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ABSTRACT 
Abstract topics such as recursion are challenging for many 
computer science students to understand. In this experience 
report, we explore function sonification—the addition of sound to a 
function to communicate information about the function’s 
behavior in real-time as it runs—as a pedagogical approach for 
improving students’ understanding of recursion. We present 
several example iterative and recursive function sonifications, plus 
spectrograms that illustrate their different sonic behaviors. We 
also present experimental evidence that using these sonifications 
significantly improved the understanding of recursion for students 
who used them, compared to students who used silent (i.e., 
traditional) versions of the same functions. Based on these 
experiences, we believe sonification has under-appreciated 
potential for teaching abstract computing topics. 
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1 INTRODUCTION 
We have noticed that many of our students wear earbuds or 
headphones while working in our computer labs, but most of the 
computer programs used in computer science (CS) education run 
silently. This led us to wonder: Might this be a missed 
opportunity? Might it be possible to leverage the use of sound to 
improve student understanding of computing abstractions that 
students find especially challenging? 

As one example, many CS educators have noted that their 
students find the topic of recursion difficult to understand 
[7][9][11][21]. If students enjoy sonic stimulation, might it be 
possible to leverage sound in a way that helps them understand 
abstractions like recursion? 

This line of thinking prompted us to explore function 
sonification—the addition of sound to a function to 
communicate information about the function’s behavior in real-
time as it runs. If the function contains a loop, sonification can 
let the user hear that loop executing. If the function is recursive, 
the user can hear its recursive behavior.  

To create function sonifications, we used the Thread Safe 
Audio Library (TSAL) [1]. This let us easily add sound to C++ 
functions commonly used to teach iteration and recursion, 
turning calls to those functions into sonifications. 

This paper is an experience report of our exploration. In 
Section 2, we present several examples of sonifications—both 
iterative and recursive. These examples illustrate the process of 
adding TSAL library calls to an existing function to make it 
generate appropriate tones in real time as the function executes. 
For each of these examples, we also present spectrograms that 
depict the function’s sonic behavior. In Section 3, we describe an 
experiment we conducted to assess the effects of these 
sonifications on student learning. As we shall see, this 
experiment provides evidence that sonifications can significantly 
improve student understanding of recursion.  In Section 4, we 
discuss previously published work that is related to our work. In 
Section 5, we present our conclusions and future plans. 

2  SONIFICATIONS 
As described in [1], TSAL makes it quite easy to turn a legacy 
program into a sonification. Within the program, one must 
perform four straightforward steps: 
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1. Define a Mixer object: a software representation of a 
multichannel mixer like those DJs use to mix sounds. 

2. TSAL sounds are played by synthesizers, so define a Synth (or 
for multithreading, a ThreadSynth) object that can be used to 
generate sounds. 

3. Add the Synth object to the Mixer. (For multithreaded 
sonifications—which we do not use here—a TSAL Mixer may 
mix the outputs of different ThreadSynth synthesizers, each 
with potentially different sonic characteristics.) 

4. Use the Synth (or ThreadSynth) object to play sounds by 
invoking its play() method. For a sonification, the sounds 
played should reflect the program’s algorithmic behavior. 

Each sonification that follows assumes steps 1-3 were performed 
as follows (a sonification performs step 4 itself): 

Mixer mixer = new Mixer();    // step 1 
Synth synth = new Synth();    // step 2 
mixer.add(synth);             // step 3 

After these steps have been performed, a function f(int n) can 
be transformed into a sonification f(int n, Synth s). When 
that function is recursive, it can invoke s.play() to play a tone 
scaled to n—playing higher-pitched tones for higher values of n; 
lower-pitched tones for lower n-values. 

