
1. Introduction
Predicting future changes to global precipitation patterns is critical for global food security, water resource 

management, and extreme event preparedness (IPCC,  2021). However, current precipitation predictions 

vary significantly among climate models due to their distinct parameters (e.g., RCP Scenarios; IPCC, 2021; 

USGCRP, 2018). A better understanding of precipitation dynamics during past greenhouse periods is required to 

improve future precipitation simulations (QDRR, 2010; Tierney et al., 2020). As the polar regions are particularly 

responsive to global climate change, improvement to our overall understanding of past high latitude hydrological 
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regimes contributes to models of both regional and global paleohydrology and to our capacity to predict anthro-

pogenic change.

Proxy records from past greenhouse periods exist for some regions and time periods; however, the majority 

of climate records currently available from Mesozoic and Paleogene warm periods are from marine environ-

ments, which may temporally lag corresponding terrestrial events (Mix & Ruddiman, 1984), and typically show 

diminished responses to warming (Diffenbaugh & Field,  2013). Modern climate monitoring and simulations 

of future warming have also shown that high-latitude regions respond dramatically to rapid warming events 

and can further influence the global climate (USGCRP,  2018), highlighting the need to increase our under-

standing of high-latitude climate dynamics. Some terrestrial proxy records from greenhouse periods exist for 

the Arctic (e.g., Greenwood et al., 2010; Guemas et al., 2013; Salpin et al., 2019; Suan et al., 2017; Sunderlin 

et al., 2011; West et al., 2015, 2020; Willard et al., 2019; Zimov et al., 2006) and southern high latitudes (e.g., 

Carpenter et al., 2012; Contreras et al., 2013; Francis & Poole, 2002; Ivany et al., 2011; Jacques et al., 2014; Pross 

et al., 2012; Reguero et al., 2002). Nevertheless, the amount of data available for terrestrial areas is comparatively 

low and often complicated for these crucial regions (e.g., Huber & Caballero, 2011); therefore, expanding our 

inventory of high-latitude terrestrial proxy records will continue to improve our understanding of the function of 

the hydrologic cycle during past greenhouse periods (e.g., Carmichael et al., 2016).

Accessible land area in polar regions is limited and deep-time archives are often obscured by subsequent defor-

mation, making it difficult to unravel environmental histories. In particular, the Canadian Arctic has experienced 

tectonic reorganization since the Mesozoic, including significant burial and exhumation of certain terranes (e.g., 

Ricketts & Stephenson,  1994; Embry & Beauchamp,  2008; von Gosen et  al.,  2019). Previous studies found 

extension and rapid subsidence of the eastern part of the region (Sverdrup Basin), which resulted in increased 

sedimentation between the Late Cretaceous and the middle Eocene. This period of deposition was followed by 

regional uplift and denudation from the middle Eocene onward (Figure 1; e.g., Dewing & Obermajer,  2011; 

Dewing & Sanei, 2009; Embry & Beauchamp, 2008; von Gosen et al., 2019). Understanding such complex sedi-

mentary basin dynamics can be important for interpreting samples within the context of their tectonic histories 

and evaluating robustness of paleoclimate records.

One way to address both climate and tectonic evolution questions in complex settings like the Canadian Arctic 

Archipelago is to employ a combination of traditional stable and novel clumped isotope systems to identify pre- 

and post-burial influences on carbonate rocks, and to thereby separate paleoclimatic from burial/deformation 

signals (e.g., Parrish et al., 2018; Winkelstern & Lohmann, 2016). The main objectives of this study are to use 

the carbon, oxygen, and clumped isotopic compositions of terrestrial carbonates to determine (a) if the Paleo-

gene Arctic hydrologic system experienced some form of seasonality or periodicity in water availability, and 

(b) if paleoclimate information can be disentangled from signals generated by burial and subsequent carbonate 

alteration using a multi-proxy approach. Specifically, we analyze both the (relatively burial-insensitive) stable 

and (relatively burial-sensitive) clumped isotope compositions of palustrine carbonates from Ellesmere and Axel 

Heiberg islands (Nunavut, Canada) and use these complex data sets to provide new constraints on both Arctic 

paleohydrology and burial/deformation in the eastern Sverdrup Basin.

2. Background
2.1. Paleogene Arctic Climate

The modern Canadian Arctic environment is a polar desert, and is typified by a cold, dry climate inhabited by 

cold-adapted flora and fauna. However, during the early Paleogene, the Canadian Arctic was home to forests 

dominated by temperate deciduous hardwoods, conifers, and ferns (McIver & Basinger, 1999; West et al., 2019), 

and a diverse polar fauna consisting of thermophilic animals such alligators, snakes, turtles, and tapirs (Eberle 

et al., 2014; Eberle & Greenwood, 2012; Estes & Hutchison, 1980).

The Canadian Arctic region during the early Paleogene was broadly temperate and wet (Eldrett et  al.,  2014; 

Greenwood et  al.,  2010; West et  al.,  2020), and previous paleobotanical studies have indicated these regions 

experienced high mean annual precipitation (>>150 cm/year), mesothermal conditions (mean annual temper-

ature (MAT) ∼12–15°C), and moderate winter temperatures (Cold month mean temperature (CMMT) > 0°C) 

(West et al., 2015, 2020). The forests of the Canadian Arctic grew during a warm greenhouse interval when 

global temperatures were much higher than modern, and the global climate system was episodically punctuated 

by short-lived transient hyperthermal events (McInerney & Wing, 2011; Sluijs et al., 2009; Zachos et al., 2008). 
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These intense episodes of global warming are considered to be some of the most abrupt and dramatic climatic 

warming events of the entire Cenozoic and represent some of the warmest intervals of the last 66 million years 

(McInerney & Wing, 2011; Westerhold et  al.,  2020; Zachos et  al.,  2008). Perhaps the best studied and most 

dramatic of these events is the Paleocene-Eocene Thermal Maximum (PETM), which was characterized by 

a large negative carbon isotope excursion (>4‰ in terrestrial archives) and a subsequent global temperature 

increase of approximately 5–8°C in ≤20ky (e.g., Eldrett et al., 2014; Sluijs et al., 2009; Zachos et al., 2008).

The PETM and other Paleogene warming events not only increased mean global temperatures, but also affected 

the global hydrological system, including precipitation intensity and distribution (Hyland & Sheldon,  2013; 

Hyland et al., 2017; Krishnan et al., 2014; Pagani et al., 2006; Westerhold et al., 2020; Zachos et al., 2008). 

The hydrological response on a regional scale was complex, with shifts to wetter or drier climates recorded 

in different regions (Zachos et al., 2008). Mid-latitude environments that were warm and wet were marked by 

a decrease in precipitation that preceded or occurred during the PETM (Garel et al., 2013; Kraus et al., 2013; 

Wing et al., 2005). However, proxy evidence from wet-temperate high-latitude environments such as the Cana-

dian Arctic, Spitzbergen and North Sea, reveal positive increases to both temperature and precipitation (Eldrett 

et al., 2014; Greenwood et al., 2010; Uhl et al., 2007; West et al., 2015, 2020).

