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Concepts and practices surrounding measurement uncertainty are vital knowledge for physicists and are
often emphasized in undergraduate physics laboratory courses. We have previously developed a research-based
assessment instrument—the Survey of Physics Reasoning on Uncertainty Concepts in Experiments (SPRUCE)
—to examine student proficiency with measurement uncertainty along a variety of axes, including sources of
uncertainty, handling of uncertainty, and distributions and repeated measurements. We present here initial
results from the assessment representing over 1500 students from 20 institutions. We analyze students’
performance pre- and postinstruction in lab courses and examine how instruction impacts students with
different majors and gender. We find that students typically excel in certain areas, such as reporting the mean of a
distribution as their result, while they struggle in other areas, such as comparing measurements with uncertainty
and correctly propagating errors using formulas. Additionally, we find that the importance that an instructor
places in certain areas of measurement uncertainty is uncorrelated with student performance in those areas.
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L. INTRODUCTION

Measurement uncertainty is a core concept in physics
experiments, as all measured quantities have associated
uncertainties. Knowledge of uncertainty and how it affects
the interpretation of the outcomes from an experiment is
crucial for both presenting results from experiments and
understanding others’ work [1]. The importance of meas-
urement uncertainty has led to recommendations for
including this topic in introductory science laboratory
courses [2—4]. However, instruction in this area could often
be improved, with students frequently struggling to under-
stand many of the important aspects of measurement
uncertainty, including error propagation, taking several
measurements to get a distribution of results, and
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comparing measurements with uncertainty, even after
taking a course emphasizing these topics [5—13].

To facilitate improved learning of measurement uncer-
tainty in laboratory courses, we previously developed a
research-based assessment instrument (RBAI), the Survey of
Physics Reasoning on Uncertainty Concepts in Experiments
(SPRUCE) [14,15]. SPRUCE was developed to measure
student proficiency with measurement uncertainty practices
along ten dimensions that were identified as important to
undergraduate physics laboratory instructors. Other assess-
ments have included components of measurement uncer-
tainty [6,13,16—19], but SPRUCE is the first assessment that
focuses solely on this topic in detail. Specifically, we
designed SPRUCE for first- and second-year lab courses
and it is to be given in a pre-post instruction format via an
online survey platform. The group at the University of
Colorado analyzes the results of the surveys and presents
them to the instructor in an easily interpretable report, where
their course’s data are shown in comparison to aggregate data
from other courses. These data can be used by the instructor
to improve the course as well as by the researcher to learn
about student understanding of measurement uncertainty.

Published by the American Physical Society
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Previously, we explored the development of SPRUCE,
including conducting instructor interviews [14], writing
SPRUCE items, and examining the validity of these items
[15]. In the work presented here, we produce the first
research results from an analysis of students’ responses to
SPRUCE from many courses and institutions to provide a
broad landscape of student understanding in this area by
answering the following research questions:

1. How proficient are students at demonstrating the
practices and concepts of measurement uncertainty
as a general topic and on subtopics such as compar-
ing measurements or propagating uncertainties?
Where do they excel and where do they need
additional support?

2. How does instruction impact student proficiency
with the practices and concepts of measurement
uncertainty ?

e How does instruction impact this proficiency
for students with different majors and genders?

e How does the importance an instructor places
on specific learning objectives about measure-
ment uncertainty impact this proficiency?

We choose to investigate both major and gender for several
reasons. First, because students’ major and gender are often
intertwined, choosing to explore one of these variables while
ignoring the other could lead to inaccurate results for the
variable included in the analysis [20]. Additionally, prior
studies have noted correlations with both of these variables
on students’ scores on physics assessments, leading to
recommendations for removing gender bias from both
instruction and assessment [ 19,21,22]. Because an important
goal for the creation of SPRUCE is data literacy for all
students, not just physicists, we are interested in examining
the correlations between students’ major and their perfor-
mance on SPRUCE.

To answer these questions, we present results from 1576
students enrolled in 31 courses at 20 institutions in which
SPRUCE was administered during the Spring 2023 and
Fall 2023 semesters. We first provide an analysis of
postinstruction responses, including a deeper look into
student reasoning along several of the different areas of
measurement uncertainty measured by SPRUCE. We then
analyze pre-post shifts, including the impact of students’
major(s) and gender on the results. Finally, we examine, in
detail, three separate areas of measurement uncertainty—
sources of uncertainty, handling of uncertainty, and dis-
tributions and repeated measurements—including both
results from statistical analysis and example student rea-
soning provided during think-aloud interviews.

II. BACKGROUND

A. Previous work on student learning
of measurement uncertainty

Previous studies have explored students’ handling of
measurement uncertainty in undergraduate physics

laboratory courses. For example, students frequently have
misconceptions about uncertainty, some of which do not
improve even postinstruction [6,7,13,16-18,23-25].
Further research has explored introductory students’ chal-
lenges with measurement uncertainty and found that
students frequently fail to report uncertainty and often
cannot identify the primary source of error in an experi-
ment; this work also determined that students struggle with
proper use of significant figures [26]. In addition to these
studies, much has been learned about students’ use of
measurement uncertainty through previous RBAIs on this
topic. These misconceptions and the use of RBAIs are
discussed in detail below.

The first of these RBAIs is the Physics Measurement
Questionnaire (PMQ) [6,16]. This RBAI aims to examine
students’ ability with measurement uncertainty, specifically
looking at repeated measurements and measurement com-
parison with uncertainty. It consists of multiple-choice
questions followed by open-response questions allowing
students to provide their reasoning for their multiple-
choice selections. Nominally, only the open response is
coded for the analysis. This makes it difficult to perform a
large-scale administration of this RBAI. Through use of
this survey, researchers in South Africa found that they
could separate student thinking into two categories:
pointlike and setlike reasoning. Students who fall into
the point paradigm believe there is a “true” experimental
value, whereas students who use setlike reasoning under-
stand that experiments provide incomplete information
about a measured quantity and all data must be combined
to obtain a best value. Additionally, some students were
found to use mixed reasoning (a combination of both
pointlike and setlike reasoning). [5]. Many students in this
study retained their pointlike views of experimental
physics after instruction, and only about 20% of physics
majors were found to exhibit a more setlike view of
measurement uncertainty postinstruction [16].

A partial version of the PMQ was implemented at the
University of Colorado, Boulder, to examine the impact of
a transformed laboratory course. Researchers observed a
shift from mixed reasoning to setlike reasoning after
instruction for both the traditional and transformed courses.
Very few students exhibited solely pointlike reasoning in
any case (even before instruction), though mixed reasoning
was not uncommon. They also found that the course
transformation had a positive impact in that students shift
toward more sophisticated reasoning in the transformed
version of the course [27-31]. Overall, these student
responses differed significantly from the student responses
from South Africa, which could be ascribed to significant
differences in the student populations surveyed. Thus,
while the pointlike and setlike reasoning paradigm might
be a useful classification scheme for student reasoning in
some cases, it does not capture the full range of students’
ideas and skills with measurement uncertainty.
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Other work has built on the PMQ, using some of the
same probes and adding additional fine-grained probes to
determine student proficiencies, as well as examining the
pointlike and setlike paradigm, specifically relating to data
processing [24]. This work found that students face
challenges with specific areas of measurement uncertainty,
such as using the mean as the best approximation in a
repeated measurement experiment. On this open-response
assessment, students were often unable to articulate why
the mean might be used beyond providing a definition of
the mean.

Some PMQ probes were also recently used in exploring
upper-division students’ views of measurement and uncer-
tainty at multiple institutions in the United States [32].
They found that while both introductory and advanced
students frequently used setlike reasoning, advanced stu-
dents often provided more sophisticated reasoning, espe-
cially on a question pertaining to two sets of data with
different means and the same spread. Advanced students
were more likely to correctly identify sources of uncer-
tainty in this situation. Overall, very few students at any
level discussed uncertainty as an inherent property of
experimentation. The researchers conclude that, while
advanced students do perform better than introductory
students on some of the probes, there is still a significant
amount of improvement that could be made in helping
students master certain concepts in measurement uncer-
tainty, especially related to the shapes of data distributions.

Another RBAI, the Laboratory Data Analysis Instrument
(LDAI), was developed in Israel to assess first-year
students’ understanding of data analysis procedures. It
consists of 30 multiple-choice and true or false questions
that are contextualized in real laboratory reports. The four
objectives of this assessment are that students should
(i) understand the meaning of, and ways to calculate,
measures of central tendency, (ii) understand the meaning
of error and uncertainty, as well as how to compute this and
distinguish between statistical and systematic uncertainties,
(iii) be able to choose and decipher graphs, and (iv) under-
stand regression lines and how to fit them [13]. The LDAI
requires students to write an open-response explanation to
accompany their choice of true or false questions in order to
receive credit, which, as with the PMQ, presents logistical
challenges in widespread administration due to the open-
response nature of the assessment.

One implementation of the LDAI in Thailand found that
introductory physics students, in particular, faced chal-
lenges in fully understanding uncertainty, while under-
graduate students of all levels struggled with linear
regressions, even after taking at least one laboratory course.
However, first-year students performed significantly worse
on this assessment than second- and third-year students,
indicating that instruction does improve skills to some
extent since first-year students have not had as much
learning experience with data analysis [33].

Another important RBAI in the laboratory space is the
Physics Laboratory Inventory of Critical Thinking (PLIC),
a ten-question assessment designed to examine student
learning in physics lab courses [17,18]. The PLIC is aimed
at analyzing students’ laboratory skills as a whole rather
than focusing on measurement uncertainty specifically. It
examines four skills: evaluating data, evaluating methods,
evaluating conclusions, and proposing next steps. The
PLIC shows that students have not fully mastered meas-
urement uncertainty, including conflating systematic error,
random uncertainty, and human mistakes [18]; this broad
study includes matched pre-post responses from several
thousand students at 29 institutions and includes both first-
year and beyond-first-year courses. In a large-scale admin-
istration of the PLIC, there were no observed statistically
significant shifts in performance from pre- to postinstruc-
tion. However, students enrolled in a lab course specifically
designed to teach skills measured by the PLIC do show
statistically significant improvements on this assessment
[17], showing the importance of aligning laboratory
instruction with the desired learning goals.

