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A B S T R A C T

Lithium-ion batteries have found their way into myriad sectors of industry to drive electrification, decarboniza-
tion, and sustainability. A crucial aspect in ensuring their safe and optimal performance is monitoring their
energy levels. In this paper, we present the first study on predicting the remaining energy of a battery cell
undergoing discharge over wide current ranges from low to high C-rates. The complexity of the challenge
arises from the cell’s C-rate-dependent energy availability as well as its intricate electro-thermal dynamics
especially at high C-rates. To address this, we introduce a new definition of remaining discharge energy and
then undertake a systematic effort in harnessing the power of machine learning to enable its prediction. Our
effort includes two parts in cascade. First, we develop an accurate dynamic model based on integration of
physics with machine learning to capture a battery’s voltage and temperature behaviors. Second, based on the
model, we propose a machine learning approach to predict the remaining discharge energy under arbitrary
C-rates and pre-specified cut-off limits in voltage and temperature. The experimental validation shows that
the proposed approach can predict the remaining discharge energy with a relative error of less than 3% when
the current varies between 0Ì8 C for an NCA cell and 0Ì15 C for an LFP cell. The approach, by design, is
amenable to training and computation.

1. Introduction

Lithium-ion batteries (LiBs) represent one of the most important
power source technologies of our time. They have transformed the con-
sumer electronics sector since the 1990s and are now driving the revo-
lution of transportation electrification that extends from passenger cars
to commercial vehicles to aircraft. Battery management systems (BMSs)
must be in place to ensure LiBs’ operational safety and performance.
Among the various BMS functions, a significant one is monitoring the
state of energy or, more specifically, the remaining discharge energy
(RDE). While its definition may take different forms, the RDE generally
indicates how much energy is available before the cell gets depleted
in discharging. Practical applications demand accurate, real-time RDE
prediction to avoid over-discharging or to determine the remaining
duration or range in power supply. However, the prediction is non-
trivial due to the complex dynamics of LiBs, which has attracted a
growing body of research in recent years.

Closely related to the RDE, a more familiar quantity in the literature
is the so-called state-of-charge (SoC), which is the percentage ratio
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between a cell’s available charge capacity in ampere-hours (Ah) and
its nominal capacity. While the estimation of it has received extensive
study [1–8], the SoC does not align with the cell’s actual level of energy
in watt-hours (Wh) [9]. As a case in point, the amount of energy the
cell can deliver in the low SoC range is less than that in the high
SoC range. By definition, the SoC also factors out the rate-capacity
effect, which refers to the phenomenon of the deliverable charge or
energy capacity becoming less (resp. more) under higher (resp. lower)
discharging C-rates [10].

Compared to the SoC, the RDE comes as a more direct measure
of the cell’s remaining energy. RDE prediction has attracted growing
interest, and the studies to date fall into two categories. The first
category regards RDE as a synonym of SoC, naming it as state-of-energy
(SoE). Firstly proposed in [9], SoE is defined as the percentage ratio
of the cell’s present energy capacity in Wh over the maximum energy
capacity in Wh [9]. The challenge in SoE estimation mainly lies in SoE
modeling. One way is to relate the SoE with OCV [11] and SoC [12–14]
and then compute it based on these quantities. Another way is to build
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dynamic SoE models supplemented with the measurements of current,
voltage, and temperature [15]. Given these models, one can apply
various state estimation methods, such as Kalman filtering [16,17] and
particle filtering [18,19], to estimate SoE. However, SoE estimation
has not accounted for the effects of different discharging conditions,
e.g., C-rates and temperature, on the actual energy availability [15].

The second category considers a literal definition of RDE — the
integral of future discharging (the product of current and voltage)
over time. This approach runs the cell’s dynamic model forward under
a specific future current load until certain cut-off limits are reached
and then performs numerical integration to determine the RDE. Some
studies pursue the prediction of future current profiles by weighted
moving average [20] and Markov modeling [21,22], and subsequently
incorporate these predictions into the RDE calculation. However, the
methods in this category generally focus on discharging at low to
medium C-rates. As another limitation, the model forward simulation
requires substantial amounts of computation, even though equivalent
circuit models (ECMs) are commonly used.

Despite the many promising developments in RDE prediction, the
state of the art is still limited. Existing works generally consider dis-
charging at low to medium currents. In this case, the RDE is almost
linear with the SoC [10], so the estimation of RDE bears little difference
from SoC estimation. However, more interesting and useful is RDE
prediction for discharging that spans low to high currents. This problem
conveys more challenges while proving crucial for some emerging
applications like electric aircraft [23], but the literature is void of
studies to deal with it. We also note that some RDE prediction methods,
e.g., those based on model-based forward simulation, require heavy
computation. Practical applications, however, demand methods that
are computationally efficient and amenable to implementation.

Motivated to overcome the above limitations, this paper, for the first
time, explores the intricate task of RDE prediction over broad C-rate
ranges and develops a solution framework based on machine learning
(ML). The contribution is threefold.

• We propose a new RDE definition aligned with the considered
problem. Different from its counterparts in the literature, the
definition makes RDE dependent on C-rates and accounts for the
effects of both the voltage limit and temperature limit.

• Following the definition, we develop an ML approach to make
RDE prediction. The proposed ML architecture combines different
learning modules, which are tasked to predict first the remaining
time for discharging and then the remaining energy under spec-
ified C-rates and temperature and voltage limits. We provide the
technical rationale to justify the design of each learning module.

• We propose to train the proposed ML approach on synthetic data,
as otherwise the training would need a large number of discharg-
ing tests. To obtain high-fidelity synthetic data, we develop a
separate hybrid physics+ML model capable of delivering accurate
voltage and temperature prediction over broad current ranges.
This hybrid model is an extension of our prior work in [24], which
is trained on experimental datasets.

