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Electric(e)-scooters have emerged as a popular, ubiquitous, and first/last-mile micromobility transportation option within 
and across many cities worldwide. With the increasing situation-awareness and on-board computational capability, such 
intelligent micromobility has become a critical means of understanding the rider’s interactions with other traffic constituents 
(called Rider-to-X Interactions, RXIs), such as pedestrians, cars, and other micromobility vehicles, as well as road environments, 
including curbs, road infrastructures, and traffic signs. How to interpret these complex, dynamic, and context-dependent 
RXIs, particularly for the rider-centric understandings across different data modalities — such as visual, behavioral, and 
textual data — is essential for enabling safer and more comfortable micromobility riding experience and the greater good of 
urban transportation networks.

Under a naturalistic riding setting (i.e., without any unnatural constraint on rider’s decision-making and maneuvering), 
we have designed, implemented, and evaluated a pilot Cross-modality E-scooter Naturalistic Riding Understanding System, 
namely CENRUS, from a human-centered AI perspective. We have conducted an extensive study with CENRUS in sensing, 
analyzing, and understanding the behavioral, visual, and textual annotation data of RXIs during naturalistic riding. We have 
also designed a novel, efficient, and usable disentanglement mechanism to conceptualize and understand the e-scooter 
naturalistic riding processes, and conducted extensive human-centered AI model studies. We have performed multiple 
downstream tasks enabled by the core model within CENRUS to derive the human-centered AI understandings and insights 
of complex RXIs, showcasing such downstream tasks as efficient information retrieval and scene understanding. CENRUS 
can serve as a foundational system for safe and easy-to-use micromobility rider assistance as well as accountable use of 
micromobility vehicles.
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1 Introduction
More than 100 years ago, when Mark Twain published the short essay “Taming the Bicycle” regarding his funny
experience of learning to ride a high-wheel bicycle in New England [49], no one would expect, a century later,
another micromobility system, represented by electric(e)-scooters, proliferates within and across many cities in
North America, Europe, and around the globe. Thanks to the ease of maneuverability and the reasonably fast
speed (e.g., 15mph), e-scooters, seemingly easy to be “tamed”, have emerged as an efficient, convenient, and
first/last-mile connectivity, serving as a usable and affordable alternative to many other urban mobility options
like private cars.
Despite the hype and proliferation of shared/private micromobility, particularly e-scooters [24, 64], in the

streets and neighborhoods, there remains an important but largely under-explored question: how does such a new
mobility mode serve as an interesting interface to elicit the essential but often subtle insights on the interactions
between the riders and other traffic participants — such as motorized vehicles, pedestrians, and other e-scooters
or bikes — and infrastructures and environments including stop signs, traffic lights, and road conditions. We call
such interactions Rider-to-X Interactions (RXIs). Fig. 1, assuming an accountable e-scooter rider, illustrates three
typical RXI scenes, i.e., the interactions of rider-to-car (other traffic constituents), rider-to-environment (road
infrastructures), and rider-to-pedestrian. The rider may decelerate when encountering a stop sign, or yield to the
pedestrians who are crossing the street.

Car

Rider-to-Car

Stop Sign

Rider-to-Environment Rider-to-Pedestrian

Pedestrian

Fig. 1. Example RXIs during a naturalistic riding setting: rider-to-car, environment, and pedestrian.

Understanding these RXIs is essential to the various stakeholders, such as e-scooter manufacturers, in designing
and manufacturing interactive micromobility systems, including their brakes and wheel suspension designs [71].
The insights of social-awareness can also benefit planning e-scooter sharing [23] and establishing necessary
policies [19]. In addition, the recent rise of the human-centered AI (HCAI) community [43, 45, 60] can develop and
deploy AI model designs and applications based on the RXI observations and needs of human riders. In particular,
the tangible or foreseeable benefits of understanding RXIs include (1) dissecting the e-scooter rider interactions
during, say, the commutes and recreational rides, through the behavioral analysis [64]; (2) incorporating the
human interpretation (say, rider feedback) toward semantic and interpretable RXI scene understandings for
developing advanced rider assistance [79], including safety and experience enhancement, and future autonomous
personal micromobility systems [61]; and (3) enabling various micromobility rider-centered applications [64],
such as rider behavior data analytics, insurance decisions, and accident cause analysis, as well as rider-to-car
interaction support (e.g., micromobility rider or driver intention prediction) [64].

For RXI understandings with usable and broad implications, we aim to develop a novel micromobility
Riding Understanding System (RUS) to interpret and understand the micromobility (e-scooters in particular)
rider’s maneuver behavior and the decision-making process via an HCAI design. Such an RUS will be based
on the naturalistic riding (NR) settings, i.e., observing and understanding the riders’ natural behaviors from
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the unconstrained riding scenarios such as commutes or recreational rides. We want to gain behavior and
decision insights from a rider-centered RUS pilot study, particularly on the typical RXIs when the e-scooter
riders encounter and engage with the traffic constituents like passing cars, environments like road conditions,
and incoming pedestrians.

Toward such an RUS, we have examined the existing studies and practices [40, 64, 65] to find a strong need for
carefully addressing three HCAI challenges as follows.
A. How to incorporate human intelligence to augment post-scene situation-awareness and subse-

quent understanding of RXI scenes: One may consider capturing the rider behaviors and the RXI scenes
through the behavioral sensors, such as inertial measurement units (IMUs) — accelerometer and gyroscope —
that capture the sequential patterns of human behaviors [64], and visual sensors (say, camera) including video
analysis [65]. However, these conventional sensing techniques [36, 59] or modalities, while largely providing
on-scene situation-awareness (OSSA), may not necessarily convey the causes and outcomes behind the scenes.
They may even lack the human-centered reasoning for the micromobility riders’ subtle interactions with the
objects in the RXI scenes, such as the implicit interactions of sign language and eye contacts between the riders
and pedestrians. Textual annotations provided by the human annotators (e.g., the self-reflection from riders
and notes by the observers), on the other hand, can often help incorporate the human intelligence, say, of
these annotators, in understanding and reasoning about the complex RXI scenes beyond the above-mentioned
OSSA. In other words, such a data modality provides further post-scene situation-awareness (PSSA), similar
to the human feedback for Berkeley Deep Drive-X [34] and Tesla Self-Driving [17, 25], but with more subtle
characterization of the interactions with various traffic participants encountered. A human textual annotation,
“the e-scooter rider decelerates as the pedestrian told her to do so”, for instance, can elicit insights on the subtle
interaction behaviors (e.g., the intentions expressed by the pedestrian) within an RXI scene. However, the textual
modality, unlike the behavioral and visual modalities, can often be complicated to model and integrate due
to its heterogeneous formats, structures, and representations. How to incorporate them to construct semantic
correspondences between OSSA and PSSA, i.e., meaningful and comprehensible connection across the RXI scenes
and modalities (semantic OSSA-PSSA interactions), is essential for practical RUS development. Such a study,
however, remains largely under-explored.
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Fig. 2. Our naturalistic riding setup including user interface (UI) and e-scooters, data, and the pre-trained foundation task
(PFT) and downstream tasks (DTs).

B. How to extract the semantic correspondences and characterize interactions across real-world
NR data modalities: Deriving human-understandable RXI insights hinges upon extracting the semantic corre-
spondences across the heterogeneous data modalities, i.e., visual, behavioral, and textual ones in our pilot study.
An RUS needs to differentiate and contrast the feature representations from these input modalities. One may
take into account the conventional representation learning [39, 64] in order to find the correlations of different
modalities. However, our extensive real-world NR data analytics have revealed that these correspondences can
be highly complex, dynamic, and contextually dependent. For instance, in the rider-to-environment interactions,
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a rider may either continue cruising given the clear road ahead or slow down given the unsatisfactory or poor
road conditions such as curbs or potholes. Modalities such as the behaviors (say, left or right turn) reflected from
the IMUs may further elicit the rider’s intention and decision in response to the road conditions in addition
to the visual observations. We also note that these conventional learning paradigms on human behavioral
activities [42, 69, 70] often seek to extract correlations of feature vectors that flatten the representations of
modalities. These, however, may overlook diverse, intricate, but potentially interesting interplays that prevail
among the visual cues, behavioral patterns, and textual annotations. How to further decompose, or disentangle
these complex modalities to dissect correlations that are crucial for useful RXI understanding is essential for a
practical RUS.

C. How to achieve generalizable and explainable NR learning to support diverse downstream tasks
with HCAI implications: The goal of an RUS is not only to dissect and learn the micromobility rider behaviors
in the complex RXIs, but also to enable RXI-aware downstream tasks that provide concrete, tangible, and compre-
hensible benefits for more rider-centered micromobility vehicles and systems. We note that different modalities,
like the above ones providing OSSA and PSSA, may provide complementary information for understanding the
RXI scenes when they are all available. In practice, however, the learned correspondences across these modalities
during the RUS initialization may not necessarily be transferable and generalizable to the downstream tasks
where some modalities may be excluded or unavailable. For instance, a downstream task of scene understanding,
such as explaining what happens in the scene, or recognizing the contexts [62, 82], often takes in only the visual
and behavioral data in order to derive the human-understandable interpretations. How to enable generalizable
HCAI modeling to capture and transfer semantic OSSA-PSSA interactions, without assuming the availability of
different modalities (e.g., sparse textual annotations), is essential and worth further exploration. Furthermore,
how to explain the HCAI modeling and output results is particularly beneficial to the stakeholders, such as
manufacturers, designers, and even policymakers. Conventional approaches [67, 86] usually derive correlations
across the input features and the output model results, without interpreting the latent interactions of learning
[41] with the physical aspects of the scenes.
To overcome the above-mentioned challenges, we propose CENRUS, a Cross-modality E-scooter Naturalistic

RidingUnderstanding System, to derive the HCAI insights and interactive riding behavior understandings for this
emerging micromobility mode, as illustrated in Fig. 2. In particular, this paper makes the following contributions
by designing, prototyping, and evaluating CENRUS:

(1) Pre-training a foundation model for graph-based semantic correspondences across RXI scenes
and the relevant modalities: To enable the learnability of the complex RXIs, we have devised a pre-trained
foundation task (PFT) for NR understandings, the first of its kind to our best knowledge, based on the RXI
graph representation to initiate and characterize the semantic correspondences across the visual, behavioral,
and textual modalities. We have devised a hierarchical RXI graph representation learning architecture for such a
PFT and the resulting HCAI model. In particular, our novel RXI graph provides a unified representation that
consists of modality nodes, and our PFT helps (i) construct the RXI graph edges characterizing the semantic
correspondences across the heterogeneous RXI scenes and modalities of OSSA and PSSA; and (ii) provide global
scene contrasting and local concept disentanglement operations upon the RXI graph to enable an effective
understanding mechanism of RXI scenes from OSSA and PSSA.