Finally, the Concise Data Processing Assessment
(CDPA) was also developed to probe student ideas related
to measurement uncertainty, focusing mainly on error
propagation [34]. Research using this assessment has found
curriculum-dependent student challenges dealing with
measurement uncertainty. For example, many students
excelled at questions involving measurement error in linear
fits but struggled with questions involving power laws; an
examination of the curriculum for the course in which
students were surveyed noted an emphasis on the former
and no instruction on the latter [35].

Further, the CDPA was used to investigate gender gaps in
physics [19]. The CDPA did reveal a significant gender gap
at both the pre- and post-test levels. While all students did
improve on the CDPA postinstruction, the gender gap
remains unchanged: men still outperform women. The
authors posit that one reason women do worse on the
CDPA s due to a lack of confidence due to previous work
showing that women generally report lower confidence in
themselves in terms of their physics knowledge than their
male counterparts.

SPRUCE fills a void in the current space of RBAIs in
that it is easily administrable and scorable on a large scale,
aimed at introductory laboratory students, and focuses
solely on measurement uncertainty. No other RBAI cur-
rently meets all of these goals. For example, the PMQ and
LDALI require open-response text, meaning that scoring
them for thousands of students is too laborious. The PLIC
and CDPA do have some questions about measurement
uncertainty, but this is not the sole focus of these assess-
ments. Further, the CDPA is more appropriate for higher-
level students than introductory.

Research about students’ understanding of measurement
uncertainty also exists outside of the space of RBAISs.
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One study found that students enter university courses
frequently believing they must take exactly three measure-
ments. Postinstruction, this belief was often corrected in
that students understood that three trials may not always be
sufficient. However, many students did not improve from
pre- to postinstruction in other areas, including an under-
standing of the importance of reporting uncertainties and
using uncertainty to determine whether measurements
agree with one another [23].

Another study determined that even postinstruction,
students tend to establish a hierarchy of measurements
and do not fully understand the need to take several
measurements. Instead, students judge their first measure-
ment as the most important and use subsequent measure-
ments as a check of their first one. They are also unable to
distinguish between random and systematic errors.
Students tend to state that the more measurements that a
person makes, the better the result is, without fully under-
standing how or why more data are better [25].

Most of this prior work examines student proficiencies
with measurement uncertainty in the context of nonquan-
tum courses, but the performance of students in quantum
courses is also important to investigate and is the subject of
several recent papers. For example, one collaboration
between researchers at Cornell and California State
University, Fullerton, looked at student responses to ques-
tions about measurement uncertainty in both classical and
quantum contexts and found that an updated definition of
the pointlike and setlike paradigm might help advance
understanding of student views on this topic, especially due
to the binary nature of this paradigm and the prominence of
mixed-reasoning among students. This research also indi-
cates that instructors need to clarify the meaning behind
“more data are better” so that students can understand
when, exactly, this is true. The researchers also noted in a
similar vein that a clearer discussion of standard deviation
and standard error might help students with differentiating
these quantities. Further, they found that students often
conflate quantum uncertainty (e.g., the Heisenberg uncer-
tainty principle) with measurement uncertainty in quantum
mechanical experiments and, therefore, care should be
taken in advanced laboratory courses to help students
distinguish between these concepts [36].

Other work related to this collaboration has shown that in
classical physics, students often state the limitations of the
experimental setup as the major cause of uncertainty, while in
quantum mechanics, students often explained measurement
uncertainty as related to the principles of the physics theory
underlying the experiment, as well as statistics [37]. The
researchers concluded that there is a splitin student reasoning
about classical and quantum experiments, and instructors
should work to bridge this gap by providing additional
instruction about the relationships between experiment,
measurement uncertainty, and theory in courses at all levels,
especially because statistical limitations and experimental

setup limitations affect both quantum and classical
experiments.

Other research has highlighted the benefits of using the
term “uncertainty” instead of “error” when describing
measurement variability. They posit that using “error”
might be a cause of students’ pointlike reasoning, as it
has a connotation of making mistakes rather than uncer-
tainty as an inherent aspect of measurements [5]. Further,
using uncertainty to describe inherent limitations and
random variability, systematic effects to describe assump-
tions or approximations, and measurement mistakes to
describe actual human errors might further aid student
understanding of these concepts [7].

Overall, many prior studies have illuminated student
strengths and weaknesses surrounding measurement uncer-
tainty. We aim to add to this growing body of research by
presenting results from SPRUCE.

B. SPRUCE
1. General overview and development

SPRUCE is an RBAI centered on measurement uncer-
tainty and was designed to be administered pre- and
postinstruction. Previous work has commented on the
development, format [14,15], and validation [38] of
SPRUCE, though a brief summary is contained below.

SPRUCE is a fully online assessment that takes students
about 19 min to complete (median1 = 1120 s). It consists of
19 items in a variety of formats, including multiple choice,
multiple response, numeric open response, coupled multi-
ple choice, coupled multiple response, and coupled
numeric open response.

SPRUCE was developed using an adaptation of evi-
dence-centered design [39], beginning with the researchers
conducting interviews with introductory laboratory instruc-
tors to determine which areas of measurement uncertainty
they find important. Based on these interviews, we created
assessment objectives for SPRUCE [14]. Assessment
objectives, or AOs, are “concise, specific articulations of
measurable desired student performances regarding con-
cepts and/or practices targeted by the assessment [40]:”
they are statements that are easy to directly assess in such a
survey.

These SPRUCE AOs were then refined during the
process of writing and revising SPRUCE itself. Table I
shows the final AOs for SPRUCE after iteration and
refinement. They are divided into three categories—sources
of uncertainty, handling of uncertainty, and distributions
and repeated measurements—and cover a wide variety of
measurement uncertainty concepts, while still maintaining
a cohesive thematic structure to be able to target them in

'Median is used here to remove effects from students who leave
the assessment open on their computers for multiple days, heavily
skewing the mean and making it an inappropriate statistic to
report.
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TABLE I. SPRUCE assessment objectives, organized by assessment objective category.

Sources of uncertainty
S1 Estimate size of random/statistical uncertainty by considering instrument precision
S2 Identify actions that might improve precision
S3 Identify actions that might improve accuracy

Handling of uncertainty
H1 Propagate uncertainties using formulas
H2 Report results with uncertainties and correct significant digits

Distributions and repeated measurements

D1 Articulate why it is important to take several measurements during experimentation
D2 Articulate that repeated measurements will give a distribution of results and not a single number
D3 Calculate and report the mean of a distribution for the best estimate of the measurement
D4 Appropriately use and differentiate between standard deviation and standard error
D5 Determine if two measurements (with uncertainty) agree with each other

one assessment. All items (i.e., questions) on SPRUCE
probe at least one of these AOs. More details about the
validity of these AOs in relation to SPRUCE items are
covered in other work [38].

2. Scoring

SPRUCE is scored using couplet scoring, a scoring
scheme discussed at length in a previous paper [41].
Briefly, this scheme first identifies which AOs an item
aims to measure. It then scores the responses to the item
based on that AO only. The score for that one AO on one
item is called a item-AO couplet. Items may address one or
more AOs and thus have one or more scored item-AO
couplets. Items that addresses multiple AOs will be scored
multiple times, and the method of assigning points based on
students’ responses might differ for each couplet.

An example item and scoring scheme are shown in Fig. 1
and Table II, respectively; this example has been high-
lighted in previous papers [38,41]. In this item, we address
two different AOs on SPRUCE: HI—Propagate uncer-
tainties using formulas and H2—Report results with
uncertainties and correct significant digits. Students need

You and your lab mates decide to measure 20 oscillations
at a time. Using a handheld digital stopwatch, you measure
a time of 28.42 seconds for 20 oscillations. You estimate
the uncertainty in your measurement of 20 oscillations to be
0.4 seconds, based on an online search for human reaction
time. What value and uncertainty do you report for the
period of a single oscillation?

O 1.42140.02 s
O 1421404

O 1.42+0.02s
O 142404

O 144002
O 14+04s

FIG. 1. SPRUCE item 3.3 (with alternate numbers to protect
test security), in which students are attempting to determine the
period of oscillation for a mass hanging vertically from a spring.
This single item addresses two AOs, H1 and H2, which handle
error propagation and significant figures, respectively.

to answer this multiple-choice item only once, but we are
able to draw conclusions about proficiencies along two
different axes (i.e., AOs) from their answers. The scoring
scheme itself is provided in Table II. This example
illustrates how, for one item, multiple answers might be
scored as correct depending on the AO and what answer is
considered correct depends on what AO is being scored.

For AO HI [propagate uncertainty], the answers that are
given credit are those where students have appropriately
propagated error, in this case dividing by 20. Thus, options
A, C, and E present choices where students have shown
proficiency in error propagation and receive credit for
couplet item 3.3—AO HI. On the other hand, for AO H2
[significant figures], the answers that are given credit are
those where students have provided an answer with correct
significant figures. In this case, the answer options with
matching decimal places in the result and uncertainty are
options C and F, so students selecting either of those would
receive credit for couplet item 3.3—AO H2.

Students only answer this item once. If they pick the
“correct” overall answer, which is option C, they would
receive credit on both couplets. However, they can receive
credit on one couplet, but not the other, by providing other

TABLE II. Example scoring for couplets of item 3.3, showing
how one multiple-choice item results in information about two
separate measurement uncertainty topics based on the different
answers students might give.

Score
Answer option H1 H2
A 1.421+0.02 s 1 0
B 1421+04 s 0 0
C 1.42+£0.02 s 1 1
D 1424+04s 0 0
E 1.4£0.02s 1 0
F 1.44+04s 0 1
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TABLE III.

AO couplets and score options. Each AO is targeted by different numbers of couplets and therefore

has different total possible scores. Some AOs offer partial credit, which is then rounded to the nearest integer after
summing all couplet scores for that AO, such that all final AO scores are integers.