The seasonality of precipitation, or the availability of water, remain important aspects of paleohydrological 

research, particularly during greenhouse climates. Recently, global climate models have reconstructed precip-

itation patterns for the early Eocene and identified the existence of robust seasonal precipitation patterns within 

much of the middle and lower latitudes (e.g., Huber & Goldner, 2012), whereas the high latitudes were instead 

modeled as having a low precipitation seasonality, or considered “ever-wet” (Carmichael et al., 2016; Huber & 

Goldner, 2012). Leaf physiognomic analyses from Stenkul Fiord (Ellesmere Island) also showed that estimates of 

mean annual precipitation and growing season precipitation indicated a more even distribution of annual precip-

itation (West et al., 2015). In contrast, high-resolution carbon isotope analyses of fossil wood from Stenkul Fiord 

showed a summer peak in precipitation and characterized the region as “monsoonal” (Schubert et al., 2012).

2.2. Geologic Setting

Ellesmere and Axel Heiberg islands are located in the Canadian Arctic Archipelago within the Nunavut territory 

of Canada (Figure 1). These islands are at present positioned from 77˚N to 82˚N, and were approximately 2° 

Figure 1. Maps of Ellesmere (EL) and Axel Heiberg (AH) islands. (a) Topographic map for Ellesmere (EL) and Axel Heiberg (AH) islands. Axel Heiberg Island 

contains the sample locations: Buchanan Lake (BL) and Strand Fiord (SD). Ellesmere Island contains the sample locations: Lake Hazen (HZ), Hot Weather Creek 

(HW), Mosquito Creek (MC), Fosheim Anticline West (FW), Fosheim Anticline East (FE), Strathcona Fiord (ST), Split Lake (SP), and Stenkul Fiord (SK). 

Topographic data from GeoMapApp (Ryan et al., 2009). Blue line in Panel A indicates NE-SW transect shown in Figure 6. (b) Placement of the Sverdrup Basin across 

the Canadian Arctic Archipelago, with sediment source areas indicated. Deformation regimes in the Sverdrup Basin include “highly deformed” with thrust faults and 

significant folding; “moderately deformed” with folding and salt domes; and “lightly deformed” where there is very mild deformation with broad folds (e.g., Embry & 

Beauchamp, 2008).
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further south (75˚N to 80˚N) from 66 to 40 Ma (Irving & Wynne, 1991; Jahren, 2007; West et al., 2019). At these 

latitudes, the islands experienced continuous darkness during winter and continuous light during summer, with 

short spring and fall transitions. The Sverdrup Basin (approximately 1,000 km by 350 km) spans the northern 

Canadian Arctic Archipelago, including Axel Heiberg Island and most of Ellesmere Island, and contains up to 

13,000 m of strata of Paleozoic to Cenozoic age (Figure 1; Núñez-Betelu et al., 1994). The clastic sediments 

that were deposited in the Sverdrup Basin during the Paleocene and Eocene comprise the Eureka Sound Group 

(ESG). Our examined suite of samples is from the ESG and were deposited and deformed during burial and uplift 

phases of the Eurekan Orogeny (Dewing & Obermajer, 2011). As a result, many of the carbonates of the ESG 

experienced deformation and heating, which is important context when applying the isotopic data from these 

ESG carbonates to climate or burial history reconstructions.

2.3. Eureka Sound Group

The stratigraphy of the ESG was recently reviewed by West et al. (2019), which simplifies various nomenclature 

conventions and offers a comprehensive overview of the refined stratigraphy. The late Paleocene to early Eocene 

samples analyzed here are from the Mount Moore, Margaret, and Mokka Fiord Formations. Outcrops of these 

formations are present in many locations across Ellesmere and Axel Heiberg islands, with ages constrained by litho-

stratigraphy, biostratigraphy, magnetostratigraphy, and U-Pb zircon dating (Figure 2; Eberle & Greenwood, 2012; 

Harrison et al., 1999; Miall, 1986; Reinhardt et al., 2013; Ricketts, 1986; Ricketts & Stephenson, 1994; Sudermann 

et al., 2021; Tauxe & Clark, 1987; von Gosen et al., 2019; West et al., 1977, 1981, 2019). Because units are 

diachronous based on the location and degree of tectonic denudation experienced, a more precise age control 

beyond late Paleocene to early Eocene cannot be defined and samples could have varying or overlapping ages 

between 59 and 48 Ma (Figure 2). Unlike the other samples, the Buchanan Lake Formation on Axel Heiberg is 

considered middle Eocene, with an age approximation of about 45 Ma (Ricketts & McIntyre, 1986; Ricketts & 

Stephenson, 1994; Eberle & Storer, 1999; Eberle & Greenwood, 2012; Figure 2). Overall, the lack of a compos-

ite stratigraphy for the ESG and these sites specifically means we are unable to place our measured samples 

Figure 2. Simplified stratigraphic column of relevant Eureka Sound Group formations with sample locations. Approximate sampling intervals indicated by colored 

bars (blue) for each locality, and include: Stenkul Fiord (US435, US436, US438), Split Lake (US444), Axel Heiberg (Strand Fiord [SD], US176; Buchanan Lake [BL], 

US119), Strathcona Fiord (US422), Fosheim Peninsula (Hot Weather Creek, US107, US108; Mosquito Creek, US196; Fosheim Anticline, US111, US191, US251), and 

Lake Hazen (US261). Pink shaded regions indicate major climatic events (e.g., Westerhold et al., 2020), base column and depositional environments adapted from West 

et al. (2019) and Miall (1986).
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stratigraphically or chronologically with precision, and therefore choose to group them by larger time period (late 

Paleocene/early Eocene vs. middle Eocene).

On Ellesmere and Axel Heiberg islands, ESG strata from the late Paleocene to middle Eocene are dominated 

by fluvio-deltaic, floodplain, and paludal deposits (Miall, 1986; Ricketts, 1986; Ricketts & Stephenson, 1994). 

Specifically, the Mount Moore/Mount Lawson Formation consists primarily of interbedded brown sand and silt-

stones with some plant fossils, defined as delta front/plain facies; the Margaret Formation consists of siltstones, 

mudstones, and coals with abundant plant fossils, defined as distributary channel/swamp facies; the Iceberg Bay 

Formation consists of fine sandstone channels and calcareous brown shales with thin coal seams, defined as 

fluvial overbank or ephemeral fluvial facies; the Buchanan Lake Formation consists of carbonaceous mudstones 

and thin coals, defined as fluvial overbank or ephemeral fluvial facies; and the Mokka Fjord Formation consists of 

silty mudstones, carbonaceous mudstones, and coals, defined as fluvial overbank facies (Figure 2; Miall, 1986). 

In each case, environmental interpretations of our analyzed carbonate mudstone samples where leaf fossils were 

recovered suggest our samples were palustrine and deposited in wet floodplain/swamp or overbank/crevasse 

splay deposit facies, which may have been alternately seasonally inundated and subjected to pedogenic processes 

(Eberle & Greenwood, 2012; West et al., 2019).

