Hearing Iterative and Recursive Behavior

Sonification Improves Student Understanding

Joel C. Adams

Dept. of Computer Science
Calvin University
Grand Rapids, M1, USA
adams@calvin.edu

ABSTRACT

Abstract topics such as recursion are challenging for many
computer science students to understand. In this experience
report, we explore function sonification—the addition of sound to a
function to communicate information about the function’s
behavior in real-time as it runs—as a pedagogical approach for
improving students’ understanding of recursion. We present
several example iterative and recursive function sonifications, plus
spectrograms that illustrate their different sonic behaviors. We
also present experimental evidence that using these sonifications
significantly improved the understanding of recursion for students
who used them, compared to students who used silent (ie.,
traditional) versions of the same functions. Based on these
experiences, we believe sonification has under-appreciated
potential for teaching abstract computing topics.

CCS CONCEPTS

« Human-centered computing ~Auditory feedback « Social and
professional topics ~Computer science education

Algorithm, audio, hearing, function, learning, media, recursion,
sonic, sonification, sound

ACM Reference format:

Joel Adams and Hayworth Anderson. 2024. Hearing Iterative and
Recursive Behavior: Sonification Improves Student Understanding. In
Proceedings of the 55th ACM Technical Symposium on Computer Science
Education (SIGCSE 2024), March 20-23, 2024. ACM, New York, NY,
US4, 7 pages. https://doi.org/10.1145/3626252.3630866

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted.
To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

©2024 Copyright is held by the owner/author(s). Publication rights licensed to
ACM.

ACM 979-8-4007-0423-9/24/03...815.00 https://doi.org/10.1145/3626252.3630866

Hayworth Anderson
Dept. of Computer Science
Calvin University
Grand Rapids, M1, USA
hayworth99@yahoo.com

1 INTRODUCTION

We have noticed that many of our students wear earbuds or
headphones while working in our computer labs, but most of the
computer programs used in computer science (CS) education run
silently. This led us to wonder: Might this be a missed
opportunity? Might it be possible to leverage the use of sound to
improve student understanding of computing abstractions that
students find especially challenging?

As one example, many CS educators have noted that their
students find the topic of recursion difficult to understand
[7]1[9][11][21]. If students enjoy sonic stimulation, might it be
possible to leverage sound in a way that helps them understand
abstractions like recursion?

This line of thinking prompted us to explore function
sonification—the addition of sound to a function to
communicate information about the function’s behavior in real-
time as it runs. If the function contains a loop, sonification can
let the user hear that loop executing. If the function is recursive,
the user can hear its recursive behavior.

To create function sonifications, we used the Thread Safe
Audio Library (TSAL) [1]. This let us easily add sound to C++
functions commonly used to teach iteration and recursion,
turning calls to those functions into sonifications.

This paper is an experience report of our exploration. In
Section 2, we present several examples of sonifications—both
iterative and recursive. These examples illustrate the process of
adding TSAL library calls to an existing function to make it
generate appropriate tones in real time as the function executes.
For each of these examples, we also present spectrograms that
depict the function’s sonic behavior. In Section 3, we describe an
experiment we conducted to assess the effects of these
sonifications on student learning. As we shall see, this
experiment provides evidence that sonifications can significantly
improve student understanding of recursion. In Section 4, we
discuss previously published work that is related to our work. In
Section 5, we present our conclusions and future plans.

2 SONIFICATIONS

As described in [1], TSAL makes it quite easy to turn a legacy
program into a sonification. Within the program, one must
perform four straightforward steps:



Hearing lterative and Recursive Behavior

1. Define a Mixer object: a software representation of a
multichannel mixer like those DJs use to mix sounds.

2. TSAL sounds are played by synthesizers, so define a Synth (or
for multithreading, a ThreadSynth) object that can be used to
generate sounds.

