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On Electrochemical Model-Based State Estimation
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Abstract— The high theoretical specific energy density of
lithium—sulfur (Li-S) batteries positions them as an advanced
next-generation battery system to overcome the limitations of
conventional Li-ion batteries. Accurate estimation of the mass
evolution of active sulfur species in Li-S cells is required, not only
to monitor degradation mechanisms inside the cell but also to
enable safe and efficient operation. The state estimation problem
for electrochemical models (EMs) of Li-S cells is challenging,
mainly due to the complex dynamics during discharge/charge
processes. In this work, we consider a three-step 0-D EM
with the “shuttle effect” for state estimation. The model’s state
observability is analyzed and the parameters are identified
using experimental data. An extended Kalman filter is directly
applied to the nonlinear differential-algebraic equation (DAE)
system to estimate the differential and algebraic states from
the measurements of voltage and current only. The simulation
and experimental results demonstrate the effectiveness of the
proposed observer design.

Index Terms— Kalman filter, lithium-sulfur (Li-S) battery,
observability, state estimation.

I. INTRODUCTION

URRENT lithium-ion battery (LIB) technology, unfortu-

nately, does not meet the energy density requirements for
fully electrifying long-haul trucks, aircraft, and other mass-
or volume-sensitive applications. Therefore, developing new
battery technologies beyond the horizon of Li-ion chemistries
is significant for applications in high energy density storage
systems [1]. Lithium—sulfur (Li-S) batteries have attracted
attention today due to their high theoretical energy density
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(2500 Wh-kg™"), which results from the multielectron elec-
trochemical redox reaction between lithium (Li) and sulfur.
However, their practical use at a large scale is hindered by
low sulfur utilization and poor cycling stability, which are
attributed to the inferior electronic conductivity of sulfur, the
diffusion and migration of soluble polysulfide intermediates
(“shuttle effect”), and unstable Li metal anode [2]. To date,
great efforts on cell design have been made to overcome
these obstacles, including host material synthesis, electrolyte
optimization, and lithium anode protection [3]. Besides, the-
oretical modeling and estimation techniques have also been
explored in recent years, which not only helps gain important
insights into the complex mechanisms for the rational design
of better materials but also allows the cells to be controlled in
a reliable and safe way in real applications [4]. For batteries
that are used in electric vehicles (EVs), a battery management
system (BMS) [5] is required to monitor the internal state of
the battery, optimize usage, and prolong cycle life. Therefore,
the development of an advanced BMS for Li-S batteries
is urgently needed to estimate the internal electrochemical
kinetics as well as internal states, i.e., estimation of the state
of charge (SOC) and state of health (SOH).

Traditionally, estimation methods in LIBs rely on two
key model features: 1) the relationship between open-circuit
voltage (OCV) and SOC is a bijection [6] and 2) SOC
is simply a scaled integral of electrical current [7]. These
properties do not exist in Li—S batteries. First and foremost, the
literature does not provide a precise mathematical definition
of SOC with respect to the mass of sulfur species, to the
authors’ best knowledge. Second, the dynamics are charac-
terized by a nonlinear differential-algebraic structure, which
cannot be simply boiled down to the two aforementioned LIB
model features. Finally, the voltage curve exhibits a wide flat
region, which yields observability challenges, somewhat like
lithium iron phosphate cells. In addition, the “shuttle effect”
induces a self-discharge behavior where sulfur specifies will
evolve without an externally applied current. Consequently, the
Coulomb counting method cannot be used for accurate SOC
estimation [8], [9].

Model-based estimation methods have been explored for
accurate online state estimation. Equivalent circuit models
(ECMs) [10], [11] and electrochemical models (EMs) [12],
[13], [14] are the most studied models for LIBs in literature.
ECMs have become the main battery model for online
state estimation in EVs because of their relatively simple
structure and low computational complexity. The main
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structure of ECMs for Li-S batteries is almost identical to
that of LIBs. The discharge/charge behavior with current- and
temperature-dependent parameters can be well reproduced
[15], [16], [17], [18]. Methods that combine ECMs with
adaptive filters have been adopted for SOC estimation in Li-S
cells [19]. However, the convergence property deteriorates
with increasing initial condition errors and increasingly
dynamic current profiles. Accordingly, some joint estimators
of parameters and SOC were then developed to further enhance
estimation accuracy and robustness [20]. Despite the computa-
tional efficiency of ECMs, the true electrochemical processes
inside Li-S batteries cannot be accurately represented across
a range of operating conditions in real-life applications.

EMs provide insight into the internal electrochemical
kinetics and Li-ion transport behavior. In literature, the most
studied EMs for LIB are the pseudo-2-D (P2D) model [21]
and the single particle model (SPM) [12], [13], [22].
However, EM-based estimation methods typically require
more sophisticated algorithm designs, due to the complicated
partial differential equations and many involved parameters,
which is still a key challenge in online applications. That
issue becomes even worse for Li—S batteries. Various EMs
have been developed to capture important physical phenom-
ena inside the Li-S battery, such as reaction mechanisms,
precipitation/dissolution processes, transport limitations, and
shuttle effect [23], [24], [25], [26], [27]. Most of these models
can represent the key features of the voltage profiles: the high-
and low-voltage plateaus and the voltage dip in the transition
region, but even for 1-D models, the complicated reaction
steps and involved sulfur species require a large number of
parameters, making it less practical for real-time control and
estimation. Recently, a simplified model—the 0-D model—
has shown its potential as an efficient tool for monitoring
and control because of its relatively low-order structure [28].
Xu et al. [29] demonstrated parameter identification and sen-
sitivity analysis for a set of 0-D models, based on the number
of possible reaction pathways. The most significant parameters
and the fitting performance of the model have been evaluated
based on experimental data. The model with the best fitting
performance was then implemented with a Unscented Kalman
Filter (UKF) for online estimation of the mass evolution
of sulfur species in the discharging process. The estimation
problem was simplified by converting the differential-algebraic
equations (DAEs) to ordinary differential equations (ODEs),
which may not always be possible. Besides that, the shuttle
effect was not considered in their model, which is a crucial
feature of Li-S batteries that largely affects battery dynamic
behavior.

