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Mechanical resonators featuring large tensile stress have enabled a range of experiments in quantum
optomechanics and precision sensing. Many sensing applications require functionalizing tensioned res-
onators by appending additional mass to them. However, this may dramatically change the resonator
mode quality factor, and hence its sensitivity. In this work, we investigate the effect of the crossover from
no mass load to a large mass load on the mode shape and quality factor of a tensioned resonator. We show
through an analytical model and finite element analysis that as the load mass increases, surprisingly, the
resonator mode shape becomes independent of the exact load mass, and, therefore, the resonator mode
quality factor saturates. We validate this saturation effect experimentally by measuring the quality factor
of a tensioned silicon nitride trampoline resonator while varying the load mass in a controlled manner.
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Micromechanical and nanomechanical resonators have
been a fruitful topic of research for several decades. They
have shown promise for exploring quantum physics [1],
in studies ranging from quantum transduction protocols
[24] and creation of quantum memories [5—7] to the
generation of squeezed light [8—10], and for precision
sensing applications, such as microscopy [11] and mass
sensing [12—14].

To couple a resonator sensor to a quantity of interest, it
is often necessary to functionalize it with a coupling agent,
resulting in an additional resonator mass. In some applica-
tions, the desired observable scales with the added mass,
explicitly D = BM, where D, 8, and M are the observ-
able, quantity of interest, and mass, respectively. Examples
include magnetic force sensing [15,16], accelerometry [17,
18], and detection of gravitational forces [19-21]. Gener-
ally, specific interest is devoted to modes where the mass
moves appreciably. For a large mass, typically, there is
only one such mode, and it is usually the lowest-frequency
or fundamental mode. The fundamental sensitivity for the
evaluation of § in this mode is [17]

AkpT
Sp = | AjQ‘“, ()

where kg, T, w, M, and O are the Boltzmann constant,
temperature, mechanical mode resonance frequency, added
mass, and mode quality factor, respectively. For best sensi-
tivity, it is therefore desired to maximize the figure of merit
s = MQ/w, and therefore it is imperative to understand the
dependence of O on M.
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The Q of a resonator mode is defined as Q = 2n W/ AW,
where W is the energy stored in the mode and AW is the
energy loss per oscillatory cycle [22,23]. Generally, AW
is a sum of contributions from multiple loss mechanisms
[23,24]. One way to improve the Q of a resonator is to
increase the stored energy without a similar increase in
dissipation. This can be achieved by using a tensioned
or high-stress film and results in the phenomenon known
as dissipation dilution [25-27]. High stress also extends
the resonator mode spectrum to higher frequencies for a
given resonator length scale. High frequency is of inter-
est for certain sensing protocols, while being out of reach
for similar-length-scale nontensioned resonators such as
cantilevers.

Low optical absorption combined with high stress
obtained in fabrication make silicon nitride (SiN) a natu-
ral material for high-Q resonator design [28-31]. In ten-
sioned SiN resonator modes, typically, Q is limited by
two loss mechanisms—bending loss, which is the energy
lost due to mode bending, and radiation loss, which is
the energy lost from the mode into the surroundings via
acoustic radiation. We define individual quality factors,
Obena and QOrg, associated with bending loss and radiation
loss, respectively, such that 1/Q = 1/Qvend + 1/QOraq- We
omit loss from resonator elongation, which is reasonable
for small resonator amplitudes [32]. Qpend can be signif-
icantly improved by tailoring the mode shape to reduce
bending loss at the mode edge, commonly referred to as
clamping loss [26,27,33—38]. QOq can be improved by
resonator patterning, substrate engineering, and strategic
device mounting [26,33,38—45]. These techniques have led
to resonators with modes limited by Qpeng-

In this work, we study the effect of a localized mass
load on Qpeng of highly tensioned resonators. We show
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through analytical calculations and finite-element analy-
sis (FEA) that as the load mass increases, the modes of
the resonator change in frequency and shape. Further, we
show that for a large enough mass, each mode shape
becomes independent of the mass, which leads to mass-
independent Qpeng. We refer to this phenomenon as Qpend
mass saturation. A direct result of Qpeng mass saturation
is the scaling s o« M3/, suggesting that at the large-mass
limit, the sensitivity scales favorably with mass. This
could also explain other experimental results, for exam-
ple in Ref. [19], where a surprisingly high O (6.4 x 10°)
was measured for a highly massive (approximately 1.3
mg) tensioned resonator mode. We validate this satura-
tion experimentally by measuring the Q of a tensioned SiN
trampoline resonator [35,37] as a function of the load mass.
We use magnetic grains for the load mass, and we vary the
mass by sequentially stacking the grains using their mutual
magnetic attraction to avoid varying the amount of lossy
adhesive used. This allows us to compare O measurements
for different load masses on a single device.