3. Add the synth object to the Mixer. (For multithreaded
sonifications—which we do not use here—a TSAL Mixer may
mix the outputs of different ThreadSynth synthesizers, each
with potentially different sonic characteristics.)

4. Use the synth (or ThreadSynth) object to play sounds by
invoking its play() method. For a sonification, the sounds
played should reflect the program’s algorithmic behavior.

Each sonification that follows assumes steps 1-3 were performed
as follows (a sonification performs step 4 itself):

Mixer mixer = new Mixer(); // step 1
Synth synth = new Synth(); // step 2
mixer.add(synth); // step 3

After these steps have been performed, a function £ (int n) can
be transformed into a sonification £(int n, Synth s). When
that function is recursive, it can invoke s.play() to play a tone
scaled to n—playing higher-pitched tones for higher values of n;
lower-pitched tones for lower n-values.

2.1 Factorial

Figure 1 shows a C++ iterative factorial function sonification,
with the added sonification code highlighted in blue:

long long factorial(unsigned n, Synth& synth) {
long long answer = 1;
for (unsigned i = 1; i <= n; ++i) {
MidiNote note = scaleToNote(i, 0, 24, C3, C6);
synth.play(note, Timing::MILLISECOND, 500);
answer x= i;

}

return answer;

}

Figure 1: Iterative Factorial Sonification Function

TSAL employs standard MIDI notation, so in Figure 1, €3 is a
TSAL-defined constant for the C-note one octave below middle
C (C4), and cé6 is a constant for the C-note two octaves above
middle C. The TSAL utility function call:

scaleToNote(i, O, 24, C3, C6)
returns a MIDI note from within the 3-octave range c3..cs,
whose pitch is scaled to the position of i within the range
0..24. (24 factorial will generate a numeric overflow, even
using long long integer variables.) Once that MIDI note has
been generated, the method call:

synth.play(note, Timing::MILLISECOND, 500);

plays that note for 500 milliseconds. The overall effect is that
each iteration of the loop, the sonification plays a note whose
sonic pitch (i.e., frequency) is scaled to the current value of the
loop’s control variable i.

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

To give the reader a sense of what one hears, we use a
spectrogram—a sound-chart that graphs sonic pitch (Hz,
vertical axis) against time (fractional seconds, horizontal axis).
Figure 2 shows the spectrogram generated by the function in
Figure 1 for the call factorial(10, synth). From left-to-
right, each ‘step up’ in Figure 2 represents the note played for
variable i during an iteration of the for loop in Figure 1.

Figure 2. Spectrogram of Iterative factorial(10, synth)
In constrast with Figure 1, Figure 3 presents a sonification of a
recursive factorial function:

long long factorial(unsigned n, Synth& synth) {
long long answer = 0;
MidiNote note = scaleToNote(n, 0, 24, C3, C6);
synth.play(note, Timing::MILLISECOND, 500);

if (n <=1) { // base case
synth.stop(Timing: :MILLISECOND, 500);
answer = 1;

} else { // induction step
answer = n x factorial(n-1, synth);

}

synth.play(note, Timing::MILLISECOND, 500);
return answer;

}

Figure 3: Recursive Factorial Sonification

Note that the sonification in Figure 3 plays a note scaled to n
before the recursive call-during the “winding” phase of the
recursion—and then again after the recursive call—during the
“unwinding” phase. To separate these two notes when the base
case is reached, we use the synth class stop () method to create
a short break in the sound; otherwise, those two base case notes
blend together into a single tone. Figure 4 is a spectrogram of the
sounds that are generated when the sonification in Figure 3
computes factorial (10, synth).

Figure 4. Spectrogram of Recursive factorial(10, synth)



SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Figures 2 and 4 allow the behavioral differences to be clearly
seen, but when one runs the sonifications in Figures 1 and 3,
those differences can be clearly heard—ascending tones vs.
descending+ascending tones. In particular, the descending tones
in Figure 4 are generated as the recursion “winds” toward the
base case; the ascending tones are generated as the recursion
“unwinds”, allowing the user to hear the full time-complexity of
the recursive version of the function.