For Li-S batteries, the battery capacity is highly dependent
on the active sulfur species inside the cell, which means
that the SOC and SOH are both determined by the mass
evolution of various polysulfide species. Therefore, it is crucial
to accurately estimate these sulfur species during the discharge
process. However, estimation based on 0-D models suffers
from several challenges. First, the complex DAEs result in a
nonlinear relationship among the measurable signals, system
states, and parameters. Second, as also mentioned in [29],
the sensitivity of the output voltage with respect to the

system states vanishes in the low voltage plateau, making
it weakly observable. Third, the definition of SOC in Li-S
cells is challenging because of multiple reduction pathways
associated with different reacting species. Finally, the analysis
and estimator design tools for nonlinear DAE:s still need to be
further explored for battery estimation problems.

In our preliminary work [30], we have proposed a state
estimation algorithm for a two-step 0-D model using voltage
and current measurements only, which enables the monitoring
of the sulfur species and the reaction kinetics accurately
during the battery discharge process. However, the simplified
one-step reaction in high plateau cannot accurately capture the
slope of the discharge voltage in reality. To overcome these
challenges, the main contributions that separate this work and
our preliminary studies are given as follows.

1) The model and estimation algorithm are rigorously
validated through experimental data to verify the per-
formance and robustness that reflects the real-world
application scenarios.

2) The two-step 0-D model is extended by adding a third
step—a reduction reaction in the high plateau to more
accurately capture the voltage dynamics. In addition,
the shuttle effect is included in this model, which is
a nonnegligible phenomenon in Li-S cells.

3) The local observability is analyzed using DAE tech-
niques without prior model reductions. We then employ
an extended Kalman filter directly based on the DAE
system to estimate the internal states, which is further
validated using experimental data.

4) The calculation of SOC for Li-S cells is proposed
for the first time using sulfur species to reflect the
effects of shuttling—a significant improvement against
the heuristic coulomb counting method.

The remainder of this article is structured as follows.
Section II introduces the 0-D EM and the DAE system.
Section III analyzes the local observability of the nonlinear
DAE system. A parameter identification process with experi-
mental data is presented in Section IV. Section V presents the
proposed EKF algorithm for state estimation. Simulation and
experimental results are provided in Section VI. Section VII
concludes this work.

II. L1-S BATTERY MODEL

The Li-S battery cell is mainly composed of a metallic
Li anode, an elemental sulfur cathode, an organic electrolyte,
and a separator, as presented in Fig. 1(a). During a typical
discharge process, Li-ions are electrochemically stripped from
the Li metal anode and move to the cathode via the electrolyte.
Elemental sulfur Sg at the cathode side undergoes a series of
complicated electrochemical and chemical reactions to form
the final discharge product Li, S, involving the formation of
intermediate lithium polysulfides (LiPSs). The corresponding
reactions operate in reverse to convert solid Li, S to dissolved
LiPSs and then to elemental S{ upon charging [31]. Fig. 1(b)
shows the typical two-plateau discharge/charge voltage profile
of Li-S batteries. The high plateau, at approximately 2.4 V,
involves the reduction of sulfur to LiyS4 via multiple higher
order LiyS, (4 < n < 8). Then, on the low plateau at
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Fig. 1. (a) Li-S cell structure. (b) Galvanostatic discharge voltage profile
and the involved polysulfides in I: high-voltage plateau and II: low-voltage
plateau.

about 2.1 V, short-chain LiPSs are converted to solid Li,S.
During the discharge process, the intermediate LiPSs can
easily dissolve into the organic electrolyte solution and then
migrate between the cathode and anode, called the “shuttle
effect,” resulting in the loss of active material and low coulom-
bic efficiency.

A. Zero-Dimensional Model

A three-step 0-D model is used in this study, which follows
the derivations in [28], [32], and [33]. Compared to the
two-step model in our previous work [30], the time evolution
of Sé_ is considered in the high plateau. Fig. 2(a) shows
the conversion process from the initial sulfur Sg into the
final discharge product S,, and the corresponding three-step
electrochemical reaction chain is described as follows:

30 I,

gSS+e <—>§S6 (D
_ _ 3

S +e <—>§§ )

1, _ 2 4

554 +e <—>§S N 3

To simplify the model, this 0-D model only considers the
sulfur evolution reactions on the cathode side, and the anode
overpotential is neglected under the assumption of unlimited
Li on the anode side [34]. As a 0-D model, the diffusion
limitations of multicomponent mass transport in the electrolyte
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Fig. 2. (a) Schematic of the total reaction pathway during discharge. (b) Block
diagram of 0-D model.

have been ignored, which still enables reasonably accurate
discharge predictions compared to 1-D models [28]. The
symbol S2~ | represents the precipitation of liquid phase S?~
into solid S, in the low plateau, which is modeled by both
the precipitation rate (k,) and the saturation mass of S, in the
electrolyte (S27). These two precipitation-related parameters
determine the voltage dip and the low plateau. In this work,
we also consider the “shuttle effect,” which has not been
included in [29]. It is represented by the shuttle constant (k;),
which affects the mass evolution of soluble polysulfide species
in the high plateau. The dissolved sulfur reacted at anode is
neglected, meaning that no loss of total sulfur mass occurs
due to the “shuttle effect.”