The proposed RDE prediction approach is accurate, tractable for
training, and computationally fast. We validate its effectiveness through
extensive experiments on a nickel–cobalt–aluminum (NCA) cell and a
lithium–iron–phosphate (LFP) cell.

Tangentially related with our work is using ML for other battery
management tasks, such as SoC estimation, remaining useful life pre-
diction, and fault detection. An interested reader is referred to [25–28]
and the references therein. Our work in this paper, however, is distinct
from the literature in two ways. First, we consider the new problem of
RDE prediction when the current ranges from low to high C-rates, the
complexity of which makes ML especially useful. Second, we present a
unique, customized ML design for the considered problem.

The remainder of the paper is organized as follows. Section 2 pro-
poses the definition of the C-rate-dependent RDE. Section 3 presents the

Fig. 1. Illustration of the proposed C-rate-dependent RDE definition for LiBs. The
shaded areas represent the RDE at different discharging C-rate levels. The present time
is t and the remaining discharge time is �t

RDT
.

hybrid physics-ML model to predict a LiB cell’s voltage and temperature
in discharging over broad current ranges. Section 4 presents an ML-
based RDE prediction approach. Then, the experimental validation
results are shown in Section 5. Finally, Section 6 concludes the paper.

2. Definition of C-rate-dependent RDE

This section proposes a new definition of RDE for LiBs. Different
from other versions, this definition is designed to capture the variation
of a cell’s remaining available energy over different C-rates. Accurate
and real-time prediction of the proposed RDE will be the aim of the
subsequent sections.

In general, the energy that a LiB cell will release over an upcoming
time interval is the integration of its discharging power. This quantity,
however, is neither constant nor fixed. Indeed, it is dependent on the
discharging C-rate as a result of two main factors. First, the cell’s output
voltage will decline faster when the discharging current increases,
leading to less energy to be released. This phenomenon is known
as the rate-capacity effect. Second, the C-rate will greatly influence
the cell’s temperature. The discharging process and, consequently, the
amount of energy that is to be discharged will be subject to the upper
temperature limit for safety. RDE’s C-rate dependence is too significant
to be negligible at high C-rates, demanding a new definition of RDE to
fit with discharging over broad current ranges. To proceed, we consider
the RDE as the amount of the remaining energy if the cell is discharged
at a constant C-rate from the present time until when either the voltage
or the temperature limit is reached. With this notion, the RDE is defined
as follows:

ERDE(z, t) =  
t+�tRDT

t
zcoV (⌧)d⌧, (1)

where t is the present time, �tRDT is the remaining discharging time
(RDT), z is the future discharge C-rate between t and t + �tRDT, co is
the current magnitude in ampere when z = 1 C, V is the cell’s voltage.
Note that t+�tRDT is the time when the cell reaches the cut-off voltage
Vmin or the maximum allowed temperature Tmax, whichever earlier, if
discharged at the constant current of z C. Fig. 1 illustrates this proposed
RDE definition.

The RDE definition in (1) is a departure away from alternative
definitions in the literature, e.g., [10], which overlook the effects of
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Fig. 2. Variation of the RDE of an NCA cell across different C-rates under a modified US06 discharging profile, with V
min

= 3 V, T
max

= 50
˝
C, and T

amb
= 25

˝
C. (a) E

RDE
subject

to the limits of V
min

and T
max
; (b) E

RDE
subject to only the limit of V

min
; (c) difference of E

RDE
between (a) and (b). The results show the C-rate dependence of a cell’s RDE and

demonstrate the effect of T
max

limit for RDE prediction at high discharging C-rates. When only considering V
min

limit, the cell’s temperature reaches a maximum of 67.5 ˝
C during

the prediction of E
RDE

at z = 8 C and t = 0 s.

the C-rates. Explicitly included in (1), the C-rate z impacts ERDE, due
to its role in changing the evolution of V (⌧) for t < ⌧ f t + �tRDT and
in influencing �tRDT. Fig. 2(a) illustrates the substantial variation of an
NCA cell’s ERDE under different z and subject to Vmin and Tmax. It is also
interesting to examine how much Tmax affects ERDE, so Fig. 2(b) shows
ERDE when Tmax is disregarded. A significant difference from Fig. 2(a)
emerges at high C-rates, which is depicted in Fig. 2(c). This observation
underscores the considerable influence of high C-rates on the cell’s
thermal behavior, while emphasizing the importance of considering
Tmax.

Given the proposed definition, predicting the RDE for a LiB cell
involves multiple challenges. First, we need a model that is capable
of accurately predicting the cell’s voltage and temperature over broad
current ranges. Second, even after the model is available, �tRDT can
still be hard to determine as it depends on a mix of the cell’s present
state, future behavior at designated z, and pre-specified Vmin and Tmax.
Finally, online prediction of the RDE is desired, but how to achieve
real-time computational efficiency is a question. In the sequel, we will
develop a methodical approach to tackle these challenges by utilizing
the capabilities of ML. An overview of our study is shown in Fig. 4.

Remark 1. The dependence of a cell’s capacity on the discharge C-
rate is well-documented in the literature [29]. One empirical method
to capture this relationship is the Peukert equation. However, this equa-
tion lacks accuracy because it does not account for the cell’s dynamics,
nor does it incorporate Vmin and Tmax into the capacity estimation.
Meanwhile, the Peukert equation addresses the charge capacity in Ah,
but our RDE definition focuses on the energy capacity in Wh. This
latter measure is more crucial for practical applications, yet also more
challenging to determine due to the voltage dynamics.

3. Hybrid physics-ML modeling for LiBs

This section aims to develop a dynamic model to predict the ter-
minal voltage and temperature of a LiB cell with fast computation and
high accuracy when the cell discharging spans broad C-rate ranges. This
model will be used to generate high-fidelity synthetic data to train the
RDE prediction approach to be proposed in Section 4. We take the ap-
proach of integrating physics with ML, following our prior study [24].
For physics-based modeling, we use the nonlinear double capacitor
(NDC) model [30] for voltage prediction and a lumped thermal circuit
model [31] for temperature prediction.