(2) Augmenting semantics and disentangling concepts in the RXI understandings: To strengthen
the feature representability of complex RXIs, we have designed a semantic augmentation (SA) mechanism,
which introduces both the positive and negative views of different modalities for our hierarchical representation
learning on the RXI graphs. In particular, for each of visual, behavioral, and textual modalities we provide the
augmentation for positive views (i.e., feature groups respectively representing the modalities) that semantically
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correlate with the original ones inside the RXI graphs. Such augmentation includes rephrasing textual annotations
without changing its meaning. We have also introduced the negative views that contradict the original views,
such as altering the derived turns extracted from the IMU time-series in the behavioral modalities. This way,
CENRUS can differentiate the complex semantic OSSA-PSSA interactions across the different modalities given the
counterexamples, thus enabling more effective concept disentanglement and RXI understandings.

(3) Designing rider-centered downstream tasks for model generalization, result explanation, and
ubiquitous application: We have also designed several downstream tasks (DTs) as the concrete and practical
applications of CENRUS, such as behavior-, video-, and text-aware tasks [16, 27, 62], and corroborated the
effectiveness, accuracy, and generalizability compared with other baseline models [9, 13, 29, 47, 52, 58, 68, 70].
This is crucial for leveraging RXIs with generalizable applications in complex urban mobility environments, and
potentially helping various stakeholders (such as the e-scooter manufacturers) understand, re-imagine, and
re-design the various aspects of new micromobility vehicles, and comprehend the HCAI results.

We have conducted extensive studies of DTs and expanded the usability and real-world implications in
understanding the complex RXI scenes for potential stakeholders (e.g., micromobility sharing providers [24]). To
validate CENRUS, we have conducted extensive experimental NR studies (>11GB raw data with >2.9k RXI scenes
and nearly 5.5k maneuver records), the first study to our best knowledge, on a university campus and town
(urban environments) in North America. Our results have shown CENRUS, as an HCAI building block, to provide
usable and practical insights on micromobility rider behaviors and system designs.

2 Related Work

2.1 Understanding Micromobility Systems
Understanding the operation of the micromobility systems in general and e-scooters in particular, as well as how
they interact with the urban traffic environments is essential for re-thinking about their multi-level impacts on
urban mobility network [21, 45, 71]. In terms of the macro-level interactions between the micromobility systems
and their operating environments, the work in [24] studied the social interactions between the micromobility
resource (e.g., e-scooter vehicles) distributions and the urban traffic environments as well as various socioeconomic
attributes. The authors of [23] analyzed the dynamic micromobility vehicle redistribution and the flow prediction.
On the other hand, prior studies have explored micro-level interactions of the micromobility systems with, for
instance, other traffic participants (e.g., through hand-signals [4]), road conditions (e.g., roughness detected from
motion sensor data [32, 43]), and pedestrians in the shared public spaces [2].

While the prior studies often focused on singling out the specific interactions (e.g., maneuvers) between
the rider and the urban mobility environment, they have not carefully taken into account (a) the holistic and
rider-centered study of the complex RXI scenes and the corresponding representation learning insights; and
(b) the incorporation of the human intelligence (say, textual modality) for reasoning about and understanding
the RXI scenes, and semantically bridging OSSA and PSSA. Our development of CENRUS can pave a new way
of establishing a pre-trained foundation model [30] to gain holistic and semantic insights into interactions
between humans and mobility systems, and those with the urban mobility network [65, 88]. CENRUS can serve as
a foundational building block in supporting the above-mentioned multi-level micromobility usage studies [54]
and management operations such as e-scooter sharing [1].

2.2 Understanding Mobility System Users
Understanding how the users interact with their mobility systems, including the micromobility vehicles [22,
64], has attracted attention from the industry and academia [16, 22, 40, 43, 44]. For instance, mobility system
maneuvering and decision-making processes can be identified through video recording [33], IMU [64], and
other multi-modality mechanisms [34, 65]. Interactions between the users and the micromobility systems can be
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captured through the audio-vision integration as well as further context fusion (say, the traffic conditions) [65]. In
addition to sensing modalities, various learning paradigms, including meta learning [67], federated learning [67],
unsupervised learning [11], and the emerging generative learning approaches [28], have been explored for
behavioral insights into mobility system usage. However, how to fuse the heterogeneous modalities for in-
depth characterization of the riders’ behaviors and decisions in taming the micromobility vehicles remains
under-explored.
Despite these prior studies in understanding users’ interactions with mobility systems, how to design the

HCAI models for micromobility, and generalize the learning models to a variety of rider-centered DTs [30, 47],
need in-depth exploration. Our proposed system, CENRUS, through the lens of micromobility (e-scooter) vehicles,
can help elicit insights within and across the complex RXI scenes. We note that our studies on the users of
micromobility systems differs from those on the autonomous driving scenarios (such as Tesla [17, 25] and
Berkeley Deep Drive-X [34]), since the former users group is often less constrained by the driveways and hence
more diverse interactions with a much broader spectrum of traffic constituents can be observed. On the other
hand, the micromobility vehicles, such as e-scooters, tend to have more diverse choices (as well as human
preferences in picking the routes and path conditions) in operation in the various mobility environments other
than the roads (e.g., share of roads, bike lanes, kicked along the crosswalk). Furthermore, our proposed PFT also
provides a new paradigm to effectively capture the semantic OSSA-PSSA interactions through the RXI graph
representation, hence improving the learnability and generalizability across tasks such as behavior recognition
and scene understanding.

3 Overview of CENRUS

3.1 Overview of System

Textual Modality

Behavioral Modality 

Pre-trained Foundation 
Task (PFT) 

NR Data Preparation
Object Detection & 
Depth Estimation
(Dense Prediction

Transformer)

Time Series
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& Segmentation
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Padding in 

Annotations

Downstream
 Tasks (DTs) 

Behavior-
Aware Tasks
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Text-Aware 
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RXI Graph Construction
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PS
SA

Disentangling Concepts

Fig. 3. System overview of CENRUS, which consists of a pre-trained foundation task (PFT) and downstream tasks (DTs).

Fig. 3 shows the overall system architecture of CENRUS that consists of two sets of tasks: a pre-trained foundation
task (PFT) and downstream tasks (DTs). Given the processed NR data (including cleaning and filtering) of the
heterogeneous modalities — i.e., visual and behavioral ones for OSSA, and textual ones for PSSA — the PFT
first performs the semantic augmentation (SA) to generate positive and negative views beyond the original
ones, which, respectively, preserve or contradict the key characteristics of the input data (§4.1). CENRUS then
encodes the NR data, and transforms their resulting embeddings into a RXI graph representation, where each
node represents the original, positive, and negative views and their edges represent the semantic OSSA-PSSA
interactions (§4.2). CENRUS further conducts the hierarchical RXI graph representation learning in order to jointly
perform the global scene contrasting and local concept disentanglement operations. The resulting RXI graph
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representations and the model from our PFT are then exported to support various DTs for micromobility systems,
including behavior-, video-, and text-aware tasks (§5).
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Fig. 4. Visualization of an RXI scene with the textual modality given as “the rider slows down while turning as it notices a
pedestrian crossing”.

3.2 Collection of Naturalistic Riding (NR) Data
In this prototype study, we have recruited a total of 18 participants (13 males and 5 females of ages 20–35
and heights 4’11"–5’11") for the NR data collection in our university town and campus environments (urban
environments as showcased in Fig. 1) with diverse RXI scenes. Despite our current focuses on system and model
prototyping, we will expand the participant studies in the future. Recall that Fig. 2 illustrates our experimental
setup in which the participants used either GoTrax GXL V2 or iSinwheel i9 Pro e-scooter for collecting the NR
data. During the NR data collection, we mount the smartphone (iOS: iPhone 13 Pro, 13 Mini, SE 2022, and 7 Plus;
Android: Google Pixel 3 and Xiaomi Redmi Note 8) upon the handlebar of the e-scooter, and collect the NR and
RXI scene data in visual and behavioral modalities, i.e., the back-view (main) camera video recordings regarding
the visual scenes and road conditions, as well as the IMU measurements (accelerometer and gyroscope in our
case) based on our NR data collection app. Note that all the participants, as accountable riders, followed the
local regulations and riding ethics, such as wearing a scooter helmet, avoiding rush hours and sidewalks with
pedestrian crowds, and observing stop signs, throughout the NR data collection (reviewed and approved by our
university Internal Review Board (IRB); with sensitive information like human faces or license plates blurred).

We have collected a total of 11.7GB e-scooter NR trips, resulting in a total of 2,965 RXI scenes (each lasts
about 5s). Fig. 4 illustrates an example RXI scene. We have identified 515 key RXI scenes that contain riders’

Straight

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

LT

DC

AC

SC

RT

(c) Transition Probabilities 
Car Road Pedestrian

(a) RXI Scene Type

0

50

100

150

200

250

N
um

be
r o

f R
XI

 S
ce

ne
s

119
143

253

LT RT AC DC SC
(b) Maneuver Class

0
250
500
750

1000
1250
1500
1750
2000

N
um

be
r o

f M
an

eu
ve

rs

1336
1178

695
381

1970
Straight

Fig. 5. Statistics of (a) key RXI scenes involving interactions with cars, road environment, or the pedestrians and (b)
maneuvers in our NR data collection; and (c) transition probabilities across maneuvers where warmer colors or wider arrows
indicate a higher transition probability from one maneuver to another.

interactions with exterior stimuli, i.e., cars, environments, and pedestrians (showcased in Fig. 5(a)), plus the
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rest driven by the riders’ internal decisions when interacting with her/his scooter (e.g., straight cruising given
the clear way). As for cars, we have considered and labeled the RXI scenes (#) with passing (61), parked (20), or
incoming cars (38). As for environments (road and infrastructures), we have accounted for stop signs (77), speed
humps (51), and potholes (15). Regarding those with pedestrians, we have included the ones with incoming (182),
passing (51), and grouped pedestrians (15), and the avoidance of individuals/crowds (5).