Figures 2 and 4 provide visual representations of the
distinctive sound patterns the functions in Figure 1 and 3
produce; we call such patterns the functions’ sonic signatures.

To improve efficiency, we might revise the function in Figure
3 to use tail recursion. To conserve space, we leave this as an
exercise for the reader; Figure 5 presents the spectrogram
produced by a tail-recursive version of Figure 3:

S50)
543]
7!
511]
405}
a7 |
P —
a4g]
430)
41|
a

Figure 5. Tail-Recursive factorial(10, synth) Spectrogram
Sonification thus lets a user hear the behavioral differences of
iterative and recursive solutions to the same problem, as well as
the differences between tail and non-tail versions of a recursive
function. Put differently, each version of factorial() has a
distinct sonic signature.

2.2 Searching

Searching is an important problem for which different
algorithms exist, including linear search and binary search.
Figure 6 presents an iterative linear search function sonification
that searches an array arr for a target value x:

int linSearch(int arr[], int n, int x, Synth& synth) {
for (int i = 0; i < n; ++1) {
MidiNote note = scaleToNote(i, @, MAX, C3, C6);
synth.play(note, Timing::MILLISECOND, 500);
if (arr[i] == x) {
playSuccessNotes(synth);
return i;

}

}
playFailureNotes(synth);
return -1;

}

Figure 6: Iterative Linear Search Sonification
Figure 6 invokes two special utility functions we created:
e playSuccessNotes(), that sounds two high-pitched
‘fanfare’ notes to indicate a search has succeeded, and
e playFailureNotes(), that sounds two low-pitched
‘raspberry’ notes to indicate that a search has failed.

Joel Adams and Hayworth Anderson

Figure 7 presents spectrograms generated by Figure 6 when the
search of an array of 14 elements (a) fails; and (b) succeeds,
finding the target value at position 11:

(b)
Figure 7. Spectrograms of Iterative Linear Searches
The thick lines at the bottom-right corner of Figure 7a represent
the ‘failure’ notes; the thin lines at the top-right corner of Figure
7b represent the ‘success’ notes.

As an alternative to Figure 6, Figure 8 presents a sonfication of
a tail-recursive linear search algorithm:

int linSearch(int arr[], int n, int x, Synth& synth) {

if (n < 1) { // base case 1
playFailureNotes(synth);
return -1;

}

MidiNote note = scaleToNote(n, @, MAX, C3, (C6);

synth.play(note, Timing::MILLISECOND, 500);

int lastIndex = n - 1;

if (arr[lastIndex] == x) {
playSuccessNotes(synth);
return lastIndex;

} else { // induction step
return linSearch(arr, lastIndex, x, synth);

}

// base case 2

}

Figure 8: Recursive Linear Search Sonification

Figure 9 presents spectrograms generated by Figure 8 when
searching an array of 14 elements for a target value: (a) fails, and
(b) finds the target at position 11 in the same array:

(b)
Figure 9. Spectrograms of Tail-Recursive Linear Searches
Figures 7 and 9 indicate how sonification lets one hear the front-
to-back vs. back-to-front differences in the iterative and
recursive approaches. One can also hear how the linear search
algorithm’s time to find the target varies, depending on the
position of the target value within the array.