2.1 Factorial 
Figure 1 shows a C++ iterative factorial function sonification, 
with the added sonification code highlighted in blue: 

 
Figure 1: Iterative Factorial Sonification Function 
TSAL employs standard MIDI notation, so in Figure 1, C3 is a 
TSAL-defined constant for the C-note one octave below middle 
C (C4), and C6 is a constant for the C-note two octaves above 
middle C. The TSAL utility function call: 

  scaleToNote(i, 0, 24, C3, C6)  
returns a MIDI note from within the 3-octave range C3..C6, 
whose pitch is scaled to the position of i within the range 
0..24. (24 factorial will generate a numeric overflow, even 
using long long integer variables.) Once that MIDI note has 
been generated, the method call: 

  synth.play(note, Timing::MILLISECOND, 500); 

plays that note for 500 milliseconds. The overall effect is that 
each iteration of the loop, the sonification plays a note whose 
sonic pitch (i.e., frequency) is scaled to the current value of the 
loop’s control variable i.  

To give the reader a sense of what one hears, we use a 
spectrogram—a sound-chart that graphs sonic pitch (Hz, 
vertical axis) against time (fractional seconds, horizontal axis).  
Figure 2 shows the spectrogram generated by the function in 
Figure 1 for the call factorial(10, synth). From left-to-
right, each ‘step up’ in Figure 2 represents the note played for 
variable i during an iteration of the for loop in Figure 1. 

 
Figure 2. Spectrogram of Iterative factorial(10, synth) 
In constrast with Figure 1, Figure 3 presents a sonification of a 
recursive factorial function: 

 
Figure 3: Recursive Factorial Sonification 
Note that the sonification in Figure 3 plays a note scaled to n 
before the recursive call—during the “winding” phase of the 
recursion—and then again after the recursive call—during the 
“unwinding” phase. To separate these two notes when the base 
case is reached, we use the Synth class stop() method to create 
a short break in the sound; otherwise, those two base case notes 
blend together into a single tone. Figure 4 is a spectrogram of the 
sounds that are generated when the sonification in Figure 3 
computes factorial(10, synth).  

 
Figure 4. Spectrogram of Recursive factorial(10, synth) 

long long factorial(unsigned n, Synth& synth) { 
  long long answer = 1; 
  for (unsigned i = 1; i <= n; ++i) {   
    MidiNote note = scaleToNote(i, 0, 24, C3, C6); 
    synth.play(note, Timing::MILLISECOND, 500); 
    answer *= i; 
  } 
  
  return answer; 
} 

long long factorial(unsigned n, Synth& synth) { 
  long long answer = 0; 
  MidiNote note = scaleToNote(n, 0, 24, C3, C6); 
  synth.play(note, Timing::MILLISECOND, 500); 
 
  if (n <= 1) {                   // base case 
    synth.stop(Timing::MILLISECOND, 500); 
    answer = 1; 
  } else {                        // induction step 
    answer = n * factorial(n-1, synth); 
  } 
 
  synth.play(note, Timing::MILLISECOND, 500); 
  return answer; 
} 
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Figures 2 and 4 allow the behavioral differences to be clearly 
seen, but when one runs the sonifications in Figures 1 and 3, 
those differences can be clearly heard—ascending tones vs. 
descending+ascending tones. In particular, the descending tones 
in Figure 4 are generated as the recursion “winds” toward the 
base case; the ascending tones are generated as the recursion 
“unwinds”, allowing the user to hear the full time-complexity of 
the recursive version of the function.  

Figures 2 and 4 provide visual representations of the 
distinctive sound patterns the functions in Figure 1 and 3 
produce; we call such patterns the functions’ sonic signatures. 

To improve efficiency, we might revise the function in Figure 
3 to use tail recursion. To conserve space, we leave this as an 
exercise for the reader; Figure 5 presents the spectrogram 
produced by a tail-recursive version of Figure 3: 

 
Figure 5. Tail-Recursive factorial(10, synth) Spectrogram 
Sonification thus lets a user hear the behavioral differences of 
iterative and recursive solutions to the same problem, as well as 
the differences between tail and non-tail versions of a recursive 
function. Put differently, each version of factorial() has a 
distinct sonic signature. 

2.2 Searching 
Searching is an important problem for which different 
algorithms exist, including linear search and binary search. 
Figure 6 presents an iterative linear search function sonification 
that searches an array arr for a target value x: 

 
Figure 6: Iterative Linear Search Sonification 
Figure 6 invokes two special utility functions we created: 
• playSuccessNotes(), that sounds two high-pitched 

‘fanfare’ notes to indicate a search has succeeded, and 
• playFailureNotes(), that sounds two low-pitched 

‘raspberry’ notes to indicate that a search has failed. 