We begin by introducing the NDC model and the lumped thermal
model. The NDC model describes a LiB cell’s electric behavior and,
different from other ECMs, includes a mechanism to emulate the impact
of lithium-ion diffusion on the voltage dynamics. As shown in Fig. 3(a),
the model contains two coupled sub-circuits. The first (left) sub-circuit

Fig. 3. Diagrams of (a) the NDC model and (b) the lumped thermal model.

contains an R–C chain composed of Rb, Cb and Cs. Conceptually,
Cb and Cs represent the bulk inner region and surface region of the
electrode, respectively; the charge migration between Cb and Cs mimics
the lithium-ion diffusion within the electrode. The second (right) sub-
circuit contains a voltage source U , a resistor R0, and an R–C pair
R1-C1. Here, U = h(Vs) serves as an open-circuit voltage (OCV) source,
R0 corresponds to the ohmic resistance and solid electrolyte interface
resistance, and R1-C1 accounts for the voltage transients due to charge
transfer on the electrode/electrolyte interface. The governing equations
of the NDC model are given by

h
n
n
l
n
nj

b
f
f
fd

ÜVb(t)
ÜVs(t)
ÜV1(t)

c
g
g
ge
= ANDC

b
f
f
fd

Vb(t)
Vs(t)
V1(t)

c
g
g
ge
+ BNDCI(t), (a)

VNDC(t) = h(Vs(t)) + V1(t) + R0I(t), (b)

(2)

where Vb, Vs and V1 are the voltages across Cb, Cs and C1, respectively,
and I is the input current (I < 0 for discharge, I > 0 for charge). Here,

ANDC =

b
f
f
f
fd

*1

CbRb
1

CbRb
0

1

CsRb
*1

CsRb
0

0 0
*1

R1C1

c
g
g
g
ge

,BNDC =

b
f
f
f
fd

0

1

Cs
1

C1

c
g
g
g
ge

.

The lumped thermal model, as shown in Fig. 3(b), assumes a cylindrical
shape of the cell and concentrates the spatially distributed temperature
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Fig. 4. (a) The NDCTNet model, which integrates physics with ML to predict the terminal voltage and temperature of a LiB cell, see Section 3; (b) the pipeline chart of the
proposed RDE prediction approach, see Section 4.

radially into two points at the cell’s core and the surface, respectively.
The model then is governed by
L ÜTcore(t)
ÜTsurf (t)

M
= Atherm

L
Tcore(t)
Tsurf (t)

M
+ Btherm

L
I2(t)
Tamb

M
, (3)

where

Atherm =

b
f
fd

*1

RcoreCcore
1

RcoreCcore
1

RcoreCsurf
*1

RsurfCsurf
+

*1

RcoreCsurf

c
g
ge
,

Btherm =

b
f
fd

R0

Ccore
0

0
1

RsurfCsurf

c
g
ge
,

Tcore_surf is the temperature at the core/surface of the cell, Tamb is
the ambient temperature, and Ccore_surf is the heat capacity at the
cell’s core/surface. Further, Rcore is the thermal resistance due to the
conduction between the core and surface, and Rsurf is the thermal
resistance due to the convection between the cell’s surface and the
environment. This model only considers internal heat generation at the
core that results from Joule heating.

The above two ECMs have decent accuracy at low to medium C-
rates but lack accuracy for high C-rates. To overcome the gap, we
couple them with ML models. ML has strong data-driven representation
capabilities, and we have shown in our prior study [24] that they can
predict the behaviors of a LiB cell with high accuracy if integrated
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with physics-based models. Based on the insights in [24], we propose
the NDCTNet model in Fig. 4(a), which characteristically connects
the above two ECMs with two separate feedforward neural networks
(FNNs) in series. The first FNN is responsible for the terminal voltage
prediction. It takes Vb, Vs, V1, Tcore, Tsurf and I as the inputs. The second
FNN is tasked to predict the surface temperature, and its input includes
Vb, Tcore and Tsurf . Here, the FNNs are made to use physical state
information for prediction. This allows to use simpler FNNs, reduce
data dependence in training, and achieve more accurate prediction. It
should be noted that the inputs to the FNNs must be selected so that the
FNNs can capture physically justifiable mappings [24]. The proposed
choice is the best one that we could find after many trials, though there
may exist alternatives.

In summary, the NDCTNet model can be written in the following
mathematical form:
h
n
l
nj

Üx = fphy(x, I , Tamb), (a)
Vhybrid = hV (x, I), (b)
Thybrid = hT (x), (c)

(4)

where x = [Vb Vs V1 Tcore Tsurf ]Ò, (4a) results from (2a) and (3) and is a
linear ordinary differential equation, and hV and hT represent the two
FNNs.

The identification of the NDCTNet model follows a two-step proce-
dure. First, we extract the NDC model and the thermal circuit model
from experimental datasets collected at low- to medium-C-rate dis-
charging. The data include current, voltage, and surface temperature,
and the parameter estimation is achieved by fitting the models with
the data in a least-squares manner [30]. Next, we perform additional
discharging tests across low to high C-rates and run the NDC model
and the lumped thermal model under the same current profiles. We
then train the FNNs, hV and hT , using the new datasets. The reader is
referred to [24] for more information.

Remark 2. Various physics-based battery models have flourished in
the literature, including electrochemical models [32,33] and ECMs
[34]. These models provide physical interpretability, but struggle with
either computational efficiency or predictive accuracy. Recently, ML
has emerged as a powerful tool for data-driven prediction of battery
behaviors. While computationally fast and accurate they are, ML mod-
els often lack physical consistency while requiring large amounts of
training data. However, our previous study [24] shows that integrating
physics-based modeling with ML can enable high accuracy, low compu-
tation, and reduced dependence on training data. The NDCTNet model
extends the work in [24] by incorporating temperature prediction in
addition to voltage prediction.