Number of couplets

Possible scores, before rounding

Possible scores, after rounding

Sl 3 [0, 1, 2, 3] [0, 1, 2, 3]
S2 5 [0, 0.25, 0.50, 0.75, ..., 5] [0, 1,2, 3, 4, 5]
S3 4 [0, 0.25, 0.50, 0.75, ..., 4] [0, 1, 2, 3, 4]
HI 4 [0, 1, 2, 3, 4] [0, 1, 2, 3, 4]
H2 3 [0, 1, 2, 3] [0, 1, 2, 3]
DI 2 [0, 0.25, 0.50, 0.75, ..., 2] [0, 1, 2]
D2 2 [0, 0.25, 0.50, 0.75, ..., 2] [0, 1, 2]
D3 2 [0, 1, 2] [0, 1, 2]
D4 4 [0, 1, 2, 3, 4] [0, 1,2, 3, 4]
D5 2 [0, 1, 2] 0, 1, 2]

answers, or they receive no credit if they select answer
options B or D. In this way, we can separate student
proficiencies in two different areas of measurement uncer-
tainty by scoring along these axes to obtain information
about them separately. All items in SPRUCE are scored
according to these conventions, by first aligning the items
with AOs and then scoring items as couplets. This leads to
31 item-AO couplets scored on SPRUCE from its 19 items.
These couplet scores are then treated similarly to conven-
tional item scores on a traditional assessment, in that they
form the base unit of scoring.

After all of the couplets are scored, we combine them to
create ten different AO scores: one score for each AO on
SPRUCE. These AO scores are obtained by simply adding
up all of the couplet scores pertaining to each AO for each
student. We then round these scores to the nearest integer
using typical rounding conventions (i.e., 0.5 rounds up), as
some couplets allow for partial credit, as discussed in our
prior paper [38]. These integer scores are reported as the
AO-level scores; in some analyses, we normalize these to 1
by dividing by the number of couplets in each AO for easier
comparisons. Typically, in reporting raw scores, these are
normalized to 100, whereas when we perform other
statistical analyses (such as ordinal logistic regression),
we keep these as non-normalized integers. Table III shows
the number of couplets and possible scores for each AO on
SPRUCE; this table also shows that several couplets on
SPRUCE allow for partial credit in increments of 0.25,
rather than simply O or 1 as scores.

In order to calculate one overall test score on SPRUCE,
we add the normalized AO scores together and then
normalize this overall score to 100. Although the AO
scores provide more fine-grained information than one
single overall score, we still provide an overall score as a
measure of student proficiency in measurement uncertainty
as a whole, which is helpful for instructors and interesting
from a research perspective. We also used this overall score
in validating SPRUCE via classical test theory [38]. This

method of calculating the overall score (using the normal-
ized AO scores) weights each AO equally, rather than
weighting each couplet equally, in order to remove biases
from some AOs that are sampled more than others. By
weighting each AO equally, we produce a final score that
accounts equally for all ten areas of measurement uncer-
tainty and is therefore a good measure of overall student
proficiency with measurement uncertainty and is also
consistent with instructor expectations. We acknowledge
that this scoring scheme is complex, but this method
provides instructors and researchers with a rich set of data
about student performance at different grain sizes.

II1. METHODS

A. Data collection and cleaning

We collected data from 31 physics laboratory courses at
20 institutions in the United States during the Spring 2023
and Fall 2023 semesters (see Table V for details on these
institutions). Of the courses, 23 were introductory (account-
ing for 1379/1576 = 87.5% student responses) and § were
beyond introductory (accounting for 197/1576 = 12.5%
student responses). Courses were solicited via the authors’
contacts, as well as through posting advertisements on the
Advanced Laboratory Physics Association (ALPhA) list-
serv and two American Physical Society (APS) discussion
boards (Forum on Education and Topical Group on Physics
Education Research). Student demographics, including
gender, race, and major, are presented in Table IV. We
note that these demographics, which represent the 1576
matched pre-post responses, are representative of the full
sample of completed post-test responses. For both gender
and race, students were able to select as many options as
they wanted to from the multiple-response question
(including a not listed text box option), and therefore,
these numbers in the table do not add up to 100%.
Additionally, the population of students who participated
in SPRUCE is not reflective of the current racial makeup of
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TABLE IV. Student demographics: Race, gender, year, and
major [N = 1576]. Because all demographic questions except
year in school allow multiple responses and because these
questions were optional, the numbers will not add up to 100%.

TABLE V. Institution information [N = 20] including highest
degree offered and minority-serving status. HSI indicates a
Hispanic serving institution and AANAPISI indicates an
Asian American and Native American Pacific Islander serving
institution.

Number of institutions

Number of Percent
students students
Gender
Man 905 574
Woman 614 39.0
Nonbinary 52 33
Not listed 9 0.57
Race
White 1206 76.5
Asian 248 15.7
Hispanic/Latino 138 8.8
Black 59 3.7
American Indian or Alaska Native 19 1.2
Native Hawaiian or other Pacific 11 0.70
Islander
Not listed 37 2.3
Year in school
First year 477 30.3
Second year 551 35.0
Third year 320 20.3
Fourth year 170 10.8
Fifth year 31 2.0
Sixth year or beyond 14 0.89
Major
Engineering 606 38.5
Physics 204 12.9
Biology 184 11.7
Computer science 127 8.1
Math or applied math 99 6.3
Astrophysics 96 6.1
Biochemistry 92 5.8
Chemistry 71 4.5
Engineering physics 45 29
Astronomy 33 2.1
Geology or geophysics 23 1.5
Physiology 23 1.5
Other science 172 10.9
Nonscience major 41 2.6
Open option/undeclared 36 23

the United States, which is a limitation of the data we hope
to address with future data collection. In particular, black
students are underrepresented. Additionally, major and year
in school are correlated and, therefore, cannot be inde-
pendently included in our analysis.

We collected 3733 total pretest responses and 2710 total
post-test responses for a total of 6443 total responses. We
then removed responses based on the following conditions.
First, students who did not consent to having their data used
for research were excluded, resulting in a loss of 691
responses (10.7%). Second, students who either did not

Highest degree

Ph.D. 6
Master’s 5
Bachelor’s 8
Associate’s 1
Minority serving status

HSI 4

AANAPISI

—_

answer the filter question (i.e., closed the survey before
reaching that question) or answered the filter question
incorrectly were excluded; this step removed a total of 1153
of the 6443 responses (17.9%). The filter question is placed
after three of the four experiments on SPRUCE, ensuring
students have answered at least 11 of the 19 items and
therefore are scored on at least 21 of the 31 couplets and
asks students to enter a specific three-digit number into a
text box to ensure they are reading the questions. Finally, in
order to examine the impact of instruction, we matched
students using their student names and ID numbers to have
matched pretest and post-test responses for students. If
students took only one of these (either only the pretest or
only the post-test), their results were excluded. Thus, we
present an analysis of 1576 matched pre-post responses
from the two semesters of data collection or about 48.9% of
total responses to SPRUCE in that time frame.

We choose to use matched data in order to more
accurately report changes from pretest to post-test.
However, as previously stated, the demographics of the
unmatched data do not differ significantly from those in the
matched dataset, and the average scores (at both the overall
score level and the AO level) also do not change signifi-
cantly when comparing these datasets. Thus, this provides
evidence that none of the analysis methods used, which are
described in further detail below, are biased by including
only matched data.

We also conducted student interviews during the Fall
2022 semester while SPRUCE was in beta testing, and
some of these interview data are used in the work presented
here. These 27 interviews each lasted approximately 1 h.
Students were solicited for interviews from courses in
which SPRUCE was currently being piloted. During these
think-aloud interviews, students took SPRUCE while
sharing their screen with the interviewer and were asked
to explain their reasoning for each item to which they
responded. These interviews provided evidence of
student reasoning for each answer option, both correct
and incorrect [15].
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Finally, we collected information about each course from
instructors who participated in SPRUCE administration,
including the goals of the course, the level of the course,
and the importance they place on different aspects of
measurement uncertainty. In particular, instructors were
asked to evaluate the importance of each of the AOs on a
five-point Likert scale (extremely important, very impor-
tant, moderately important, slightly important, and not at all
important) for their course. In our analysis, we collapse
these responses to a three-point scale, where extremely and
very important are combined, and slightly and not at all
important are combined. One limitation of our data is that
D4: Appropriately use and differentiate between standard
deviation and standard error existed in a different form in
prior iterations (three other AOs were collapsed to form this
one), and therefore, we have no data about instructor
emphasis on this AO. These three AOs were collapsed
as we determined that we could not accurately differentiate
the original three AOs that handled this topic. D4 is treated
separately in certain sections of this work in order to
account for this change.

B. Analysis methods

To answer our first research question regarding students’
overall proficiency with measurement uncertainty, we
analyze postinstruction data only. We use only matched
postinstruction responses to maintain a single student
population for the entire paper, though results with all
post-test responses are similar. Here, we examine the
student scores on each AO and their overall scores on
the assessment. AO scores are calculated by summing the
couplet scores for each AO, rounding to the nearest integer,
and normalizing to 1 (here, we normalize the AO-level
scores to 1 to allow easier comparisons between AOs).
Finally, the overall score is the sum of these normalized AO
scores, also normalized to 1. The scoring processes are
detailed further in Sec. II B 2 and in previous work [41].

Statistically, with post-test data, we report normality
statistics in the form of the Anderson-Darling test, as well
as skewness (the third moment) and kurtosis (the fourth
moment). The Anderson-Darling test can detect whether
data are normally distributed and, rather than a binary
outcome, provides a significance level that gives informa-
tion about the degree to which the data presented are
normal [42,43]. Skewness is a measure of the asymmetry of
a distribution and kurtosis is a measure of the tails of the
data compared to a normal distribution. Normally distrib-
uted scores allow easier analysis methods, as many meth-
ods assume normality.

To answer one component of our second research
question, regarding the impact of instruction, we look at
the significance of the shifts from pretest to post-test scores
both at the level of the overall score and at the level of each
individual AO, with scores calculated as described above.
We perform a Wilcoxon signed-rank test [44] to compute

this significance. This is a nonparametric test of the null
hypothesis that for randomly selected scores from two
populations (in this case, the pretest and the post-test scores
are the two different populations), the probability of one
being greater than the other is the same as the reverse. It can
be considered a nonparametric version of the dependent ¢
test. In this case, because we are comparing populations
that are not expected to be equal (assuming instruction has
an impact on student performance on SPRUCE), we
anticipate that the null hypothesis will fail—that is, we
would expect that the distributions of these two groups are
not identical.

In order to determine how much of an impact instruction
has, we also utilize Cohen’s d as a measure of effect size
[45]. Effect size is a measure of the magnitude of the shift,
as opposed to the Wilcoxon signed-rank test, which simply
indicates whether the shift is statistically significant (as a
binary).