3. Materials and Methods
3.1. Sample Collection and Evaluation

Samples were collected from paleobotanical surface quarries during multiple field seasons (1982–2004). 

Carbonates were associated with described fossil leaf assemblages to assign stratigraphic positions within the 

ESG (e.g., Eberle & Greenwood, 2012; Greenwood et al., 2010; West et al., 2015, 2019, 2020). Samples were 

prepared and cataloged for collections purposes within the University of Saskatchewan's Paleobotanical Collec-

tion (USPC), and a suite of 14 palustrine carbonate rocks were selected from the collection based on primary 

carbonate textures and geographic distribution within the ESG. Samples were selected from seven locations on 

Ellesmere Island (Lake Hazen, Mosquito Creek, Hot Weather Creek, Fosheim Anticline, Strathcona Fiord, Split 

Lake, and Stenkul Fiord) and two locations on Axel Heiberg Island (Buchanan Lake and Strand Fiord). Hand 

samples were cut with a rock saw to produce standard billets and sent to Wagner Petrographic for thin section 

preparation. Thin sections were examined under plain and polarized light on a petrographic microscope to esti-

mate spar and micrite ratios and evaluate carbonate fabric.

To quantitatively classify samples into textural categories, a scaled percentage of spar coverage was calculated 

for each thin section. This approach factored in both spar coverage and crystal size, as some slides had large spar 

crystals and others had “micro”-spar, and provided an additional numerical value to compare between percent-

ages of spar versus micrite and categorical designations. A random walk of 60 spar crystals was taken for each 

slide to approximate an average spar crystal length and width. Spar crystal dimensions were applied into an 

ellipse formula to calculate average spar area, which was multiplied by a general approximation of percent spar 

coverage for each slide. That product was then divided by a baseline of maximum crystallinity in μm 2 (the largest 

average spar size at 100% coverage on the slide) to produce a scaled percentage of spar coverage. Based on the 

order of magnitude (0.000X, 0.00X, 0.0X, 0.X) of the scaled percentage of spar coverage (referred to herein as the 

Visual Alteration Coefficient [VAC]), samples were classified as micritic (Mic), sub-micritic (SMic), microspar 

(MSp), and sparry (Spar) respectively (Figure 3). This method quantifies visual evidence of diagenetic altera-

tion, but it is important to note that this VAC works on the uncertain assumption that spar size and the ratio of 

spar-to-micrite would have an equal effect on the scaled percentage.

3.2. Isotope Analyses

Carbonate clumped isotope thermometry is based on preferential bonding of heavier isotopes of carbon ( 13C) and 

oxygen ( 18O) together within carbonate minerals (Eiler, 2007, 2011). The heavier isotopes approach a stochas-

tic abundance at 1000°C, while at cooler temperatures heavier isotopes preferentially “clump” (Eiler,  2007). 

The proportion of multiply-substituted isotopologues in a carbonate sample can be used to estimate carbonate 

mineral growth temperatures, and constrain paleoclimatic, paleoenvironmental, and diagenetic conditions 

during carbonate formation (e.g., Bristow et al., 2011; Eiler, 2011; Ferry et al., 2011; Huntington et al., 2011). 

Carbonates were microsampled in at least two separate locations within each billet using a carbide steel burr drill 
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bit on a Stoelting handheld micro drill, and additionally subsampled from a different location on the hand sample. 

Powdered samples were analyzed for stable (δ 18O, δ 13C) and clumped (Δ47) isotopes at the Paleo 3 Laboratory at 

North Carolina State University. Samples were processed in a Nu Carb Automated Carbonate on-line preparation 

system at 70°C. Powdered samples (stable 500–700 μg, clumped average 2200 μg) were digested with phosphoric 

acid (specific gravity 1.94–1.96), and resultant CO2 was cryogenically separated and passed through a Porapak 

Q trap held at −28°C. The evolved CO2 was stored in the dual inlet alongside a CO2 working gas (compositions: 

δ 13C = 4.485, δ 18O = −2.450).

Sample δ 18O, δ 13C, and Δ47 values were measured on a Nu Perspective Isotope Ratio Mass Spectrometer config-

ured to measure m/z ratios for masses 44–49, and are reported relative to the standard Vienna-Pee Dee Belemnite 

(VPDB) and the Intercarb-Carbon Dioxide Equilibrium Scale (I-CDES; Bernasconi et  al.,  2021). Two solid 

standards were run before and after each set of eight unknown carbonate samples. δ 18O and δ 13C output was refer-

enced to IAEA standards C-1 and NBS-18; Δ47 output was referenced to ETH solid standards (ETH-1, ETH-2, 

ETH-3, ETH-4) (Bernasconi et al., 2021). Data were processed using Easotope software (John & Bowen, 2016), 

using the Brand et al. (2010)  17O correction parameters (Daëron et al., 2016; Schauer et al., 2016) and corrected 

with a 70°C calcite acid fractionation of 0.066 (Petersen et al., 2019). Replicates with Δ48 offset values exceeding 

±2‰ were rejected due to potential contamination by organics or hydrocarbons (Guo & Eiler, 2007; Huntington 

Figure 3. Plain light images of thin sections showing example fabrics. Microscope image size is 700 μm by 400 μm in each 

case, and images approximate average fabric for the selected samples with no specific features highlighted. Sample numbers/

locality names correspond to locations indicated in Figures 1 and 2.
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et al., 2009). The Pierce Outlier test was used to remove statistical outliers from the stable and clumped output 

(Burgener et al., 2016; Huntington et al., 2009), the standard error was measured based on a 95% confidence 

interval, and T(Δ47) were calculated using the Petersen et al. (2019) calibration.

Here, calcite δ18O (δ18Ocalcite) values were also converted to δ18Osw using the Kim and O'Neil (1997) calcite-water 

isotope fractionation equation, which describes the relationship between the oxygen isotope value of a carbonate 

mineral (δ18Ocalcite), the oxygen isotope value of the source water in which the calcite formed (δ18Osw), and 

temperature (T) (Kim & O'Neil, 1997).

δ18Ocalcite ≈ 𝛿
18Osw + 18.03 ∗

(
103∕ T

)
+ 32.42 (1)

4. Results
4.1. Sample Descriptions

Hand samples are tan to dark brown, fine-grained, and well-indurated minor carbonate rocks (8%–45% CaCO3). 