The mass evolution of sulfur species in the 0-D model in
Fig. 2(b) is described by the following dynamics:

X = — gn;ij;lsim —ksxy 4)
Xy = %nizl;ls ig1 + ksxy — kexo — %im Q)
X3 = %n::]\;[s imy + ksxy — %%h (6)
iy = %”::‘;S i1 — kpxs(xq — $27) )
X5 = kpxs (x4 - Sff) ®

where x1, X3, X3, X4, and xs denote the mass of sulfur species
Ss, S¢~, 87, 8?7, and S, respectively. The mass evolution
of sulfur species in each reaction is governed by the related
reaction currents, together with the effect of shuttling and
precipitation. The term kx; in dynamics (4)—(6) represents the
effect of shuttling on mass evolution of high-order polysulfides
and the precipitation is modeled by a precipitation rate k, in
dynamics (7) and (8). The model parameters are enumerated
in Table I. Next, Nernst equations are used to calculate the
equilibrium potentials for reactions (1)—(3) according to

Ep = EY RT(-3 In( — + ! In 2
HE= FH F 8 l’lsMSv 2 nSGMSv

(C))
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TABLE I
0-D MODEL PARAMETERS
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Notation Name Units
Mg Molar mass of S [g/mol]
ns8,MNSE6,NS4,NS Number of S atoms in polysulfide [-]
Ne Number of electron per reaction [-]
F Faraday’s constant [C/mol]
R Gas constant [J/K/mol]
T Temperature [K]
ks Shuttle constant [s~1]
kp Precipitation rate [s~1]
S22~ 52— Saturation mass [g]
E?_H Standard potential for reaction 1 [V]
E%Q Standard potential for reaction 2 [V]
E% Standard potential for reaction 3 [V]
i(}ﬂ Exchange current density for reaction 1 [A/m?]
i%q Exchange current density for reaction 2 [A/m?]
11,0 Exchange current density for reaction 3 [A/m?2]
x? Initial mass of species j [g]
I Applied current [A]
ar Active reaction area [m?]
ag Initial active reaction area [m?]
¥ Power of the relative porosity [-]
w Relative porosity change rate constant [1/g]
v Electrolyte volume per cell [L]
NH1.MH2.L Surface overpotentials [V]
e (i) )
Epp=Ep,——(—In + =1In
F nse M sv 2 nsa M sv
(10)
B i) (i)
6 nsa M sv 3 n SM svU

The reaction currents in the three-step electrochemical reac-
tions (1)—(3) are described by Butler—Volmer equations

. .0
igy = —iga,
r _3 1 3 _1
— — ) e — | — — e
0 0 0 0
|\ X1 X2 X X2
. 0
lH2 = —lyar
B —1 3 _3
(xz) (X3)2 b (xz)(x}) 2
— — ] e =)= e
0 0 0 0
| \ X2 X3 Xy \X3
iL = —l;ar
r _1 2 1 _2
(X3) 6(M)3 % (xs)ﬁ(m) 3
— — ) exm — (= — e
0 0 0
| \x3 Xy X3 Xy

Fnmy
2RT

12)

Fngo
2RT

13)

(14)

The effect of the active reaction area a, on the reaction currents
is also considered. It is directly related to the precipitate

according to

a, = a?(l —w-xs5)7.

15)

The driving force for a reaction to occur at the cathode side
is the surface overpotential, which is obtained by the difference
between the Nernst potential and the voltage of the cell (V)

nu1 =V — Epn (16)
N2 =V — Ey (17)
n.=V —EL. (18)

The cell voltage is the measurable output of the system, written
compactly as

y(@) = h(x(), z(1))

where the nonlinear output function / : R3 x R® — R? takes

the form
h(x,z)
B RT/ 3 x1 1 X2 ]
ES (=2 — )y om -2
H1 F( 8 (nng58U)+2 n("saMSSU))+nH1
RT X7 3 X3
EO (-1 e 1 -
H2 F ( n(nsﬁMng)+2 n(n54Mng))+nH2
RT X3 2 X4
EO— > _linf —2— —In{ ——
" F( o n(”s4Mssv)+3 n(”SMSBU))+nL 4
(20)

19)

The output vector y(t) = [y;(t) y»(t) y3(t)]" provides the
measured output voltage of Li—S batteries produced from the
high and low voltage plateau

yi(®) =nm () + Epg (1) 2n
y2(t) = nua(t) + Epa(t) (22)
y3() = nL(t) + EL(1) (23)

and y;(t) = y(t) = y2(t) = V(t), which are (equivalent)
measured signals.