Linear search may be used on any array, but for sorted values,
the faster binary search algorithm can be used. Figure 10
presents a tail-recursive binary search sonification:



Hearing lterative and Recursive Behavior

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

int binSearch(int arr[], int lo, int hi, int x,
Synth& synth) {

if (Lo > hi) { // base case 1
playFailureNotes(synth);
return -1;

}

int mid = (hi + lo) / 2;

MidiNote note = scaleToNote(mid, @, MAX, C3, C6);

synth.play(note, Timing::MILLISECOND, 500);

if (arr[mid] == x) { // base case 2
playSuccessNotes(synth);
return mid;

} else if (arr[mid] > x) { // induction step 1
return binSearch(arr, lo, mid-1, x, synth);

} else { // induction step 2
return binSearch(arr, mid+1l, hi, x, synth);

}

}

Figure 10: Recursive Binary Search Sonification

Figure 11 presents spectrograms of the function in Figure 10
using an array of 14 values: (a) failing to find a target “below”
the middle value, (b) failing to find a target “above” the middle
value, (c) finding a target in the lower half of the array, and (d)
finding a target in the upper half of the array:

(©) (d)
Figure 11. Spectrograms of Recursive Binary Searches
Tail-recursive and iterative binary search functions access the
same array entries, and thus have identical sonic signatures.

2.3 Hanoi Towers

The Hanoi Towers Problem is to move N concentric disks from a
source needle A to a destination needle B using an auxillary
storage needle C, without placing a larger disk on top of a
smaller disk. Figure 12 presents a spectrogram of the sounds
generated by the callmove(3, 'A', 'B', 'c') to the function
in Figure 13:

-‘—-‘- - i‘----‘-

Figure 12. Spectrogram of Hanoi Towers, N==

By playing a note scaled to the number of disks n before and
after each recursive call, Figure 13 lets a user hear the recursion
“winding” and “unwinding” in real-time, as the function outputs
its results.

void move(int n, char src, char dest, char aux,
Synth& synth) {
MidiNote note = scaleToNote(n, 0, 24, C3, C6);
synth.play(note, Timing::MILLISECOND, 500);
synth.stop(Timing: :MILLISECOND, 5);
if (n <=1) { // base case
cout << "Move the top disk from " << src
<< " to " << dest << endl;
} else { // induction step
move(n-1, src, aux, dest);
synth.play(note, Timing::MILLISECOND, 500);
synth.stop(Timing: :MILLISECOND, 5);
move(l, src, dest, aux);
synth.play(note, Timing::MILLISECOND, 500);
synth.stop(Timing: :MILLISECOND, 5);
move(n-1, aux, dest, src);

}
synth.play(note, Timing::MILLISECOND, 500);
synth.stop(Timing: :MILLISECOND, 5);

}

Figure 13: Hanoi Towers Sonification

Sonification thus provides a tool that can be used to trace and
communicate a function’s behavior to users. Can this improve
students’ understanding of recursion?

3 ASSESSMENT AND DISCUSSION

To assess the effectiveness of sonification as a tool for teaching
recursion, we formed this research question:

RQ: Does sonification of iterative and recursive functions
improve students’ understanding of recursion?

To answer this question, the authors designed the controlled
experiment described below. Before conducting it, we submitted
it to our university’s Institutional Review Board, and received
approval to proceed.

3.1 Experiment

The authors invited CS2 (Introductory Data Structures) students
to participate in an experiment, in return for extra credit. 22
students, none of whom had visual impairments, volunteered to
participate and were randomly assigned to two groups (Control,
Audio) of size 11. Each group was invited to the same computer
lab the same night, but at a different time.

After a brief welcome and introduction, each group’s session
consisted of four 12-minute segments covering the factorial,
linear search, binary search, and the Hanoi Towers problems,
respectively. In each segment, students were:

a. Shown a presentation about the problem and its solution.
For the factorial and search problems, students were shown
both iterative and recursive solutions; for Hanoi Towers,
only a recursive solution was shown.

b. Directed to run a program implementing that algorithm.
During this time, a pseudocode algorithm for the problem
was projected on a screen at the front of the lab, and the
students were invited to use it as a reference.

c. Directed to re-run the program using different inputs.

In step b, the algorithms shown to the Audio group included
TSAL sonification calls; the Control group algorithms did not.



SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Also in step b, each group was shown how to run a given
program from the command-line. For example, to compute 5
factorial using the iterative version, the Control group entered:

$ ./factoriallter 5

The Audio group was instructed to run the same programs, but
adding the -a (audio) switch and wearing earbuds:

$ ./factorialIter 5 -a

The Control group thus saw a program’s normal output; the
Audio group both heard the sonification and saw the output.

To answer our research question RQ based on students’ long-
term memories, we emailed each student a link to a 9-question,
10-point online quiz one week after their session. 8 of 11 Control
group members and 11 of 11 Audio group members completed
the quiz within 48 hours (required to receive the extra credit).

The nine quiz questions covered the following topics:

QO (not scored). Students were asked to rate how engaging they
found their session on a 1 (Boring) to 10 (Loved it!) scale.

Q1 (1 pt). Correctly identify the definition of the word
‘recursion’ from among several multiple-choice options.

Q2 (1 pt). Given a definition for “base case”, identify that phrase
from among several similar options (e.g., “worst case”).

Q3 (2 pts). Given the code of a tail-recursive function £1() that
reverses an array’s values, calculate the value the function
returns when called with particular arguments.

Q4 (2 pts). Given the code of a non-tail recursive function £2 ()
that also reverses an array’s values, calculate the value it returns
when called using the same arguments as in Q3.

Q5 (1 pt). Given a recursive function £3()‘s code that sums an
array’s values and a call to it, calculate the value it returns.

Q6-8 (1 pt each). Given a recursive function £4() that performs
linear search, calculate its return values for three different calls:

- Q6: the target value was not present in the argument-array;

- Q7: the target value was the last value in the array;

- Q8: the target value was the first value in the array.

3.2 Results and Discussion

Table 1 summarizes the groups’ performances on Q1-Q8:

. Possible | Groups’ Mean Scores
Question | points Control | Audio
01 1 1 1
Q2 1 0.125 0.455
Q3 2 1.25 1.5
Q4 2 0.25 1
Q5 1 0.375 0.545
Q6 1 0.5 0.909
Q7 1 0.625 1
Q8 1 0.5 0.818

Table 1: Quiz Analysis: Individual Questions and Overall
The Audio group thus did as well or better than the Control
group on every question, especially Q4, Q6, Q7, and Q8.

Joel Adams and Hayworth Anderson

Table 2 compares the groups’ overall quiz performances:

Group Max. Min. | Median Mean
Control 10 1 4 4.625
Audio 10 4 7 7.227

Table 2: Summary Statistics of Quiz Scores

The groups’ quiz scores comprised a (roughly) normal
distribution, so we compared their means using a two-tailed,
two-sample equal-variance t-test, with 0.05 as our significance
threshold. Our null hypothesis was that there would be no
significant difference between the groups’ mean scores, but the
result of our t-test (p=0.04391) led us to reject the null
hypothesis. Sonification apparently significantly improved
our Audio group students’ understanding of recursion.

On our unscored “engagement” question QO, the groups’ mean
responses were 5.626 (Control) and 5.725 (Audio). This difference
was not statistically significant (p=0.90659), so we cannot
attribute the Audio group’s better quiz performance to better
engagement. But the differing quiz completion levels (8/11 vs.
11/11) might reflect different engagement levels.

3.3 Potential Validity Threat

We used random selection to assign students to our Audio and
Control groups. Because of our modest group sizes, it is possible
that stronger students were assigned to the Audio group and
weaker students to the Control group by chance. Student privacy
concerns prevented us from using scores, grades or similar
information to equally distribute strong and weak students
between the two groups, or assessing their classroom
performance after the experiment. We also had no means of
controlling the number of students who volunteered, aside from
the participation-incentive we provided.

4 BACKGROUND MATERIAL

This section explores previous work related to this paper.