Most hand samples are massive (no lamination to rare and very fine lamination) and have significant disseminated 

fine organic debris and variably abundant leaf fossils throughout. Samples lack specific pedogenic and surface 

alteration features, and primary micrite is mixed with recrystallized phases. In thin section, samples contain 

no obvious biological (e.g., shell fragments, microbial coatings) or detrital grains, nor do they exhibit unique 

textural features beyond simple lamination and spar growth (Figure 3). Samples appear to be exclusively calcite 

and have two clear generations of carbonate formation (first generation micrite and spar recrystallization) but 

vary in the degree of diagenetic alteration (Figure 3). Sparry samples US422, US444, US436, and US176 have 

occasional organics and coarse spar crystals (average spar length ∼55 μm, large spar crystal length >100 μm) 

distributed throughout the thin section. Microspar samples US111, US107, US196, and US435 have moderate to 

high organic content with close to an equal ratio of microspar (average spar length ∼15 μm) to micrite and organ-

ics. Microspar samples US251 and US108 have low organic content and significant spar (average spar length 

∼10 μm) distribution throughout the samples. Sub-micritic samples US119 and US438 have low organic content 

and fine spar (average spar length ∼7 μm) interspersed with micrite. Micritic samples US261 and US191 have 

very high organic content and very low spar presence (average spar length <7 μm).

4.2. Isotope Analyses

δ13C isotope values range from −4.6 to +12.3‰ (VPDB) and δ18O isotope values range from −23.1 to −15.2‰ 

(VPDB). Samples within each fabric type (micritic, sub-micritic, microspar, and sparry) have δ13C averages of 

9.8, 4.5, 3.4, 2.0‰, respectively. Samples within each fabric type have δ18O averages of −17.2‰, −17.8‰, 

−18.0‰, −18.9‰, respectively (Figure 4; Table 1). Δ47 values range from 0.505 to 0.621‰ (I-CDES) with 

resulting temperature estimates (T[Δ47]) from 52 to 121°C. Temperatures were on average higher for samples 

experiencing more significant alteration (higher VAC; Figure 4; Table 1).

5. Discussion
5.1. Sample Interpretation

Evaluation of the hand-samples and thin-sections provides evidence of the pedogenic, groundwater, and subse-

quent burial processes that impacted sample δ13C, δ18O, and Δ47 values. High fossil leaf preservation and lack of 

calcrete characteristics and surface alteration features (including desiccation features, modifications associated 

with roots and soil organisms, and the remobilization of carbonate and iron) serve as evidence that samples 

are less-developed palustrine carbonates that underwent minimal pedogenic development (Alonso-Zarza, 2003; 

Freytet, 1984; Marty & Meyer, 2006). Well-indurated hand samples indicate that primary micrite is mixed with 

recrystallized phases, and samples may have undergone varying degrees of aggrading neomorphism from pore 

fluid interactions (Alonso-Zarza et al., 2006).

In thin section, samples display two dominant generations of carbonate formation (first generation micrite and 

spar recrystallization) but vary in the degree of secondary diagenetic alteration. Consistent coarse spar distri-

bution and equant/elongate crystal formation within microspar and sparry sample thin sections suggest they 
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experienced burial diagenesis. The scaled percentage of spar coverage was used to evaluate the isotope data 

within respective fabric categories (Mic, SMic, MSp, Spar). By using a numerical classification scheme, changes 

in primary carbonate fabrics can be more accurately quantified to indicate how much alteration occurred due to 

burial and reheating.

5.2. Burial and Deformation in the Sverdrup Basin

5.2.1. Stable Isotopes and Burial Diagenesis

In addition to the environmental processes described below (see Section 5.3), the δ 13C and δ 18O values of some 

of our samples are influenced by diagenesis related to post-depositional burial. In order of increasing diagenetic 

Figure 4. Stable and clumped isotope results. Visual Alteration Coefficient versus carbon isotope composition (a), oxygen isotope composition (b), and clumped 

isotope composition (c). Isotopic averages for each fabric type with standard deviation bars (d–f). Carbon-oxygen isotope crossplot (g).
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alteration, the mean δ 13C values for our samples decrease from 9.8‰ for Mic, 4.5‰ for SMic, 3.4‰ for MSp, 

and 2.0‰ for Spar, and mean δ 18O values decreased from −17.2‰ for Mic, −17.8‰ for SMic, −18.0‰ 

for MSp, and −18.9‰ for Spar (Figure  4). Both the mean δ 13C and δ 18O values display a marked overall 

decrease with increased alteration, showing a transition from primary micrite (original source water composi-

tion) to increasing proportions of secondary calcite spar (burial fluid composition) (Dunagan & Turner, 2004; 

Tandon & Andrews, 2001). Variation in δ 13C within each respective alteration class likely reflects an influx of 

depleted carbon sourced from hydrothermal fluids equilibrated with more deeply buried carbonates; for exam-

ple, deeper Permian-Triassic carbonates from these locations have δ 13Corg of about −25 to −30‰ (Grasby & 

Beauchamp, 2008), and carbonates precipitated from groundwater equilibrated with these deeper rocks would 

have δ 13C values of about −10 to −15‰ (Oehlert & Swart, 2014).

Gradual decreases in δ 18O from micritic to secondary calcite samples likely reflect the temperature-dependent 

fractionation of δ 18O as the spar crystallized out of hot diagenetic fluids with a distinct composition (Kim & 

O'Neil,  1997; Tandon & Andrews,  2001). Using known temperature-dependent fractionation relationships 

between the δ 18O of calcite and source fluids (Cerling & Quade, 1993; Kim & O'Neil, 1997), we can use the 

methods shown above (Section  3.2) for microspar and spar samples. By substituting actual clumped isotope 

temperatures (T[Δ47]) for an assumed environmental temperature (cf., Section 5.3.2), we can calculate source 

water (δ 18Osw) values for these spar-formation fluids, which range from −2.1 to −5.2‰ (VSMOW). These values 

are significantly enriched in  18O relative to estimated environmental/meteoric waters for the region during the 

Paleogene (e.g., Jahren & Sternberg, 2008; Tripati et al., 2001), suggesting source fluids for spar components 

were either dominantly metamorphic (e.g., Hoefs,  2021) or were hydrothermal fluids undergoing significant 

water-rock interactions in the subsurface (see above; see also Ferry & Gerdes, 1998; Taylor & Epstein, 1962). 

Localized impacts of hydrothermal fluids in these sediments are unsurprising, given the regional gradient in 

deformation across the basin (e.g., Figure 1b; Embry & Beauchamp, 2008).

