulation Results. Theoretical function values (blue line) are compared to computed values (red dots).

V. CONCLUSION

Systematic approaches for synthesis of SC circuits have
been proposed in prior work. In this paper, we take a step
further by presenting an implemented design automation
software tool that generates SC circuits for mathematical
functions. The software features a user-friendly GUI that allows
users to specify an input function and adjust the trade-off
between computational accuracy and hardware complexity of
the generated circuits.

The current version of FUNSC supports functions that
satisfy the introduced requirements of Horner’s Rule and
Double-NAND Expansion, as specified by their Maclaurin
Series Expansion. In our future work, we plan to enhance
FUNSC by integrating additional synthesis methods into the
software. This expansion will allow a wider range of functions
to be eligible for automatic circuit generation. By incorporating
these new methods, we aim to further improve the capabilities
and versatility of the software in generating SC circuits for
various mathematical functions.
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