Generally, unless otherwise noted, uncertainties are
given as standard errors throughout this paper (68% con-
fidence interval).

1. Analysis of covariance

Another component of our second research question
requires analysis of student performance on SPRUCE
overall (using the post-test overall score) and how this
correlates with students’ pretest score, major, and gender.
To do so, we use a two-way analysis of covariance
(ANCOVA), due to the relatively continuous nature of
overall scores (as opposed to the small integer-only nature
of the non-normalized AO scores). ANCOVA decomposes
the dependent variable’s variance into a part explained by
the covariate, a part explained by the independent variables,
and a residual variance [46,47]. In our case, our dependent
variable is post-test overall score, our categorical indepen-
dent variables are student major and gender, and our
covariate is the pretest overall score. Using ANCOVA,
we can explore whether student major or gender is
correlated with post-test performance on SPRUCE, while
controlling for pretest performance. We conducted this
analysis in both PYTHON and R to validate the results were
the same with two different statistics packages, and we find
the results to be in agreement with one another. We note
that interaction terms might be significant, and these are
addressed in more detail in Sec. IV.

The general model we implement for ANCOVA is

Spost = ﬁO + ﬂlSpre + ﬂZ(Gender> + ﬂ3(Major), (1)

in which we relate the post-test to a student’s score on the
pretest, their major, and their gender. The S coefficients
give the relative importance of each of these factors.
Additionally, we obtain information about the amount of
variance explained by each of these predictors in the form
of partial 7?.
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ANCOVA has several assumptions that must be met in
order for it to be an appropriate statistic to use. The details
of these assumptions and our data’s adherence to them are
discussed in Appendix A.

We note a limitation in the data regarding gender.
SPRUCE includes a multiple-response item that asks
students to report their gender. We received responses
from 897 (56.9% £2.4%) students who selected only man,
607 (38.5% +2.4%) students who selected only woman,
and 59 (3.7% £0.9%) students who selected another option
(either nonbinary, not listed with an opportunity to write
their preferred gender in a text box, or some combination of
the above responses). Exactly 13 students (0.8% =+ 0.4%)
did not respond to this question. We do not have enough
responses in any category other than only man or only
woman to analyze these responses. Thus, we treat gender as
a binary and include only those students who answered
along this binary in the gender analysis. We hope to collect
more data in the future to be able to include other categories
as well.

2. Ordinal logistic regression

As a final component of addressing our second research
question, we examine the correlations between students’
major and gender and their AO-level post-test scores, as
well as determine the impact of an instructor’s reported
importance of that AO on these scores. To do this, we
perform ordinal logistic regression [48]. We take SPRUCE
AO scores as ordinal (the scores have a clear order attached
to them, as a student who scores a one has a higher
performance than a student who scores a zero), but the AO
scores are not continuous (i.e., within an AO, only integer
scores are possible before normalizing). The total possible
scores for each AO are presented in Table III. For ease of
analysis, we use these rounded, non-normalized integer
AO-level scores.

The explanatory variables for the ordinal logistic regres-
sions performed in this work are major (categorical), gender
(categorical), and the importance of an AO to an instructor
(ordinal, based on Likert-scale data). Additionally, the
ordinal pretest scores were included as an independent
variable. This analysis was conducted in both PYTHON and
R to verify that the results are the same with two different
statistics packages; the results were in agreement with each
other in both programs.

The ordinal logistic regression model we fit to our data is
as follows:

lo <Pr(Spost < ])

MWpost =J)\ _ 5. ond
Pr(Spost>j)> @;+ 1 Spre + P2 (Gender)

+ f3(Major) + 3, (Importance), (2)

where Pr(S,, < j) is the cumulative probability that the
single AO post-test score is either j or lower (where j is an

integer score on that AO), Pr(Sp. > j) is the cumulative
probability of the score being higher than j, a; is the y
intercept for score integer j, f; is the coefficient for the
pretest score on that particular AO, 3, is the coefficient for
students’ gender, f; is the coefficient for students’ major,
and f, is the coefficient for the importance variable (i.e.,
how important instructors ranked that particular AO on a
Likert scale).

In order to examine the impact of interaction terms, we
also model the following for each AO:

Pr(Spost < J
log(r(pt J)

Pr(Spost > ])> = @ + [ Spre + f2(Gender)

+ f3(Major) + f,(Importance)
+ fs(Major x Gender)
+ fs(Major X Sy ). (3)

The variables in this equation are identical to those in
Eq. (2), but we have added extra terms to account for
interactions between students’ major and gender and
students’ major and pretest scores. We include only these
interaction terms in our model because they are the ones
that have reasonable theoretical explanations for the corre-
lation. For example, the importance of a specific AO to a
course is conceptually distinct from a student’s gender. This
is true for all other possible interaction terms not included
in the model.

In terms of gender and major interaction (which is
similarly seen in the ANCOVA analysis), this interaction
can be explained conceptually by noting that physics
majors are more likely to be men, and physics majors
are more likely to do well on SPRUCE. In terms of the
major and pretest interaction, this can conceptually be
explained by the fact that physics majors are more likely to
do well on SPRUCE even before taking a course in which
SPRUCE is administered, likely due to high school
preparation or prior coursework in physics.

In our ordinal logistic regression analysis, we report odds
ratios, which are calculated as e’ for each f coefficient. In
this analysis, the order of the categorical groups must be
chosen. Odds ratios present the likelihood of improving a
level (in this case, going from one score on the post-test to a
score an integer higher on the post-test on that particular
AO) as a multiplicative factor based on changing from one
group to an adjacent group (e.g., from men to women or
engineering major to physics major). Thus, the odds ratios
with confidence intervals that cross one are not statistically
significant. Those that are greater than 1 show that there is
an increased chance of a greater AO score by moving from
one group of majors to an adjacent group in a particular
direction (e.g., from engineering majors to physics majors),
based on the ordering of the groups. Those with confidence
intervals strictly less than 1 show a higher chance of
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decreasing the post-test score on that AO while comparing
those adjacent groups in the same direction.

One positive aspect of logistic regression, as compared
with linear regression, is that logistic regression is a
nonparametric technique, meaning that there are no
assumptions necessary about the underlying distribution
of the data. Not only does this mean that the data do not
need to be normal, but it also means that we do not require
homoscedasticity, or constant variance of the residuals in
the data [49]. This is because logistic regression uses
maximum likelihood estimation (MLE), an iterative pro-
cedure to find the solution, instead of ordinary least squares
(OLS) regression. MLE maximizes the likelihood that
individual students have scores given by the dependent
variable (in this case, post-test scores) based on their scores
on the predictor variables (in this case, pretest scores,
major, gender, and the level of importance their instructor
places on that AO). Logistic regression does, however, have
several assumptions that must be met in order for it to be
applied to our data. We discuss these assumptions as well as
the adherence of our data to them in detail in Appendix B.

IV. RESULTS AND DISCUSSION

A. Overall student proficiency
with measurement uncertainty

Here, we examine the first research question by using
only post-test data. We determine areas of measurement
uncertainty where students excel, as well as areas where
additional support could help improve their proficiency.
Thus, we report the mean (both the overall post-test score as
well as post-test AO scores) and comment on the results.

The mean overall post-test score on SPRUCE, as
calculated based on methods described in Sec. II B 2 above,
is 52.3 £ 0.5 with a standard deviation of 18.9. A histo-
gram showing the distribution of overall post-test scores is
shown in Fig. 2, where the scores have been normalized to
100 in this case only for ease of understanding. This
distribution is indicative that our data appear visually
normal. To quantify this, we perform an Anderson-
Darling test for normality and find the post-test scores
are normal to a significance level of 1.0% with a skewness
of —0.49 £ 0.12 and a kurtosis of —0.55 + 0.12, indicating
normal data. For both skewness and kurtosis, values
between —1 and 1 generally indicate normality [50].2
Similar figures showing the distributions for all ten AO
scores are shown in Appendix C. We also present the
average score on each AO in Table VI; note that these are
normalized to one, with uncertainty presented as the
standard error.

’Note that this reference uses a measure of kurtosis that adds
three to the method we use and therefore states that normality is
present for kurtosis values of 2 to 4; this corresponds to our values
when we subtract 3.
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FIG. 2. Pretest (blue) and post-test (orange) overall scores on
SPRUCE normalized to 100. In aggregate, students improve from
pretest to post-test, as can be seen by the clear shift in the
histogram. The distributions themselves are considered normal,
with skewness and kurtosis levels for both pre- and post-test
distributions well within the limits of normality and Anderson-
Darling tests showing that both distributions are normal to a
significance level of 1.0%. The ranges of scores show that
SPRUCE does not suffer from ceiling or floor effects in the
overall score.

These data help demonstrate student proficiency with
measurement uncertainty. For example, students tend to do
well at D3: Calculate and report the mean of a distribution
for the best estimate of the measurement, which is the only
AO with an average post-test score greater than 70%. On
the other hand, students are less successful on AOs D5:
Determine if two measurements (with uncertainty) agree
with each other, HI: Propagate uncertainties using for-
mulas, and H2: Report results with uncertainties and
correct significant digits, which are perhaps areas instruc-
tors might focus on for improvement. All three of these
AOs have postinstruction scores of less than 40%.

B. Impact of instruction

In this section, we explore the answer to the second
research question, relating to the impact of instruction on
student proficiency with measurement uncertainty. We first
examine the significance of the shifts from pretest to post-
test both at the overall score level and at the AO level.
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TABLE VI. AO average scores, pretest and post-test
[N = 1576], normalized to 100. Error presented is standard
error, shown as uncertainty in the last digit (e.g.,
51.4(7) = 51.4 £ 0.7). AO labels follow from Table I. D3, which
relates to students reporting the mean, has the highest score for
both the pretest and post-test, and likely exhibits ceiling effects.
HI1 (error propagation) and D5 (measurement comparison) have
the lowest scores and thus represent student proficiencies that
have substantial room for improvement.

