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Beyond Battery State of Charge Estimation:
Observer for Electrode-Level State and Cyclable

Lithium With Electrolyte Dynamics
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and Scott J. Moura , Member, IEEE

Abstract— This article presents a provably convergent
battery estimation scheme based on a single particle model
with electrolyte (SPMe) dynamics, by proposing a systematic
methodology to estimate critical information such as electrode-
level states, electrolyte dynamics, and cyclable lithium.
Electrode-level state estimation suffers from weak observability
originating from two standalone electrode dynamics, which is
then aggravated by the addition of electrolyte dynamics. This lack
of observability can be alleviated by exploiting lithium inventory
conservation enabled by the Kalman decomposition, allowing
one to separate out the unobservable subspace. Assuming the
knowledge of cyclable lithium, a nonlinear state observer with
provable convergence can be constructed for the SPMe model,
using voltage and current measurements. To relax this strong
assumption, a sensitivity-based parameter estimation scheme
is also deployed to track cyclable lithium—a crucial physical
variable for capacity fade. Ultimately, the estimation framework
can perform finer monitoring and diagnosis of battery charge
and health down to the level of individual electrode and
the electrolyte. Experimental validation demonstrates <1%
estimation error for cyclable lithium inventory. Solid phase
lithium concentration estimates, especially in the negative
electrode, can be sensitive to disturbances in cyclable lithium.

Index Terms— Kalman decomposition, lithium-ion (Li-ion)
batteries, nonlinear state observer, parameter estimation.

I. INTRODUCTION

L ITHIUM-ION (Li-ion) batteries form a crucial piece of
wide dissemination of electric vehicles and renewable

energy resources, propelled by the high efficiency and high
energy and power densities [1]. However, batteries must be
carefully monitored to ensure sufficient life and manage abuse
conditions such as over-(dis)charge; otherwise, they might
exhibit accelerated aging in the best cases and become a
safety hazard in the most extreme cases. Battery monitoring
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involves the estimation of meaningful physical states, with
state of charge (SOC) and state of health (SOH) as two most
crucial figures of merit [2]. While SOC is the battery energy
fuel gauge, typical SOH indicators include battery capacity
and internal resistance. These different battery states need
to be inferred from data since they cannot be directly mea-
sured during regular operation. The state estimation problem
in batteries is challenging because: 1) internal states exhibit
weak observability under traditional voltage and current sens-
ing; 2) output measurements and internal states have notori-
ously nonlinear relationships; and 3) electrochemical processes
evolve significantly with temperature and time. Solutions to
these problems offer a huge opportunity for advanced control
of battery systems. This is especially true if the resulting
estimation algorithms at the core of battery management sys-
tems (BMSs) are able to determine electrochemical quantities
beyond classical SOC and SOH, e.g., electrolyte concentration
or lithium inventory.

The battery state estimation problem has been thoroughly
investigated in the literature [3]–[7]. These methods may be
divided into three categories depending on their underlying
mathematical models, namely, data-driven models, gray-box
models, and electrochemical models. The models belonging
to the data-driven category are very flexible and provide accu-
rate approximations. However, they lack physical interpreta-
tion and require excessive data for training [8]. The second
category involves model abstractions of battery processes,
such as the electric circuit analogy used in equivalent circuit
models (ECMs) for battery representation. Although these
models can be accurate if properly tuned, they do not explicitly
represent relevant electrochemical processes governing battery
dynamics [9]. In the last category, electrochemical models
are capable of capturing the physical phenomena inside a
Li-ion battery, such as transport, reaction kinetics, mass, and
charge conservation. Therefore, electrochemical models are
among the best candidates for characterizing the present oper-
ational status of a battery, in which the Doyle–Fuller–Newman
(DFN) model [10] has become the benchmark par excellence.
However, its computational burden hinders its applicability
for real-time estimation/control despite recent advancement on
adopting circuit theory to draw analogy with electrochemical
models [11], [12]. Thus, reduced-order electrochemical mod-
els become extremely useful, e.g., the widely popular single
particle model (SPM) family [13]. The SPM is recognized

2332-7782 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 10,2024 at 00:08:39 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-7945-2100
https://orcid.org/0000-0002-0547-6345
https://orcid.org/0000-0003-1060-5495
https://orcid.org/0000-0002-6393-4375
https://orcid.org/0000-0001-8415-7459


ZHANG et al.: BEYOND BATTERY SOC ESTIMATION: OBSERVER FOR ELECTRODE-LEVEL STATE AND CYCLABLE LITHIUM 4847

as striking a good balance between model complexity and
accuracy at relatively low current densities [14]. Enhanced
versions of the SPM have been derived to extend its application
range, such as the inclusion of electrolyte [15]–[19] or aging
dynamics [15], [16], [20]–[22].