Finally, the measured cell current / is described by the
summation of three reaction currents according to charge
conservation, i.e.,

I =igy+ipgy+ig. 24

Remark 1: The thermal effects are also critical to battery
performance and play a critical role in the dynamics of sulfur
evolution. However, due to lack of experimental data and
advanced characterization techniques to study the thermal
dynamics of Li—S cells, it is challenging to properly integrate
and validate a proper temperature model. This aspect will be
considered in future works.

B. Conservation of Sulfur

A critical mathematical property of the model is that sulfur
mass is neither created nor destroyed, due to incorrect model-
ing. We refer to this property as conservation of sulfur mass.
Mathematically

d
27 =0, ms(t) = x1(0) + x2(1) +x3(1) + x4 (1) + x5(0).
(25)

It is straightforward to verify the conservation of sulfur mass
equation above by substituting the dynamics (4)—(8).
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C. Equilibrium Analysis

In this section, we analyze the equilibrium structure of the
0-D EM without the shuttle effect. To start, we specify the
assumptions used in this equilibrium analysis.

1) No shuttle effect: k; = 0.

2) Zero current: ig; =iy, =ip =1 =0.

3) Steady-state conditions: x; = 0, for i = 1,2, 3,4, and

5 in (4)-(8).

4) The equilibrium voltage V! is known.

5) The total mass of sulfur species mg is known.
Then, the state equilibrium (x;%, x3%, x3%, x3, xS%) satisfies the
following set of equations:

ved — E?_“ — g(—éln( xlq ) + l]n( xzq ))
F 8 nsMgv 2 nseMgv
(26)
RT x5 3 X3!
= E%Z - F(_ ln(nssfz‘/fsv) - 2 ln("s413\4511))
(27)
ved = E0 — E(—lln(’c—;q) n %m( ) ))
F 6 ngaMgv 3 nsMgv
(28)
mszx] +x +x +x +x 29)
0=xst (x4 — 527). (30)

Notice that (26)—(30) comprise five equations and five
unknowns—the equilibrium states. Since this system of equa-
tions is nonlinear, a unique solution is not guaranteed. This
contrasts with many electrochemical Li-ion battery models
(e.g., SPM) and even ECMs of Li-S cells. Namely, there is
no analog to an “OCV” function, which serves as a bijective
mapping between the internal states (i.e., element concentra-
tions or masses) and voltage at equilibrium. Nevertheless, two
cases for the solutions exist. From (30), we can derive two
possible solutions: xgq =0 or x;! = S?~. We detail both the
following.

1) Equilibrium Without Precipitate: xgq = 0. Fig. 3(a)
visualizes the equilibrium state values as a function of
the equilibrium voltage V4.

2) Equilibrium With Precipitate: xiq = S2-. Fig. 3(b)
visualizes the equilibrium state values as a function of
the equilibrium voltage V4.

D. SOC Definition

SOC represents the available discharge capacity in a battery.
It is commonly defined as the ratio of the remaining capacity to
its maximum capacity [35]. For Li-S batteries, the available
capacity is determined by the mass evolution of active sul-
fur species during battery discharge. Unlike Li-ion batteries,
where the SOC can be calculated by the average Li concentra-
tion in the solid phase of the negative electrode, it is challeng-
ing to define SOC based on polysulfide species in Li-S cells.
The multiple reduction reactions with different sulfur species
during discharge may lead to multiple SOC definitions asso-
ciated with different sets of sulfur species. Here, we propose
a mathematical SOC definition by considering multiple sulfur

Mass [g]

2.5 2.4 2.3 2.2 2.1
Equilibrium Voltage [V]

Mass [g]

o
o

2.4 2.3 2.2 2.1
Equilibrium Voltage [V]

Fig. 3. State equilibria as a function of voltage V4. (a) Equilibrium without
precipitate. (b) Equilibrium with precipitate.

2— 2- 2-
S, s s? S
e e e
> LY 3 >
< g e <
Reaction 1 Reaction2 Reaction 3

Fig. 4. Mass evolution of reaction products in each reaction and the involved
electron transfer.

species, which reflects the “shuttle effect” and the related self-
discharge behavior. As shown in Fig. 4, the reactions (1)-(3)
occur simultaneously during discharge. The moles of electrons
consumed to produce the sulfur products in each reaction (S2~,
Sff, and §27) are first calculated. Then, this is used to calcu-
late the released capacity, in ampere-hours, of each reaction

8x100 —x1(t) F

= 31
) = 3 ngsMg 3600 (31)
xg(t) — x1%0  x5(t) — x107 F
Cna) =3 32
0= 2|: nsMs " nsMs 3600 (32)
CLit) == 2] x3(t) — x100 N x4(t) — xioo ¥ xs(f) — x5100
3 l’ls4MS 4. nSMS
* 5 (33)
3600

where Cp, Cpo, and Cp are the capacity released in each
reaction, xiloo is the mass of sulfur species i at 100% SOC,
and the factor 3600 is used to convert from coulombs to
ampere-hours. The total released capacity at time step ¢ can

be obtained as

Ci(1) = Cpi (1) + Cpa(1) + Cr(1). (34
The SOC definition can then be given by
Ci(t
SOC(t) =1— G (35)

max

where Cp,x is the maximum capacity in the cell. Based on
this definition, we derive a differential equation governing
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the evolution of SOC(r)

SO = -1 / Fk; (1 1
O =30 c— Cmax[ () + My (gm(t) + gm(t))]-
(36)

This equation provides several important insights. First, in the
absence of the shuttle effect (i.e., k;, = 0), our SOC definition
reduces to Coulomb counting. In the presence of the shuttle
effect (i.e., k;, > 0), SOC dissipates in proportion to the
masses of Sg and Sg_—a property that is distinctly different
than Li-ion cells. The factors of (1/3) and (1/6) arise from
the stochiometric ratios of sulfur atoms in Sg and Sé_ to
electrons in reactions (1) and (2), respectively.