Figure 7 presents spectrograms generated by Figure 6 when the 
search of an array of 14 elements (a) fails; and (b) succeeds, 
finding the target value at position 11: 

  
 (a) (b) 
Figure 7. Spectrograms of Iterative Linear Searches 
The thick lines at the bottom-right corner of Figure 7a represent 
the ‘failure’ notes; the thin lines at the top-right corner of Figure 
7b represent the ‘success’ notes.  

As an alternative to Figure 6, Figure 8 presents a sonfication of 
a tail-recursive linear search algorithm:  

 
Figure 8: Recursive Linear Search Sonification 
Figure 9 presents spectrograms generated by Figure 8 when 
searching an array of 14 elements for a target value: (a) fails, and 
(b) finds the target at position 11 in the same array: 

  
 (a) (b) 
Figure 9. Spectrograms of Tail-Recursive Linear Searches 
Figures 7 and 9 indicate how sonification lets one hear the front-
to-back vs. back-to-front differences in the iterative and 
recursive approaches. One can also hear how the linear search 
algorithm’s time to find the target varies, depending on the 
position of the target value within the array. 

Linear search may be used on any array, but for sorted values, 
the faster binary search algorithm can be used. Figure 10 
presents a tail-recursive binary search sonification: 

int linSearch(int arr[], int n, int x, Synth& synth) { 
  for (int i = 0; i < n; ++i) {   
    MidiNote note = scaleToNote(i, 0, MAX, C3, C6); 
    synth.play(note, Timing::MILLISECOND, 500); 
    if (arr[i] == x) { 
      playSuccessNotes(synth); 
      return i; 
    } 
  } 
  playFailureNotes(synth); 
  return -1; 
} 
 

int linSearch(int arr[], int n, int x, Synth& synth) { 
  if (n < 1) {                    // base case 1  
    playFailureNotes(synth); 
    return -1; 
  } 
  MidiNote note = scaleToNote(n, 0, MAX, C3, C6); 
  synth.play(note, Timing::MILLISECOND, 500); 
  int lastIndex = n – 1; 
  if (arr[lastIndex] == x) {      // base case 2 
    playSuccessNotes(synth); 
    return lastIndex; 
  } else {                        // induction step 
    return linSearch(arr, lastIndex, x, synth); 
  } 
} 
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Figure 10: Recursive Binary Search Sonification 
Figure 11 presents spectrograms of the function in Figure 10 
using an array of 14 values: (a) failing to find a target “below” 
the middle value, (b) failing to find a target “above” the middle 
value, (c) finding a target in the lower half of the array, and (d) 
finding a target in the upper half of the array: 

    
(a) (b) (c) (d) 

Figure 11. Spectrograms of Recursive Binary Searches 
Tail-recursive and iterative binary search functions access the 
same array entries, and thus have identical sonic signatures. 

2.3 Hanoi Towers 
The Hanoi Towers Problem is to move N concentric disks from a 
source needle A to a destination needle B using an auxillary 
storage needle C, without placing a larger disk on top of a 
smaller disk. Figure 12 presents a spectrogram of the sounds 
generated by the call move(3, 'A', 'B', 'C') to the function 
in Figure 13: 

 
Figure 12. Spectrogram of Hanoi Towers, N==3 
By playing a note scaled to the number of disks n before and 
after each recursive call, Figure 13 lets a user hear the recursion 
“winding” and “unwinding” in real-time, as the function outputs 
its results. 

 
Figure 13: Hanoi Towers Sonification 
Sonification thus provides a tool that can be used to trace and 
communicate a function’s behavior to users. Can this improve 
students’ understanding of recursion? 

3 ASSESSMENT AND DISCUSSION 
To assess the effectiveness of sonification as a tool for teaching 
recursion, we formed this research question: 

RQ: Does sonification of iterative and recursive functions 
improve students’ understanding of recursion? 

To answer this question, the authors designed the controlled 
experiment described below. Before conducting it, we submitted 
it to our university’s Institutional Review Board, and received 
approval to proceed. 