To obtain an expression for the Qpeng Of a mode,
we assume pure out-of-plane mode displacement u (x,y),
where x and y are in-plane resonator coordinates, as well as
small displacement |u (x, )| < &, where £ is the resonator
thickness. In addition, we assume large in-plane tensile
stress oy, such that the speed of sound along the resonator
is approximately proportional to ,/09. Then we can write

v~ [ 2| () () ]

2
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where E, is the imaginary part of the Young modulus, v
is the Poisson ratio, z is the resonator coordinate along its
thickness, and V is the volume of the resonator [26,46].
This leads to
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Equation (2) affirms that if u(x,y) is independent of the
load mass, then Qpeng Saturates.

Although it applies to general tensioned resonator geom-
etry, we elucidate this Qpeng saturation and its origin
through a minimal model example, chosen to be in 1D
for brevity. We study the fundamental mode of a highly
tensioned suspended beam, referred to as a string, with a
mass load. The string resonator is fixed at both ends, with
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FIG. 1. Mass-loaded-string theoretical model. (a) String

parameters: a string of length L and thickness / with tensile stress
o0y is fixed at the edges x = 0 and x = L, and has linear density p,,
everywhere except for the region ¢ < x < b, where the density
is pyr + pm- (b) Mode shape visualization: FEA simulations of
the mass-loaded-string fundamental mode normalized to its max-
imum displacement (lighter color corresponds to lighter mass
load). Inset: mode shape at the loaded region (shaded green). (c)
String frequency and inner region wave number: FEA simulated
(solid circles) and analytically calculated (solid lines) fundamen-
tal mode frequency (black) and inner region wave number (blue)
are shown as a function of R, the ratio between load mass and
total mass of the unloaded resonator, scanned by varying pys
while keeping a and b constant. Simulation points correspond
to the mode shapes in (b). Dashed blue line is the analytically
calculated large-mass limit inner region wave number jiy,. (d)
String quality factor: fundamental mode Qpeng normalized to
Qo, the Openg of an unloaded resonator, as a function of R. To
focus on mass loading effects, Qpeng 1s calculated neglecting edge
clamping loss. Panels (c),(d) share the horizontal coordinate, and
results shown correspond to specific choice of parameters [47].

displacement u (x) in the vertical axis, where x is the coor-

dinate along the resonator [Fig. 1(a)]. Here u (x) satisfies
the string equation [24]:
ER? d'u  du  p(x)Q2nf)?

—_—— — — —u

—0, 3
120¢ dx*  dx? 0o 3)

for 0 < x < L, where L is the string length. Here, E, A,
and oq are the string’s Young’s modulus, thickness, and
tensile stress, respectively, and f is the mode frequency.
The string width w is absent from Eq. (3) because the
string has a uniform width. The position-dependent den-
sity p (x) accounts for possible increased density at some
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region a < x < b, for 0 < a < b < L. We denote the den-
sityat 0 <x < a and b < x < L, subsequently referred to
as the outer regions, by p,,, and the density at a < x < b,
the inner region, by p,, + pu, such that p,, is the added
density. The prestress oy is assumed to be large, satis-
fying the length-scale inequality [ = 27r/Eh2/120¢ < L.
We now show that large inner region density suffices for O
saturation.