Average score, pretest Average score, post-test

S1 51.4(7) 54.9(7)
S2 59.0(6) 62.5(5)
S3 37.1(6) 41.6(6)
H1 28.9(6) 38.9(6)
H2 32.6(7) 39.9(7)
DI 40.2(9) 45.8(8)
D2 60.3(8) 63.5(9)
D3 84.5(7) 81.9(7)
D4 43.8(6) 50.7(6)
D5 29.0(9) 35.7(8)
Overall 46.7(4) 52.3(5)

We then examine the correlations gender and major have
with post-test score using ANCOVA (overall test) and
ordinal logistic regression (AO level). Additionally, we
examine the impact of the importance an instructor places

1.0

on a specific AO on student performance on that AO using
ordinal logistic regression.

As shown in the pretest and post-test distributions in
Fig. 2, there is a clear shift of overall SPRUCE scores from
pre- to postinstruction. We can quantify the significance of
this shift using the Wilcoxon signed-rank test, as
described in Sec. III B, and find that the pre-post shift
is significant at p <« 0.0001 with an effect size of
d =0.33 £0.04.

Pre- and post-test scores along with the effect sizes
(Cohen’s d) of the shifts for each AO are shown in
Fig. 3. Again, the Wilcoxon signed-rank test shows
that all of the pre-post shifts at the AO level are significant
with p <« 0.0001 aside from AOs D2 (which is signifi-
cant at p = 0.0009) and D3 (which is significant at
p = 0.004).

We note that AO D3 [calculate mean] likely has ceiling
effects, which results in a lower effect size due to students
excelling at this AO both pre- and post-instruction. Further,
from this plot’s Cohen’s d values, we can also see that while
AOs D5 [measurement comparison] and HI [propagate
uncertainty] had similar post-test outcomes (with students
struggling the most with these two AOs), instruction is
having a significantly large positive impact on students
surrounding AO H1 [propagate uncertainty] whereas their
impact, though positive, is much smaller for AO D5
[measurement comparison].
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m Effect Size
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FIG. 3.

D1

D2 D4 D5 Total

AO scores and overall score for both pre- and post-test [N = 1576]. Error bars on the scores represent the standard error. AO

labels follow from Table I. Effect size (calculated via Cohen’s d) is shown with black squares using the scale on the right, with error bars
representing the standard error. The pre-post shifts were significant for all AO scores and for overall scores (as determined via the
Wilcoxon signed-rank test), with varying effect sizes for these shifts. All shifts were positive aside from AO D3, which exhibits ceiling

effects.
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1. Impact of instruction on overall post-test score:
Correlation with major and gender

We perform an ANCOVA to determine the impact of
gender and major on overall SPRUCE post-test score.

Only students who responded to both demographic
questions about major and gender and selected only man
or only woman for gender were included in this analysis,
which resulted in N = 1503 responses from the original
N = 1576. A breakdown of number of students by gender
and major is shown in Table VII.

Based on previous work on analysis of laboratory
assessments, We split student majors into the following
categories [22]:

1. Physics, engineering physics, astrophysics.

2. Other engineering.

3. Other science and math (including astronomy and

computer science).

4. Nonscience majors.

In order to assign students to one of the groups above,
we first examined whether they selected a major in the
first group (physics, engineering physics, and astrophys-
ics). If they did, they were placed into the first group, even
if they have other majors as well. If not, we determined
whether they should be in the second group, then the third,
then the fourth.

The ordering of the groups must be chosen for this
analysis (and in the ordinal logistic regression analysis
discussed later). In both analyses, we order the majors as
follows: nonscience, other science or math, other engineer-
ing, and physics/engineering physics/astrophysics as is
done in other assessment analyses (e.g., the PLIC [22]).

We also split students into man and woman categories.
We have ordered these categorical variables such that an

TABLE VII. Number of students by gender and major
[N = 1503]. The genders indicated are for students who selected
only one single gender, whereas the majors indicated might be
one of several majors selected by students, but students were
placed into only one group based on their major such that no
students are double counted in this table. The numbers add up to
1503 due to 73 of the 1576 matched responses either did not
include their demographic information or did not select majors
compatible with this analysis. Physics includes students majoring
in physics, engineering physics, and astrophysics. Other engi-
neering includes all other types of engineering students. Other
science includes students majoring in a science not listed above,
including chemistry, astronomy, and computer science. Finally,
nonscience includes all possible majors outside of science.

Men Women Total
Physics 227 113 340
Other engineering 401 172 573
Other science/math 241 292 533
Nonscience 28 29 57
Total 897 606 1,503

odds ratio greater than 1 indicates that men outper-
form women.

Initially, we used the model Post~ Pre 4+ Gender+
Major + Gender x Major (which indicated a post-test
score dependent variable, with independent variables of
pretest score, gender, and major and interaction term
gender X major), with an interaction term between major
and gender included to test for its significance. We find this
interaction term to be borderline in its significance (F test,
p = 0.046). Because 0.05 is an arbitrary cutoff and this p
value is on the edge, we have chosen to treat it as not
significant. If it were significant, we would have to split the
data and do six separate ANCOVA analyses for each
category (for example, we would need to examine men
only in the model Post ~ Pre + Major, and similarly for the
other major and gender categories). This would obfuscate
the conclusions one can draw from the data. Therefore, we
choose to treat the borderline interaction term as not
significant and use only the model presented in Eq. (1).

Results of the ANCOVA analysis are shown in
Table VIIIL Partial #? is an indicator of the effect size of
each of these predictors (pretest, major, and gender) on the
post-test score by indicating the amount of variance each
explains in the post-test score. A partial 5? of at least 0.01
indicates a small effect, and anything above 0.06 is at least a
medium-strength effect [47]; reported partial > values
should be considered a lower bound due to shared variance
between the covariate (pretest score) and independent
variables (major and gender), as discussed further in
Appendix A. All p values in this table are calculated via
the F test, with gender having 1 degree of freedom and
major having 3 degrees of freedom. Instruction is not
accounted for in this model and is likely the cause of much
of the residual variance.

While pretest score is a significant predictor of post-test
score (both by p value and by partial ”), when we control
for this, we find that both major and gender are predictors
of post-test score. Major is more significant and accounts
for more variance than gender does. However, much of the

TABLE VIII. ANCOVA results, including p values and partial
1, a measure of the amount of variance explained by each of the
predictors. We find that pretest is a significant predictor of post-
test score and explains much of the variance in the post-test
scores. Similarly, major and gender also are significant predictors
of post-test score but account for less of the variance. All variance
not explained by these three predictors must be explained by
some other variables not included in the model, such as the
impact of instruction.

Predictor p Partial 7>
Pretest <0.001 0.360
Gender 0.022 0.003
Major <0.001 0.012
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Num. Couplets AO Pretest Gender Major Importance

D1f 2.58 [2.23, 3.00]* 1.41 [1.15, 1.72]* 1.27 [1.13, 1.44]* 1.21 [0.87, 1.6§]

3 D2 3.34 [2.83,3.93]"  1.22 [0.99, 1.50]  1.29 [1.14, 1.46]* 0.79 [0.62, 1.00]
D3 2.95 [2.45, 3.54]* 1.11 [0.87, 1.41] 1.14 [0.99, 1.31] 1.17 [0.87, 1.57]
D5  3.66 [3.17,4.22]*  0.94 [0.76, 1.17]  1.08 [0.95, 1.22] 1.48 [0.97, 2.25]

3 S1 2.88 [2.54, 3.26]" 1.14 [0.93, 1.39 1.13 [1.00, 1.27]*
H2t 2.13 [1.89, 2.40]" 0.92 [0.76, 1.12 1.34 [1.19, 1.51]* 1.05 [0.85, 1.29]

4 S3t 1.91 [1.73, 2.11]* 1.37 [1.13, 1.66]* 1.19 [1.06, 1.33]" 0.94 [0.77, 1.14]
H1 1.59 [1.44, 1.76]* 1.37 [1.13, 1.66]* 1.48 [1.31, 1.66]" 1.07 [0.96, 1.19]
D4 1.81 [1.65, 1.99]* 1.02 [0.85, 1.23 1.34 [1.20, 1.50]" — — — — —

5 S2 1.83 [1.68, 1.99]* 1.20 [0.99, 1.39 1.24 [1.11, 1.39]* 0.93 [0.77, 1.12]

FIG. 4. Odds ratios for major, gender, and importance. Values shown are 95% confidence intervals. We denote significance with an
asterisk (x) (i.e., the confidence interval does not cross 1) and 1 indicates a significant interaction term present in the model. This table is
arranged in order of number of couplets (logistic levels) in each AO (two, three, four, five). Yellow cells indicate a positively correlated
predictor for that AO and blue cells indicate a negatively correlated predictor for that AO; odds ratios were calculated using Eq. (2).
Pretest is a significant predictor in all models, whereas gender, major, and importance only play a role in certain AOs. In particular,
importance is only significant for AO (S1) and it is an inverse predictor.

variance in post-test score is not accounted for by any of the
three predictors used in the model, leading us to presume
that instruction (which is not included in the model) plays a
significant role in post-test scores. Instruction helps stu-
dents improve their SPRUCE overall scores, indicating
some success in increasing students’ proficiency in meas-
urement uncertainty.

2. Impact of instruction on AQ-level post-test scores:
Correlation with major, gender, and
AO importance to instructor

We performed an ordinal logistic regression analysis
with pretest AO score, major, gender, and importance of the
AO to the instructor as explanatory variables for the post-
test AO score. Again, only students who responded to both
the demographic questions about major and gender were
included in this analysis, with the additional requirement
that the instructor for the course responded to the course
instructor survey, meaning that N = 1486 for this analysis
(73 of the 1576 matched responses did not include the
gender and major demographic information or did not
respond with only man or only woman for their gender and
were thus excluded from this analysis, and a further 17
students were enrolled in classes in which the instructor did
not respond to the question in the instructor survey
regarding importance for each AO).

The model we use is described by Eq. (2).

We report the odds ratios for each of the AOs in Fig. 4. It
is important to note that odds ratios cannot be compared
between AOs with different numbers of ordinal levels
associated with them. We can, however, compare the odds

The model for AO D4 looks much the same as the model in the
referenced equation, but with f; set to zero and no data about
importance included in the model (due to our lack of data
collected about this).

ratios for AOs with the same number of ordinal levels (e.g.,
S3 and HI can have their odds ratios compared, but HI and
H2 cannot). An area of nascent research in educational
statistics is determining how to compare statistical analyses
from groups with different number of levels.