4. Real-time RDE prediction via NNs

In this section, we focus on the problem of real-time RDE prediction
for LiBs. Note that, given the LiB model developed in Section 3, a
straightforward approach to the RDE prediction is to forward run the
NDCTNet model from the present state until Vmin or Tmax is reached, as
is reported in some existing studies, e.g., [22]. However, this approach
requires high computational costs. This is because not only the model
execution may take a long time, as the actual discharging can be up to
hours, but also the model must be solved for different C-rates from low
to high. Therefore, we propose an ML-based approach to enable real-
time RDE prediction. This new approach will eliminate the need for
repetitive forward model simulation as ML models can give predictions
efficiently after being trained. Also, we can harness the capacity of ML
to achieve high RDE prediction accuracy given abundant data.

Based on the definition of ERDE in (1), we aim to train an FNN which
will output ERDE based on the present state x(t), z and �tRDT. Here, a
key problem is to determine �tRDT. As the RDT, �tRDT will depend on
whichever of Vmin and Tmax comes first in discharging, implying

�tRDT = min

$
�tVmin

RDT
,�tTmax

RDT

%
, (5)

where �tVmin

RDT
(resp. �tTmax

RDT
) is the time duration that elapses before the

cell reaches Vmin (resp. Tmax). It should be noted that both �t
Vmin

RDT
and

�tTmax

RDT
are z-dependent. We find out that there exists a mapping from

x(t), z and Tamb to �t
Vmin

RDT
, which can be captured by an FNN. However,

�tTmax

RDT
is much more difficult to compute since the cell constantly

has heat exchange with the ambient environment, and the ambient
temperature, Tamb, can be arbitrary. As it is intractable to train an FNN
to predict �tTmax

RDT
, we use the bisection method instead to find �tTmax

RDT
if

the cell will exceed Tmax before the elapse of �t
Vmin

RDT
. To sum up, the

proposed RDE prediction approach includes the following three steps:

• leverage an FNN to compute �tVmin

RDT
based on x(t), z and Tamb;

• let �tRDT = �tVmin

RDT
if �tTmax

RDT
> �tVmin

RDT
; otherwise, use the bisection

search to find out �tTmax

RDT
, and let �tRDT = �tTmax

RDT
;

• given �tRDT, use an FNN to predict ERDE based on x(t), z and Tamb.

Below we present the details of each step.

4.1. Computation of �tVmin

RDT

The first step aims to use an FNN to predict �tVmin

RDT
based on the

triplet (x(t), z, Tamb). However, one may wonder whether FNNs are
able to perform the task. It is known that FNNs are suitable for ap-
proximating continuous mappings due to the universal approximation
theorem [35], so the question is whether there exists such a mapping
from (x(t), z, Tamb) to a unique �t

Vmin

RDT
. To find the answer, we conduct

the following analysis.
We begin with considering (4). Note that (4a) is a linear time-

invariant system and thus has a closed-form solution. Letting x(t) be
the initial condition, we express the solution x(t + �t) for an arbitrary
time interval �t > 0 under given z and Tamb as

x(t + �t) = �(x(t), zco, Tamb;�t),

where the exact formula for � is available, see Appendix. Then,

Vhybrid(t + �t) = hV ˝�(x(t), zco, Tamb;�t), (6)

where ˝ denotes the operation of function composition. We further
define h�V = hV ˝� and absorb co into it for notational simplicity. Then,
�tVmin

RDT
must satisfy

h�V (x(t), z, Tamb;�t
Vmin

RDT
) = Vmin. (7)

The following observations arise out of the equality in (7). First, by
selecting a suitable activation function for the NNs, h�V is continuously
differentiable because both hV and � are continuously differentiable.
Second, for any physically possible (x(t), z, Tamb), there always exists
a unique �tVmin

RDT
in discharging to make (7) hold true. Third, from a

physical perspective, it is arguable that an open neighborhood of (x(t),
z, Tamb) would correspond to an open neighborhood of �t

Vmin

RDT
. Finally,

when the cell is continuously discharged starting from x(t) and under
given z and Tamb, its terminal voltage will decline monotonically when
the discharging time approaches �tVmin

RDT
. This implies

)h�V
)�t

ÛÛÛÛÛÛ�t=�tVmin

RDT

< 0.

Then, by the global implicit function theorem in [36], there is a
unique and continuous mapping from (x(t), z, Tamb) to �t

Vmin

RDT
. With the

existence of such a mapping, an FNN can be used to predict �tVmin

RDT
based

on (x(t), z, Tamb), which is denoted as

�tVmin

RDT
= FNN

Vmin

RDT
(x(t), z, Tamb).
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Fig. 5. Bisection search for �tTmax

RDT
.

4.2. Computation of �tTmax

RDT

In predicting the RDE, we must take the cell’s future temperature
into account to ensure that the prediction lies within the thermal safety
bounds. This is particularly vital when the cell runs at high C-rates
or under high ambient temperature. We have defined �tTmax

RDT
earlier to

capture the RDT due to Tmax. Note that �t
Tmax

RDT
needs to be computed

for the RDE prediction only when it is less than �tVmin

RDT
, as implied

by (5). Therefore, it is plausible to expediently determine whether
�tTmax

RDT
< �tVmin

RDT
, and in case of not, a fast search for �tTmax

RDT
will ensue

next.
To check �tTmax

RDT
< �tVmin

RDT
, we pick m checkpoints, �i for i = 1,… ,m,

which spread evenly within the interval
⌧
0,�tVmin

RDT

�
. One may choose an

appropriate m, depending on the characteristics of the cell’s thermal
dynamics and the immediate ambient conditions. Then, Thybrid(t+ �i) is

computed for each �i via

Thybrid(t + �i) = hT ˝�Ǿ̈
h�T

(x(t), z, Tamb; �i).