5.2.2. Carbonate Δ47 and Burial Diagenesis

Δ47 ratios of 0.505–0.621‰ (I-CDES), which correspond to temperatures of 52–121°C, do not reflect Earth 

surface temperatures (cf., Fetrow et al., 2022). Even micritic primary samples, which did not undergo significant 

visible diagenetic alteration, return an average temperature of 60°C, likely due to solid-state reordering during 

long-term shallow burial conditions. Solid-state reordering resets clumped isotope bonds through the diffusion 

of C and O through the mineral lattice, changing the carbonate Δ47 without affecting stable isotope values or 

Sample Location VAC Fabric

Replicates 

(n = )

Avg 

δ 13C

SE 

(δ 13C)

Avg 

δ 18O

SE 

(δ 18O)

Avg 

Δ47

SE 

(Δ47)

Temp 

(˚C)

Temp 

error 

(±˚C)

US119 BL 0.0045 SMic 7 2.73 0.099 −18.61 0.271 0.604 0.018 59.6 6

US444 SP 0.5 Spar 6 4.86 0.070 −23.12 0.140 0.599 0.026 62.2 9

US107 HW 0.03 MSp 7 2.60 0.097 −16.86 0.139 0.529 0.018 102.5 6

US108 HW 0.018 MSp 9 3.10 0.047 −17.31 0.035 0.558 0.033 84.2 10

US435 SK 0.06 MSp 8 7.95 0.114 −18.07 0.088 0.567 0.016 79.0 5

US436 SK 0.54 Spar 6 5.42 0.574 −17.14 0.398 0.542 0.012 94.2 4

US438 SK 0.0048 SMic 9 6.31 0.046 −17.06 0.161 0.596 0.021 63.2 7

US261 HZ 0.0008 Mic 7 12.32 0.094 −15.67 0.052 0.621 0.032 51.6 10

US191 FW 0.0008 Mic 8 7.23 0.130 −18.74 0.053 0.589 0.025 66.8 9

US111 FW 0.0125 MSp 7 2.68 0.121 −17.17 0.227 0.555 0.021 86.0 7

US251 FE 0.014 MSp 6 1.47 0.078 −19.36 0.196 0.505 0.03 120.6 10

US422 ST 0.28 Spar 8 2.09 0.024 −15.21 0.260 0.570 0.02 77.4 7

US196 MC 0.05 MSp 9 2.45 0.029 −19.33 0.187 0.618 0.023 52.9 8

US176 SD 0.8 Spar 5 −4.56 0.166 −20.32 0.803 0.525 0.001 105.6 3

Note. Abbreviations for locations as in Figure 1, and fabrics as in Figure 3. Δ47 values reported in I-CDES, corrected to 90°C.

Table 1 
Stable and Clumped Isotope Data Summary
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mineral texture (Henkes et al., 2014; Passey & Henkes, 2012). Our micritic sample results are consistent with 

low-temperature solid-state reordering, which has been shown to occur in fine-grained carbonates that experience 

shallow burial conditions (cf., Winkelstern & Lohmann, 2016). Winkelstern and Lohmann (2016) demonstrated 

that solid-state reordering of Paleogene-aged carbonates to apparent Δ47 temperatures of 40–75°C occurred at 

relatively shallow depths (1–4 km) and was not accompanied by changes to conventional carbon and oxygen 

isotope values, indicating greater sensitivity of Δ47 to burial diagenesis than stable isotopes (and also suggesting 

δ 13C and δ 18O record primary signals in micritic samples). Similarly, in our micritic samples, Δ47 values were 

impacted by solid-state reordering (52–67°C) during shallow burial on 10 7-year timescales, but conventional 

stable isotope values were unlikely to be affected by these conditions and show distinct compositions compared 

to known diagenetic carbonates (cf., Spar; Figure 4), suggesting they may be primary records. Shallow burial and 

low temperature heating of micritic samples is consistent with our knowledge of the depositional settings and 

preexisting thermal maturity data for ESG sediments at similar locations (e.g., Taleman Well; Figure 5). Vitrin-

ite reflectance values from wells in ESG and related post-Cretaceous sediments from the Sverdrup Basin range 

from 0.3% to 0.6% (Arne et al., 2002), which corresponds to temperatures of roughly 50–75°C, consistent with 

the average (60°C) and range (52–67°C) of temperatures measured in our reordered micritic samples (Figure 5).

Samples that yielded temperatures higher than those likely experienced by ESG sediments during burial (>75°C, 

Figure 4; e.g., Arne et al., 2002; Jahren, 2007) were accompanied by visual evidence of diagenetic recrystalliza-

tion (formation of calcite spar). Microspar and sparry samples have Δ47 values indicating formation at an average 

temperature of 86°C (with some samples exceeding 100°C), reflecting the formation of diagenetic spar within 

a previously micritic texture (Figures 3 and 4). This suggests that during relatively shallow burial of ESG sedi-

ments (<2–3 km; e.g., Ricketts & Stephenson, 1994; Arne et al., 2002), heated burial fluids from deeper units 

likely either modified first-generation carbonates through mineralogical recrystallization, or crystallized new 

coarse calcite spar in pore spaces (Alonso-Zarza, 2003; Flügel, 2010), and the Δ47 value (and δ 13C/δ 18O values; 

see Section 5.2.1) of the resultant calcite samples records diagenetic spar temperatures and compositions (cf., 

Huntington et al., 2011). Variation in spar replacement temperatures may reflect variations in fluid chemistry or 

sediment permeability (e.g., Huntington et al., 2011), or possible proximity to faults and deformation features 

(e.g., Hodson et al., 2016). Spatial variations in our measured Δ47 temperatures of sparry samples appear to be 

related to the distribution of structural features in the region (Figure 5); this is likely related to differences in ther-

mal conductivity and geothermal gradients across faults/subsurface structures (cf., Hodson et al., 2016), and to 

local variations in heat flow from groundwater and varying amounts of structural erosion (cf., Arne et al., 2002). 

Figure 5. Spatial distribution of estimated burial temperatures across Ellesmere/Axel Heiberg Islands from vitrinite reflectance (Arne et al., 2002) and clumped 

isotopes (this work). Temperatures averaged for given units/ages and displayed across transect shown in Figure 1. Gray vertical lines represent well samples (names 

at top); other samples from outcrop (SK, Stenkul Fiord; SP, Split Lakes; ST, Strathcona Fiord; VF, Vesle Fiord; FW, Fosheim West; FE, Fosheim East; FA, Fosheim 

Anticline; MC, Mosquito Creek; HW, Hot Weather Creek; EF, Emma Fiord; CG, Chapman Glacier; HZ, Lake Hazen). Pink box indicates samples taken on the Fosheim 

Peninsula/Anticline, and orange arrow indicates region with increasing geothermal gradient (modern, assumed relict; Arne et al., 2002).
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More detailed work on spar geochemistry in these and nearby localities may allow for a more precise understand-

ing of fluid connectivity and heat flow around structural features (e.g., Fosheim Anticline) associated with ESG 

deposition and more recent exhumation.

5.3. Stable Isotopes and Polar Paleohydrology

5.3.1. Carbon Isotope Interpretations

Palustrine carbonate isotope signatures are generally intermediate between that of lake and soil carbonates; they 

are initially formed with compositions similar to that of a lacustrine carbonate, though they often exhibit lower 

δ 13C values as a result of subsequent pedogenic modification (Tandon & Andrews, 2001). For lake-setting palus-

trine carbonates, primary δ 13C values reflect the varying influences of the biogenic δ 13C composition (C3 or 

C4 biomass and lake productivity) and atmospheric CO2 composition (Bernasconi & McKenzie, 2007). High 

microbial and algal lake productivity cause primary carbonates to have δ 13C values between −2 and −11‰ 

(Alonso-Zarza, 2003; Tandon & Andrews, 2001). Thus, the unusually positive carbon isotope values observed in 

our micritic samples (+7.2 to +12.3‰) and even sub-micritic samples (+2.7‰ to +6.3‰) require a mechanism 

that causes significant δ 13C enrichment in depositional settings. The most likely enrichment mechanisms, based 

on the location and depositional environments, are: (a) evaporative enrichment; (b) cryogenic kinetic isotope 

effects; (c) anoxic methanogenesis; and (d) δ 13C enrichment due to repeated dissolution-precipitation cycles.