In terms of maneuvers that characterize the riders’ direct interactions with the scooter and the physical world,
we have considered left turn (LT), right turn (RT), acceleration (AC), deceleration (DC), and straight cruising (SC).
We have identified a total of 5,560 rider maneuver behaviors (such as left/right turns) within all the identified
RXI scenes (detailed statistics can be referred to Fig. 5(b)).

Note that the scene/maneuver distributions result from our participants’ naturalistic riding (i.e., not purposely
controlled or balanced) process may elicit the natural picture of daily encounters (particularly in a college town
or urban environment with more pedestrians; expansion to other city environments will be considered in our
future work). The chord chart in Fig. 5(c) further illustrates the relative frequencies of different maneuvers (sizes
of the sectors) as well as transition probabilities across them (coded in colors), and shows that the deceleration
is often accompanied by cruising and turning actions for the mobility and environment transitions of the riders.

3.3 Preparation of Modalities
Modalities for CENRUS are prepared as follows.

3.3.1 OSSA — Visual ModalityV: In preparing the visual modality, we focus on two key aspects — object detection
and depth estimation — regarding the OSSA of the RXI scenes. Fig. 6 shows the pipeline of our visual modality
processing. Our key idea is to determine the objects of interest (OoIs), i.e., other traffic participants (such as cars

Object Detection

Object: Car

Center: (39,111)

Video FrameVisual Modality Depth Estimation

Depth: 0.17
0.0
0.2
0.4
0.6
0.8
1.0

Fig. 6. Illustration of object detection and depth estimation pipeline in CENRUS.

and buses), traffic environments (such as road infrastructures), and pedestrians, involved in the RXI scenes for
subsequent scene learning, reasoning, and understanding based on their relative closeness to the rider (ego spot).
In particular, similar to the practices of existing auto-piloting systems [46] for computation efficiency [26, 34],
we down-sample the video frame rate of 60Hz and size of 480 × 640 (width × height; our smartphone is mounted
vertically to capture the front horizon) into 1Hz and 90 × 160, respectively, for ease of processing and later
encoding. Our pilot studies leverage the YOLOv5 object detector [55, 72] to identify the type of OoIs and extract
the position of the OoIs relative to each frame (the center coordinate of the bounding box returned from YOLOv5;
in pixels from the bottom left of the video frame).

For each OoI detected, we further take into account the Dense Prediction Transformer (DPT) [53] for extracting
its depth within the frame. In particular, given the center of the objects, we consider the depth of the object’s
center point in the depth map estimated by DPT as the depth of each OoI. In addition, we normalize the DPT
depth output into the range of [0,1], where a value closer to 1 indicates a shorter distance to the ego entity (rider).
We select the 𝐾 closest OoIs (empirically 𝐾 = 5 in our current studies) from each frame. As the relative distances
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between the riders and different OoIs are dynamically changing over time, the 𝐾 nearest OoIs as well as their
relative order may vary across frames.

We focus on the following types of OoIs: pedestrians, motorized vehicles (cars, motorcycles, buses, and trucks),
bicycles, stop signs, parking meters, and traffic lights. We also account for a special class for the frames with no
significant OoI involved. These all sum up to a total of 10 classes of OoIs. We illustrate an example of the object
detection and depth estimation for a video frame in Fig. 6. The resulting visual modality data V, which is a series
of video frames, consists of the detected object classes (one-hot encoding out of the 10 classes [18]), position
coordinates (say, a coordinate of (39, 111) that is relative to the bottom left and normalized by the respective
frame width and height) related to each frame, as well as their respective depth (say, 0.17; the gray-scale depth
map contains the silhouette of the car).

3.3.2 OSSA—BehavioralModalityB: To characterize the behavioralmodality, we focus on the IMUmeasurements
from the accelerometer and gyroscope of the on-board smartphones, which amount to a total of 6 IMU time
series (𝑥 , 𝑦, and 𝑧 axes for each sensor). In preparing the behavioral modality data as another OSSA, we transform
all the axes of time-series from the smartphone coordinate system to the earth coordinate system [64] through
the rotation matrices provided by the Apple iOS or Android APIs [6]. We divide each time-series (with 40Hz
re-sampling frequency from the raw time-series; smoothed through the moving average [64]) into segments
using a sliding window (empirically set as 5s to accommodate the RXI scenes) with no overlap, and we normalize
the time series to the range of [-1, 1].

3.3.3 PSSA — Textual Modality T: To incorporate human intelligence within interpretation of RXIs (human
reasoning and understanding) for PSSA, we have performed the textual annotations upon the scenes, emulating
the scenarios for the rider feedback and the observer notes. For instance, an annotation can be “the rider slows
down as noticing a pedestrian”, which consists of the scene description (i.e., “the rider slows down”) and the scene
reasoning (i.e., “as noticing a pedestrian”). In practice, the object detector (like YOLOv5) might not be able to
well recognize a pedestrian (say, if only her/his legs were filmed), while the textual annotation further helps
provide such subtle information regarding the RXI scene interpretation. Given the RXI scene annotations, we first
convert each sentence to a list of small units called tokens [78, 81]. Such a tokenization process eases our textual
modality encoding [65, 88]. Furthermore, we pad the tokens of each textual annotation based on a predefined
token PAD [10, 65] as a placeholder. This way, the total token numbers in all textual annotations are equal,
and each of the resulting tokens consists of a total of 𝐿 dimensions (𝐿 = 40 in our current study in order to
accommodate the maximum numbers of tokens in our NR data).

4 Pre-trained Foundation Task (PFT)
Fig. 7 illustrates the flow of our PFT, which consists of three major phases: (i) semantic augmentation (SA); (ii)
RXI graph construction (with intra-modality encoding); and (iii) hierarchical RXI graph representation learning
for disentangling the NR understandings.

4.1 Augmenting Semantics
Given the complex, originally unstructured, and highly dynamic NR data, the key idea of our semantic augmen-
tation (SA) is to create positive and negative views of the original visual, behavioral, and textual modalities to
strengthen the PFT learnability [74, 80, 84]. In particular, the positive SA maintains the key characteristics, such
as the contextual, temporal, and sequential dependencies across the riders’ decision-making process relevant to
the RXI scenes inside the original data. On the other hand, the negative SA provides the views contradicting
the original RXI scenes. This way, our PFT can further experience various views to strengthen its ability of
interpreting the RXI scenes.
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4.1.1 Visual Modality SA: For the objects of interest (OoIs), such as cars and traffic lights, detected from the
frames, we alter the depth of different objects to generate positive and negative views. Our pilot study focuses on
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Fig. 8. Examples of the semantic augmentation (SA) upon the accelerometer sensor measurements to create positive and
negative views of the behavioral modality by adding Gaussian noise or flipping the sign of the measurements, respectively.

the depth since the closeness of OoIs reflects the longitudinal awareness (say, risk assessment) of the ego rider
regarding the RXI scenes [50]. For the positive SA, the resulting views, denoted as VDP(+) , generally preserve the
relative closeness with the added uniform noise (say, [−0.1, 0.1]) upon the depth of the OoIs, while for the negative
SA, CENRUS contradicts the semantics of the RXI scenes by reversing the relative closeness of important OoIs to
the rider. For instance, if a pedestrian is detected close to the rider (e.g., with a normalized depth value above
0.5), our negative augmentation alters the depth inside the frame, and generates VDP(−) where the pedestrian is
considered far away from the ego spot (rider) with the depth value reversed.

4.1.2 Behavioral Modality SA: CENRUS imposes the Gaussian noise (with zero mean and standard deviation
of each original IMU time-series of accelerometer and gyroscope) upon each of the 6-axis IMU time-series
independently to obtain the positive view, denoted as BGN(+) , that preserves the overall behavioral characteristics.
On the other hand, for the negative view, denoted as BF(−) , we provide the counterpart of the IMU time-series
by flipping the signs of the measurements from each of the six axes. This is motivated by our experimental
observations on the symmetry that prevails across the rider’s behavior counterparts (e.g., between LTs and
RTs; ACs and DCs). Our behavioral modality SA helps introduce the contrasting semantics for PFT, such as
contradicting the scenes when the ego rider steers the scooter to the left to avoid an incoming car from the right.
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This also complements, via a horizontal (pitch axis) scope [50], the change of depth (longitudinal axis) in our
visual modality SA.

4.1.3 Textual Modality SA: As each textual annotation consists of both scene description and scene justification,
we perform SA to jointly account for both, and incorporate the human intelligence when reasoning in original
and reverse views. As for positive SA, we replace the scene description or the scene justification parts of the
textual annotations with semantically or contextually similar texts, and obtain TD(+) and TJ(+) , respectively. We
specifically design a rule-based approach which searches within the training data (the original ones only) and
leverages the other similar annotations (with most of the shared tokenized words) to replace either the scene
description or the scene justification. For instance, given “the rider is slowing down as she notices a pedestrian”,
we can generate two possible positive views — that is, “the rider is reducing its speed, as s/he notices a pedestrian”,
and “the rider is slowing down as a pedestrian is crossing the street”. For the negative SA, we leverage the
antonyms of the rider maneuvers in order to provide counterparts of the scene description and justification
denoted by TD(−) and TJ(−) , respectively. For instance, the annotation of “the rider turns left to avoid a group of
pedestrians blocking the way” can be converted to “the rider turns right to avoid a group of pedestrians blocking
the way”.

4.2 Encoding RXI Graphs

4.2.1 Intra-Modality Encoding: We have designed three sets of encoding mechanisms to prepare for the RXI
graph representation learning. We note that despite the current pilot studies CENRUS is also general enough to
be extended to alternative encoding mechanisms, including other pre-trained language-image and time-series
models [30]. The three sets of mechanisms are presented as follows.
(a) Regarding the visual modality, CENRUS feeds the augmented V — that is, OoIs, coordinates, and depths —

through a multi-layered long short-termmemory (LSTM) [18] mechanism (𝐿1 layers with 𝐵1 hidden units) followed
by dense or fully-connected (FC) [18] layers (𝐿2 layers with 𝐵2 hidden units) and generate the subsequent visual
embeddings. The resulting visual embeddings are denoted as Ṽ for the original view and ṼDP(+) and ṼDP(−) for
the augmented views.