The computation would be efficient, thanks to the closed-form formula
of �. We can skip the calculation of �tTmax

RDT
if Thybrid(t+ �i) < Tmax for all

i = 1,… ,m. Otherwise, we must determine �tTmax

RDT
, and this is equivalent

to finding the root of

Thybrid(t + �t) = h�T (x(t), z, Tamb; �t) = Tmax, (8)

for which �t is the unknown variable. To achieve this, we apply the
bisection method, a popular and efficient root-finding algorithm.

The bisection search is conducted within the interval
⌅
�t,�Ñt

⇧
. Ini-

tially, �Ñt = �i< with i< = min
�
i › Thybrid(t + �i) > Tmax, i = 1,… ,m

�
, and

�t = �i<*1. Assume that there is only one root for (8) within the initial
interval. Subsequently, we bisect the interval, evaluate Thybrid at the
midpoint, identify the next subinterval to search, and repeat the search
procedure. The steps are as follows.

[Step 1] calculate ⌧ = (�t + �Ñt)_2, and evaluate Thybrid(t + ⌧);
[Step 2] let �tTmax

RDT
= ⌧ and stop if Thybrid(t + ⌧) * Tmax < ✏, where ✏ is

the tolerance; otherwise, go to Step 3.
[Step 3] let �t = ⌧ if Thybrid(t+ ⌧) < Tmax, and let �Ñt = ⌧ if otherwise; go

to Step 1.

Fig. 5 shows a flowchart of the procedure. The bisection search can find
out �tTmax

RDT
fast here. This is because an explicit formula is available for

the computation of Thybrid(t + ⌧), and the bisection method converges
fast by itself when a unique root exists within the search interval.

4.3. Prediction of ERDE

After identifying �tRDT, we are now ready to enable the prediction of
ERDE. It is beneficial here to consider a more general task — predicting
E(z, t,�t), which is the discharging energy released by the cell within
the upcoming time interval (t, t + �t] under a constant C-rate z:

E(z, t,�t) =  
t+�t

t
zcoV (⌧)d⌧.

When E(z, t,�t) is available, we can easily compute ERDE by inserting
�tRDT into it

ERDE(z, t) = E(z, t,�tRDT). (9)

Given (6), we have

E(z, t,�t) =  
�t

0

zcoh
�
V (x(t), z, Tamb; ⌧)d⌧. (10)

This relation indicates that there exists a continuous mapping from
(x(t), z, Tamb, �t) to E. While there is no analytical form of the mapping,
we can use an FNN to approximate it. The FNN is denoted as

E(z, t,�t) = FNNE (x(t), z, Tamb,�t).

After the FNN is trained, we can compute ERDE by (9).
Fig. 4(b) presents the pipeline of the proposed RDE prediction

approach. To sum up, it is challenging to predict the RDE when the
cell shows complex voltage and thermal behaviors under discharging
across low to high currents. To overcome this problem, we turn our
attention to utilizing the power of ML. We exploit FNNs to capture the
sophisticated relationship between the RDE and the many factors that
affect it. The approach presents several benefits. First, it is amenable
to training. This is because we can train the FNNs on synthetic data
generated by running the NDCTNet model in Section 3. This greatly
reduces reliance on data collection from experiments, as now only the
NDCTNet training requires experimental data. Second, the approach
can attain high accuracy when the NDCTNet model is accurate enough
to generate good-quality training data in large amounts. Finally, the
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Fig. 6. The PEC® SBT4050 battery tester.

Table 1
Specifications of the NCA and LFP cells.

NCA LFP

Nominal capacity (Ah) 2.5 2.5
Allowed voltage range (V) 2.5Ì4.2 2.0Ì3.6
Max. continuous discharge current (A) 20 50
Operating surface temperature (˝C) *20Ì75 *30Ì55

Table 2
Validation results for the two NDCTNet models constructed for the NCA and LFP
cells.
LiB type Current profile RMSE

V
hybrid

RMSE
T
hybrid

NCA Modified US06 (0Ì8 C) 12.25 mV 0.27 ˝
C

Modified SC04 (0Ì8 C) 13.36 mV 0.56 ˝
C

LFP Modified US06 (0Ì15 C) 13.01 mV 0.28 ˝
C

Modified SC04 (0Ì15 C) 11.11 mV 0.46 ˝
C

prediction is computationally fast and efficient after the training, as we
only need to run the FNNs and, if there is a need, the bisection search
procedure.

The proposed ML approach is distinct from existing RDE prediction
methods in multiple ways. First, it tackles the challenge of RDE pre-
diction under discharging over broad current ranges, a topic that has
not been studied before. Second, to deal with this complex problem,
the approach presents a customized ML architecture, which includes
and combines different learning modules into a holistic framework.
Finally, the design of each module is justified in rationale to ensure
its technical soundness, which has been rarely done in previous studies
on RDE prediction.

5. Experimental validation

In this study, the experimental validation is performed on two cylin-
drical LiB cells: a Samsung INR18650-25R cell with an NCA cathode
and a graphite anode, and an A123 ANR26650-M1B cell with an LFP
cathode and a graphite anode. Table 1 lists their specifications. A PEC®
SBT4050 battery tester shown in Fig. 6 was used to charge/discharge
the cells and collect experimental data. A thermocouple was attached
to each cell’s surface to measure its temperature. During the experi-
ments, the cells were placed in a thermal chamber with the ambient
temperature set to Tamb = 25

˝
C. A host computer with a 2.2 GHz Intel®

i7-8750H CPU and 16.0 GB RAM was used to process the collected data
and implement the proposed RDE prediction approach.

The validation consists of two stages. In the first stage, we iden-
tify and validate the NDCTNet model constructed in Section 3 using
experimental data. In the second stage, we run the NDCTNet model in
simulations to generate the synthetic data and train the RDE prediction

approach. After the training, we implement the approach and compare
its RDE prediction results with the experimental truth.