As described in the Methods, we also examine inter-
action terms using Eq. (3). Three AOs have significant
interaction terms (p < 0.01). AOs S3 and D1 show
significant interaction between pretest and major, and
AO H2 shows a significant interaction between gender
and major. The odds ratios reported are for the model in
Eq. (2), that is, the model without the interaction term,
because odds ratios for the stand-alone terms in models
with interaction terms do not have meaning due to the
collinearity between the stand-alone and interaction terms.
However, significant interaction terms indicate that when
interpreting odds ratios, one should take caution to remem-
ber that the full effect is not explained by these two
variables alone, but rather that one impacts the other.

We find that pretest score is a significant predictor of
post-test scores for all ten AOs, which is expected—
students who start with better scores also end with better
scores. Further, we find that gender is a significant predictor
for several AOs: S3 [accuracy], H1 [propagate uncertainty],
and D1 [several measurements]; in all cases, men perform
better than women. Major is a predictor for nearly every
AQO, aside from D3 and D5. Again, in these cases, physics
majors have a higher likelihood of better performance than
engineers, engineers have a higher likelihood of better
performance than other science and math majors, and so on.

Finally, and most notably, the instructor-rated impor-
tance of an AO is only a significant predictor of post-test
score for AO S1 [estimate size of uncertainty]. However, it
is actually an inverse predictor in this case; that is,
instructors who rated this AO as important were more
likely to have students perform worse on this AO on the
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FIG. 5. 0Odds ratios for importance, separated by the number of
couplets per AO—two (a), three (b), four (c), and five (d) couplets.
These odds ratios show the impact of instructor-reported im-
portance of an AO on students’ final post-test score. Ideally, these
odds ratios would be greater than 1 with 95% confidence.
However, none of them are statistically significant, indicating
that the level of importance placed on an AO by instructors is not
correlated with student performance on that AO, with a single
exception: S1 scores are slightly negatively correlated with
importance, due to its odds ratio lying below 1 with 95%
confidence.

post-test compared to students in other courses. This,
combined with the lack of significance on the other
AOs, indicates that students are not necessarily achieving
the instructor’s stated goals for the course with respect to
measurement uncertainty. One potential cause of this is that
instructors who do not report a particular AO as important
still teach those concepts as well as those who do report it as
important. Overall, instructors are not having a significant,
positive impact on the areas of measurement uncertainty
that they deem important as compared to instructors who do
not report those areas as important. To further highlight
this, the odds ratios for importance are presented in Fig. 5.

We again note that the odds ratios for AOs with different
numbers of couplets should not be directly compared.

C. AOs of interest

The results for several of the AOs are particularly
interesting and require a deeper investigation. Some of
these are examined in greater detail in the following
sections. The end of each AO analysis subsection provides
recommendations for instructors pertaining to that AO.

1. AO S1: Estimate size of random or statistical
uncertainty by considering instrument precision

This AO is particularly interesting when considering the
results of the ordinal logistic regression since it is the only
one with a significant odds ratio for importance. However,
the odds ratios for this AO indicate that the more impor-
tance an instructor places on this AO, the lower their
students’ scores on this AO. This is opposed to an
instructor’s aims when teaching a lab course.

This AO had a mean post-test score of 0.549 £ 0.007
with only a slight improvement from pretest (effect size
d =0.13 +0.04, pretest mean = 0.514 4+ 0.007). While
this is not the AO students struggle with the most, it is
frequently reported to be important by instructors, and
students still have many difficulties when determining
instrument precision and incorporating this into their
uncertainty.

This AO is probed 3 times by SPRUCE. Two of these
items are coupled numerical open response and one is
coupled multiple choice. In all cases, students are asked to
provide a measurement and an uncertainty associated with
that measurement based on a specific instrument shown.

One of these items presents students with two graduated
cylinders filled with water showing a “before” and an
“after” measurement in order to determine the volume of an
irregular object. Students report the volume shown in both
of these circumstances, as well as the uncertainty in the
measurement for both. Importantly, it is the same graduated
cylinder in both measurements, with measurement mark-
ings every 100 ml.

Students frequently believe that a certain type of instru-
ment always has a specific uncertainty, regardless of the
markings on that instrument. For example, one student
during an interview entered 0.05 ml as the uncertainty for
both measurements and explained that this was because

It’s 0.05 for, what was that, a volumetric flask or a
graduated cylinder.

This indicates that they believe all graduated cylinders have
the same uncertainty, regardless of measurement markings
on the instrument. This is directly opposed to AO S1, which
requires students to understand that the precision of their
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measurements is directly related to the precision of the
specific instrument they are using. In this case, 0.05 ml is
much too precise for a graduated cylinder with markings
every 100 ml.

Further, some students believe that the instrument
precision changes depending on the value being shown.
For this same question, another student entered an uncer-
tainty of 5 ml for the “before” measurement and 6 for the
“after” measurement. They explained this choice as

The way that I picked this first uncertainty for the
before was I definitely know that it’s more than
1500 milliliters, but it looks like it’s less than
halfway. But because we can’t really accurately
judge where halfway is, I just kind of said that it
was 5 milliliters to get that span. And then this
second one is a little closer to halfway so I just
extended it one more milliliter.

While both 5 and 6 ml are still too precise for the
instrument, this student’s reasoning is also interesting
because, despite using the exact same graduated cylinder,
they believed the precision of the device had changed
simply because the amount of liquid in it had changed. This
is also not aligned with mastery of AO S1.

Another similar item that probes this AO shows students
a digital scale with a reading of 74.2 g and asks students to
enter the value and uncertainty from this scale.

Some students employed incorrect reasoning on this
item. Similarly to the first item discussed, some students
believe that all digital scales have the same uncertainty. For
example, one student entered 0.01 g said,

I just remember that 0.01 is a general value, like a
generalized uncertainty... A generalized uncer-
tainty is 0.01,

showing that they believe that digital scales in general have
this uncertainty associated with them regardless of the
precision of the output. This value is too precise for this
particular scale, and the student’s reasoning does not show
proficiency in AO S1.

Finally, some students believe digital instruments have
no uncertainty whatsoever. For example, one student
entered 0 g for the uncertainty and said,

Uncertainty comes from either a scale that’s
giving you a bunch of different readings and
you have to take measurements over time or use a
bunch of different scales and see what you’d get.
For uncertainty for this, I don’t understand that
there would be any,

which shows that this student understands uncertainty from
multiple devices or from one device with a flickering

display, but does not consider a single instrument’s pre-
cision when determining the uncertainty of a measurement
(especially when it is a digital device). Interestingly, this
student did provide uncertainties for the graduated cylinder
question, showing that their belief in the lack of uncertainty
for a single static instrument is related specifically to digital
instruments.

Thus, while estimating the size of statistical uncertainty
based on instrument precision is important to instructors,
current instruction seems to be somewhat ineffective in
raising student scores extensively (especially for instruc-
tors who rate this AO as important). Major is a significant
predictor for student performance on this AO, with
physics majors outperforming engineering majors, etc.
However, this effect is relatively small—the odds ratio is
1.13 [1.00, 1.27], indicating that with uncertainty, it is
possible that all majors perform identically (odds ratio of
1.00). We hope that illustrating some common student
misconceptions surrounding this AO will help improve
instruction in this area. Explicit instruction surrounding
how the precision of the measurement instrument, includ-
ing digital instruments, can aid in determining the
uncertainty of the measurement and can potentially help
students overcome these challenges.

2. AO D1I: Articulate why it is important to take several
measurements during experimentation

This AO is especially interesting for comparing
SPRUCE interview data with the previously discussed
PMQ paradigms of pointlike and setlike reasoning because
the PMQ deals extensively with this topic. Pointlike
reasoning is employed when students believe there is
one true value for an experimental measurement, and
setting up an ideal experiment will yield that true value.
Setlike reasoning is aligned with expert views, in which
students believe that any experimental setup will yield a
distribution of results. We find that this AO had a post-test
mean of 0.458 + 0.008 with a medium-size shift between
pre- and post-test scores (effect size d = 0.26 = 0.04,
pretest mean = 0.402 &£ 0.009). Logistic regression shows
that gender and major are both significant predictors for
post-test scores on this AO, with a slightly larger effect
from gender. However, this AO showed significant inter-
action terms between gender and major, so caution must be
taken when analyzing these results—each of these variables
impacts the other, leading to the final post-test score.

Two SPRUCE items probe this AO. Both are coupled
multiple response in which students are asked a multiple-
choice question and then are asked a follow-up multiple-
response question to ascertain their reasoning behind their
answer to the first question.

During the interview phase, we found a common
response to questions of collecting more data was simply
a blanket statement about having more data being the best
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practice without providing reasoning as to why it is better to
have more data, similar to results from prior studies
[25,36]. For example, one student said,

I've always understood that it’s best practice to
take measurements multiple times in experi-
ments.

Another common line of reasoning for students is the
desire to take several measurements because of human
error. For example, one student stated,

Usually when I do experiments I like to do three
trials because sometimes... there might be a
human factor involved in it. It’s just always good
to do three trials so you can look at your data and
compare.

Again, this student has a similar understanding that taking
more data is better and provides minimal evidence as to
why, while seeming to employ pointlike reasoning of
taking multiple measurements to ensure the reproduction
of the “true value.” This student specifically quotes three
measurements, similar to findings in prior studies [23].
Further, this quote exemplifies the issues regarding using
“error” as opposed to “uncertainty” when describing
random and systematic effects, as previously explored
[5,7]. Both of these students left off key parts of a fully
correct response to items probing this AO. For example, in
this second case, the student did not select answer options
about calculating the uncertainty and reducing the impact
of outliers as reasons for collecting more data.

Another student discussed the true value of a
measurement:

Measuring something one time is not super—it’s
something that I learned not just in physics
classes but in many different science classes, if
you can measure something more than once you
should, multiple trials are great because you can
find a mean value which will be as close to the
true value as possible... if the mean is close to the
mode, like the most common value... I can use
that to my advantage statistically.

This student has a pointlike view of measurement, in which
there is one true value for the measurement. They hope that
their mean might be close to this true value and intend to
test this hypothesis by determining whether the mode is
close to the mean. This reasoning shows a lack of under-
standing about why one should take many measurements;
comparing the mean and mode is statistically irrelevant.
This student also leans toward labeling the mode as the true
value as they go on to state that they might use the mode in

further calculations if the mean varies significantly from
the mode.