(b) CENRUS processes the augmentedB through 𝐿3 consecutive transformer encoders [75], eachwith𝐵3 attention
heads for attention score calculation. CENRUS also finds the average of the interim behavioral embeddings from
the transformers along the time dimension (say, corresponding to the temporal time-series samples within a
5s window) and generates the behavioral embeddings via 𝐿4 FC layers (with 𝐵2 hidden units). The resulting
behavioral embeddings are denoted as B̃ for the original view and B̃GN(+) and B̃F(−) for the augmented views.
(c) For the augmented T, CENRUS takes in the tokens of the human textual annotation and processes them

through a contrastive language-image pre-training (CLIP) encoder [52] as an initialized association phase between
the visual and textual modalities to generate the textual embeddings. are denoted as T̃ ∈ R𝐵2 for the original
view as well as TD(+) /TJ(+) (descriptions) and TD(−) /TJ(−) (justifications) for the augmented views. We note that
the pre-trained CLIP encoder [47, 52] only resides upon the conventional visual and textual tasks, while the PFT
in CENRUS aims to provide understandings that are more generalizable to the RXI scenes in NR data beyond these
pre-trained models.

4.2.2 RXI Graph Initialization: Based on the resulting visual, behavioral, and textual embeddings, we further
initialize the RXI graph, as illustrated in Fig. 7, for each of the above-mentioned different RXI scenes. These
graphs will be fine-grained further by our hierarchical RXI graph representation learning. For instance, given an
RXI scene with the textual annotation “the rider is turning left to avoid a pedestrian”, the resulting RXI graph
consists of the nodes of modalities relevant to this particular scene, which represents the visual embeddings of the
frames showing the riders’ interaction with the encountered pedestrians. In addition, the behavioral embeddings
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incorporate the behavioral patterns as well as sequential dependencies within the RXI scene. Such a graph
contains the nodes, represented by the respective modality embeddings, that are semantically corresponding
to each other through their weighted edges. On the other hand, CENRUS enforces no edges across the graphs
that represent different RXI scenes (say, one related to rider-to-pedestrian interactions, and the other related to
rider-to-environment interactions). The thus-constructed RXI graphs are then further fed through the operations
of the global scene contrasting and local concept disentanglement to update and retrieve the semantic OSSA–PSSA
interactions.

4.3 Disentangling Understandings

4.3.1 Global Scene Contrasting Operation: As illustrated in Fig. 9(i), we first perform the global scene contrasting
operation to enable knowledge transfer across the complex RXI scenes and derive more rider-centered and gener-
alizable RXI understandings for DTs. This operation involves actions of attracting and repelling, i.e., associating
the RXI graphs that represent the same RXI scenes; and differentiating those RXI graphs that represent the
different RXI scenes and refining the RXI graphs.

In particular, CENRUS first processes the given RXI graph through a graph attention (denoted as GAT [76]) layer
to update the node embeddings output from the intra-modality encoders (§4.2). Then, for each node in the given
RXI graph, let {S1, . . . , S𝑍 } be the 𝑍 RXI graphs, where S𝑖 = {e(𝑖,1) , . . . , e(𝑖,𝐶𝑖 ) } represents the𝐶𝑖 node embeddings
in an RXI graph S𝑖 . For the learning operation, we define the Global Scene Contrasting Loss (GSCL) for node
e(𝑖, 𝑗 ) , denoted as ℓ(𝑖, 𝑗 ) , i.e.,

ℓ(𝑖, 𝑗 ) = − log
(
𝐴

𝐴 + 𝑅

)
, (1)

where 𝐴 and 𝑅 are, respectively, the sums of exponential similarities across (a) the RXI graphs that belong to
the same RXI scenes and are to be attracted toward each other, and (b) the RXI graphs that correspond to those
different RXI scenes and are to be repelled from each other.
Formally, the GSCL with respect to the RXI graphs 𝑖 and 𝑗 is given by

𝐴 ≜
𝐶𝑖∑︁
𝑚=1

exp
( sim (

e(𝑖, 𝑗 ) , e(𝑖,𝑚)
)

𝜏global

)
, and 𝑅 ≜

𝑍∑︁
𝑝≠𝑖

𝐶𝑝∑︁
𝑚=1

exp

(
sim

(
e(𝑖, 𝑗 ) , e(𝑝,𝑚)

)
𝜏global

)
, (2)

where sim(·, ·) is the cosine similarity function given two input embeddings and 𝜏 represents the temperature
parameter [8, 56]. We note that smaller 𝜏 encourages the optimizer of CENRUS to focus on the negative pairs of
RXI graph nodes that are hard to distinguish. The total GSCL for all RXI scenes is then given by the sum of ℓ(𝑖, 𝑗 )
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for resulting nodes within all the 𝐾 RXI graphs, i.e.,

Lglobal =

𝐾∑︁
𝑖=1

𝐶𝑖∑︁
𝑗=1

ℓ(𝑖, 𝑗 ) . (3)

Note that the node embeddings result from the GAT and refinements of the node embeddings update the adjacency
matrices of the RXI graphs. This way, CENRUS learns and captures the latent semantic OSSA–PSSA interactions
across the different RXI scenes.

4.3.2 Local Concept Disentanglement Operation: Even with the scene contrasting, the modalities within each
graph of an RXI scene may still contain highly coupled correspondences across each other, making it hard for
CENRUS to discriminate the different latent factors within the heterogeneous input modalities. Instead of providing
a single representation that flattens all the modalities involved, we have designed the local, independent, and
latent concepts that capture the underlying factors responsible for the input modalities [31, 77]. For instance, the
disentangled concepts can represent the relative importance of the underlying factors within the RXI scenes.
This way, CENRUS provides comprehensive characterization of the local structures, and we will derive HCAI
conceptualization and self-explanation in characterizing the diverse RXI scenes.
As shown in Fig. 9(ii), CENRUS projects the embeddings of each of the three modalities into 𝐾 concepts, each

of which has dimension 𝐵2
𝐾
. This is through a total of 3 × 𝐾 independent FC layers (each with 𝐵2

𝐾
hidden units)

and obtains
{
V1, . . . ,V𝐾

}
,
{
B1, . . . ,B𝐾

}
, and

{
T1, . . . ,T𝐾

}
. The subsequent concept disentanglement operation

differentiates the latent interactions across different modalities, and identifies their relative importance. We take
the 𝑖-th concept of the visual modality, denoted as V𝑖 , as an example, and leave out other modalities in the interest
of limited space available. CENRUS randomly initializes a set of concept mask weightsW = [𝑊1, . . . ,𝑊𝐾 ] ∈ R𝐾 ,
where each element is regularized within the range of [0, 1] via a Tanh activation followed by ReLU. A high𝑊𝑖

indicates more importance of the concept 𝑖 . This way, CENRUS can dynamically determine the number of concepts
extracted from the NR data. The concept disentanglement operation for each modality aims to minimize

ℓV𝑖
= −𝑊𝑖 · log

(
𝐴V𝑖

𝐴V𝑖
+ 𝐷V𝑖

)
, (4)

where 𝐴V𝑖
is the similarity of the visual embeddings V𝑖 with respect to (w.r.t.) the 𝑖-th behavioral embedding B𝑖

and textual embedding T𝑖 in the same concept 𝑖 , i.e.,

𝐴V𝑖
≜ exp

©­­«
sim

(
V𝑖 ,B𝑖

)
𝜏local

ª®®¬ + exp
©­­«
sim

(
V𝑖 ,T𝑖

)
𝜏local

ª®®¬ . (5)

𝐷V𝑖
represents the similarity of V𝑖 w.r.t. the other visual concepts, i.e.,

𝐷V𝑖
≜

𝐾∑︁
𝑚≠𝑖

exp
©­­«
sim

(
V𝑖 ,V𝑚

)
𝜏local

ª®®¬ , (6)

where 𝜏local represents its temperature parameter. In summary, this operation jointly (a) determines the number
of the concepts that can be extracted from the NR data (some𝑊𝑖 ’s are close to 0); (b) aligns the visual, textual,
and behavioral embeddings relevant to the same concept; and (c) differentiates the resulting concepts via𝑊𝑖 ’s.

Similar to the global scene contrasting operation, this operation will further update the node embeddings and
result in refined RXI graphs (characterized by their adjacency matrices) in terms of their semantic OSSA-PSSA
interactions through GAT. We can similarly calculate ℓB𝑖

and ℓT𝑖 losses, which makes the total local concept
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Fig. 10. Illustration of a learned RXI graph (i.e., weighted edges of the graph and its corresponding adjacency matrix) for an
instance of rider-to-pedestrian interaction. Warmer colors indicate the higher edge weights and stronger semantic correspondences.

disentanglement loss (LCDL) as

Llocal =

𝐾∑︁
𝑖=1

(
ℓV𝑖

+ ℓB𝑖
+ ℓT𝑖

)
. (7)

The final training objective of CENRUS is, therefore, to jointly minimize the weighted sum of GSCL and LCDL, i.e.,
L = 𝜆global · Lglobal + 𝜆local · Llocal, (8)

where 𝜆global and 𝜆local are the hyperparameters determining their relative importance.
Fig. 10 illustrates an example of the learned RXI graph and the corresponding adjacency matrix for an RXI

scene. We can observe that CENRUS has learned strong semantic OSSA-PSSA interactions (warmer colors) among
the positive and the original nodes, while the cold colors indicate weak ones between a positive/original node
and a negative one (say, the textual modality belonging to a different RXI scene).

5 Downstream Tasks (DTs)
The usability of CENRUS resides beyond the PFT that learns the semantic OSSA-PSSA interactions. Using the
globally-contrasted scene dependencies and locally-disentangled concepts, we have further designed multiple
usable DTs to enable concrete rider-centered AI applications. The usability of our PFT in CENRUS is corroborated
through the following DTs: (i) behavior-aware task (BAT), such as the maneuver recognition (B → B) [5]; (ii)
vision-aware task (VAT), such as video information retrieval (T or B → V) [7]; and (iii) text-aware task (TAT),
such as annotation classification (T + V + B → T) and context recognition (V + B → T).