4.1 The Difficulty of Recursion

The literature contains many papers that explore why students
find recursion difficult; a small sample includes:

e Gotschi, et al [9] studied students’ mental models of
recursion, identifying some as valid, others as invalid.

e Sanders, et al [19][20] also examined such mental models,
noting that some models let students correctly evaluate a
recursive function without understanding recursion.

e Mirolo [17] explored computing competency dimensions,
noting that abstraction contributes to recursion difficulty.

e Sooriamurthi [21] named three issues that keep students
from grasping recursion: (i) lack of exposure to declarative
thinking, (ii) not understanding the functional abstraction,
and (iii) inability to express a recursive solution.

Based on our experimental results, we believe that students who
hear recursive behavior in real time receive extra information via
their auditory channel that helps them build more accurate
mental models of recursive behavior than students who hear
nothing when a recursive function executes.



Hearing lterative and Recursive Behavior

4.2 Pedagogical Proposals For Recursion

There have also been many papers describing pedagogical
proposals for teaching recursion, including these:

e Augenstein and Tenenbaum [2] first proposed the use of
non-recursive and recursive solutions to the same problem,
which we utilized in Figures 1 and 3, and 2 and 8.

e Ginat and Shifroni [8] argued that a declarative, abstract,
functional approach enhances students’ recursive thinking.

o Kruse [14] proposed the use of activation-tree diagrams for
tracing the behavior of recursive calls to help students
decide when to use or not use recursion.

e Liss and McMillan [15] argued for using maze-navigation
with backtracking as an example for teaching recursion.
However, a recent survey of the literature on teaching recursion
notes that “there is a surprising lack of evidence for the

effectiveness of many of the methods presented” [16].

The pedagogical benefits of visualization are well-known;
Hundhausen, et al [12] and Naps, et al [18] provide excellent
overviews. There is also an extensive body of work devoted to
using visualizations to help students understand recursion. A
sampling of this work includes:

e Dann, et al [5] described using 3D recursive animations to

help students see and understand recursive behavior.

e Stern and Naish [22] explored visualizations of recursive
data structures algorithms, providing a classification
scheme based on how the data structure is traversed.

e Stephenson [23] presented three pedagogical examples
(fractals, flood-fill, maze) that his students found engaging.

o Velazquez-Iturbide, et al [24] described a Java tool that
animates recursive traces, activation trees, and call stacks.

Our work differs from such papers in focusing on the use of a
different sense (hearing) for teaching recursion, and by
providing evidence that it improves student learning.

Note that our results do not allow us to make any claims
about how much sonification improves learning compared to
visualization or other pedagogical approaches; such comparisons
will require additional experimentation.

4.3 Sonification and TSAL

Kramer, et all [13] define sonification as “the transformation of
data relations into perceived relations of an acoustic signal for
the purposes of facilitating communication or interpretation.”
Sonification thus differs from aurelization—the generation of
sounds by software in general—as described by DiGiano and
Baecker [6], and from earcons (i.e., auditory icons) of Blattner, et
al [3]. Our work differs by focusing on pedagogy, and by using a
current, object-oriented language.

Our work builds on previous work by Adams, et al [1]. That
paper described TSAL, presented several sorting sonifications,
and demonstrated their benefits for improving student learning.
We generalize on that work by exploring the broader topic of
function sonification, specifically the pedagogical impact of
iterative and recursive function sonification.

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

5 CONCLUSIONS AND FUTURE WORK

This paper presents an experience report on the use of function
sonification as a pedagogical tool. We have presented a group of
function sonifications—iterative and recursive—plus
spectrograms that illustrate these functions’ distinct sonic
signatures. These signatures allow a user to hear different
functions’ behavioral differences: iterative vs recursive, linear
search vs. binary search, and so on.

We have also presented controlled experimental results that
indicate sonifications improved students’ understanding of
recursion. We find this improvement especially interesting
because TSAL was designed to aid visually impaired students [1]
and none of our students had impaired vision.