Remark 2: Although this work focuses on the discharge
behaviors of Li—S cells, the same strategy can be used to define
the SOC during charging. Since the three-step electrochemical
reaction chain (1)—(3) is reversible, the total released capacity
of each reaction during charging can be calculated based on the
reaction products SZ*, ng, and Sg, which is slightly different
than that of the discharging process.

E. 0-D Li-S Model as a Differential-Algebraic System

To facilitate the subsequent model analysis and state
observer designs, a nonlinear differential-algebraic system can
be formulated by arranging the nonlinear dynamic equations
(4)—(8) and the nonlinear algebraic constraints (9)—(24) into
the following compact state-space form:

xX(@t) = f(x(0),z2(1) (37
0= g(x(r), z(t), u(t)) (38)
y(1) = h(x(0), z(1)) (39)

where x = [x; x» x3 x4 xs5]" € R™ with n, =5 is the
differential state vector representing the mass of sulfur species
for 89, S2, 837, $*",and S,,and z = [y igx ir]’ € R™
with n, = 3 is the algebraic state vector corresponding to
the currents related to the three reactions (1)—(3). Function
g R’ xR x R — R? is given by

(40)

g(x(0), z(t), u(®)) = [MIZ—I]

Myy

where M, =
components and

1,43 is a row vector of ones with three

1 0 -1

M= [0 1 -1 ]
In particular, (40) is obtained by substitution of (9)—(14) into
(16)—(18). The 0-D model (37)—(39) can be conveniently veri-
fied to be a semiexplicit DAE of index 1 as dg/dz has full rank
(invertible) [36]. Typically, a DAE system can be analytically
reduced to an ODE system if the function g is linear in z [37].
However, in our case, the function g is highly nonlinear in
both z and x, which indicates that it is not straightforward
nor necessarily possible to obtain a closed-form solution of
constraint (38). Moreover, the original DAE system cannot
be fully represented from the reduced-order ODE system and
the physical significance of the differential-algebraic states
will be suppressed after model reduction [38]. Therefore,

(41)

we will conduct all analysis and observer designs based on
this nonlinear DAE system without model reductions.

III. OBSERVABILITY ANALYSIS

An observability analysis is performed on this DAE system
to evaluate whether the differential and algebraic states can be
uniquely determined from measurements of input and output
signals. In our study, if the nonlinear DAE system is not
observable, this means that it is not possible to estimate
some internal states from the measurements of current and
voltage data. In this section, the local observability of the
nonlinear DAE system (37)—(39) is mathematically studied by
linearizing the nonlinear DAE system around an equilibrium
state, which differs from that of the reformulated ODE system
in [29]. The proposed observability analysis can ensure to
examine whether both differential and algebraic states are
observable.

Let w=[x z]' € R"™, n, =n, + n,, be the augmented
state vector. The nonlinear DAE system (37)—(39) is first
linearized with a first-order Taylor series expansion around
an equilibrium point w = wy, which results in a regular linear
DAE system

Ew() = Aw() + Bu(t) (42)
y = Cw(). (43)
The matrix E is a singular matrix of the form
Inxxnx Onxxnz
E= [0 0} @

where I is the identity matrix. The state matrix A € R >
and the output matrix C € R**"» are expressed by

af  of
Py oh  0h

A= | dx 0z C _ |t on _
dg 08 [ax az]mo
ax BZ w=wo

The observability conditions are then derived from the
linearized system. If the linearized system is observable at
an equilibrium point w = wy, the nonlinear system is
locally observable. Note that the observability results are only
sufficient. No conclusions can be obtained for the original non-
linear system if the linearized system is not observable [37].

Here, we apply complete observability (C-observability) to
examine whether both differential and algebraic states are
observable. The whole state of the system can be uniquely
determined by the system output measurements if the system
is C-observable. The C-observability for a linear DAE system
can be defined as follows.

Theorem 1 (C-Observability [39]): The regular linear DAE
system (42) and (43) is completely observable if and only if
the following two conditions hold.

Cl: rank{[ET,CT1"} = n,,.
C2: rank{[(sSE —A)T,C"]1"} =n, Vs € C.

The linear system (42) and (43) is C-observable if and
only if both the algebraic subsystem (fast subsystem) and
the dynamic subsystem (slow subsystem) are observable.
The C-observability of the fast subsystem is checked by
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Fig. 5. Sensitivity of output voltage to system states with a constant discharge
current at 1 A.

Condition C1, while the C-observability of the fast subsystem
is verified by Condition C2. A column rank of n, has
already been provided by the singular matrix E. It is easy
to check Condition C1 whether d%/dz has column rank n,
from (20). Condition C2 needs to be verified through
numerical computation of the generalized eigenvalues of the
pair (E, A). Although condition C2 has to be validated against
all s in a complex domain, it is automatically verified when
s is not one of the generalized eigenvalues of pair (E, A).