5.1 Behavior-Aware Tasks (BATs)
Given the behavioral modality data (IMU time-series), BAT or B → B aims to identify five maneuver classes: left
turn (LT), right turn (RT), acceleration (AC), deceleration (DC) or braking, and straight cruising (SC). Note that
many of today’s e-scooters have cruise control (CC) functionality, and when the rider presses the CC button, the
e-scooter maintains a certain speed (say, 15mph) in the straight cruising. Despite the seemingly simplicity of
BAT, our DT is to classify the multiple labels instead of one per RXI scene, since multiple maneuvers may be
captured within each scene. When the pre-trained foundation task is done, we leverage the behavioral encoder
(see §4.2) and fine-tune with the IMU time-series as the input and maneuver classes as the output. To evaluate
BAT, we compare the maneuver classification performance with (w/) and without (w/o) our PFT, emulating the
scenarios for real-world applications such as rider activity recognition.
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5.2 Vision-Aware Tasks (VATs)
Given the textual or behavioral data, this downstream task (T or B → V) aims to retrieve the closest visual
frames from the NR data. Specifically, given the textual or behavioral embeddings encoded by CENRUS as the
query, as well as all the 𝑁 visual modality data (embeddings) as the database, CENRUS finds the cosine similarity
for every pair of textual/behavioral and visual embeddings, and then returns the visual data (frames) with the
highest similarity [20]. VATs can emulate the application scenarios regarding rider NR data management of RUS,
such as retrieval of the RXI scenes for managing e-scooter sharing [40], accident analysis, and insurance rate
determination [63].

5.3 Text-Aware Tasks (TATs)
Given the PFT model, one TAT, annotation classification or T + V + B → T [65], is to fine-tune the visual,
behavioral, and textual encoders (§3.3) to identify the following RXI scenes from the textual annotations (e.g.,
recognizing the category of a certain portion in the sentence): (1) rider maneuvering status, such as left/right
turns; (2) traffic environment status, including annotations related to clear way or heavy traffic; (3) interacting
with cars, such as steering to the right side of the lane to yield the road to a following car; (4) interacting with
pedestrians, like slowing down when a pedestrian is crossing the street; and (5) interacting with the traffic
environments including stop signs and speed bumps. Given each token, this TAT outputs the labels regarding
whether the tokens inside the textual annotations relate to any of the above five categories or not. For instance,
given the textual annotation “the rider slows down as he notices a pedestrian crossing the street”, the textual
annotation identifies the concept belonging to the concept of (1) rider maneuvering status from the tokens of
“The rider slows down”, and another one related to (4) interacting with pedestrians from the tokens of “he notices
a pedestrian crossing the street”. This task then assigns the labels (1) and (4) to the corresponding texts within
the textual annotation.

Another TAT, context recognition or V + B → T [48], is to take in only the visual and behavioral modalities
and classify the contexts of interacting with (1) pedestrian(s); (2) other vehicles (e.g., cars, scooters); (3) road
environment (e.g., stop signs); and (4) no important or meaningful interactions. The TAT of context recognition
(V + B → T) needs to capture the correspondences between the RXI scenes and the implicit semantics, thus
creating more challenges than the TAT of annotation classification (T + V + B → T).

These two TATs represent our core initiatives of understanding the RXI scenes, and can enable other im-
portant socially-aware applications, such as the rider assistance systems [79] and explainable autonomous
micromobility [66].

6 Experimentation
6.1 Evaluation Settings
6.1.1 Baseline Approaches: To corroborate the PFT model within CENRUS for the concrete DTs such as BAT,
VAT, and TAT, we have implemented and compared CENRUS with the following state-of-the-art and baseline
approaches. In particular, our comparative evaluation includes:

• IMU2CLIP [47]: contrastive learning on visual, behavioral, and textual data;
• CLIP [52]: which focuses on extracting similar representations for visual and textual data;
• SSIMU [70]: focusing on extracting similar representations for visual and behavioral data;
• ALIGN [29]: using EfficientNet [68] and BERT [13] as the visual and textual encoders;
• BLIP [38]: which utilizes noisy data for more generalizable representation learning on visual and behavioral
data;

• AltCLIP [9]: adapted from CLIP and augmented with bidirectional attention mechanism;
• FLAVA [58]: with the visual and textual fusion architecture;

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 129. Publication date: September 2024.



129:16 • Tabatabaie et al.

• LIMU [83]: which applies the BERT [13] mechanism on behavioral data;
• TS2Vec [85]: with contrastive learning on behaviors; and
• TFC [87]: focusing on time-frequency consistency on behaviors.

6.1.2 Default Parameter Settings: The IMU sampling frequencies of our iOS and Android devices are empirically
set to 40Hz and 240Hz, respectively. To get the moving average for smoothing IMU time-series, we adopt a
sliding window of 1.25s. We use 80% of the NR data for model training and validation, and the rest for evaluation.
Furthermore, we perform PFT for 300 epochs with a learning rate of 1e-4 and 𝜆global = 𝜆local = 1. Besides, we
evaluate and empirically set the temperature values 𝜏global and 𝜏local as 1e-2. For intra-modality encoding, we use
𝐿1 = 1 LSTM layer with 𝐵1 = 32 to process the visual modality data. For B, we use 𝐿3 = 1 transformer layers [75]
with 𝐵3 = 4 attention heads. For all the modalities, we use 𝐵2 = 1 FC layer with 𝐿2 = 𝐿4 = 512 hidden units and a
LeakyReLU activation function to generate their embeddings [18]. When applying the PFT model for the DTs
(BAT, VAT, and TAT), we freeze the PFT model and introduce the output embeddings as the input for the neural
networks (see §5) operating the DTs.

6.1.3 DT Settings and Evaluation Metrics: As for the BAT, we adopt the same PFT architecture to process B.
We provide the baseline approaches with the modality inputs indicated in their original designs to pre-train
the models. We fine-tune each pre-trained model with a total of 1e+3 epochs with a learning rate lr=1e-3 and a
batch size of 32. As for VAT, we follow the settings as in §5 to search for and return the nearest embeddings.
As for annotation classification (TAT), we introduce an additional classification head that has a total of three
FC layers to merge the output embeddings of all the encoding models to predict the tokens’ categories within
the textual annotations. The first two layers of the classification head comprise 64 hidden units and the ReLU
activation function, while the last one has a total of 40 units (versus the number of the tokens) and the Sigmoid
function. We train the resulting TAT model for 1e+3 epochs with lr=1e-2. For context recognition TAT, we use a
similar classification head and train with lr=1e-5 with early stopping. In addition, CENRUS converts the probability
outputs of the textual tokens into 1s if the probability from the Sigmoid function output is greater than a certain
value (empirically evaluated and set as 0.6). We use the Adam optimizer [18] and 20% Dropout rates for all the
foundational models and the DTs (based on PyTorch 2.0.1).

All baselines are evaluated on a deep learning server with 4×NVIDIA RTX3090 24GB GDDR5, 1×AMD
Ryzen Threadripper 3960X 24-Core 48-Thread CPU, and 128GB RAM. Model pre-training, forward passing for
embedding generation, RXI graph initialization, and SA take 70.17ms, 41.66ms, 0.01ms, and 0.02ms, respectively,
on average per RXI scene. We note that once CENRUS is pre-trained and fine-tuned, various DTs can be efficiently
executed based on the pre-trained model. Further efficiency enhancement (such as network pruning for resource-
contrained embedded devices) will be considered in our future study [57].

We measure the benefits of CENRUS’s PFT through the performance of various DTs. For our BAT and TATs, F1
score [20] is used to evaluate the performance of CENRUS and other baseline approaches in terms of classifying
the maneuvering behaviors and human-mobility interaction status, respectively. For VATs, we find the percentage
of times when the retrieved visual embeddings match the true ones is among the top-1 (denoted as R@1), top-10
(R@10), or top-50 (R@50) records (in the descending order based on cosine similarity). We also find the mean
reciprocal rank (MMR) for VATs as

MMR =

(
1
𝑄

𝑄∑︁
𝑖=1

1
𝑟𝑖

)
× 100, (9)

where 𝑄 is the total number of queries and 𝑟𝑖 is the rank of the most relevant embeddings in the sorted list. In
other words, a small 𝑟𝑖 implies high MMR and accurate information retrieval.
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6.2 Observations and Results

IMU2CLIP
SSIMU

TFC
Naive

LIMU
TS2Vec

CENRUS

Fig. 11. Performance of the BAT: B → B.

6.2.1 Overall Performance: As for BAT, we showcase the performance of CENRUS and other baselines in Fig. 11.
Our evaluation further includes the BAT without CENRUS’s PFT model — traditional practices of behavior
learning [64] — denoted as “Naive”. CENRUS, IMU2CLIP, SSIMU, LIMU, TS2Vec, and TFC, and Naive are shown to
achieve 98.41%, 83.09%, 63.31%, 83.09%, 81.31%, 59.41%, and 70.19%, respectively. One can observe that Naive
cannot identify such maneuvers as DC due to its misclassification of other patterns within the maneuvers of
SC and AC. Note that the baselines such as SSIMU, IMU2CLIP, and LIMU may not capture the heterogeneous
and cross-modality patterns, thus failing to achieve generalizability in our BAT. Other baselines such as CLIP,
BLIP, ALIGN, AltCLIP, and FLAVA focus on vision-language model learning, and may not adapt themselves to
the complex semantic correspondences across heterogeneous modalities in the NR settings. As a result, they
are removed from the showcasing in Fig. 11. In contrast to the baselines, CENRUS disentangles the RXI scene
understandings by differentiating RXI scenes and concepts, and also achieves the generalizability (25.01% higher
F1 on average) for BAT. We also note that our CENRUS achieves generalizable behavior recognition particularly
with our unbalanced RXI scenes and unconstrained maneuvers in our NR dataset (Figs. 5(a) and 5(b)).

ALIGN
BLIP
AtlCLIP
FLAVA

CENRUS
IMU2CLIP
SSIMU

Fig. 12. Performance of the VAT (video retrievals given tex-
tual inputs): T → V.

CENRUS
IMU2CLIP
SSIMU

Fig. 13. Performance of the VAT (video retrievals given the
behavioral inputs): B → V.

ALIGN
BLIP
AtlCLIP
FLAVA

CENRUS
IMU2CLIP
SSIMU

Naive

Fig. 14. Performance of the TAT in terms of annotation classifica-
tion: T,V,B → T.

CENRUS
IMU2CLIP
SSIMU
ALIGN
BLIP
AtlCLIP
FLAVA

TFC
Naive

LIMU
TS2Vec

Fig. 15. Performance of the TAT in terms of context
recognition: B,V → T.