Our Audio and Control groups did not report significantly
different levels of engagement. Given the differences in the
groups’ quiz performances, this appears to contradict Naps, et al
[18] who argue that a technology’s pedagogical value depends
on how engaging it is. But different engagement levels could
explain why just 8 of 11 Control students completed the quiz,
compared to 11 of 11 Audio students.

Sonification may also be useful for teaching other topics. For
example, we have created sonifications of the in-order, pre-
order, and post-order binary search tree traversals but have not
yet evaluated their pedagogical impact; these may be the subject
of a future paper. Other possibilities include:

e Auditory alerts: generating distinct sonic feedback when
exceptions are thrown. Such feedback is useful even when a
user is not looking at their computer’s screen.

e Hearing the differences between single-threaded and multi-
threaded versions of an algorithm.

Sonification thus opens up many possibilities for future
exploration, with the potential to reveal new insights and help
students better understand computing abstractions.

The sonifications we have created map data values to sonic
frequencies, which seemed like an intuitive way to represent
recursive and iterative function behaviors. However, other
sonification strategies are possible, including:

e Varying the loudness (i.e. amplitude) of sounds in response
to different data values, and/or

e Varying the time (i.e., duration) of sounds and/or silences to
communicate information about data values.

We hope to explore these approaches in the future, as our initial
experiences with sonification lead us to believe that it has
significant under-utilized potential for helping students
understand abstract computing concepts.

For anyone interested in repeating our experiments, our
sonifications, experimental materials, and data are freely
available by request to the authors.

ACKNOWLEDGMENTS

This work was made possible by U.S. NSF-DUE grant #1822486,
and by TSAL, which may be freely downloaded from Github, as
indicated in [1]. The spectrograms in Section 2 were created
using Sonic Visualizer [4].



SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

J. Adams, B. Allen, B. Fowler, M. Wissink. The Sounds of Sorting
Algorithms: Sonification as a Pedagogical Tool, Proc. of the 53rd ACM
SIGCSE  Technical Symposium on Computer Science Education
(SIGCSE’22), Feb 2022. pp. 189-195.

M. Augenstein and A. Tenenbaum. A Lesson in Recursion and
Structured Programming. Proc. of the ACM SIGCSE Technical
Symposium on Computer Science Education (SIGCSE '76), Feb 1976, pp.
17-23.

M. Blattner, D. Sumikawa and R. Greenberg, Earcons and Icons: Their
Structure and Common Design Principles. SIGCHI Bulletin 21, 1, July
1989, pp. 123-124.

C. Cannam, C. Landone, and M. Sandler. Sonic Visualiser: An Open
Source Application for Viewing, Analysing, and Annotating Music
Audio Files, Proceedings of the ACM Multimedia 2010 International
Conference, Oct 2010, pp. 1467-1468.

W. Dann, S. Cooper, and R. Pausch. Using Visualization to Teach
Novices Recursion. Proc. of the 6 Annual Conference on Innovation
and Technology in Computer Science Education (ITiCSE'01). June 2001,
pp. 109-112,

C. DiGiano and R. Baecker. Program auralization: Sound
enhancements to the programming environment. Proc. of the
Conference on Graphics Interface *92. Morgan Kaufmann Publishers,
Sept 1992, pp. 44-52.

M. Endres, W. Weimer, and A. Kamil. An Analysis of Iterative and
Recursive Problem Performance. Proc. of the 524 ACM Technical
Symposium on Computer Science Education (SIGCSE '21), Mar 2021,
pp. 321-327.

D. Ginat and E. Shifroni. Teaching Recursion in a Procedural
Environment—How Much Should We Emphasize the Computing
Model? Proc. of the 30t SIGCSE Technical Symposium on Computer
Science Education (SIGCSE '99). Mar 1999, pp. 127-131.

D. Ginat. Do Senior CS Students Capitalize on Recursion? Proc. of the
9 Annual Conference on Innovation and Technology in Computer
Science Education (ITiCSE'04), June 2004, pp. 82-86.