Although the DAE satisfies the conditions of
C-observability, we still do not know if the system is
weakly or strongly observable. In this regard, Fig. 5 shows
the sensitivity of the system voltage with respect to the
dynamic states. The parameter values for simulation are
adopted from [28] and [33] and the model was simulated
using a constant discharge rate at 1 A. As shown in Fig. 5,
the sensitivity for x; starts to increase after 2500 s, while
the sensitivities for x,—xs vanish after 3000 s, corresponding
to the low plateau region, which indicates relatively weak
observability in this region. This is a crucial property that we
will demonstrate in the numerical studies in Section VI.

Remark 3: Besides C-observability, there exist other
forms of observability. For instance, impulse observability
(I-observability) reflects the reconstruction ability of the
impulse behavior, and R-observability guarantees the observ-
ability of any reachable states from the output measurement.
Notably, the regular linear DAE system is I-observable or
R-observable if it is C-observable [39]. One can choose to
verify I/R-observability, but C-observability is more compre-
hensive and can infer the information of both I-observability
and R-observability.

IV. MODEL PARAMETERIZATION

In this section, the experimental battery tests are first
introduced, followed by the parameter identification of the

three-step 0-D EM using the obtained experimental data. The
results of model validation are then presented to demonstrate
the accuracy of this 0-D EM.

A. Experimental Design

Experiments for parameter identification were conducted
using a coin cell configuration. The sulfur cathode was fabri-
cated by mixing S@tungsten disulfide/graphene (S@WS,/G),
conductive agent [multiwall carbon nanotubes (CNTs)], and
polymer binder [polyvinylidene fluoride (PVDF)] in a weight
ratio of 8:1:1. The mass loading of active S in the cathode was
0.986 mg. Lithium metal foil was used as an anode material
and a Celgard 2500 was used as a separator. The electrolyte
used was lithiumbis (trifluoromethane sulfonimide) (LiTFSI:
1 M) in a 1,3 dioxolane/l,2-dimethoxyethane (DOL/DME)
[1:1 (v/v)] containing 2 wt% lithium nitrate (LiNO3) additive.
The cell was then tested in a voltage range of 1.7-2.8 V at a
discharge current of 1.651 mA (1C) using a land battery test
system (CT2001A).

B. Parameter Identification

Prior to parameter identification, the relative variables and
parameters of the 0-D EM are scaled to match the physical
sizing of the Li—S coin cell using similitude, as done in [33].
For the 0-D EM, the model parameters to be identified and
optimized are

0

. . . T
9=[E?_“,E%z,Eg,t%l,ll_n,lg,ks,kp,J/,a),mS] 45)

where Egyy, Ep,, and E; are the standard potentials, iy,
ip2, and iy are the exchanged current density, k; is the shuttle
rate constant, and k,, y, and w are the precipitation-related
parameters. Finally, m; is the total mass of dissolved sulfur
in (25). These parameters have been proved to be highly
sensitive and largely impact the discharge voltage behavior,
even in the weakly observable low plateau region [33]. The
objective function for fitting the parameters is expressed as

N

% D (Velk) = Vu(h))?
k=1

where R(k) is the root-mean-square error (RMSE) and V, (k)

and V,,(k) are the measured experimental voltage and the

simulated model voltage at each time step k, respectively.

Therefore, the goal is to minimize the objective function (46)

with respect to the parameter vector. We applied particle

swarm optimization (PSO), an offline gradient-free optimiza-

tion technique [40].

The identified parameter values are enumerated in Table II.
Fig. 6 presents the fitting performance of the three-step
0-D model against the experimental data used for parameter
optimization. The simulated voltage matches the measured
voltage dynamics well with an RMSE value of 6.44 mV,
especially the slope between the high and low plateaus. This
is achieved by the additional reaction in the high plateau
(Sg_ <~ Sf‘). Then, the model is further validated using
experimental data obtained from a cell with another type of
cathode material (CNT@S). Fig. 7 shows the comparison of

R(k) = (46)
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TABLE II
IDENTIFIED PARAMETER VALUES
Parameters ~ Values Units
Egn 232 V]
E%Q 2.29 [V]
E; 2.12 [V]
ign 10 [A/m?]
%y 2 [A/m?]
ino 0.02 [A/m?]
ks 1530  [s71]
kp 400 [s71]
v 2.5 [-]
w 1.5 [-]
ms 0.65 [g]
24
— —Ve
Z - = ‘/m
&
o0 2.2+ 1
£
S
2.0 : : ‘
0 200 400 600 800
Time [s]
Fig. 6. Fitting performance of 0-D model against the experimental data.
2.4 ‘
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Fig. 7. Validation of the identified 0-D model against experimental data.

the experimentally measured voltage and the model output
voltage with the identified parameters during the discharge
process. Although the RMSE value increased to 17.22 mV, the
simulated voltage can still capture the essential characteristics
of the experimental voltage curve.

V. STATE OBSERVER DESIGN

In this section, an EKF approach for nonlinear DAE sys-
tems, similar to the algorithm reported in [41], is used for state
estimation. This algorithm applies to measured outputs that are
functions of both differential and algebraic state variables. The
standard EKF algorithm for ODE systems, however, can only
be applied when the differential states are decoupled from the
algebraic ones. Then, the algebraic states can be computed as
implicit solutions to the nonlinear algebraic constraints at each
time step.