As for VAT, Figs. 12 and 13 show the evaluation results of CENRUS and other baselines. Regarding the video
retrieval task given T (T → V) in Fig. 12, we can observe at best 27%, 9.23%, 44.57%, and 69.98% in terms of MMR,
R@1, R@10, and R@50 (from most to least difficult) for the baselines, while CENRUS achieves much better overall
performance (54.15% on average) than the baselines. For the video retrieval task given B (B → V) in Fig. 13,
the baselines achieve, at best, 28%, 6.05%, 43.62%, and 68.21% in terms of MMR, R@1, R@10, and R@50, while
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CENRUS achieves 42.95% better, on average, in each metric than the baselines. CLIP, BLIP, ALIGN, AltCLIP, and
FLAVA are excluded due to failing to adapt to behavioral data (time-series).

As for TAT, Figs. 14 and 15 illustrate the overall performance of CENRUS in annotation classification (T+V+B →
T) and context recognition (V + B → T), respectively. CENRUS is found to outperform the baselines (including
IMU2CLIP and SSIMU dedicated to B) by 13.38% on average, demonstrating its important generalizability toward
DTs in processing the complex behavioral modalities for the text-aware learning. Furthermore, in terms of the
context recognition within Fig. 15, CENRUS is shown to be able to make overall 19.71% improvements on average
over the baselines in understanding (classifying) the correct contexts in the RXI scenes. One may leverage such a
PFT outcome to enable future context-aware advanced rider assistance systems [64] (e.g., enhancing rider safety
given recognized contexts and assessed risks) or RXI scene interpretation for causal analysis of micromobility
accidents [43].

6.2.2 PFT Ablation Studies: We have considered the BAT as an instance to perform the model ablation studies
upon the components within the PFT in Fig. 16(a). Experimentation on other DTs is left out due to space

(a) (b) (c) (d) (e)

AsphaltConcrete

Red BricksSidewalk

Fig. 16. (a) Performance results of CENRUS’s ablation studies; (b)–(d) Impacts of different riders, devices, and road conditions
on CENRUS’s performance; (e) Showcased different road conditions and IMU placements.

limitation. Specifically, we have compared the complete CENRUS (labeled as (1)) with respect to variations
(removal of a certain design component) of: (2) w/o SA; (3) w/o the global scene contrasting; (4) w/o the local
concept disentanglement; and (5) w/o the RXI graphs.

The performance drop (12.80%) of (2) compared to (1) corroborates the importance of SA in expanding the
PFT’s learnability upon the complex RXI scenes. We also note the performance degradation of 7.77% or 7.52% for
removal of either (3) global scene contrasting or (4) local concept disentanglement. Both operations are essential
for differentiating the RXI scenes and modalities within the NR data. In addition, the 17.74% reduction without
the RXI graph representations demonstrates the importance of our representation learning in constructing the
semantic interactions.

6.2.3 Sensitivity Studies: Despite an unconstrained and naturalistic setting, we have also examined the impacts
of individual differences (18 riders; leave-one-out), smartphones plus an on-board IMU sensor, as well as road
surface conditions (sidewalk, red bricks, concrete, and asphalt) in Figs. 16(b), 16(c), and 16(d). Fig. 16(b) shows
CENRUS to achieve in general high accuracy across the involved participants. In Fig. 16(c), regarding different
smartphone/sensor types, we let a rider use iPhone 13 Plus, 7 Plus, SE 2022, Xiaomi Note 8, and an on-board 9DOF
IMU TDK MPU9250 [12] as a reference (labeled as (1)—(5)). From the three studies, we have observed overall
minor standard deviations (4.53, 2.13, and 2.47) in terms of F1 scores, demonstrating the overall generalizability
of our PFT in adapting to complex NR data. Such a result also implies the usability of CENRUS for ubiquitous and
rider-centered applications, such as adapting to various riders’ NR preferences and collection settings [3].
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As illustrated in Figs. 16(d) and (e), we have also empirically studied various placement locations of MPU9250
IMUupon the e-scooter, i.e., handlebar, pillar, board, and rear end, and observed that CENRUS achieves 99.64%±0.31%
F1 score for BAT, on average, across different IMU sensor placement positions. Such generalizability of CENRUS
provides implications of integrating CENRUS with on-board IMU sensors for ubiquitous e-scooter sharing systems
or autonomous micromobility vehicles for last-mile delivery and elderly people. Further generalizability can be
achieved through various measures, such as meta or transfer learning [67], and lifelong learning [51], which are
left as our future work.

6.2.4 Visualization and Interpretation: In order to further close the loop between the interior model learning and
the exterior physical-world interpretation, we have included Fig. 17 to provide insights on CENRUS’s disentan-
glement of understandings from the human NR data. In particular, we have conducted the model explanation
studies upon the RXI scenes of (a) rider-to-car (954 samples), (b) rider-to-pedestrian (128 samples), and (c) rider-
to-environment (63 samples). We first show in the columns (i) and (ii) with the 2-D t-SNE projection [73] of visual,
behavioral, and textual embeddings before and after the PFT. We can observe, in terms of feature representation
(embeddings) level [18], our CENRUS aligns the previously-scattered heterogeneous modalities (green: textual; blue:
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Fig. 17. Disentangled understandings from three RXI scenes in terms of (i) projected embeddings before PFT; (ii) projected
embeddings after PFT; (iii) learned adjacency matrices of the RXI graphs; and (iv) feature distributions of the learned concepts.

behavioral; red: visual) for each of the RXI scenes (a scene is represented by three dots of different modalities) in
the projected space. This demonstrates CENRUS’s learnability, thanks to the hierarchical RXI graph representation
learning, in disentangling the understanding of the complex NR data by grouping modalities towards RXI scenes.
We also include examples of learned RXI graph adjacency matrices in column (iii), visualizing the semantic

OSSA-PSSA interactions learned. In column (iv), we demonstrate the top three concepts (the highest weights in
W) learned within the local concept disentanglement operation. As for each RXI scene category, we project each
embedding of the top three concepts (1 to 3) disentangled through t-SNE [73], and find the angle distributions of
the resulting 2-D vectors in an angular histogram (15 bins in total; larger radius means more vectors grouped).
We have found for each type of RXI scene, i.e., rider-to-car, to-pedestrian, and to-infrastructure, the average
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angles (unit: rad) of vectors representing the top three concepts as [0.803, 0.909, 0.884], [2.139, 0.051, 0.920], and
[0.576, 1.279, 0.030] (we note that the majority of some concepts like 3 in (c) is barely below zero with a few
positive angles). These are differentiated, disentangled, and vectorized based on our current NR data. That is,
our PFT derives disentangled understandings for differentiating the RXI scenes, and characterizes (fingerprints)
the three types of RXI scenes via the important concepts, and hence can provide semantic correspondences and
support various DTs.

7 Deployment Discussion

7.1 NR Data Collection Ethics and Privacy
While in our NR studies, all the participants, as accountable riders, followed the local regulations and riding
ethics throughout the studies, we also notice the needs of reducing conflicts and micromobility-related accidents,
as well as the imperatives for the stakeholders in regulating the riding behaviors [3]. Our NR data collection
studies for CENRUS and the potential integration with the existing micromobility infrastructures will benefit the
manufacturers, city planners, sharing service providers (e.g., the e-scooter sharing), and other stakeholders (say,
insurance companies) in (a) promoting safer and more accountable riding behaviors and (b) improving vehicle
interfaces with the riders for enhanced riding experience and informed decision-making. Furthermore, despite
the current focuses on the ubiquitous and human-centered AI studies, in future we will also consider data security
and privacy-preserving measures (including privacy-preserving federated learning [14, 15]).

7.2 System Optimization and Integration
Given the rise of ubiquitous computing and Internet of Things (IoTs), contemporary micromobility vehicles are
capable of providing situational awareness, performing computation and communication with the central server
(in the context of micromobility sharing) or the riders’ smartphones. One may envision that future micromobility
systems will become smarter, and many of them will be equipped with the better battery and motor designs to
power all these sensors and computing capabilities. We envision that the potential increase of the IoT costs, as
well as power consumption, will be outweighed by the tangible benefits in enhancing the safety, efficiency, and
fun in the future micromobility systems. Also, there exist various efforts (lowered frame rates and IMU sampling
rates) and techniques [35, 37] to reduce computationally-intensive model training upon the resource-constrained
embedded devices. CENRUS can be easily extended to include the computation and battery optimization and
integration of low-power sensing and computing modules [35, 37]. However, they are orthogonal to the scope of
this paper and will be part of our our future work.

7.3 Broader Experimental Studies:
CENRUS is general enough to be extended to broader NR data collection settings. We have observed CENRUS to
achieve overall generalizable performance across various settings (e.g., riders, sensor installation positions, road
conditions). Our current experimental studies in a college town environment, which resembles the urban settings
and already involves a diverse set of common RXI scenes. Since varying the test environments (say, more cities
and towns), cultural contexts (e.g., different neighborhoods), and traffic conditions will be subject to further
compliance reviews relevant to local transportation regulations [3], we will expand these studies in our future
work.

8 Conclusion
We have designed CENRUS, a novel cross-modality e-scooter naturalistic riding understanding system for HCAI
insights on the rider-to-X interactions (RXIs). We have designed a novel PFT based on hierarchical RXI graph
representation learning to characterize the semantic OSSA-PSSA interactions across the RXI scenes for various
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DTs with awareness of behavioral, visual, and textual modalities. We have conducted extensive e-scooter NR
experimental studies, and corroborated the effectiveness of CENRUS in disentangling NR understandings, and its
potential of hailing for and supporting future human-centered micromobility systems.

ACKNOWLEDGMENT
We would like to thank the editors and the anonymous reviewers for their constructive comments. We would like
to thank all the participants for their assistance in collecting the naturalistic riding data. This project is supported,
in part, by the National Science Foundation (NSF) under Grant No. 2239897 and 2245223, Google Research Scholar
Program Award (2021–2022), and NVIDIA Applied Research Accelerator Program Award (2021–2022). We would
like to thank Connecticut Transportation Institute (CTI) for their support of our research projects. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of the funding agencies.