Figure 6. Carbon isotope enrichment model. (a) Evolution of carbonate δ 13C through repeated precipitation/dissolution 

cycles under cold month mean (Cold month mean temperature), mean annual (mean annual temperature), or warm month 

mean (warm month mean temperature) temperature conditions (see West et al., 2020), and starting with carbon from C3 

plants, C4 plants, late Paleocene/early Eocene (P/E) atmosphere, or middle Eocene (ME) atmosphere. (b) Modeled evolution 

of carbonate δ 13C subject to repeated cycles of precipitation and dissolution, using a mix of late Paleocene/early Eocene (P/E) 

atmosphere and C3 plant respired carbon. Gray shading in each panel represents range of measured carbonate δ 13C in our 

palustrine samples.
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Many pedogenic and lacustrine environments where carbonate is precipitated are described as closed or relatively 

evaporative, and evaporation under these conditions has been shown to develop carbon isotope enrichment via 

kinetic effects associated with concentration of the dissolved inorganic carbon pool (e.g., Horton et al., 2016; 

Ufnar et  al.,  2008). However, this process involves extreme enrichment of oxygen isotopes in these environ-

ments as well, resulting in strong covariance of δ 13C and δ 18O and high δ 18O values (e.g., Horton et al., 2016; 

Talbot, 1990). Neither of these conditions are observed here (Figure 4), suggesting that evaporative enrichment 

alone is insufficient to explain our carbon isotope measurements.

Cryogenic kinetic isotope effects are associated with bicarbonate dehydration from a calcium carbonate solu-

tion driven by rapid freezing of the solution and simultaneous carbonate precipitation (Burgener et al., 2018). 

These cryogenic kinetic isotope effects result in positive δ 18O and δ 13C anomalies and negative Δ47 anomalies 

(e.g., higher apparent carbonate formation temperatures; Burgener et al., 2018; Tripati et al., 2015). While the 

high T(Δ47) observed in our samples may be consistent with cryogenic kinetic isotope effects, the measured 

δ 18O values are not enriched relative to the expected environmental water δ 18O composition (see below; Jahren 

& Sternberg, 2008). Additionally, paleobotanical and paleontological evidence shows that our sampling loca-

tions did not experience subzero temperatures for extended periods, if at all, suggesting that the rapid freezing 

events required to produce cryogenic kinetic isotope effects were unlikely (e.g., Basinger et al., 1994; Dawson 

et al., 1993; Eberle et al., 2014; Jahren & Sternberg, 2003; West et al., 2020). Based on the relatively warm pale-

otemperature reconstructions and the lack of positive δ 18O anomalies, it seems unlikely that cryogenic kinetic 

isotope effects are responsible for the high primary carbonate δ 13C values observed in our samples.

In uniquely hypertrophic environments, anoxic methanogenesis (i.e., where methane is being produced but not 

oxidized) can produce significant isotopic fractionation between organic carbon and carbonates (e.g., Conrad 

et al., 2009; Teranes & Bernasconi, 2005). For example, Conrad et al. (2009) found carbonate δ 13C values of 

+9‰ for their samples forming in an active methanogenic environment within the anoxic zones of a hyper-

trophic lake. While this range of carbon isotope values is consistent with our record, this mechanism requires 

intense anoxia and its observation is restricted to highly organic (near-coal) layers with heavily depleted δ 13Corg 

values (e.g., Teranes & Bernasconi, 2005). Visual inspection of our samples suggests they are less carbon-rich 

than expected for sediments characteristic of anoxic methanogenesis (cf., Teranes & Bernasconi,  2005), and 

δ 13Corg values of bulk paludal and paleosol sediments in the Buchanan Lake Formation show no evidence for 

methanogenic depletion (e.g., Byrne, 2005). Therefore, while some enrichment may be possible due to hyper-

trophic conditions by themselves (∼1–2‰; e.g., Teranes & Bernasconi, 2005), it seems unlikely that this mech-

anism is sufficient to produce the highly enriched carbonate δ 13C values observed in our sampled environments.

We suggest then that a more likely carbonate δ 13C enrichment mechanism is repeated dissolution/precipitation 

cycles, which would increase the δ 13C values without changing primary δ 18O or Δ47 values. Repeated cycles of 

carbonate dissolution and reprecipitation result in an asymptotic increase in δ 13C values, with the maximum δ 13C 

enrichment value controlled by the initial δ 13C composition of the carbonate and the temperature at which the 

dissolution/reprecipitation occurs (Burgener et al., 2018; Clark & Lauriol, 1992; Nakai et al., 1975). We note that 

this process only results in net calcite δ 13C enrichment if the dissolution-reprecipitation cycles occur in a closed 

or semi-open system with regard to the transport of CO2 between the soil water solution and the atmosphere. 

Salomons and Mook (1986) showed that for carbonate reprecipitation reactions where soil pCO2 is >0.1% atm, 

Rayleigh distillation (e.g., isotopic enrichment of the soil water solution due to CO2 degassing) dominates over 

isotopic exchange between soil waters and the atmosphere, and the system can be considered closed. Breecker 

et al. (2009) showed that even in semi-arid soils (mean annual precipitation ≤550 mmyr −1), soil pCO2 levels can 

be as high as 2.6% atm, and do not typically drop below 0.13%. This suggests that the wetter, more productive 

palustrine environments in our study would have had sufficiently high soil pCO2—even during the dark winter 

months when soil respiration rates were lower—for carbonate dissolution/reprecipitation cycles to result in net 

enrichment of carbonate δ 13C values.

To test whether this process can explain the δ 13C enrichment observed in our samples, we modeled the δ 13C 

evolution of carbonates subjected to repeated dissolution-reprecipitation cycles following the methods described 

in Burgener et al. (2018) (see also: Bottinga, 1968; Clark & Lauriol, 1992; Nakai et al., 1975). The model uses the 

carbon isotope fractionation factors for CaCO3 and CO2, and HCO3 
− and CO2 (Bottinga, 1968; Mook et al., 1974), 

and assumed initial carbonate δ 13C values based on C3 and Early Eocene atmospheric CO2 compositions to esti-

mate the δ 13C value of re-precipitated carbonate following a specified number of dissolution-precipitation events. 
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By accounting for enrichment, one can approximate the varying influence of plant respired and atmospheric CO2 

sources on the carbon isotope values using a two-component end member mixing model (Figure 6). End member 

compositions were approximated as −25‰ for C3 vegetation, the primary vegetation type during the Eocene, 

and −5.9‰ for late Paleocene to early Eocene and −6.9‰ for the middle Eocene atmospheric CO2 (Jahren & 

Sternberg, 2008; Schaetzl & Anderson, 2005; Tipple et al., 2010; Urban et al., 2010). Cold month mean temper-

ature was approximated at 2˚C, MAT was approximated at 12˚C, and warm month mean temperature (WMMT) 

was approximated at 22˚C, based on paleobotanical methods applied to fossil leaf assemblages from these same 

sites (Basinger et al., 1994; Eberle et al., 2010; Greenwood & Wing, 1995; Jahren & Sternberg, 2003; Schubert 

et al., 2012; West et al., 2020; Wolfe, 1994). Various mixing scenarios were considered by calculating the simple 

weighted average between different percentages of carbonate derived from pure C3 or pure atmospheric CO2 (e.g., 

10% C3-derived CO2 and 90% atmosphere-derived CO2).