Given this high prestress, the frequency of the string’s
fundamental mode can be well approximated by neglecting
the fourth derivative term in Eq. (3) [24]. The solution then
reads

Alsin<\/1"‘+7xx) 0<x<a,
Ay sin(ax) +Bycos(ax) a<x<b, (4)

As sin (ﬁ L - x))

ux) =

b<x<lL,

where we introduce the density ratio x = py/pom and the
inner region wave number o = 27f /(0 + Pa)/00, and
impose the fixed boundary conditions u (0) = u (L) = 0.
An equation for o can be found by using the continu-
ity of u(x) and its first derivative at x =a and x = b
[47]. We see excellent agreement [Fig. 1(c)] between
FEA simulations of « and f, and the corresponding
numerically evaluated analytical calculation, for differ-
ent values of R, the resonator mass ratio, defined as
R = Moaa/Munioaded- Here, Migaq = hw (b — a) (pyr) and
Mnioaded = AwLp,, correspond to the load mass and the
total unloaded resonator mass, respectively. This param-
eter is scanned by varying py, and is chosen to emphasize
that we are investigating the crossover between no load
(R=0) and a load significantly larger than the entire
resonator mass (R >> 1).

In addition to « and f, we use the FEA simulation
results for the fundamental mode along with Eq. (2) to cal-
culate Queng/Qo as a function of R [Fig. 1(d)]. Here, Qy
1S Opend In the unloaded resonator. To focus on the effect
of the load mass, we exclude the mechanical clamping
loss contribution from the resonator edges. We find that
Obend/ Qo becomes independent of the exact load mass for
R > 1 and it saturates to a value lower than when R = 0.

Figure 1(b) evinces that the fundamental mode inner
region wave number « saturates to a finite value,
om, as the mass grows larger [47]. Simultaneously,
the outer region wave number diminishes, and in the
large-mass limit the mass-loaded-string equation can be
approximated as

P du  du 5
oniad a2 K u=0, )

where

O<x<a b<x<lIL,

0
K*(x) ~ { 5 B (6)

t, a<x=<bh
Because Eq. (5) is independent of the load mass, so is its
solution [47].

This analysis assumes only larger density at the loaded
region, while real mass loading should account for, for
example, different elasticity constants or different internal
modes. The internal loss in the mass should be added to the
resonator bending loss. However, the prediction of Qpeng
saturation holds as long as the resonator mode including
the mass saturates. This is true when the internal mode
structure of the load has higher resonances than the loaded
resonator mode. In that case, the load approximates a rigid
body moving uniformly with the resonator.

In the large-mass limit, the shape of the unloaded
regions can be understood in two equivalent ways. The
first is temporal: for an unloaded resonator, the funda-
mental mode period is given by Tynioaded = ~/(0m)/(00)2L,
which is the time it takes an out-of-plane mechanical per-
turbation to make a roundtrip across a resonator of length
L, with speed of sound +/0¢/ 0. As the high-mass load
limit is approached (0, — pPm + pp), the mode period
increases to Tloaged, Which is now much longer than the
roundtrip time taken for a perturbation to propagate in
the unloaded regions. As a result, the mode shape in the
unloaded region approximates a quasistatic displacement,
with the limit shape being a static displacement at any
moment. The second explanation is spatial: in the limit of
a large load mass, the mode wavelength in the unloaded
region, Tloadedn/00/Pm, 1S much longer than the unloaded
region length scale. As a result, the mode shape con-
verges to a displacement function that does not curve in the
unloaded region. For a string, the resulting limit shape is
linear in the outer regions, and since the inner region has to
match with the outer regions at the boundaries, the overall
mode approaches a limit shape that is approximately tri-
angular [Fig. 1(b)]. This leads to the splitting of the string
equation in Egs. (5) and (6), and as explained, its solution
is independent of the load mass, implying Qpeng Saturation.

Although our analysis thus far focuses on the case of the
mass-loaded string, the key points of the explanation above
apply to highly tensioned resonators of arbitrary geom-
etry and imply Qpeng Saturation for a high enough mass
load. Specifically, as an example we also analyze a loaded
circular membrane [47].

To validate the model-predicted Qpenq Saturation exper-
imentally, we measure the fundamental mode Q, denoted
hereafter as Qgng, of a high-stress SiN trampoline res-
onator [35,37] for different load masses. A trampoline
resonator features a wide pad for low-imprecision optical
detection and the geometry is designed to reduce mechan-
ical clamping and radiation losses [35,37]. Our device is
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mounted on a custom-made silicon base to minimize radi-
ation loss. This setup ensures Orag >> Obend for an unloaded
trampoline fundamental mode, and thus allows QOgng &
Obend [47].