To enable the implementation of the proposed algorithm for
DAE system, we first transform the nonlinear DAE system (37)
and (39) into discrete time using a forward Euler’s method

x(k+1) = fa(x(k), z(k)) + (k) (47)
0= ga(x(k), z(k), u(k)) (48)
y(k) = ha(x(k), z(k)) + v(k) (49)
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Algorithm 1 EKF for Nonlinear DAEs

Inputs: u(k), y(k), k=1,2,---
Outputs: #(k), 2(k), k=1,2,---
o At time step k, the algebraic equations of DAE system
are used to propagate the (consistent) algebraic state
estimates to satisfy the algebraic constraints:

g9(&(k), 2(k), u(k)) = 0.

« Given the up-to-date estimates z; and consistent
algebraic state estimates Zj, the differential state
estimates are propagated forward in time using the
nonlinear discrete-time model and corrected through
output error injection as

z(k+1) =z(k) + At - f(2(k), 2(k))
+ K(F) (y(k) — h(2(k), 2(K))) -

o The covariance matrix of the differential state
estimation error is computed by

P(k+1)=F(k)P(K)F(k)"T +Q
— K(k) (H(k)P(k)H(k)" + R) K(k)",

and the calculation of Kalman gain matrix is given by
K (k) = FPRHE) (HIPRHRT +R)

where F(k) and H(k) are the linearized state and
output equations with respect to the differential state
evaluated at &(k),

_ 0fa
0z |3r)

Oy

F(k) =T |,

H(k)

where f4(x(k), z(k)), ga(x(k), z(k), u(k)), and hy(x(k), z(k))
are the discrete-time versions of (37)—(39), respectively;
Ja(x(k), z(k)) = x(k) + At - f(x(k), z(k)) with At as the
sampling time; x(k) and z(k) are the discretized differen-
tial and algebraic states at time ¢+ = kA¢, respectively;
and p(k) and v(k) are the process and the measurement
noises with covariance matrices Q and R, respectively. The
forward Euler’s method has been selected as a simple-to-
implement discretization strategy since it generates a relatively
simpler mathematical structure than implicit methods, which
significantly benefits the subsequent design efforts for state
observers. In addition, as index-1 DAEs are in general not stiff,
they can be efficiently handled by Euler’s methods [42]. The
EKEF designed for system (47)—(49) is detailed in Algorithm 1.
Essentially, algebraic state estimates that are consistent with
the DAE are first computed numerically. The differential states
at the next time instant are then predicted using both the differ-
ential and algebraic states at time k through the propagation
in time of the nonlinear state function. Then, the algorithm
corrects the states via output error injection. Subsequently,
the covariance matrix of the differential states is computed
using the linearized ODE model, followed by the calculation
of the Kalman gain matrix using the covariance matrix and
the state and output matrices from the linearized model.
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Fig. 8. Comparison of estimated and true mass of sulfur species (i.e., the

differential states) under a UDDS cycle with measurement noise.

Note that this algorithm only updates the differential state
estimates using the classical Kalman filter approach [43], and
the estimated algebraic states are recomputed to satisfy the
nonlinear algebraic equations at each time step.

VI. NUMERICAL RESULTS

In this section, we conduct studies on simulation and
experiment to demonstrate the performance of the proposed
observer algorithm.

A. Simulation Results

We first present simulation results that validate the proposed
estimation algorithm in Figs. 8 and 9. We consider an urban
dynamometer driving schedule (UDDS) drive cycle, which
has been frequently used in automotive applications due to
its highly dynamic and transient behaviors. It is challenging
to experimentally validate the estimation algorithm because
no experimental UDDS data for Li-S cell are available at
this stage. To address this issue, rather than using experi-
mental UDDS data, we examine the effects of measurement
uncertainties to mimic real-world applications by adding a
2% random error to the simulated UDDS voltage signal to
validate the robustness of the estimation scheme. To the best
of our knowledge, estimation results based on Li—S EM under
dynamic driving profiles have not been reported thoroughly
in the literature. The current profile is shown in Fig. 9(a)
with a maximum C-rate of 3.73C and a mean C-Rate of
0.94C. The parameter values for the plant model and state

I [C-rate]

ip1 [C-rate]

g 2
in
S
5

2

0.4
=) g} i
s 02r S DAR
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241
= - f—
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Time [s]
Fig. 9. Comparison of the estimated and true algebraic states (iy1, ig2,

and iz) and voltage under a UDDS cycle with measurement noise.

estimator are obtained from [28] and [33]. The observer
estimates the differential and algebraic states given the applied
current and simulated voltage. The true initial conditions
for the internal states are wy = [0.4875 0.1560 0.0065
3 x le?® 3 x le® 0.05 0 0]7, whereas the observer
initial conditions are initialized with an error of 10%. The
values of the covariance matrices P(0), Q, and R are set as
follows:

P(0) = diag([8e™> 9.5¢7* 9e® Se® 2¢7°))
0 = diag([Se™"* 5e7'* 5e7 5e7F 5e7))
R = diag([8e 1e™ le7’]).

The estimated mass of each sulfur specie is plotted against
their true values in Fig. 8. Fig. 9 shows the estimates for the
algebraic states (ig, iy, and i) and the output voltage (V)
compared to their true values. The estimates of both the
differential and algebraic states quickly converge to their true
values. The estimated output voltage is also able to track the
simulated voltage accurately. These results demonstrate that
the estimated states can still converge to their true values,
even with measurement noise, indicating the robustness of
our proposed estimation algorithm under a highly dynamic
scenario, such as EVs.