Comparing the maximum isotopic enrichment from the different temperature/CO2 combinations indicates that 

the most significant influence on δ 13C for the samples is the specific source of the carbon incorporated into the 

carbonates (e.g., C3/C4 respired CO2 vs. atmospheric CO2; Figure 6). Our model results suggest that carbonates 

incorporating pure C3-respired CO2 would have final δ 13C values of −3.3‰ (winter precipitation/dissolution) 

to −5.7‰ (summer precipitation/dissolution). In contrast, carbonates incorporating only early Eocene atmos-

pheric CO2 would have final δ 13C values of 14.8‰ (winter) to 12.4‰ (summer). As shown in Figure 6, even 

after multiple dissolution/reprecipitation cycles, the δ 13C value of carbonates that incorporate only plant-respired 

CO2 would still be more negative than the observed δ 13C values in our micritic samples. The observed level 

of δ 13C enrichment in the samples suggests that atmospheric CO2 was the major source of carbon for these 

palustrine carbonates, with a relatively minor (∼10–25%) carbon input from vegetation/aquatic biomass or 

microbially-respired CO2 (Figure 6b). Given the observed composition of fossil flora (e.g., West et al., 2020), 

the age of the ESG sediments, and the humid nature of the reconstructed environment, it is highly unlikely that 

C4 or CAM plants would have been present in the region (cf., Christin & Osborne, 2014; Edwards et al., 2010); 

therefore, the primary source of the small amount of respired CO2 incorporated into our carbonate samples was 

almost certainly derived from C3 vegetation (cf., Figure 6).

The results of the two-component end-member mixing model place constraints on the environmental conditions 

during carbonate formation. Examples of dissolution-precipitation cycles resulting in δ 13C enrichment of this 

magnitude in modern environments are restricted to high latitude sites, such as Svalbard and the Antarctic Dry 

Valleys (e.g., Courty et al., 1994; Nakai et al., 1975). Modern carbonates formed in high latitude regions may expe-

rience this enrichment mechanism due to the pattern of continuous darkness during winter and shoulder-season 

months, resulting in low biological productivity and dry conditions (leading to carbonate precipitation with little 

or no plant-respired carbon input), followed by continuous summer sunlight associated with an influx of snowmelt 

flooding soils and creating ponded environments (leading to carbonate dissolution; Burgener et al., 2018). Our 

Eocene setting would have experienced similar light conditions that would have limited plant growth and respira-

tion when low-light conditions would have promoted plant dormancy, and as freezing conditions were unlikely the 

Eocene Arctic, would not have experienced significant frost or snowmelt (Eberle & Greenwood, 2012). Studies 

of modern pedogenic and other terrestrial carbonates have shown that seasonal precipitation variability can affect 

the timing of carbonate precipitation (e.g., Breecker et al., 2009; Burgener et al., 2016; Peters et al., 2013; Quade 

et al., 2013; Ringham et al., 2016). Specifically, Gallagher and Sheldon (2016) suggested that in regions of highly 

seasonal precipitation, pedogenic carbonate formation is typically restricted to the driest time of the year (regard-

less of the temperature of that season), particularly when the influx of water decreases long enough to allow for 

supersaturation of carbonate (cf., Alonso-Zarza, 2003; Alonso-Zaraza et al., 2006). Based on these observations, 

we suggest that our sample δ 13C values and the results of our modeling experiment are most consistent with the 

hypothesis that during the late Paleocene to early Eocene, the Canadian Arctic hydrological regime restricted 

palustrine carbonate formation to the non-growing season when plant productivity was at its lowest (Figure 6), 

requiring a significant difference in saturation conditions between Arctic summer (growing season) and winter 

(period of plant respiratory dormancy) in these environments.

This suggests that the Eocene Canadian Arctic experienced some hydrological or precipitation seasonality, 

with more water available, or a lower evaporation-precipitation ratio, during the summer than the winter. Previ-

ous work from the Canadian Arctic established two endmember concepts for hydrological cycling during the 

Eocene: (a) a polar monsoon system, as indicated by summer peaks in precipitation observed in fossil wood 

isotopes (e.g., Schubert et al., 2012) and suggested by some model constraints (e.g., Lunt et al., 2021), and (b) an 
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“ever-wet” equable system, suggested as a mechanism for buffering polar warmth in other model outputs (Huber 

& Goldner,  2012; Kiehl & Shields,  2013) and maintaining ecosystem properties in paleontological observa-

tions (e.g., Eberle et al., 2010). However, more recent studies using climate model ensembles (e.g., Carmichael 

et al., 2016; Zhu et al., 2020) and comprehensive leaf physiognomy and nearest living relative analyses (e.g., 

West et al., 2015; West et al., 2020) have indicated that the hydrological regime of the Eocene Arctic may have 

been somewhat intermediate between these endmembers, where a larger proportion of precipitation is delivered 

in the summer months (double) and driest conditions occur during the winter/shoulder seasons (comparable 

to a modern/historical seasonal range; e.g., Linderholm et al., 2018; Thomas et al., 2018), without classifying 

as a true “monsoon” (cf., Zhang & Wang, 2008). This is supported by results from Community Earth System 

Model (CESM) version 1.2 as configured for the Eocene and displayed for the Arctic (6 × pCO2 simulation; Zhu 

et al., 2019; Zhu et al., 2020), which shows a significantly wetter Arctic (particularly >70°N) during summer 

months (JJA; Figures 7a and 7b).

While the Eocene Arctic was undoubtedly wetter overall than the modern/historical regime, our data are consist-

ent with such a seasonal pattern, with winter conditions recording carbonate deposition during a drier period 

of the year (when palustrine environments can be super-saturated with respect to CaCO3) when plants are 

dormant (due to temperature and/or light conditions; e.g., Basinger et  al.,  1994), while paired paleobotanical 

records from the same localities (West et al., 2015, 2020) are consistent with summer conditions recording a 

wetter period of the  year (when carbonate dissolution occurs) when plants and soil processes are more active 

(due to improved  temperature and light conditions). Together these records may provide a more complete picture 

of Eocene Arctic hydrology (cf., Carmichael et al., 2016), where summer-biased paleontological (e.g., Eberle 

et  al.,  2010) and paleobotanical (e.g., West et  al.,  2020) records and winter-biased isotopic records (e.g., this 

work) can be used together (cf., Kwiecien et al., 2022) to suggest a marked (but non-monsoonal) precipitation 

seasonality, which can account for seemingly disparate observations like strong isotopic signals (e.g., this work; 

Schubert et al., 2012) and a broad-leaved flora indicative of wet conditions (e.g., Eberle & Greenwood, 2012; 

Greenwood et al., 2010; West et al., 2015, 2020), as well as the presence of both palustrine coal deposits and 

palustrine carbonates.