In order to vary the load mass while keeping other
variables constant, we employ a “magnetic stacking” tech-
nique using magnetic particles as the load mass. The first
particle is affixed to our device using ultraviolet-cured
epoxy (NEA 123SHGA) [Fig. 2(a)] and then magnetized
using an external field. Next, a second particle is brought
near the first, resulting in magnetic attraction between the
particles. A magnetizing field is applied once again to
magnetize the second particle, making both particles a sin-
gle, inseparable mass without using additional epoxy. This
procedure is repeated [Fig. 2(c)] and Qgng 1S measured
between each addition of mass. Although we expect the
epoxy to have high mechanical loss compared with SiN, by
keeping its geometry constant through magnetic stacking,
we can study how QOging changes with mass loading while
avoiding errors associated with multiple epoxy applica-
tions. We find that loading the tether yields higher Qpeng
compared with the trampoline pad [47].

~ = high
O

] increasing l
load mass

(a)

u (arb. units)

(b)

FIG. 2. System for experimental validation. (a) Microscope
image of device: trampoline resonator with a magnet on its tether.
Inset: enlarged magnet image. (b) Mode visualization: FEA sim-
ulations of trampoline loaded (top) and unloaded (bottom) fun-
damental mode shape. Simulations show that the unloaded mode
continuously deforms into the high-load-limit mode as load mass
increases. (¢) Magnetic stacking: images in different planes of
focus show a stack of four magnets, from the first magnet in
focus (leftmost image) to the fourth magnet in focus (rightmost
image). The schematic at the bottom shows a side view of the
trampoline resonator (orange slab), droplet of epoxy (gray dot),
and magnets (dark brown dot). Each drawing indicates the mag-
net in focus in the corresponding image (black arrow pointing at
dark brown dot).

The key experimental results are shown in Fig. 3(a)
along with relevant FEA simulations. Open black circle
and filled black circles correspond to the measured QOgng
values for a trampoline resonator at 300 K, without and
with a variable load mass, respectively. As visible, Qgng
decreases as the load mass increases, but becomes insen-
sitive at higher load mass values. This is manifested as a
plateau for masses larger than approximately 10 ng. This
saturated QOgng value is approximately 4 orders of mag-
nitude lower than the unloaded Qg value. To model
these results, we use FEA simulations that account for
bending loss in both the SiN and the epoxy, while dis-
regarding radiation loss (black dotted line). We scan the
epoxy length scale and loss tangent and choose realistic
model parameters to obtain reasonable agreement between
our simulation results and measured data, while also set-
ting an upper bound on Qfyng [47]. Our simulation is used
as an upper bound for the results as, irrespective of device
mounting, at higher mass (lower frequency), the resonator
is more susceptible to radiation loss.

In order to further validate that the large reduction in
Ofung originates mainly from loss in the epoxy rather than
radiation loss, we perform additional measurements on two
different devices (triangle and square) both at temperatures
of 300 and 8 K (light pink and sky blue markers, respec-
tively). The measured Qfng rises by 2 orders of magnitude
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FIG. 3. Experimental results and FEA simulations. (a) Qfng

as a function of magnet mass: measured Qgng at 300 K (circles)
unloaded (open circle) and with a varying load (filled circles).
Corresponding FEA simulated Qpeng results disregarding (green
dotted line) and including (black dotted line) epoxy loss. The
shaded area accounts for other possible losses, e.g. radiation loss.
Measured Qg for two additional devices (triangle and square)
are shown at both 300 K (light pink) and 8 K (sky blue). Mea-
sured Opng for a third device with a large load mass at 8 K is also
shown (sky blue diamond). (b) Fundamental mode frequency as
a function of magnet mass: frequency measurements at 300 K
(circles) corresponding to data points in (a).
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for resonators cooled to 8 K. Although SiN resonators
are expected to have reduced bending loss at 8 K com-
pared with 300 K, empirically it is by a small factor of
approximately 3, which cannot explain these observations
[33]. We therefore conclude that when cold, the epoxy loss
reduces significantly, affirming that the reduction in Qgng
is primarily due to loss in the epoxy.