3.1 Experiment 
The authors invited CS2 (Introductory Data Structures) students 
to participate in an experiment, in return for extra credit. 22 
students, none of whom had visual impairments, volunteered to 
participate and were randomly assigned to two groups (Control, 
Audio) of size 11. Each group was invited to the same computer 
lab the same night, but at a different time. 

After a brief welcome and introduction, each group’s session 
consisted of four 12-minute segments covering the factorial, 
linear search, binary search, and the Hanoi Towers problems, 
respectively. In each segment, students were: 
a. Shown a presentation about the problem and its solution. 

For the factorial and search problems, students were shown 
both iterative and recursive solutions; for Hanoi Towers, 
only a recursive solution was shown. 

b. Directed to run a program implementing that algorithm. 
During this time, a pseudocode algorithm for the problem 
was projected on a screen at the front of the lab, and the 
students were invited to use it as a reference. 

c. Directed to re-run the program using different inputs. 
In step b, the algorithms shown to the Audio group included 
TSAL sonification calls; the Control group algorithms did not. 

int binSearch(int arr[], int lo, int hi, int x, 
                                    Synth& synth) { 
  if (lo > hi) {                // base case 1 
    playFailureNotes(synth); 
    return -1; 
  } 
  int mid = (hi + lo) / 2; 
  MidiNote note = scaleToNote(mid, 0, MAX, C3, C6); 
  synth.play(note, Timing::MILLISECOND, 500); 
  if (arr[mid] == x) {          // base case 2     
    playSuccessNotes(synth); 
    return mid; 
  } else if (arr[mid] > x) {    // induction step 1 
    return binSearch(arr, lo, mid-1, x, synth); 
  } else {                      // induction step 2 
    return binSearch(arr, mid+1, hi, x, synth); 
  } 
} 

void move(int n, char src, char dest, char aux, 
                                    Synth& synth) { 
  MidiNote note = scaleToNote(n, 0, 24, C3, C6); 
  synth.play(note, Timing::MILLISECOND, 500); 
  synth.stop(Timing::MILLISECOND, 5); 
  if (n <= 1) {                   // base case 
    cout << "Move the top disk from " << src 
          << " to " << dest << endl; 
  } else {                        // induction step 
    move(n-1, src, aux, dest); 
    synth.play(note, Timing::MILLISECOND, 500); 
    synth.stop(Timing::MILLISECOND, 5); 
    move(1, src, dest, aux); 
    synth.play(note, Timing::MILLISECOND, 500); 
    synth.stop(Timing::MILLISECOND, 5); 
    move(n-1, aux, dest, src); 
  } 
  synth.play(note, Timing::MILLISECOND, 500); 
  synth.stop(Timing::MILLISECOND, 5); 
} 
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Also in step b, each group was shown how to run a given 
program from the command-line. For example, to compute 5 
factorial using the iterative version, the Control group entered: 

$ ./factorialIter 5 
"e Audio group was instructed to run the same programs, but 
adding the -a (audio) switch and wearing earbuds: 

$ ./factorialIter 5 -a 
"e Control group thus saw a program’s normal output; the 
Audio group both heard the sonification and saw the output. 

To answer our research question RQ based on students’ long-
term memories, we emailed each student a link to a 9-question, 
10-point online quiz one week after their session. 8 of 11 Control 
group members and 11 of 11 Audio group members completed 
the quiz within 48 hours (required to receive the extra credit). 

The nine quiz questions covered the following topics: 

Q0 (not scored). Students were asked to rate how engaging they 
found their session on a 1 (Boring) to 10 (Loved it!) scale. 

Q1 (1 pt). Correctly identify the definition of the word 
‘recursion’ from among several multiple-choice options.  

Q2 (1 pt). Given a definition for “base case”, identify that phrase 
from among several similar options (e.g., “worst case”). 

Q3 (2 pts). Given the code of a tail-recursive function f1() that 
reverses an array’s values, calculate the value the function 
returns when called with particular arguments. 

Q4 (2 pts). Given the code of a non-tail recursive function f2() 
that also reverses an array’s values, calculate the value it returns 
when called using the same arguments as in Q3. 