5.1. Training and validation of the NDCTNet model

We used the following procedure to construct and validate the
NDCTNet model for each of the two cells.

As the first step, we identified the NDC model and the lumped
thermal model for each cell based on the methods in [30,31]. Then,
we moved on to train the FNNs of each NDCTNet model.

• The NDC model was identified using the parameter identification
1.0 approach in [30]. The lumped thermal model had been iden-
tified for the Samsung NCA cell in [37] and for the A123 LFP cell
in [31]. We made some fine tuning of the parameters to make
them fit better with our data.

• We used the same FNN architecture for hV and hT for both cells.
The FNN has two hidden layers with 48 neurons in each hidden
layer. The softplus function is used as the activation function of
the hidden layers, and the output layer employs the linear activa-
tion function. The FNNs are configured and trained using Keras, a
Python-based deep learning library. The input data normalization
was applied to the FNNs.

• For the NCA cell, we collected the training datasets via constant-
current discharging at 0.5/1/3/5/8 C and variable-current dis-
charging based on the modified HWFET/UDDS/WLTC/LA92 pro-
files (scaled to 0Ì8 C) [38]. The datasets include 22,770 data-
points in total.

• For the LFP cell, the training datasets were generated by apply-
ing constant-current discharging at 0.5/1/2/4/6/8/10/12/15 C
and variable-current discharging based on the modified HWFET/
UDDS/WLTC/LA92 profiles (scaled to 0Ì15 C). The datasets con-
tain 23,341 datapoints in total.

• We use the root-mean-square error (RMSE) as a metric to evaluate
the NDCTNet model’s prediction performance:

RMSE =

yxxw 1

N

N…
i=1

�
Xtrue,i *XNDCTNet,i

�2,

where Xtrue,i is the true voltage/temperature at the ith datapoint,
XNDCTNet,i is the predicted voltage/temperature, andN is the total
number of datapoints.

Further, we collected extra datasets based on the modified US06/SC04
profiles, scaled to 0Ì8 C for the NCA cell and 0Ì15 C for the LFP
cell, to test the NDCTNet model after training. Figs. 7–8 present the
validation results, which show excellent fitting performance. Table 2
offers a quantitative evaluation based on the RMSE, indicating that the
NDCTNet model exhibits high accuracy over broad current ranges for
each cell.

5.2. Validation of the RDE prediction approach

Based on the identified NDCTNet model, we continue to validate
the proposed RDE prediction approach. First, we simulate the discharg-
ing processes using the NDCTNet model and leverage the obtained
synthetic data to train the FNNs used in the approach. After the
training, we validate the approach by comparing the prediction with
the experimental results based on additional discharging experiments.

In the training stage, the setting is as follows.

• The cut-off limits in the RDE prediction are: Vmin = 3 V and Tmax =

50
˝
C for the NCA cell, and Vmin = 2.7 V and Tmax = 45

˝
C for the

LFP cell. They are chosen based on manufacturer specifications
and related literature [39].
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Fig. 7. Validation of the NDCTNet model for the NCA cell based on (a) the modified US06 (0Ì8 C) and (b) the modified SC04 (0Ì8 C) profiles.

Fig. 8. Validation of the NDCTNet model for the LFP cell based on (a) the modified US06 (0Ì15 C) and (b) the modified SC04 (0Ì15 C) profiles.

• All the FNNs used in the RDE prediction for both cells have
the same architecture of two hidden layers with each having 48
neurons. They are also configured and trained using Keras as in
Section 5.1.

• We construct synthetic training datasets via simulation based on
the NDCTNet models. For the NCA cell, the discharging simu-
lation is based on the modified variable-current HWFET/UDDS/
WLTC/LA92 profiles (scaled to 0Ì8 C). In each discharging case,

we branch out to run episodic simulations at every time instant
t, which discharge the cell fully to Vmin at different constant C-
rates ranging between 0.2Ì8 C. With the generated data, we
determine �tVmin

RDT
that corresponds to the cell’s state x(t) and C-

rate z. Meanwhile, we compute E(z, t,�t) for each �t À
⌧
0,�tVmin

RDT

�
.

These data are utilized to train the FNNs in the RDE prediction
approach, with 160,867 datapoints for the FNN

Vmin

RDT
network and
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Fig. 9. RDT prediction results for the NCA cell under (a) the modified US06 (0Ì8 C) and (b) the modified SC04 (0Ì8 C) testing profiles at T
amb

= 25
˝
C. The inset plots highlight

the RDT at high C-rate loads.

Fig. 10. RDT prediction results for the LFP cell under (a) the modified US06 (0Ì15 C) and (b) the modified SC04 (0Ì15 C) testing profiles at T
amb

= 25
˝
C. The inset plots

highlight the RDT at high C-rate loads.

33,068,654 datapoints for the FNNE network. The same is done
for the LFP cell, with the current range in the simulation adjusted
to be 0.2Ì15 C. The training datasets contain 263,195 datapoints
for FNNVmin

RDT
and 36,439,162 datapoints for FNNE .

• We introduce a percentage relative error to quantify the predic-
tion accuracy:

Relative error =

ÛÛÛÛÛ
Ytrue * Ypred

Ytrue

ÛÛÛÛÛ
ù 100%,

where Y is �tRDT or ERDE.

Following the training, we apply the approach to the two cells
discharged with the modified US06/SC04 profiles for the purpose of
validation. For each time instant t during the discharge, we predict the
RDE for different C-rate loads between z = 0.2Ì8 C for the NCA cell
and z = 0.2Ì15 C for the LFP cell. Figs. 9–10 show the predicted RDT
as part of the RDE prediction, in which the inset plots highlight the
RDT at high C-rates. Figs. 11–12 illustrate the RDE prediction results.