A fourth device (sky blue diamond) measured at 8§ K
provides evidence that a fairly high quality factor (Qfng &
3.7 x 10%) can be achieved in the saturated regime. This is
in agreement with measurements from Ref. [19].

In order to set a theoretical limit on the saturated Qging
at 300 K, we perform FEA simulations that include only
SiN bending loss and disregard all other forms of loss
(green dotted line). The results indicate that Qpeng as high
as 107 is possible in the limit of a large load mass. The
saturated Qpeng for trampolines can be improved with mass
load location optimization [47] and possibly by using tram-
poline resonators with carefully engineered geometries
[35,37,48].

In conclusion, we analyze the problem of tensioned
mechanical resonators with a local mass load. We demon-
strate theoretically and experimentally that for a large load
mass, the mode shape becomes independent of the mass
and converges to a limit shape, implying Qpeng Saturation
and favorable sensitivity scaling for mass-dependent sig-
nals. As a rule of thumb, for localized load we observe
that this happens when the load mass is of the order of the
unloaded resonator mass. We believe that this work pro-
vides important guiding principles for sensor design where
mass loading is needed.

Acknowledgments—We thank Maxwell Urmey for helpful
comments on the manuscript and David Carlson for fabri-
cation expertise. This work is supported by funding from
NSF Grant No. PHYS 1734006, Cottrell FRED Award
from the Research Corporation for Science Advance-
ment under Grant No. 27321, the CU UROP program,
and the Baur-SPIE Endowed Professor at JILA. R.S.
acknowledges support from the Israel Council for Higher
Education.

[11 M. Aspelmeyer, T. Kippenberg, and F. Marquardt, Cavity
optomechanics, Rev. Mod. Phys. 86, 1391 (2014).

[2] R. Andrews, R. Peterson, T. Purdy, K. Cicak, R. Simmonds,
C. Regal, and K. Lehnert, Bidirectional and efficient con-
version between microwave and optical light, Nat. Phys.
10, 321 (2014).

[3] M. Forsch, R. Stockill, A. Wallucks, I. Marinkovi¢, C.
Girtner, R. Norte, F. Otten, A. Fiore, K. Srinivasan, and
S. Groblacher, Microwave-to-optics conversion using a
mechanical oscillator in its quantum ground state, Nat.
Phys. 16, 69 (2020).

[4] M. Mirhosseini, A. Sipahigil, M. Kalaee, and O. Painter,
Superconducting qubit to optical photon transduction,
Nature 588, 599 (2020).

[5] A. Wallucks, I. Marinkovi¢, B. Hensen, R. Stockill, and S.
Groblacher, A quantum memory at telecom wavelengths,
Nat. Phys. 16, 772 (2020).

[6] P.Kharel, Y. Chu, M. Power, W. Renninger, R. Schoelkopf,
and P. Rakich, Ultra-high-Q phononic resonators on-chip at
cryogenic temperatures, Apl Photonics 3, 066101 (2018).

[7] G. MacCabe, H. Ren, J. Luo, J. Cohen, H. Zhou, A.
Sipahigil, M. Mirhosseini, and O. Painter, Nano-acoustic
resonator with ultralong phonon lifetime, Science 370, 840
(2020).

[8] T. Purdy, P. Yu, R. Peterson, N. Kampel, and C. Regal,
Strong optomechanical squeezing of light, Phys. Rev. X 3,
031012 (2013).

[9] A. Safavi-Naeini, S. Groblacher, J. Hill, J. Chan, M.
Aspelmeyer, and O. Painter, Squeezed light from a silicon
micromechanical resonator, Nature 500, 185 (2013).

[10] D. Brooks, T. Botter, S. Schreppler, T. Purdy, N. Brahms,
and D. Stamper-Kurn, Non-classical light generated by
quantum-noise-driven cavity optomechanics, Nature 488,
476 (2012).

[11] P. Eaton and P. West, Atomic Force Microscopy (Oxford
University Press, New York, 2010).

[12] Y. Yang, C. Callegari, X. Feng, K. Ekinci, and M. Roukes,
Zeptogram-scale nanomechanical mass sensing, Nano Lett.
6, 583 (2006).