A well-known model simplification for an electrochemical
model is to deal with one of the electrodes and ignore the
other. This modeling choice is motivated by the weak system
observability when lithium concentration in both electrodes to
be estimated simultaneously [23]–[25]. Negative electrodes,
typically graphite, are often kept since they are more prone
to degradation and have slower diffusion times compared to
positive electrodes [26]. Positive electrodes have also been
retained for observer design, on the basis that larger open-
circuit potential (OCP) slopes improve observability [18]. The
single-electrode approximation can be obtained by assuming
either: 1) the neglected electrode is modeled in open loop or
2) total moles of lithium are preserved. In case 1), one elec-
trode provides a pseudo voltage measurement via open-loop
simulation, while the state of the other electrode is estimated in
a closed-loop manner, giving rise to Kalman filters (KFs) and
particle filters [27]. Although relatively simple to implement,
this option produces biased state estimates when the open-loop
electrode model is wrongly initialized. In case 2), conservation
of lithium adds an algebraic constraint that is used for observer
design. This option is the most explored one through KFs [24],
sliding mode observers [28], and nonlinear observers [29], by
taking advantage of the assumption that the states of two elec-
trodes are linearly dependent on each other. Therefore, case
2) properly initializes the state estimators given knowledge of
total solid phase lithium inventory to ensure accurate electrode
state estimation.

More recent contributions avoid the aforementioned
single-electrode simplification and instead pursue state estima-
tion of both electrodes simultaneously, denoted as electrode-
level estimation. This new estimation paradigm offers the
possibility of differentiating the state of each electrode individ-
ually, which opens the door to finer monitoring of degradation
mechanisms at the electrode level [30]. Three approaches
exist to alleviate the observability issues arising from the
electrode-level estimation. The first one focuses on improv-
ing observability by exploiting extra measurements, such as
temperature [31], besides classical current and voltage, at
the expense of additional instrumentation, added cost, and
data processing requirements. The second approach consists
of an interconnected type of observer, where each electrode
state is estimated separately by a dedicated observer, but the
two observers exchange information, which contributes to the
convergence of the estimation scheme [32], [33]. However,
the structure of interconnected observers might be complex.
A third approach relies on partial differential equation (PDE)
models to design either Luenberger [34] or backstepping [18]
observers, which again require lithium mass conservation for
observer gain design. Even if these contributions propose rel-
evant approaches for electrode-level estimation, these method-
ologies lack rigorous observability analysis, neglect crucial
battery dynamics, e.g., electrolyte, and often assume prior
knowledge of a time-invariant lithium inventory.

Apart from electrode-level estimation, there are other
electrochemical quantities of interest that influence battery
performance. One of them is electrolyte dynamics, which
need to be coupled with the SPM for a more comprehensive
representation of a battery subject to large current rates. The
electrolyte state estimation problem, however, has received
little attention from the research community. Contributions to
this topic include a moving horizon estimator [35], a particle
filter [36], and an extended Kalman filter (EKF) [37], all
proposed based on the DFN model, as well as a Luenberger
observer [17], an open-loop observer [18], and an unscented
KF [38] using reduced-order electrochemical models. Another
important quantity is the cyclable moles of lithium, which is
regarded as one of the primary indicators for battery degrada-
tion. The estimation of this quantity can be related to the loss
of lithium inventory that may be experimentally determined
from open-circuit voltage (OCV) measurements [39] or via
electrochemical techniques such as incremental capacity [40]
or differential voltage analyses [41]. Lithium inventory can
also be seen as a model parameter in electrochemical models
and its estimation can be formulated as a parameter identifi-
cation problem. In this context, several parameter estimation
techniques have been used, including a nonlinear least-squares
method [26], EKFs [42], [43], and a Levenberg–Marquardt
(L-M) method [44]. As we will demonstrate later, knowledge
of lithium inventory would enable decomposition of the
SPMe model and the mathematically guaranteed state
observer convergence.