Q5 (1 pt). Given a recursive function f3()‘s code that sums an 
array’s values and a call to it, calculate the value it returns. 

Q6-8 (1 pt each). Given a recursive function f4() that performs 
linear search, calculate its return values for three different calls:  
- Q6: the target value was not present in the argument-array;  
- Q7: the target value was the last value in the array;  
- Q8: the target value was the first value in the array. 

3.2 Results and Discussion 
Table 1 summarizes the groups’ performances on Q1-Q8: 

Question 
Possible 
Points 

Groups’ Mean Scores 
Control Audio 

Q1 1 1 1 
Q2 1 0.125 0.455 
Q3 2 1.25 1.5 
Q4 2 0.25 1 
Q5 1 0.375 0.545 
Q6 1 0.5 0.909 
Q7 1 0.625 1 
Q8 1 0.5 0.818 

Table 1: Quiz Analysis: Individual Questions and Overall 
The Audio group thus did as well or better than the Control 
group on every question, especially Q4, Q6, Q7, and Q8. 
 

Table 2 compares the groups’ overall quiz performances: 
 

Group Max. Min. Median Mean 
Control 10 1 4 4.625 
Audio 10 4 7 7.227 

Table 2: Summary Statistics of Quiz Scores 
"e groups’ quiz scores comprised a (roughly) normal 
distribution, so we compared their means using a two-tailed, 
two-sample equal-variance t-test, with 0.05 as our significance 
threshold. Our null hypothesis was that there would be no 
significant difference between the groups’ mean scores, but the 
result of our t-test (p=0.04391) led us to reject the null 
hypothesis. Sonification apparently significantly improved 
our Audio group students’ understanding of recursion.  

On our unscored “engagement” question Q0, the groups’ mean 
responses were 5.626 (Control) and 5.725 (Audio). This difference 
was not statistically significant (p=0.90659), so we cannot 
attribute the Audio group’s better quiz performance to better 
engagement. But the differing quiz completion levels  (8/11 vs. 
11/11) might reflect different engagement levels. 

3.3 Potential Validity Threat 
We used random selection to assign students to our Audio and 
Control groups. Because of our modest group sizes, it is possible 
that stronger students were assigned to the Audio group and 
weaker students to the Control group by chance. Student privacy 
concerns prevented us from using scores, grades or similar 
information to equally distribute strong and weak students 
between the two groups, or assessing their classroom 
performance after the experiment. We also had no means of 
controlling the number of students who volunteered, aside from 
the participation-incentive we provided. 

4 BACKGROUND MATERIAL 
This section explores previous work related to this paper. 

4.1 The Difficulty of Recursion  
The literature contains many papers that explore why students 
find recursion difficult; a small sample includes: 
• Götschi, et al [9] studied students’ mental models of 

recursion, identifying some as valid, others as invalid. 
• Sanders, et al [19][20] also examined such mental models, 

noting that some models let students correctly evaluate a 
recursive function without understanding recursion. 

• Mirolo [17] explored computing competency dimensions, 
noting that abstraction contributes to recursion difficulty. 

• Sooriamurthi [21] named three issues that keep students 
from grasping recursion: (i) lack of exposure to declarative 
thinking, (ii) not understanding the functional abstraction, 
and (iii) inability to express a recursive solution. 

Based on our experimental results, we believe that students who 
hear recursive behavior in real time receive extra information via 
their auditory channel that helps them build more accurate 
mental models of recursive behavior than students who hear 
nothing when a recursive function executes. 
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4.2 Pedagogical Proposals For Recursion  
There have also been many papers describing pedagogical 
proposals for teaching recursion, including these: 
• Augenstein and Tenenbaum [2] first proposed the use of 

non-recursive and recursive solutions to the same problem, 
which we utilized in Figures 1 and 3, and 2 and 8. 

• Ginat and Shifroni [8] argued that a declarative, abstract, 
functional approach enhances students’ recursive thinking. 

• Kruse [14] proposed the use of activation-tree diagrams for 
tracing the behavior of recursive calls to help students 
decide when to use or not use recursion. 

• Liss and McMillan [15] argued for using maze-navigation 
with backtracking as an example for teaching recursion. 