[13] K. Ekinci, X. Huang, and M. Roukes, Ultrasensitive nano-
electromechanical mass detection, Appl. Phys. Lett. 84,
4469 (2004).

[14] N. Lavrik and P. Datskos, Femtogram mass detection using
photothermally actuated nanomechanical resonators, Appl.
Phys. Lett. 82,2697 (2003).

[15] D.Rugar, R. Budakian, H. Mamin, and B. Chui, Single spin
detection by magnetic resonance force microscopy, Nature
430, 329 (2004).

[16] R. Fischer, D. McNally, C. Reetz, G. Assumpcao, T. Knief,
Y. Lin, and C. Regal, Spin detection with a micromechan-
ical trampoline: Towards magnetic resonance microscopy
harnessing cavity optomechanics, New J. Phys. 21, 043049
(2019).

[17] A.Krause, M. Winger, T. Blasius, Q. Lin, and O. Painter, A
high-resolution microchip optomechanical accelerometer,
Nat. Photonics 6, 768 (2012).

[18] F. Zhou, Y. Bao, R. Madugani, D. Long, J. Gorman, and
T. LeBrun, Broadband thermomechanically limited sens-
ing with an optomechanical accelerometer, Optica 8, 350
(2021).

[19] Y. Liu, J. Mummery, J. Zhou, and M. Sillanpii, Gravi-
tational Forces Between Nonclassical Mechanical Oscilla-
tors, Phys. Rev. Appl. 15, 034004 (2021).

[20] J. Schmoéle, M. Dragosits, H. Hepach, and M. Aspelmeyer,
A micromechanical proof-of-principle experiment for mea-
suring the gravitational force of milligram masses, Classical
Quantum Gravity 33, 125031 (2016).

[21] J. Pratt, A. Agrawal, C. Condos, C. Pluchar, S. Schlam-
minger, and D. Wilson, Nanoscale torsional dissipation
dilution for quantum experiments and precision measure-
ment. ArXiv Preprint ArXiv:2112.08350 (2021).

L031006-5



SHANIV, KESHAVA, REETZ, and REGAL

PHYS. REV. APPLIED 19, L031006 (2023)

[22] J. Taylor, Classical Mechanics. 3 “E ed. (Print).

[23] L. LD and E. LIFSHITZ, Course of Theoretical Physics.
Theory Of Elasticity, (Pergamon, Oxford, UK, 1975).

[24] S. Schmid, L. Villanueva, and M. Roukes, Fundamen-
tals of Nanomechanical Resonators (Springer International
Publishing, Vienna, Austria, 2016).

[25] S. Fedorov, N. Engelsen, A. Ghadimi, M. Bereyhi, R.
Schilling, D. Wilson, and T. Kippenberg, Generalized dis-
sipation dilution in strained mechanical resonators, Phys.
Rev. B 99, 054107 (2019).

[26] Y. Tsaturyan, A. Barg, E. Polzik, and A. Schliesser, Ultra-
coherent nanomechanical resonators via soft clamping and
dissipation dilution, Nat. Nanotechnol. 12, 776 (2017).

[27] A. Ghadimi, S. Fedorov, N. Engelsen, M. Bereyhi, R.
Schilling, D. Wilson, and T. Kippenberg, Elastic strain
engineering for ultralow mechanical dissipation, Science
360, 764 (2018).

[28] B. Zwickl, W. Shanks, A. Jayich, C. Yang, A. Bleszynski
Jayich, J. Thompson, and J. Harris, High quality mechan-
ical and optical properties of commercial silicon nitride
membranes, Appl. Phys. Lett. 92, 103125 (2008).

[29] M. Yuan, M. Cohen, and G. Steele, Silicon nitride mem-
brane resonators at millikelvin temperatures with qual-
ity factors exceeding 108, Appl. Phys. Lett. 107, 263501
(2015).

[30] E. Serra, M. Bawaj, A. Borrielli, G. Di Giuseppe, S. Forte,
N. Kralj, N. Malossi, L. Marconi, F. Marin, F. Marino, B.
Morana, R. Natali, G. Pandraud, A. Pontin, G. A. Prodi,
M. Rossi, P. M. Sarro, D. Vitali, and M. Bonaldi, Micro-
fabrication of large-area circular high-stress silicon nitride
membranes for optomechanical applications, AIP Adv. 6,
065004 (2016).