To reduce students’ reasoning based on a single meas-
urement and better emphasize that uncertainty is not the
result of mistakes, we suggest that instructors focus on
explaining why collecting more data is better (rather than
simply stating that more data is better or instituting
minimum requirements for data collection without proper
explanation) in order to help students become more
proficient in this area.

3. AO D5: Determine if two measurements (with
uncertainty) agree with each other

This AO was previously examined in prior work [51],
which is expanded upon here with a more complete dataset
and using only matched pre-post responses. It is probed by
two isomorphic items that are shown in Fig. 6. The first
asks students whether their measurement agrees with other
groups’ measurements using a numeric representation
(NRI) while the second asks students the same question
using a pictorial representation (PRI).

While students generally perform poorly on both of these
items, they tend to perform better on the pictorial version
despite the items being identical in content. The post-test
mean for AO D5 is 0.357 £ 0.008, the lowest score of all
AOs. Of the 1576 post-test responses to these items, 354
students (23 4= 2%) answered both items correctly, while
103 students (7 &= 1%) correctly answered only the NRI,
315 students (20 = 2%) correctly answered only the PRI,
and 804 students (51 4+ 3%) answered both items incor-
rectly. Further, this AO shows some improvement from
pretest to post-test, but this improvement was small (effect
size d = 0.17 £ 0.04, pretest mean = 0.290 &£ 0.009).

Figure 7 shows a heat map of the 905 most common
student responses on the post-test for both the NRI and the
PRI. One might expect responses to occur only along the
diagonal, indicating students who selected the same answer
combination for both the NRI and the PRI, but this is not
the case. Instead, students frequently select different
answers to these items, indicating a need for further
instruction in measurement comparison. Of the 1576 total
responses, only 433, or about 27% of students, selected the
same answer combination for these items (whether a
correct or incorrect combination).

During interviews, we frequently found that students
who correctly answered the numeric version of the item
discussed a mental pictorial version despite not yet
encountering the PRI on SPRUCE. For example, one
student said,

I just looked at the values and saw it—Ilike I kind
of picture if they have that little bar with their
error bars to see if they overlap.
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NRI Using your values for the mass and period (and uncer-
tainties), you use the formula:

4m>m
T2

to calculate your spring constant and uncertainty, and you
get the following value:

k= 3.62§ + 0.11E
m m

Several other lab groups took different approaches to cal-
culating the spring constant. Their values (with estimated
uncertainty) are shown below. Select all of these values you
believe agree with your measured value.
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PRI You decide to compare your group’s estimate of
Mhreaking with six other groups by sketching your results
(gray circles) next to their results (blue triangles) on six dif-
ferent graphs, shown below. The error bars in the graphs
represent the uncertainty in the measurements. Select all
graphs that depict agreement between your data and data
from other groups in your class.
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FIG. 6. Two isomorphic items on SPRUCE. These items probe
student understanding of measurement comparisons with uncer-
tainty by presenting the same data in two different representations
—a numerically represented item (NRI) and a pictorially repre-
sented item (PRI). The students first encounter the NRI and then,
after answering several unrelated items, they encounter the PRI in
a different experimental context. Responses of “ABCD” and
“ABCDF” receive full credit, while no other combinations
receive any credit. Note that the answer options on the PRI
are in a different order when presented to students (DAEBFCG)
than shown here; we present them in the same order as the answer
options for the NRI in this paper for ease of understanding.

This ability in being able to switch between different
representations aided this student in correctly answering
the numerically presented item; they also were able to
correctly answer the pictorially presented item.
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FIG. 7. Heat map showing the most common 905 of the total

1576 post-test responses to the NRI and PRI. Both ABCD and
ABCDF are accepted as correct responses. Responses along the
diagonal indicate students who selected the same answer combi-
nation for both the NRI and the PRI, while off-diagonal elements
indicate students who selected different answer combinations for
these two items.

Students often provided incorrect reasoning for one item
and not the other. For example, one student selected all
answer options (aside from “None of these agree with my
data”) on the NRI, and said,

Honestly I would just say all of them... that’s still
at the end of the day what they got... We don’t
have enough data to say like ‘no yours are all
wrong because they don’t exactly match ours’
because there are a lot of factors that could have
altered their numbers and their uncertainty. I
know that’s a very idealized way of thinking
about science.

This student is unwilling to say that any of the measure-
ments disagree because all students are performing the
same experiment. However, this student provided expert-
like reasoning regarding the overlap of the full range of
each measurement when correctly answering the PRI,
showing a clear difference in thinking about measurement
comparison between the two representations.

One common line of incorrect reasoning was students
implicitly valuing their own measurements more than
others’. For example, one student who selected only
“AB” on the numeric item said,

For the other four groups... their values did not
put them in the same range as my value with its
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uncertainty so I don’t believe they agree with my
value.

When comparing numeric measurements with uncertainty,
they placed more weight on their own measurement; in
order for measurements to agree, the other group’s meas-
urement had to be encompassed by their own error bars.
When solving this problem, they only added and subtracted
their uncertainty from their own value and then selected the
two answers whose means fell within that range; they
ignored the uncertainties in the measurements in the answer
options. However, when answering the PRI, this same
student selected a correct response of “ABCD” and
provided expertlike reasoning. Thus, their reasoning
changed with representation.

Prior research into students’ handling of different rep-
resentations of the same problem [52-56] shows that
representation is very important in student proficiency at
problem solving in all areas of physics, not just in
measurement uncertainty. Because many scientific papers
present results numerically with uncertainties, being able to
compare numeric results between papers is a vital skill for
students to learn in experimental physics courses, and we
encourage instructors to help students learn to switch
between different representations to bolster this skill.
Further, instruction emphasizing that students should not
prioritize their own measurements over others could again
help students become more proficient in this area.

V. SUMMARY AND FUTURE RESEARCH

We have presented an overview of student proficiency in
measurement uncertainty, including the impact of instruc-
tion and the correlation of students’ gender and major with
their performance on SPRUCE. We find that instruction
does tend to lead to better scores on SPRUCE, both overall
and at the individual AO level, though these effects vary
between AOs. At the overall score level, we find students’
scores improved from 46.7(4) on the pretest to 52.3(5) on
the post-test, showing a statistically significant improve-
ment and evidence of learning during one term of a lab
course. Of the ten AOs, nine show improvement as well,
and we find these increases to be statistically significant.
Students improve most on AO H1 [propagate uncertainty],
showing an increase from pretest to post-test of about 10%.
Students improve the least on AO D2 [distribution of
results], with an increase of about 3.2%. Students do worse
on AO D3 [calculate mean] by about 2.6% on the post-test
than on the pretest due to ceiling effects.

Further, we find that instructors rating specific areas as
important do not correlate with student post-test scores
(aside from one case in which this correlation is inverse).
Overall, students excel at reporting the mean as a final
answer and struggle with comparing measurements with

uncertainties, propagating uncertainties using formulas,
and correct use of significant figures. We also find that
gender is a statistically significant but weak predictor of
student performance on SPRUCE. Additionally, it is only
correlated with performance on three of the ten AOs on
SPRUCE. Altogether, these results about gender show a
promising step toward improving issues associated with
gender bias in physics courses and assessments.

Further, from student interview data and the analysis of
outcomes on SPRUCE, we present several suggestions for
instructors. First, because students struggle with under-
standing why collecting more than one data point is
important, we suggest that instructors emphasize this rather
than providing minimum requirements without justifica-
tion. Next, instructors should note that teaching students
both numeric and pictorial representation methods of
comparing measurements with uncertainty, as well as
teaching students how to switch between these representa-
tions provides students the best tools to properly analyze
data. This has been shown in prior research and is apparent
from our analysis of identical questions with different
representations in SPRUCE. Additionally, instruction on
comparing measurements with uncertainty could help
bolster students’ skills in this area, because even after a
semester of instruction, students struggle with this concept.
Finally, because students sometimes struggle with identi-
fying the precision of a measurement in relation to the
instrument used to make that measurement, instructors
should be deliberate in their treatment of this topic. This
includes using various types of the same instrument with
different measurement markings (e.g., rulers with different
scales) to show that the specific instrument precision is
important rather than treating each type of instrument as
being the same. Instruction about digital instrument uncer-
tainty is important, as often students have more confidence
in digital scales than the measurement uncertainty would
suggest.

In the future, as more SPRUCE data are collected, we
plan to perform further analyses about student proficiency
in measurement uncertainty. With more data, we can
perform more advanced statistical analyses such as a cluster
analysis to identify groups of similarly thinking students
within the data [57]. Further, we hope to be able to perform
ordinal logistic regression and ANCOVA to examine the
correlation between race or ethnicity and student perfor-
mance (an analysis not presented in this paper due to not
having enough data from non-white students), as well as
including gender minorities in future iterations of this
work. We also aim to update the analysis of gender and
major correlations with SPRUCE scores presented within
this paper.

Additionally, future papers will investigate specific AOs
further. For example, we are investigating student ideas
surrounding accuracy and precision, as related to AOs S2
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and S3 specifically. In addition to items related to accuracy
and precision, students are presented with an initial ques-
tion with four stereotypical bulls-eye targets and are asked
to select which image depicts high precision and low
accuracy. From this, we can correlate student performance
on other items about accuracy and precision to see whether
students understand the difference between these concepts
at least in the bulls-eye representation.

In addition to helping to collect more data for these
studies, instructors and researchers who are interested in
using SPRUCE in their teaching and/or research can visit
the SPRUCE website at [58] for more information about
how to use it in their own classes and studies.

In conclusion, we have presented initial data from
SPRUCE along with plans for future data collection and
research studies, as well as concrete suggestions for
instructors based on statistical analysis of SPRUCE results
and student reasoning elements gathered from interviews.
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APPENDIX A: ANCOVA ASSUMPTIONS
AND ADHERENCE

Hahs-Vaughn and Lomax discuss several assumptions
[47] for ANCOVA. We provide evidence of our data
meeting the following assumptions:
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covariate.
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7. Measure of covariate without error.
8. Homogeneity of regression slopes.