5.3.2. Oxygen Isotope Source Water

Further evidence of seasonality can be derived from our carbonate δ 18O values, where primary δ 18O values in 

palustrine carbonates generally reflect the biogenic and temperature-dependent fractionation occurring between 

the calcite and original surface source water (Alonso-Zarza, 2003; Cerling & Quade, 1993; Kim & O'Neil, 1997). 

Evaluating the δ 18O of palustrine carbonates generally provides an indirect record of local rainfall and surface 

water (fluvial/lacustrine) inputs, and can help filter out uncertainty about hydrological dynamics, such as mixing 

variations or smaller seasonal changes (Bernasconi & McKenzie, 2007). Using known temperature-dependent 

fractionation relationships between the δ 18O of calcite and original source water (Alonso-Zarza, 2003; Cerling & 

Quade, 1993; Kim & O'Neil, 1997), we can estimate environmental water conditions.

For micritic and sub-micritic samples, we used an average estimate for CMMT of 2°C for assumed carbonate forma-

tion temperature during winter months, and an average estimate for WMMT of 20°C for assumed carbonate formation 

temperature during summer months (e.g., Basinger et al., 1994; Eberle et al., 2010; Greenwood & Wing, 1995; Jahren 

& Sternberg, 2003; Schubert et al., 2012; West et al., 2015, 2020; Wolfe, 1994). We use these paleobotanically-derived 

temperatures rather than our Δ47-derived temperatures for this calculation because the clumped isotope values have 

been variably reset and therefore do not represent Earth surface temperatures (see Section 5.2.2). The converted 

environmental water δ 18Osw values (VSMOW) for micritic/sub-micritic samples range from −14.3 to −17.4‰ for 

summer and −18.3 to −21.4‰ for winter (Figure 7). Assuming the interpretations made from the carbon isotope 

system are reasonable, δ 18Osw would not be significantly impacted by biogenic fractionation. Additionally, the disso-

lution/reprecipitation mechanism does not inherently affect δ 18O (Burgener et al., 2018), so it is assumed that the 

δ 18Osw values are not affected by this mechanism if the source water composition has not changed significantly during 

the timeframe of carbonate precipitation for a given sample (years to thousands of years; cf., Alonso-Zarza, 2003). 

Relatively low δ 18Osw values are reasonable for this region and time period, because the absence of large ice sheets 

during the late Paleocene to middle Eocene caused global mean ocean water to have lower initial δ 18O values than 

that during times of extensive ice cover (e.g., Zachos et al., 2008), and because  18O concentration decreases with 

increasing latitude, further reducing initial δ 18O in the Arctic region (Bowen, 2010; Dansgaard, 1964).
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Figure 7. Isotope-enabled global climate model (iCESM1.2) simulation showing early Eocene mean seasonal precipitation results (winter, DJF; summer JJA) and 

δ 18Op results for (winter, DJF; summer, JJA) averages (6 × CO2; Zhu et al., 2020). Proxy δ 18Osw reconstructions from micritic samples in this study shown by colored 

(same scale) points.
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Previous proxy estimates of environmental water δ 18O composition derived from fossil wood were approxi-

mated to be around −15 to −19‰ (VSMOW) on Axel Heiberg Island during the middle Eocene (Jahren & 

Sternberg, 2008). This range overlaps with our reconstructions of δ 18Osw for our primary micrite samples made 

using either winter or summer temperatures, with theoretical winter-precipitated carbonates on the more depleted 

end of the range, having somewhat lower δ 18Osw values than those recorded during a growing season (e.g., Feng 

et al., 2009; Jahren & Sternberg, 2008). However, newer climate models like the CESM version 1.2 have been 

isotope-enabled (iCESM; Brady et al., 2019) and configured for the early Eocene (e.g., Zhu et al., 2019; Zhu 

et al., 2020), which allows for more detailed comparison and discrimination between summer and winter proxy 

reconstructions. Comparing calculated winter δ 18Osw with average modeled December-January-February (DJF) 

δ 18Op (Figure 7c) and calculated summer δ 18Osw with average modeled June-July-August (JJA) δ 18Op (Figure 7d), 

we show that our proxy results align more closely with modeled winter precipitation. While we select a 6 × CO2 

simulation for this comparison based on fit described in previous work (Zhu et al., 2019), this conclusion holds 

for all available simulation scenarios (cf., Zhu et al., 2020).

Additionally, our relatively depleted δ 18Osw values agree with previous proxy (e.g., Tripati et al., 2001; Waddell 

& Moore, 2008) and model (e.g., Zhu et al., 2020) reconstructions of Eocene Arctic seawater conditions suggest-

ing a closed basin with relatively fresh surface water depleted in δ 18O. In order to continue to explore these 

important facets of the paleohydrology of high latitude regions during the Paleogene, future work should focus 

on well-dated and precisely mapped sections in the Arctic in order to obtain higher-resolution records of hydro-

logical changes through time (and across the region).

6. Conclusions
Stable isotope results of palustrine carbonates from ESG sediments of Ellesmere and Axel Heiberg islands 

provide insight into hydrological conditions at high northern latitudes during the late Paleocene to middle Eocene 

(∼59–∼45  Ma). δ 13C isotope values range from −4.6 to +12.3‰ Vienna-Pee Dee Belemnite (VPDB), with 

carbon averages of 9.8‰ for micritic (Mic), 4.5‰ for sub-micritic (SMic), 3.4‰ for microspar (MSp), and 

2.0‰ for sparry (Spar) samples. δ 18O isotope values range from −23.1 to −15.2‰ (VPDB), with oxygen aver-

ages of −17.2‰ (Mic), −17.8‰ (SMic), −18.0‰ (MSp), −18.9‰ (Spar). δ 13C and δ 18O averages decrease 

with greater visual evidence of diagenetic alteration, but micritic and sub-micritic samples appear to record 

environmental conditions in the Eocene Arctic, which was characterized by moderate precipitation seasonality 

(drier winters, wetter summers) resulting in repeated dissolution/precipitation cycles for carbonate formation. 

Clumped isotope (Δ47) values range from 0.505 to 0.621‰ (I-CDES), and micritic/sub-micritic samples (∼60°C) 

are consistent with low temperature solid-state reordering at expected burial depths, while microspar/sparry 

samples (>85˚C) are consistent with diagenetic spar formation controlled by emergence of deeper hydrothermal 

fluids possibly modulated by regional faulting/structures. Overall, this work highlights the utility of complex 

carbonate isotope data sets in distinguishing primary and post-burial signals, and contributes to a more complete 

reconstruction of the paleohydrology of the Eocene Arctic.
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