[31] L. Villanueva and S. Schmid, Evidence of Surface Loss as
Ubiquitous Limiting Damping Mechanism in SiN Micro-
and Nanomechanical Resonators, Phys. Rev. Lett. 113,
227201 (2014).

[32] Q. Unterreithmeier, T. Faust, and P. Jorg, Damping of
Nanomechanical Resonators, Phys. Rev. Lett. 105, 027205
(2010).

[33] C. Reetz, R. Fischer, G. Assumpcao, D. McNally, P. Burns,
J. Sankey, and C. Regal, Analysis of Membrane Phononic
Crystals with Wide Band Gaps and Low-Mass Defects,
Phys. Rev. Appl. 12, 044027 (2019).

[34] M. Bereyhi, A. Beccari, S. Fedorov, A. Ghadimi, R.
Schilling, D. Wilson, N. Engelsen, and T. Kippenberg,
Clamp-tapering increases the quality factor of stressed
nanobeams, Nano Lett. 19, 2329 (2019).

[35] C. Reinhardt, T. Miiller, A. Bourassa, and J. Sankey,
Ultralow-noise SiN trampoline resonators for sensing and
optomechanics, Phys. Rev. X 6, 021001 (2016).

[36] S. Fedorov, A. Beccari, N. Engelsen, and T. Kippenberg,
Fractal-like Mechanical Resonators with a Soft-Clamped
Fundamental Mode, Phys. Rev. Lett. 124, 025502 (2020).

[37] R. Norte, J. Moura, and S. Gréblacher, Mechanical Res-
onators for Quantum Optomechanics Experiments at Room
Temperature, Phys. Rev. Lett. 116, 147202 (2016).

[38] A. Ghadimi, D. Wilson, and T. Kippenberg, Radiation
and internal loss engineering of high-stress silicon nitride
nanobeams, Nano Lett. 17, 3501 (2017).

[39] P. Yu, K. Cicak, N. Kampel, Y. Tsaturyan, T. Purdy, R.
Simmonds, and C. Regal, A phononic bandgap shield for
high-Q membrane microresonators, Appl. Phys. Lett. 104,
023510 (2014).

[40] M. Weaver, B. Pepper, F. Luna, F. Buters, H. Eerkens, G.
Welker, B. Perock, K. Heeck, S. Man, and D. Bouwmeester,
Nested trampoline resonators for optomechanics, Appl.
Phys. Lett. 108, 033501 (2016).

[41] R. Norte, Nanofabrication for On-Chip Optical Levitation,
Atom-Trapping, and Superconducting Quantum Circuits.
PhD Thesis. (2015).

[42] D. Wilson, Cavity Optomechanics with High-Stress Silicon
Nitride Films. PhD Thesis. (2012).

[43] C. Reinhardt, Ultralow-Noise Silicon Nitride Trampoline
Resonators for Sensing and Optomechanics. PhD Thesis.
(2017).

[44] A. Borrielli, L. Marconi, F. Marin, F. Marino, B. Morana,
G. Pandraud, A. Pontin, G. Prodi, P. Sarro, E. Serra, and
M. Bonaldi, Control of recoil losses in nanomechanical SiN
membrane resonators, Phys. Rev. B 94, 121403 (2016).

[45] Z. Li, Q. Zhang, X. You, Y. Li, and K. Peng, Suppression
of phonon tunneling losses by microfiber strings for high-Q
membrane microresonators, Appl. Phys. Lett. 109, 191903
(2016).

[46] P. Yu, T. Purdy, and C. Regal, Control of Material Damp-
ing in High-Q Membrane Microresonators, Phys. Rev. Lett.
108, 083603 (2012).

[47] See Supplemental Material at http://link.aps.org/supple
mental/10.1103/PhysRevApplied.19.L031006 for further
details regarding the theoretical, computational, and exper-
imental details of this work on mass-loaded tensioned
resonators.

[48] D. Hgj, F. Wang, W. Gao, U. Hoff, O. Sigmund, and U.
Andersen, Ultra-coherent nanomechanical resonators based
on inverse design, Nat. Commun. 12, 1 (2021).

L031006-6