T. Gotschi, I. Sanders, and V. Galpin. Mental Models of Recursion.
Proc. of the 34th SIGCSE Technical Symposium on Computer Science
Education (SIGCSE'03), Mar 2003, pp. 346—350.

B. Haberman and H. Averbuch. The case of base cases: why are they
so difficult to recognize? student difficulties with recursion. Proc. of
the 7h Annual Conference on Innovation and Technology in Computer
Science Education (ITiCSE'02), June 2002, pp. 84-88.

C. Hundhausen, S. Douglas, and J. Stasko. A meta-study of algorithm
visualization effectiveness. Journal of Visual Languages and
Computing 13(3), June 2002, pp. 259-290.

G. Kramer, B. Walker. T. Bonebright, P. Cook, ]J. Flowers, N. Miner
and J. Neuhoff. "Sonification Report: Status of the Field and Research
Agenda" (2010). Faculty Publications, Department of Psychology,
University of Nebraska-Lincoln. Online, accessed 2021-12-01:
https://digitalcommons.unl.edu/psychfacpub/444.

[14]

[15

[16

[17

[18

[19

[20

[21

[22

[23

[24

]

]

]

]

]

]

]

]

]

[}

Joel Adams and Hayworth Anderson

R. Kruse. On Teaching Recursion. Proc. of the 13th SIGCSE Technical
Symposium on Computer Science Education (SIGCSE'82), Feb 1982,
pp. 92-96.

L Liss and T. McMillan. An Amazing Exercise in Recursion for CS1
and CS2. Proc. of the 19t SIGCSE Technical Symposium on Computer
Science Education (SIGCSE '88). Mar 1988, pp. 270-274.

S. Mackay. 2022. What Does Literature Tell Us About Recursion?
Proc. of the 534 ACM Technical Symposium on Computer Science
Education (SIGCSE’22), Mar 2022, p. 1173.

C. Mirolo. Learning (Through) Recursion: a Multidimensional
Analysis of the Competences Achieved by CS1 Students. Proc. of the
15" Annual Conference on Innovation and Technology in Computer
Science Education (ITiCSE '10), June 2010, pp. 160-164.

T. Naps, G. Roessling, V. Almstrum, W. Dann, R. Fleischer, C.
Hundhausen, A. Korhonen, L. Malmi, M. McNally, S. Rodger, and J.
Velazquez-Tturbide. Exploring the role of visualization and
engagement in computer science education. SIGCSE Bulletin 35 (2),
June 2003, pp. 131-152.

L. Sanders, V. Galpin, and T. Go6tschi. Mental models of Recursion
Revisited. Proc. of the 11" Annual SIGCSE Conference on Innovation
and Technology in Computer Science Education (ITICSE'06), June 2006,
pp. 138-142.

T. Scholtz and 1. Sanders. Mental Models of Recursion: Investigating
Students' Understanding of Recursion. Proc. of the 15" Annual
Conference on Innovation and Technology in Computer Science
Education (ITiCSE '10), June 2010, pp. 103-107.

R. Sooriamurthi. Problems in comprehending recursion and suggested
solutions. Proc. of the 6% Annual Conference on Innovation and
Technology in Computer Science Education (ITiCSE’01), June 2001, pp.
25-28.

L. Stern and L. Naish. Visual Representations for Recursive
Algorithms. Proc. of the 334 SIGCSE Technical Symposium on
Computer Science Education (SIGCSE '02), Mar 2002, 196-200.

B. Stephenson. Visual Examples of Recursion. Proc. of the 14" Annual
Conference on Innovation and Technology in Computer Science
Education (ITiCSE'09, June 2009, p. 400.

J. Velazquez-Iturbide, A. Pérez-Carrasco, J. Urquiza-Fuentes. 2008.

SRec: An animation system of recursion for algorithm courses. ACM
SIGCSE Bulletin 40(3), Sept 2008, pp. 225-229.