References
[1] Rusul L Abduljabbar, Sohani Liyanage, and Hussein Dia. 2021. The role of micro-mobility in shaping sustainable cities: A systematic

literature review. Transportation Research Part D: Transport and Environment (2021).
[2] Alsaleh, Rushdi and Hussein, Mohamed and Sayed, Tarek. 2020. Microscopic behavioural analysis of cyclist and pedestrian interactions

in shared spaces. Canadian Journal of Civil Engineering (2020).
[3] Cynthia Bennett, Emily Ackerman, Bonnie Fan, Jeffrey Bigham, Patrick Carrington, and Sarah Fox. 2021. Accessibility and the crowded

sidewalk: Micromobility’s impact on public space. In Proc. ACM DIS. 365–380.
[4] Brunner, Pascal and Löcken, Andreas and Denk, Florian and Kates, Ronald and Huber, Werner. 2020. Analysis of experimental data on

dynamics and behavior of e-scooter riders and applications to the impact of automated driving functions on urban road safety. In IEEE
IVS.

[5] German Castignani, Thierry Derrmann, Raphaël Frank, and Thomas Engel. 2017. Smartphone-based adaptive driving maneuver
detection: A large-scale evaluation study. IEEE T-ITS (2017).

[6] Dongyao Chen, Kyong-Tak Cho, Sihui Han, Zhizhuo Jin, and Kang G. Shin. 2015. Invisible Sensing of Vehicle Steering with Smartphones.
In Proc. ACM MobiSys. 1–13.

[7] Shizhe Chen, Yida Zhao, Qin Jin, and Qi Wu. 2020. Fine-grained video-text retrieval with hierarchical graph reasoning. In Proc. IEEE/CVF
CVPR.

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A simple framework for contrastive learning of visual
representations. In Proc. ICML. PMLR, 1597–1607.

[9] Zhongzhi Chen, Guang Liu, Bo-Wen Zhang, Fulong Ye, Qinghong Yang, and Ledell Wu. 2022. AltCLIP: Altering the language encoder in
CLIP for extended language capabilities. arXiv preprint arXiv:2211.06679 (2022).

[10] Sanghyun Choo and Wonjoon Kim. 2023. A study on the evaluation of tokenizer performance in natural language processing. Applied
Artificial Intelligence 37, 1 (2023), 2175112.

[11] Sook-Ling Chua, Stephen Marsland, and Hans Guesgen. 2011. Unsupervised learning of human behaviours. In Proc. AAAI, Vol. 25.
319–324.

[12] TDK Corporation. 2023. 9DOF Motion Sensor TDKMPU9250. https://store.rakwireless.com/products/9dof-motion-sensor-tdk-mpu9250-
rak1905.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint arXiv:1810.04805 (2018).

[14] Fatima Elhattab, Sara Bouchenak, and Cédric Boscher. 2024. PASTEL: Privacy-Preserving Federated Learning in Edge Computing. Proc.
ACM IMWUT 7, 4 (2024), 1–29.

[15] Jie Feng, Can Rong, Funing Sun, Diansheng Guo, and Yong Li. 2020. PMF: A privacy-preserving human mobility prediction framework
via federated learning. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 4, 1 (2020), 1–21.

[16] Christina MR Garman, Steven G Como, Ian C Campbell, Jeffrey Wishart, Kevin O’Brien, and Scott McLean. 2020. Micro-mobility vehicle
dynamics and rider kinematics during electric scooter riding. Technical Report. SAE Technical Paper.

[17] Samineh C Gillmore and Nathan L Tenhundfeld. 2020. The good, the bad, and the ugly: Evaluating Tesla’s human factors in the wild
west of self-driving cars. In Proc. the Human Factors and Ergonomics Society Annual Meeting, Vol. 64. SAGE Publications Sage CA: Los
Angeles, CA, 67–71.

[18] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep Learning. MIT press.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 129. Publication date: September 2024.

https://store.rakwireless.com/products/9dof-motion-sensor-tdk-mpu9250-rak1905
https://store.rakwireless.com/products/9dof-motion-sensor-tdk-mpu9250-rak1905


129:22 • Tabatabaie et al.

[19] Stefan Gössling. 2020. Integrating e-scooters in urban transportation: Problems, policies, and the prospect of system change. Transporta-
tion Research Part D: Transport and Environment (2020).

[20] Jiawei Han, Jian Pei, and Hanghang Tong. 2022. Data Mining: Concepts and Techniques. Morgan kaufmann.
[21] Zengyi Han, Xuefu Dong, Yuuki Nishiyama, and Kaoru Sezaki. 2023. HeadSense: Visual Search Monitoring and Distracted Behavior

Detection for Bicycle Riders. In Proc. IEEE WoWMoM. IEEE.
[22] Zengyi Han, Liqiang Xu, Xuefu Dong, Yuuki Nishiyama, and Kaoru Sezaki. 2023. HeadMon: Head Dynamics Enabled Riding Maneuver

Prediction. In Proc. IEEE PerCom. 22–31.
[23] Suining He and Kang G. Shin. 2020. Dynamic Flow Distribution Prediction for Urban Dockless E-Scooter Sharing Reconfiguration. In

Proc. WWW. 133–143.
[24] Suining He and Kang G Shin. 2022. Socially-Equitable Interactive Graph Information Fusion-based Prediction for Urban Dockless

E-Scooter Sharing. In Proc. WWW. 3269–3279.
[25] Will Douglas Heavenarchive. 2023. This driverless car company is using chatbots to make its vehicles smarter. https://www.

technologyreview.com/2023/09/14/1079458/this-driverless-car-company-is-using-chatbots-to-make-its-vehicles-smarter/.
[26] Gim Hee Lee, Friedrich Faundorfer, and Marc Pollefeys. 2013. Motion estimation for self-driving cars with a generalized camera. In Proc.

IEEE/CVR CVPR. 2746–2753.
[27] Peng Hu, Liangli Zhen, Dezhong Peng, and Pei Liu. 2019. Scalable deep multimodal learning for cross-modal retrieval. In Proc. ACM

SIGIR. 635–644.
[28] Boris Ivanovic, Edward Schmerling, Karen Leung, and Marco Pavone. 2018. Generative modeling of multimodal multi-human behavior.

In Proc. IEEE/RSJ IROS. IEEE, 3088–3095.
[29] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom Duerig. 2021.

Scaling up visual and vision-language representation learning with noisy text supervision. In Proc. ICML. PMLR.
[30] Ming Jin, Qingsong Wen, Yuxuan Liang, Chaoli Zhang, Siqiao Xue, Xue Wang, James Zhang, Yi Wang, Haifeng Chen, Xiaoli Li, et al.

2023. Large Models for Time Series and Spatio-Temporal Data: A Survey and Outlook. arXiv preprint arXiv:2310.10196 (2023).
[31] Peng Jin, Hao Li, Zesen Cheng, Jinfa Huang, Zhennan Wang, Li Yuan, Chang Liu, and Jie Chen. 2023. Text-Video Retrieval with

Disentangled Conceptualization and Set-to-Set Alignment. Proc. IJCAI (2023), arXiv–2305.
[32] Eunji Kim, Hanyoung Ryu, Hyunji Oh, and Namwoo Kang. 2022. Safety monitoring system of personal mobility driving using deep

learning. Journal of Computational Design and Engineering 9, 4 (2022).
[33] Jinkyu Kim and John Canny. 2017. Interpretable learning for self-driving cars by visualizing causal attention. In Proc. IEEE ICCV.

2942–2950.
[34] Jinkyu Kim, Anna Rohrbach, Trevor Darrell, John Canny, and Zeynep Akata. 2018. Textual explanations for self-driving vehicles. In

Proc. ECCV. 563–578.
[35] Jaejun Ko, Jongwon Lee, and Young-June Choi. 2017. Computation offloading for energy efficiency of smart devices. In Proc. ACM

UbiComp. 109–112.
[36] Pantelis Kopelias, Elissavet Demiridi, Konstantinos Vogiatzis, Alexandros Skabardonis, and Vassiliki Zafiropoulou. 2020. Connected &

autonomous vehicles–Environmental impacts–A review. Science of the Total Environment (2020).
[37] Seulki Lee, Bashima Islam, Yubo Luo, and Shahriar Nirjon. 2019. Intermittent learning: On-device machine learning on intermittently

powered system. Proc. ACM IMWUT 3, 4 (2019), 1–30.
[38] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. 2022. BLIP: Bootstrapping language-image pre-training for unified vision-language

understanding and generation. In Proc. ICML. PMLR.
[39] Sheng Li and Handong Zhao. 2021. A survey on representation learning for user modeling. In Proc. IJCAI. 4997–5003.
[40] Li, Max Guangyu and Jiang, Bo and Che, Zhengping and Shi, Xuefeng and Liu, Mengyao and Meng, Yiping and Ye, Jieping and Liu, Yan.

2019. DBUS: Human Driving Behavior Understanding System.. In ICCV Workshops.
[41] Andreas Löcken, Pascal Brunner, and Ronald Kates. 2020. Impact of hand signals on safety: Two controlled studies with novice e-scooter

riders. In Proc. ACM AutomotiveUI.
[42] Haojie Ma, Zhijie Zhang, Wenzhong Li, and Sanglu Lu. 2021. Unsupervised human activity representation learning with multi-task

deep clustering. Proc. ACM IMWUT (2021).
[43] Qingyu Ma, Hong Yang, Alan Mayhue, Yunlong Sun, Zhitong Huang, and Yifang Ma. 2021. E-Scooter safety: The riding risk analysis

based on mobile sensing data. Accident Analysis & Prevention 151 (2021), 105954.
[44] Qingyu Ma, Hong Yang, and Zizheng Yan. 2023. Use of Mobile Sensing Data for Assessing Vibration Impact of E-Scooters with Different

Wheel Sizes. Transportation Research Record (2023).
[45] Matviienko, Andrii and Müller, Florian and Schön, Dominik and Fayard, Régis and Abaspur, Salar and Li, Yi and Mühlhäuser, Max. 2022.

E-ScootAR: Exploring Unimodal Warnings for E-Scooter Riders in Augmented Reality. In Proc. ACM CHI.
[46] Thomas Monninger, Julian Schmidt, Jan Rupprecht, David Raba, Julian Jordan, Daniel Frank, Steffen Staab, and Klaus Dietmayer. 2023.