We observe that both the RDT and RDE decrease as C-rate increases
for both cells due to the rate-capacity effect. Moreover, the predicted
RDE drops sharply at very high C-rates (z = 6Ì8 C for the NCA cell and
z = 10Ì15 C for the LFP cell). This is because the preset Tmax limit is
triggered, which further limits ERDE.

We further perform experiments to assess the RDE prediction accu-
racy for each cell. In each experiment, we discharge the cell using a
variable-current profile for some time t and then switch to constant-
current discharging at a specified C-rate z so as to determine the actual
ERDE. For each cell, both the modified US06/SC04 profiles are used,
and for each profile, four different (t, z) pairs are considered. This thus
involves experiments for 16 cases in total, as are shown in Figs. 11–
12. Table 3 presents a quantitative comparison for all these cases. It is
seen that the relative error in the RDE prediction comes less than 3% in
general. Besides, when Tmax is triggered, ERDE becomes less and more
difficult to be predicted. Table 3 shows the cases when this happens,
in all of which accurate prediction is still observed.
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Fig. 11. RDE prediction results for the NCA cell under (a) the modified US06 (0Ì8 C) and (b) the modified SC04 (0Ì8 C) testing profiles at T
amb

= 25
˝
C. ‘‘<’’ denotes the

experimental validation datapoint at 1� t = 389 s, z = 7, 2� t = 775 s, z = 5, 3� t = 1161 s, z = 2, 4� t = 1547 s, z = 1, 5� t = 243 s, z = 8, 6� t = 483 s, z = 6, 7� t = 723 s, z = 3,
8� t = 963 s, z = 0.5.

Fig. 12. RDE prediction results for the LFP cell under (a) the modified US06 (0Ì15 C) and (b) the modified SC04 (0Ì15 C) testing profiles at T
amb

= 25
˝
C. ‘‘<’’ denotes the

experimental validation datapoint at 9� t = 159 s, z = 15, 10� t = 315 s, z = 10, 11� t = 471 s, z = 5, 12� t = 627 s, z = 1, 13� t = 135 s, z = 12, 14� t = 267 s, z = 8, 15� t = 399 s, z = 3,
16� t = 531 s, z = 0.5.

Table 4 compares the computational time of the proposed ML
approach with the model forward simulation. Each prediction runs the
two methods at all z = 0.2_0.5_1_2_3_4_5_6_7_8 C for the NCA cell
and all z = 0.2_0.5_1_2_3_4_5_6_7_8_9_10_11_12_13_14_15 C for the
LFP cell to obtain the RDE corresponding to each specified C-rate. The
model forward simulation calculates the RDE by running the NDCTNet
model until the cut-off limit is reached. Our ML approach needs only
0.3Ì0.4 s for prediction at each time. By contrast, the model forward
simulation needs an average time of about 25Ì50 s, while demanding
a much larger actual time at the beginning of a discharging process.

We further compare our results with a traditional RDE defined as
in [10]:

ETrad

RDE
= Qa  

SoC(t)

SoC=0

UOCV(SoC)dSoC,

where Qa and UOCV are the cell’s charge capacity in Ah and OCV,
respectively. As shown in Table 3, the prediction of ETrad

RDE
at low C-rates

shows a decent accuracy relative to the truth. However, its accuracy

declines greatly as the C-rate increases and becomes almost trivial at
very high C-rates. This is because ETrad

RDE
, by definition, fails to capture

the effects of high C-rates on RDE.

6. Discussion

We provide the following remarks based on the results in Sections
2–5.

• Predictive accuracy. The proposed ML-based RDE prediction ap-
proach demonstrates a high accuracy in experimental validation.
This is due to two main reasons. First, the proposed ML architec-
ture, which includes multiple learning modules, is well-founded
on technical rationale. Second, we generate large amounts of
synthetic but high-fidelity data using the NDCTNet model. This
makes it possible to push the training accuracy to the best possible
extent for the proposed approach.
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Table 3
RDE prediction results of the 16 experimental validation datapoints. The preset T

max
limit is triggered at 1� 5� 9� 13�.

LiB
type

Current
profile

Time
instant
t [s]

C-rate
z

True
�t

RDT

[s]

Predicted
�t

RDT
[s]

(proposed
method)

Relative
�t

RDT
error

(proposed
method)

True
E

RDE

[Wh]

Predicted
ETrad

RDE
[Wh]

(traditional
method)

Relative
E

RDE
error

(traditional
method)

Predicted
E

RDE
[Wh]

(proposed
method)

Relative
E

RDE
error

(proposed
method)

1�

NCA

Modified
US06
(0Ì8 C)

389 7 221 231 4.52% 3.64 6.27 72.25% 3.56 2.20%
2� 775 5 279 279 0% 3.14 4.14 31.85% 3.11 0.96%
3� 1161 2 569 574 0.88% 2.66 3.01 13.16% 2.62 1.50%
4� 1547 1 601 639 6.32% 1.47 1.58 7.48% 1.43 2.72%

5� Modified
SC04
(0Ì8 C)

243 8 148 154 4.05% 2.81 6.98 148.40% 2.73 2.85%
6� 483 6 267 276 3.37% 3.69 4.97 34.69% 3.58 2.98%
7� 723 3 435 445 2.30% 3.09 3.63 17.48% 2.99 3.24%
8� 963 0.5 1343 1396 3.95% 1.63 1.66 1.84% 1.58 3.07%

9�

LFP

Modified
US06
(0Ì15 C)

159 15 126 120 4.76% 3.50 6.42 83.43% 3.59 2.57%
10� 315 10 192 195 1.56% 3.87 4.99 28.94% 3.84 0.78%
11� 471 5 269 263 2.23% 2.72 3.47 27.57% 2.79 2.57%
12� 627 1 932 894 4.08% 1.92 2.22 15.63% 1.96 2.08%

13� Modified
SC04
(0Ì15 C)

135 12 188 181 3.72% 4.33 6.50 50.12% 4.39 1.39%
14� 267 8 253 253 0% 4.11 5.04 22.63% 4.15 0.97%
15� 399 3 426 412 3.29% 2.63 3.02 14.83% 2.70 2.66%
16� 531 0.5 1601 1548 3.31% 1.68 1.77 5.36% 1.72 2.38%

Table 4
Comparison of the computational speed of the RDE prediction methods for the NCA
and LFP cell.
Method Average RDE computation time

NCA LFP
(z = 0.2Ì8 C) (z = 0.2Ì15 C)

Model forward simulation 25 s 50 s
Proposed ML approach 0.3 s 0.4 s

• Computational efficiency. The proposed approach can update the
RDE with high computational speed, by leveraging ML to predict
the RDE directly using the cell’s present state. Compared to it,
existing RDE methods have to run a LiB model forward from the
present state until the cutoff limit is reached, causing heavy and
even prohibitive computation.