Observability analysis in battery electrochemical model-
based SOC/SOH estimation has been overlooked. Among
the studies that explored electrochemical model observability,
most have been focusing on SPM without electrolyte dynam-
ics [31], [45], [46]. It was only in recent years that observabil-
ity analysis for single particle model with electrolyte (SPMe)
dynamics is attracting attention [27], [47], [48]. In this study,
we perform a comprehensive analysis on the observability of
the states in the SPMe in a mathematically elegant way using
the Kalman decomposition. The SPMe model describes the
dynamic behaviors in two electrodes (solid phase) as well
as in the electrolyte (electrolyte phase). The adopted Kalman
decomposition technique brings a system to a structure where
the observable and unobservable components are clearly sep-
arated. Then, the lithium concentration in the solid phase of
the two electrodes as well as in the electrolyte phase can be
estimated from current and voltage measurements via a non-
linear state observer based on the transformed system. As will
be demonstrated later, the analysis presented here explores
the conservation of moles of lithium, so we will propose a
sensitivity-based parameter identification scheme adopting the
L-M algorithm, which outputs estimates for total moles of
lithium. The proposed framework is a significant improvement
over the preliminary work in [49], which only addressed the
electrode-level estimation problem for an SPM without con-
sidering battery aging and electrolyte dynamics. In particular,
the main contributions of this work include the following:

1) a state observability analysis on the SPMe dynamics;
2) a rigorous parameter estimation scheme to recursively

update lithium inventory while battery aging,
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Fig. 1. Sketch of a Li-ion battery cross-sectional geometry.

thus enhancing the state estimation algorithm
applicability.

The estimation framework will monitor solid phase lithium
concentration, electrolyte phase lithium concentration, and
solid phase lithium inventory in a mathematically guaranteed
fashion and can be interpreted as an online strategy for elec-
trochemical model-based simultaneous SOC (critical lithium
concentration) and SOH (lithium inventory) estimation.

II. MODEL DEVELOPMENT

In this section, we discuss common assumptions for deriving
an SPMe dynamics from a DFN model. We introduce the
electrochemical principles of the batteries very briefly, and
readers may refer to [1], [10], and [52] for a more com-
prehensive discussion. Fig. 1 showcases a schematic sum-
mary of the DFN model, demonstrating the solid phase and
electrolyte phase spreading across three domains of the cell:
anode (negative electrode), separator, and cathode (positive
electrode). This model is capable of predicting the spatial
and temporal evolution of lithium concentrations (c±

s (x, r, t)
and ce(x, t)), electric potentials (φs(x, t) and φe(x, t)), ionic
current ie(x, t), and molar ion fluxes j±

n (x, t). A complete
definition of model parameters and state variables is given
in Table I. In order to simplify the formidable complexity
of the DFN model, the literature has presented a rich set of
strategies for model reduction. One of the notable ones resorts
to the SPMe [18], [51]–[53], which seeks to preserve modeling
fidelity, particularly at high current rates. The key assumption
that enables the derivation of SPMe is that the solid phase
lithium concentration, exchange current density, and molar ion
flux are constant along the spatial coordinate x . Subsequently,
SPMe model equations and model analysis will be provided.

A. Governing Equations and Boundary Conditions

This section presents the set of mathematical equations
for SPMe. The main components of the model are inherited
from [18], with modifications for the purpose of state observ-
ability analysis and a provably convergent observer design.