First, ANCOVA requires independence of observations
—that is, that observations are independent of one another
both within and across samples. However, no dataset
collected from students will ever be truly adherent to this
requirement in the strictest sense [49]. We are, of course,
introducing a sampling bias by testing only students in
physics courses. Further, since our data tend to be domi-
nated by large R1 institutions, students are more homo-
geneous than the general population would predict.
However, this will introduce only slight effects in our
results and is a general issue with any assessment analysis
in physics education research. The effects of this are small.
We can check this assumption more rigorously both by
examining plots of the residuals by group, as well as by
using the Durbin-Watson statistic to test for autocorrelation
[59-61].

Plots of the residuals are shown in Fig. 8. Because these
plots appear random with no correlations and data fairly
evenly distributed above and below the zero line, we
determine that we have independence of observation.
Additionally, we check the Durbin-Watson statistic for
autocorrelations, applied to the residuals of the ANCOVA
fit. This statistic falls between 0 and 4, with 2 representing
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Plots of the unstandardized residuals for the ANCOVA model. These show that our data conform to the independence of

observation assumption as they fall randomly above and below the horizontal line at zero.
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FIG. 9. Plot of the unstandardized residuals versus the fitted
model. This shows that our data conform to the homogeneity of
variance assumption. Shown as a solid blue line is the averaged
data, which indicates no significant discernible patterns and is
nearly perfectly aligned with the residuals = 0 line (black dashed
line), indicating normality and homogeneity of variance assump-
tions have been met.

uncorrelated data, O representing strongly positively corre-
lated data, and 4 representing strongly negatively correlated
data [59-61]. Our value of 2.04 is close to 2, thus, we can
state that our data follow the independence of observation
assumption.

The second assumption of ANCOVA is homogeneity of
variance. The variances of each population must be the
same (in our case, the variance of post-test scores among
the different majors and genders). This requirement is also
known as homoscedasticity. To test for this, we examine the
plot of unstandardized residuals versus the fitted model. A
random display of points without patterns suggests that
both this assumption and that of normality (discussed
below) are met. We find that our data do conform to this,
as shown in Fig. 9. If our data did not meet the assumption,
we would expect to see a “fanning out” of data points (i.e.,
clustered along y = 0 on the left and broadening out in the
y dimension toward the right) in this plot.

Third, ANCOVA requires the residuals be normally
distributed. ANCOVA is relatively robust to violations of
this assumption, so only severe deviations from normality
are cause for concern. Normality is tested via the
Anderson-Darling test [42,43], as well as determining
the skewness and kurtosis (the third and fourth moments
of the distribution) of the residuals. The Anderson-Darling
test indicates normality to a significance of 1.0%. Addi-
tionally, both the skewness (—0.12 +0.12) and kurtosis
(0.08 £0.13) were both near zero, an indication that
neither of these effects is dominant in the residuals
[50]. We further examine the plot of residuals versus
fitted values (Fig. 9) visually as a test of normality.
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FIG. 10. Q-Q plot. These data indicate normally distributed
residuals because the points adhere closely to the diagonal line;
too many points deviating from this diagonal would indicate that
the residuals are not normally distributed and may point to excess
outliers.

As there are no patterns in this plot (such as a parabolic
pattern), normality has been met. Finally, a visual inspec-
tion of the Q-Q plot (shown in Fig. 10) also indicates that
the residuals are normally distributed.

The fourth assumption of ANCOVA is overall linearity
of data; since ANCOVA is a linear regression, we require
that the regression of post-test score on pretest score is
linear. We test this by plotting post-test score versus pretest
score and fitting a line. We do not require a perfect line for
this assumption but rather that our data are linear enough,
meaning that it tends toward linear rather curvilinear or

g
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o
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0.0 1
0.0 0.2 0.4 0.6 0.8 1.0
Pretest Score
FIG. 11. Plot of post-test vs pretest overall scores (blue points)

with linear fits (red line). This plot shows good evidence of
linearity, therefore providing evidence that our data meet this
fourth assumption for ANCOVA to be applied.
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uncorrelated. A plot of post-test score vs pretest score is
shown in Fig. 11. We fit a line to these data and determine
R?> = 0.402. Visual analysis of our data shows that it
conforms to the assumption of linearity.

Next, we require that our independent variables are fixed
by the researcher; this simply means that we determine the
levels of the independent variable (i.e., the genders or
majors) rather than randomly assigning groups. No test
needs to be done to ensure our data adheres to this, due to
the design of the analysis.

The sixth assumption is that the covariate and indepen-
dent variables ideally would be independent from one
another. In practice, in assessments, this is not the case; it is
extremely common for the covariate and independent
variable(s) to share variance. For example, a student’s
major and their pretest score are inherently linked. We
accept that we must violate this assumption to some extent,
with the outcome being that all partial #> values that
describe the amount of variance explained by each of
the predictors must be considered a lower bound instead of
considered a particular value [62]. Thus, we might be
underestimating some of the variance explained by major or
gender when we report values from our ANCOVA analysis.

The next assumption is that the covariate (i.e., pretest
score) must also be measured without error. In terms of
assessment, this means that the assessment itself must be
proven to have reliability and validity. In previous work
[38], we have shown that SPRUCE has high reliability and
validity, and therefore this assumption is met.

Finally, ANCOVA requires homogeneity of regression
slopes. This means that we require no interaction between
the covariate and the independent variable; unequal slopes
would point to interactions that are being ignored. Another
way of stating this is that the interaction term between the
covariate (pretest) and the independent variable (major or
gender) must be statistically insignificant. We find that
these interaction terms are not statistically significant by
building these interaction terms into our model (separately)
and examining their significance via the F test (pretest:
gender, p = 0.726; pretest:major, p = 0.596). Thus, our
data conform to this assumption.

Based on testing of all of these assumptions, we have
shown that ANCOVA is an appropriate statistical model for
our data.

APPENDIX B: ORDINAL LOGISTIC
REGRESSION ASSUMPTIONS AND ADHERENCE

The assumptions required to perform for ordinal logistic
regression are [49,63]:
Independence of observations.
Noncollinearity of independent variables.
Independent variables are linear on the logit.
“Perfect” measurement.
Nonsparseness of data.

Al

First, logistic regression requires independence of obser-
vations. This means that observations are independent of
one another both within and across samples and also details
sampling biases. We note that the same issues exist within
this requirement as did for the same requirement in
ANCOVA: no dataset collected from students will ever
strictly adhere to this, but the effects are small, and this is a
general issue with any assessment analysis in PER.

Next, we require noncollinearity of independent varia-
bles in cases of multiple predictors. This means that we
require the pretest scores to be generally uncorrelated with
gender, major, and importance to some degree; they can be
slightly collinear without causing issues. In order to test
this, we generate an OLS model and examine the variance
inflation factor.

TABLE IX. Variance inflation factors for pretest with gender,
major, or importance. These results show that they are not
collinear, as all variance inflation factors are less than 10. We
do not have the data for importance of D4, so it is excluded here.

Variance inflation factor

S1 Gender 2.12
S1 Major 3.64
S1 Importance 3.14
S2 Gender 2.21
S2 Major 5.57
S2 Importance 5.63
S3 Gender 1.81
S3 Major 3.07
S3 Importance 2.94
H1 Gender 1.62
H1 Major 2.42
H1 Importance 233
H2 Gender 1.65
H2 Major 2.37
H2 Importance 2.30
D1 Gender 1.59
D1 Major 2.26
D1 Importance 2.31
D2 Gender 1.95
D2 Major 3.78
D2 Importance 4.00
D3 Gender 2.18
D3 Major 6.14
D3 Importance 8.64
D4 Gender 1.96
D4 Major 3.57
D4 Importance —
D5 Gender 1.33
D5 Major 1.59
D5 Importance 1.58
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In our case, this means that the pretest score cannot be
highly collinear with gender, major, or importance of the
AO. We determine our data meet this requirements by
performing an OLS regression and examining the variance
inflation factor (VIF) for each AO. VIF values greater than
10 indicate a violation [64]. VIF is defined as

1

VIF= —
1—-R?

(BI)

where R? is the usual coefficient of determination in an
OLS regression. Note that the inverse of VIF is tolerance,
which is also sometimes used to determine collinearity
(with thresholds, of course, being anything less than 0.1
indicating collinearity).

Our results show that our variance inflation factors are all
less than 10, meaning that pretest is not collinear with
major, gender, or importance, and therefore, we meet this
requirement. The variance inflation factors themselves are
presented in Table IX.

Further, in order to appropriately utilize logistic regres-
sion, our independent variables must be linear on the logit,
meaning that they must vary linearly with the logit of the
dependent variable. However, this assumption is only a
requirement for continuous predictors [64], and our model
for logistic regression does not have these. Therefore, this
assumption is not relevant for our data.

Additionally, logistic regression requires “perfect” meas-
urement. Typically, this means that we measure both our
independent and dependent variables without error. In
terms of assessment, this means that the assessment itself
must be proven to have reliability and validity. In previous
work [38], we have shown that SPRUCE has high

reliability and validity, and therefore this assumption is
met. Further, since students are self-reporting the demo-
graphics used in this analysis, we can assume that we
measure this without error as well.

Finally, we aim for the data to not be sparse—that is, we
aim to not have any full category cells that are empty (i.e.,
all categorical data intersections have at least one data
point). For example, we hope that our data include cases of
male physics majors at all possible scores on a particular
AO for pre- and post-test. In our case, we do have some
cells that are not populated. However, in these cases, the
effect is that the error on the coefficients is larger and
therefore underestimate the significance of some results;
because we are underestimating significance (rather than
overestimating), and because we cannot fix the issue of
sparseness without collecting more data, we allow this
condition to not be met with the caveat that in our logistic
regression models, we might, in some cases, underreport
significance.

Based on testing of all of these assumptions, we have
shown that logistic regression is an appropriate statistical
model for our data.

APPENDIX C: PREINSTRUCTION AND
POSTINSTRUCTION SCORE DISTRIBUTIONS
BY ASSESSMENT OBJECTIVE

In Fig. 12, we present the pretest and post-test distribu-
tions for all ten AOs on SPRUCE. Table I has information
regarding each of the AOs. Due to the scoring scheme used,
these AO scores can only be integers (see Table III) and
therefore, these distributions are not continuous.
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FIG. 12. Distribution of pretest (blue) and post-test (orange) scores for each assessment objective. These distributions are presented
after rounding but before normalizing scores to 1.
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