SCENE: Reasoning about traffic scenes using heterogeneous graph neural networks. IEEE RA-L 8, 3 (2023), 1531–1538.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 129. Publication date: September 2024.

https://www.technologyreview.com/2023/09/14/1079458/this-driverless-car-company-is-using-chatbots-to-make-its-vehicles-smarter/
https://www.technologyreview.com/2023/09/14/1079458/this-driverless-car-company-is-using-chatbots-to-make-its-vehicles-smarter/


Beyond "Taming Electric Scooters": Disentangling Understandings of Micromobility Naturalistic Riding • 129:23

[47] Seungwhan Moon, Andrea Madotto, Zhaojiang Lin, Alireza Dirafzoon, Aparajita Saraf, Amy Bearman, and Babak Damavandi. 2022.
IMU2CLIP: Multimodal Contrastive Learning for IMU Motion Sensors from Egocentric Videos and Text. arXiv preprint arXiv:2210.14395
(2022).

[48] Seungwhan Moon, Leonardo Neves, and Vitor Carvalho. 2018. Multimodal named entity recognition for short social media posts. arXiv
preprint arXiv:1802.07862 (2018).

[49] Library of America. 2017. Taming the Bicycle, From Mark Twain (1835–1910): Collected Tales, Sketches, Speeches, & Essays 1852–1890.
https://storyoftheweek.loa.org/2017/11/taming-bicycle.html.

[50] Society of Automotive Engineers (SAE). 2022. Vehicle Dynamics Terminology J670_202206. https://www.sae.org/standards/content/
j670_202206/.

[51] Oleksandra Poquet and Maarten De Laat. 2021. Developing capabilities: Lifelong learning in the age of AI. British Journal of Educational
Technology 52, 4 (2021), 1695–1708.

[52] Radford, Alec and Kim, Jong Wook and Hallacy, Chris and Ramesh, Aditya and Goh, Gabriel and Agarwal, Sandhini and Sastry, Girish
and Askell, Amanda and Mishkin, Pamela and Clark, Jack and others. 2021. Learning transferable visual models from natural language
supervision. In Proc. ICML.

[53] Ranftl, René and Lasinger, Katrin and Hafner, David and Schindler, Konrad and Koltun, Vladlen. 2020. Towards robust monocular depth
estimation: Mixing datasets for zero-shot cross-dataset transfer. IEEE TPAMI (2020).

[54] Daniel J Reck, He Haitao, Sergio Guidon, and Kay W Axhausen. 2021. Explaining shared micromobility usage, competition and mode
choice by modelling empirical data from Zurich, Switzerland. Transportation Research Part C: Emerging Technologies (2021).

[55] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You only look once: Unified, real-time object detection. In Proc.
IEEE CVPR.

[56] Nils Rethmeier and Isabelle Augenstein. 2023. A Primer on Contrastive Pretraining in Language Processing: Methods, Lessons Learned,
and Perspectives. ACM Computing Surveys (CSUR) 55, 10 (2023), 1–17.

[57] Wolfgang Roth, Günther Schindler, Bernhard Klein, Robert Peharz, Sebastian Tschiatschek, Holger Fröning, Franz Pernkopf, and Zoubin
Ghahramani. 2024. Resource-efficient neural networks for embedded systems. JMLR 25, 50 (2024), 1–51.

[58] Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela. 2022.
FLAVA: A foundational language and vision alignment model. In Proc. IEEE/CVR CVPR.

[59] David Sirkin, Nikolas Martelaro, Mishel Johns, and Wendy Ju. 2017. Toward measurement of situation awareness in autonomous
vehicles. In Proc. CHI.

[60] Yongjae Sohn, Haeun Lee, Yelim Lee, Taeyun Kim, Youkeun Oh, and Dokshin Lim. 2022. Interaction Design of a Smart Helmet for
Micro-Mobility Riders. Human Interaction & Emerging Technologies: Artificial Intelligence & Future Applications (2022).

[61] Raffaele Soloperto, Philipp Wenzelburger, David Meister, Dominik Scheuble, Veronika SM Breidohr, and Frank Allgöwer. 2021. A control
framework for autonomous e-scooters. IFAC-PapersOnLine (2021).

[62] Jithesh Gugan Sreeram, Xiao Luo, and Renran Tian. 2021. Contextual and Behavior Factors Extraction from Pedestrian Encounter
Scenes Using Deep Language Models. In International Conference on Big Data Analytics and Knowledge Discovery. Springer.

[63] Stigson, H and Malakuti, Iman and Klingegård, M. 2021. Electric scooters accidents: Analyses of two Swedish accident data sets. Accident
Analysis & Prevention (2021).

[64] Mahan Tabatabaie and Suining He. 2023. Naturalistic E-Scooter Maneuver Recognition with Federated Contrastive Rider Interaction
Learning. Proc. ACM IMWUT 6, 4, Article 205 (jan 2023), 27 pages.

[65] Mahan Tabatabaie, Suining He, and Kang G. Shin. 2023. Cross-Modality Graph-Based Language and Sensor Data Co-Learning of
Human-Mobility Interaction. Proc. ACM IMWUT 7, 3, Article 125 (sep 2023), 25 pages.

[66] Mahan Tabatabaie, Suining He, and Kang G Shin. 2023. Interaction-Aware and Hierarchically-Explainable Heterogeneous Graph-based
Imitation Learning for Autonomous Driving Simulation. In Proc. IEEE/RSJ IROS.

[67] Mahan Tabatabaie, Suining He, and Xi Yang. 2022. Driver Maneuver Identification with Multi-Representation Learning and Meta Model
Update Designs. Proc. ACM IMWUT 6, 2, Article 74 (July 2022), 23 pages.

[68] Mingxing Tan and Quoc Le. 2019. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proc. ICML. PMLR.
[69] Shuhan Tan, Tushar Nagarajan, and Kristen Grauman. 2023. EgoDistill: Egocentric Head Motion Distillation for Efficient Video

Understanding. arXiv preprint arXiv:2301.02217 (2023).
[70] Satoshi Tsutsui, Ruta Desai, and Karl Ridgeway. 2021. How YouMove Your Head TellsWhat You Do: Self-supervised Video Representation

Learning with Egocentric Cameras and IMU Sensors. arXiv preprint arXiv:2110.01680 (2021).
[71] Sylvaine Tuncer and Barry Brown. 2020. E-scooters on the ground: Lessons for redesigning urban micro-mobility. In Proc. ACM CHI.
[72] Ultralytics. 2022. Yolov5. Retrieved October 3, 2022 from https://github.com/ultralytics/yolov5
[73] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. JMLR 9, 11 (2008).
[74] David A Van Dyk and Xiao-Li Meng. 2001. The art of data augmentation. Journal of Computational and Graphical Statistics 10, 1 (2001),

1–50.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 129. Publication date: September 2024.

https://storyoftheweek.loa.org/2017/11/taming-bicycle.html
https://www.sae.org/standards/content/j670_202206/
https://www.sae.org/standards/content/j670_202206/
https://github.com/ultralytics/yolov5


129:24 • Tabatabaie et al.

[75] Vaswani, Ashish and Shazeer, Noam and Parmar, Niki and Uszkoreit, Jakob and Jones, Llion and Gomez, Aidan N and Kaiser, Łukasz and
Polosukhin, Illia. 2017. Attention is all you need. Proc. NeurIPS (2017).

[76] Veličković, Petar and Cucurull, Guillem and Casanova, Arantxa and Romero, Adriana and Lio, Pietro and Bengio, Yoshua. 2017. Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017).

[77] Xin Wang, Hong Chen, Yuwei Zhou, Jianxin Ma, and Wenwu Zhu. 2023. Disentangled Representation Learning for Recommendation.
IEEE T-PAMI 45, 1 (2023), 408–424.

[78] Jonathan J Webster and Chunyu Kit. 1992. Tokenization as the initial phase in NLP. In Proc. ACL.
[79] Philipp Wenzelburger and F Allgower. 2020. A first step towards an autonomously driving e-scooter. In Proc. IFAC World Congress.
[80] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and Xing Xie. 2021. Self-supervised graph learning for

recommendation. In Proc. ACM SIGIR. 726–735.
[81] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao,

Klaus Macherey, et al. 2016. Google’s neural machine translation system: Bridging the gap between human and machine translation.
arXiv preprint arXiv:1609.08144 (2016).

[82] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. 2018. Unified perceptual parsing for scene understanding. In Proc.
ECCV. 418–434.

[83] Huatao Xu, Pengfei Zhou, Rui Tan, Mo Li, and Guobin Shen. 2021. LIMU-BERT: Unleashing the potential of unlabeled data for IMU
sensing applications. In Proc. ACM SenSys. 220–233.

[84] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. 2020. Graph contrastive learning with
augmentations. Proc. NeurIPS 33 (2020), 5812–5823.

[85] Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and Bixiong Xu. 2022. TS2VEC: Towards
universal representation of time series. In Proc. AAAI. 8980–8987.

[86] Ming Zeng, Haoxiang Gao, Tong Yu, Ole J Mengshoel, Helge Langseth, Ian Lane, and Xiaobing Liu. 2018. Understanding and improving
recurrent networks for human activity recognition by continuous attention. In Proc. ACM ISWC.

[87] Xiang Zhang, Ziyuan Zhao, Theodoros Tsiligkaridis, and Marinka Zitnik. 2022. Self-supervised contrastive pre-training for time series
via time-frequency consistency. Proc. NeurIPS (2022), 3988–4003.

[88] Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu, Guangjing Wang, Kai Zhang, Cheng Ji, Qiben Yan, Lifang He, et al. 2023. A comprehensive
survey on pretrained foundation models: A history from BERT to ChatGPT. arXiv preprint arXiv:2302.09419 (2023).

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 3, Article 129. Publication date: September 2024.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Understanding Micromobility Systems
	2.2 Understanding Mobility System Users

	3 Overview of CENRUS
	3.1 Overview of System
	3.2  Collection of Naturalistic Riding (NR) Data 
	3.3 Preparation of Modalities

	4 Pre-trained Foundation Task (PFT) 
	4.1 Augmenting Semantics
	4.2 Encoding RXI Graphs
	4.3 Disentangling Understandings

	5 Downstream Tasks (DTs) 
	5.1 Behavior-Aware Tasks (BATs)
	5.2 Vision-Aware Tasks (VATs)
	5.3 Text-Aware Tasks (TATs)

	6 Experimentation
	6.1 Evaluation Settings
	6.2 Observations and Results

	7 Deployment Discussion
	7.1 NR Data Collection Ethics and Privacy
	7.2 System Optimization and Integration
	7.3 Broader Experimental Studies:

	8 Conclusion
	References