• Prospective applications. The proposed approach uniquely en-
ables RDE prediction across a wide range of C-rates, making it
particularly suitable for high-power LiB applications. One notable
example is electric vertical take-off and landing (eVTOL) aircraft,
which require discharging at up to 5 C during the takeoff and
landing phases, and around 1.5 C during the cruise phase [40]. To
our knowledge, no existing methods can accurately predict RDE
for eVTOL applications. Furthermore, when applied to lithium-
ion battery systems operating at low to medium currents, the
proposed approach will hold a promise to improve both the
accuracy and computational speed of RDE predictions.

• Potential extensions. The proposed work offers several avenues
for further research. While we have validated our approach on
NCA and LFP cells, it would be valuable to apply it to other types
of LiBs, such as NMC and LCO. Determining the optimal FNN
architectures within our approach remains an intriguing question.
We have empirically adjusted the architectures in the study to
achieve the best performance, but an automated architecture
search could be beneficial. Moreover, our approach using FNNs
does not quantify uncertainty, though uncertainty quantification
could be important for assessing the confidence levels associ-
ated with the RDE prediction. To address this, we could explore
the use of probabilistic ML techniques, such as Bayesian neural
networks [41].

7. Conclusion

RDE prediction plays an important role in managing the operation
of LiBs for high safety and performance. In pursuit of this topic, we

consider a new and open question: how to predict the RDE of a LiB
cell if the discharging currents span from low to high C-rates? The
question has emerged in some applications like electric aircraft but is
non-trivial to deal with. This is because high currents will significantly
impact the cell’s electro-thermal dynamics to make the RDE more
difficult to identify. To address the question, we define the RDE as a
C-rate-dependent quantity. With the new definition, we develop an ML
approach that uses FNNs to grasp the mapping from the cell’s present
state to the RDE. The approach determines the cell’s RDT due to voltage
and temperature limits and then uses it along with the cell’s state to
find out the RDE. To enable the training of the approach, we also
develop a hybrid physics-ML model to capture the cell’s electro-thermal
dynamics. The experimental validation on NCA and LFP cells shows the
high prediction accuracy achieved by the proposed approach. Further,
the approach is tractable for training and computationally efficient
to run. It can find prospective use in different applications ranging
from electric cars, heavy-duty vehicles, and aircraft to grid-scale energy
storage.
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Appendix

We derive the explicit formulas for � under constant z and Tamb.
Letting x(t) be the initial condition, and considering that x is decom-

posed into x1 =
⌅
Vb Vs V1

⇧Ò and x2 =
⌅
Tcore Tsurf

⇧Ò. Based on (2a),
the solution of x1 is given by

x1(t + �t) = eA1�tx1(t) +  
t+�t

t
eA1(t+�t*⌧)B1I(⌧)d⌧,

which, when I = zco, becomes

x1(t + �t) = eA1�tx1(t) +  
t+�t

t
eA1(t+�t*⌧)d⌧ � B1zco. (A.1)

It can be easily proven that A1 has three distinct eigenvalues �i for
i = 1, 2, 3. By the Cayley–Hamilton theorem, we have

eA1�t = [ *1

1
 1(�t)]‚A1, (A.2)

where

 1 =

b
f
f
fd

1 �1 �2
1

1 �2 �2
2

1 �3 �2
3

c
g
g
ge
,  1(�t) =

⌅
e�1�t e�2�t e�3�t

⇧Ò ,

and the operator ‚ denotes

a ‚ A =

n…
i=1

aiAi*1,

for a À Rnù1 and A À Rnùn. Given (A.2), the integral in (A.1) can be
expressed as

 
t+�t

t
eA1(t+�t*⌧)d⌧ =  

t+�t

t
[ *1

1
 1(t + �t * ⌧)]‚A1d⌧

= [ *1

1  
t+�t

t
 1(t + �t * ⌧)d⌧]‚A1

= [ *1

1  
�t

0

 1(⇣ )d⇣ ]‚A1 (A.3)

= [ *1

1
( Ñ 1(�t) * Ñ 1(0))]‚A1,

where Ñ 1(↵) =
⌅
e�1↵_�1 e�2↵_�2 e�3↵_�3

⇧Ò. Inserting (A.2) and (A.3)
into (A.1), we have

x1(t + �t) = [ *1

1
 1(�t)]‚A1 � x1(t)

+ [ *1

1
( Ñ 1(�t) * Ñ 1(0))]‚A1 � B1zco.

Similarly, we can obtain

x2(t + �t) = [ *1

2
 2(�t)]‚A2 � x2(t)

+ [ *1

2
( Ñ 2(�t) * Ñ 2(0))]‚A2 � B2u.

where u =
⌅
(zco)2 Tamb

⇧Ò,

 2 =

4
1 �4
1 �5

5
,  2(�t) =

⌅
e�4�t e�5�t

⇧Ò ,

and Ñ 2(↵) =
⌅
e�4↵_�4 e�5↵_�5

⇧Ò. Here, �i for i = 4, 5 are the two
distinct eigenvalues of A2.
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