However, a recent survey of the literature on teaching recursion 
notes that “there is a surprising lack of evidence for the 
effectiveness of many of the methods presented” [16]. 

The pedagogical benefits of visualization are well-known; 
Hundhausen, et al [12] and Naps, et al [18] provide excellent 
overviews. There is also an extensive body of work devoted to 
using visualizations to help students understand recursion. A 
sampling of this work includes: 
• Dann, et al [5] described using 3D recursive animations to 

help students see and understand recursive behavior. 
• Stern and Naish [22] explored visualizations of recursive 

data structures algorithms, providing a classification 
scheme based on how the data structure is traversed. 

• Stephenson [23] presented three pedagogical examples 
(fractals, flood-fill, maze) that his students found engaging. 

• Velázquez-Iturbide, et al [24] described a Java tool that 
animates recursive traces, activation trees, and call stacks. 

Our work differs from such papers in focusing on the use of a 
different sense (hearing) for teaching recursion, and by 
providing evidence that it improves student learning. 

Note that our results do not allow us to make any claims 
about how much sonification improves learning compared to 
visualization or other pedagogical approaches; such comparisons 
will require additional experimentation. 

4.3 Sonification and TSAL  
Kramer, et all [13] define sonification as “the transformation of 
data relations into perceived relations of an acoustic signal for 
the purposes of facilitating communication or interpretation.” 
Sonification thus differs from aurelization—the generation of 
sounds by software in general—as described by DiGiano and 
Baecker [6], and from earcons (i.e., auditory icons) of Blattner, et 
al [3]. Our work differs by focusing on pedagogy, and by using a 
current, object-oriented language. 

Our work builds on previous work by Adams, et al [1]. That 
paper described TSAL, presented several sorting sonifications, 
and demonstrated their benefits for improving student learning. 
We generalize on that work by exploring the broader topic of 
function sonification, specifically the pedagogical impact of 
iterative and recursive function sonification. 
 

5 CONCLUSIONS AND FUTURE WORK 
This paper presents an experience report on the use of function 
sonification as a pedagogical tool. We have presented a group of 
function sonifications—iterative and recursive—plus 
spectrograms that illustrate these functions’ distinct sonic 
signatures. These signatures allow a user to hear different 
functions’ behavioral differences: iterative vs recursive, linear 
search vs. binary search, and so on.  

We have also presented controlled experimental results that 
indicate sonifications improved students’ understanding of 
recursion. We find this improvement especially interesting 
because TSAL was designed to aid visually impaired students [1] 
and none of our students had impaired vision.  

Our Audio and Control groups did not report significantly 
different levels of engagement. Given the differences in the 
groups’ quiz performances, this appears to contradict Naps, et al 
[18] who argue that a technology’s pedagogical value depends 
on how engaging it is. But different engagement levels could 
explain why just 8 of 11 Control students completed the quiz, 
compared to 11 of 11 Audio students. 

Sonification may also be useful for teaching other topics. For 
example, we have created sonifications of the in-order, pre-
order, and post-order binary search tree traversals but have not 
yet evaluated their pedagogical impact; these may be the subject 
of a future paper. Other possibilities include: 
• Auditory alerts: generating distinct sonic feedback when 

exceptions are thrown. Such feedback is useful even when a 
user is not looking at their computer’s screen. 

• Hearing the differences between single-threaded and multi-
threaded versions of an algorithm. 

Sonification thus opens up many possibilities for future 
exploration, with the potential to reveal new insights and help 
students better understand computing abstractions.  

The sonifications we have created map data values to sonic 
frequencies, which seemed like an intuitive way to represent 
recursive and iterative function behaviors. However, other 
sonification strategies are possible, including: 
• Varying the loudness (i.e. amplitude) of sounds in response 

to different data values, and/or 
• Varying the time (i.e., duration) of sounds and/or silences to 

communicate information about data values. 
We hope to explore these approaches in the future, as our initial 
experiences with sonification lead us to believe that it has 
significant under-utilized potential for helping students 
understand abstract computing concepts. 

For anyone interested in repeating our experiments, our 
sonifications, experimental materials, and data are freely 
available by request to the authors.  
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