B. Experimental Results

The proposed estimation algorithm is then experimentally
validated in this section. The parameter values for both the
plant model and estimator are obtained from the parameter
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Fig. 10. Comparison of estimated and true mass of sulfur species (i.e., the
differential states) under a 1C discharge cycle.

identification results in Section IV. A constant discharge C-rate
of 1C that was used in our experiment was applied to the plant
model for 700 s. Note that due to the difficulty in verifying
in situ the internal states in a real battery, the states simulated
from the EM with parameters identified from a real battery
were used to emulate the truth values of the internal states.
The initial guess error for the state estimates of the observer
was set to 10%. These results are generated numerically by
tuning the following parameters in the EKF:

P(0) = diag([2.5¢™® 2.5¢7® 2e7!" 2e7! 2e7MM))
Q0 =diag([le™"? 1e7'0 le7*' 1e7¥ 1e7?'])
R =diag([le” 1le™® 1le7’]).

Fig. 10 reports the state estimation results for the differen-
tial states under a constant 1C discharge current, plotted in
Fig. 11(a). Fig. 11 further compares the estimated algebraic
states and output voltage against their true values. The solid
lines denote true values, and the dashed lines denote estimates.
Since the battery is discharged from a fully charged state,
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Fig. 11. Comparison of the estimated and true algebraic states (iy1, if2,

and 77 ) and voltage under a 1C discharge cycle.

all state estimates are able to quickly converge to their true
values from 10% initial estimation errors within 100 s, due
to the high observability in the high plateau (see observability
analysis in Fig. 5). However, unsurprisingly, note that the esti-
mates of SZ_ and S, show slight divergence in the low plateau
region, which is mainly caused by the weak observability of
the Li—S system. To improve the estimation performance in the
low observability region, in addition to tuning the EKF-related
parameters such as covariance matrices O, we could poten-
tially explore a hybrid estimation framework. Specifically, two
EKFs can be individually designed for high plateau and low
plateau coupled with a switching scheme at the intersection
of high-to-low regions. Another possible pathway to improve
observability is by adding additional sensors to introduce more
measurement signals (e.g., temperature, pressure, and strain).
These options will be exploited in our future studies.

C. SOC Simulation Results

Simulation results for the proposed SOC definition are
evaluated in this section. Our proposed method is based on the
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Fig. 12. SOC values calculated by Coulomb counting and the proposed

methods considering different shuttle rates.

remaining discharge capacity calculation, which depends on
the active sulfur species. We also perform a sensitivity analysis
on the “shuttle effect”” In Li-S cell, the ‘“shuttle effect”
changes the mass evolution behavior of sulfur species by intro-
ducing a self-discharge-like process. This affects the remaining
discharge capacity and also the related SOC. Fig. 12 presents
the simulation results calculated by traditional Coulomb count-
ing and the proposed method with different shuttle rates at a
constant 1.7-A discharge current. The SOC calculated by the
proposed method in the absence of “shuttle effect” shows no
difference with Coulomb counting. However, when the shuttle
rate is increased to 2 x 1074, the SOC calculated by the
proposed method decreases much faster. This trend becomes
more pronounced as the shuttle rate increases. That is because
the “shuttle effect” is a self-discharge process that does not
contribute to the reaction current. Therefore, it results in less
remaining discharge capacity. These results demonstrate that
our proposed method can represent the effect of shuttling on
capacity loss and the subsequent SOC evolution. Note that
for Li-ion batteries, the relationship between bulk lithium
concentration in the anode and SOC is one-to-one. This means
that the bulk lithium concentration can be determined once
the SOC is known and vice versa. However, the relationship
between sulfur species and SOC becomes complicated in Li—S
cells. There are different combinations of sulfur species to
SOC if the SOC is known, which means that the relationship
between them is not one-to-one.

Remark 4: Despite the capability to represent the shuttling
effect on capacity loss and the subsequent SOC evolution
accurately, the SOC calculation scheme cannot be validated
experimentally due to the difficulty of precisely measuring the
mass of sulfur species in real time as a result of the lack of
in situ characterization techniques. Nevertheless, data gener-
ated from higher dimensional Li-S EMs may be considered
as the ground truth for validation, which will be explored in
our future works.

VII. CONCLUSION

In this article, we studied a 0-D EM that shows practical use
for estimation and control purposes for next-generation high
energy density Li—S batteries. A state estimation algorithm for
the developed model has been presented. The observability
of this nonlinear DAE system has been investigated, which
indicates that the states are locally observable but show weak
observability in the low plateau region. The model is identified
and experimentally validated using the experimental data col-
lected from Li-S coin cell. An extended Kalman filter-based

algorithm is then adopted to estimate the amount of active
sulfur species and the reaction currents in simulation with
dynamic current profile. The developed estimation algorithm
is further validated using the experimental data. The accuracy
of the estimation approach is demonstrated in both simulation
and experiment. Moreover, we proposed the SOC definition by
different sulfur species, which can well represent the “shuttle
effect” and self-discharge behavior.

Future work will focus on examining the robustness of the
proposed estimation algorithm against the parameter uncer-
tainties. In addition, reduced-order EM-based SOC and SOH
estimation approaches will also be studied.
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