The solid phase lithium diffusion phenomenon can be char-
acterized by Fick’s laws of diffusion over a spherical domain
r ∈ [0, R±

s ], which characterizes the evolution of lithium

TABLE I

SPME MODEL SYMBOL DESCRIPTION

concentration within a spherical electrode

∂c+
s

∂ t
(r, t) = D+

s

[
∂2c+

s

∂r2 (r, t) + 2
r

∂c+
s

∂r
(r, t)

]
(1)

∂c−
s

∂ t
(r, t) = D−

s

[
∂2c−

s

∂r2 (r, t) + 2
r

∂c−
s

∂r
(r, t)

]
(2)

with Neumann boundary conditions

∂c+
s

∂r
(0, t) = 0, D+

s
∂c+

s

∂r

(
R+

s , t
)

= − j+
n (t) (3)

∂c−
s

∂r
(0, t) = 0, D−

s
∂c−

s

∂r

(
R−

s , t
)

= − j−
n (t). (4)

The intercalation current density j±
n (t) is assumed constant

with respect to x along the cell thickness. This assumption
makes it possible to represent j±

n (t) as

j+
n (t) = − 1

Fa+ AL+ I (t), j−
n (t) = 1

Fa− AL− I (t) (5)

which depends on the battery current in a linear fashion.
The Butler–Volmer equation depicts the relation between the
current density and the overpotentials via

j±
n (t) = 1

F
i±
0 (t)

[
exp

(
αF
RT

η±
)

− exp
(

− (1 − α)F
RT

η±
)]

(6)

where the exchange current density i±
0 (t) is given by

i±
0 (t) = k±

√
c±

e,0(t)c
±
ss(t)

(
c±

s,max − c±
ss(t)

)
(7)
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with c±
ss(t) = c±

s (R±
s , t) and c±

e,0 denotes a nominal value of
the electrolyte phase concentration. Specifically, in this work,
c+

e,0(t) = c+
e (0+, t) and c−

e,0(t) = c−
e (0−, t) are electrolyte

phase concentrations at the battery terminals. This is a crucial
property to enable a provable convergent estimator design,
which will be highlighted later. The overpotentials in (6),
η±, can be computed by the difference between the solid
and electrolyte potentials minus the equilibrium potentials.
Mathematically,

η±(t) = φ±
s (x, t) − φe(x, t) − U±(

c±
ss(t)

)
−F R±

f j±
n (t). (8)

The lithium concentration in the electrolyte phase is primar-
ily driven by diffusion of Li-ions and the current

ε+
e

∂c+
e

∂ t
(x, t) = D+

e,eff
∂2c+

e

∂x2 (x, t) −
(
1 − t0

c

)

F AL+ I (t) (9)

εsep
e

∂csep
e

∂ t
(x, t) = Dsep

e,eff
∂2csep

e

∂x2 (x, t) (10)

ε−
e

∂c−
e

∂ t
(x, t) = D−

e,eff
∂2c−

e

∂x2 (x, t) +
(
1 − t0

c

)

F AL− I (t) (11)

where D j
e,eff = D j

e · (ε j
e )brug, with j ∈ {+,−, sep}. Further-

more, the concentration and ion flux must be continuous at
the domain boundaries

∂c−
e

∂x
(0−, t) = ∂c+

e

∂x
(0+, t) = 0 (12)

c−
e (L−, t) = csep

e (0sep, t) (13)

csep
e (Lsep, t) = c+

e (L+, t) (14)

ε−
e D−

e
∂c−

e

∂x
(L−, t) = εsep

e Dsep
e

∂csep
e

∂x
(0sep, t) (15)

εsep
e Dsep

e
∂csep

e

∂x
(Lsep, t) = ε+

e D+
e

∂c+
e

∂x
(L+, t). (16)

The diffusion dynamics (1) and (2) and (9)–(11) may be
further enhanced by accounting for concentration-dependent
diffusion coefficients [54], [55]. This work neglects this feature
to seek the balance between model accuracy and simplicity.
Not including the concentration-dependent diffusion coeffi-
cients introduces modeling uncertainty, but we expect the
proposed state observer in Section V to be robust.

The potentials in solid phase and electrolyte phase are
governed by

∂φ±
s

∂x
(x, t) = i±

e − I (t)
σ± (17)

∂φe

∂x
(x, t) = − i±

e (x, t)
κ

+ 2RT
F

(
1 − t0

c

)

×
(

1 + d ln fc/a

d ln ce
(x, t)

)
∂ ln ce

∂x
(x, t) (18)

in which k f (x, t) := (1+ (d ln fc/a)/(d ln ce)(x, t)) is approx-
imated as a constant parameter in x , i.e., k f ≈ k f (x, t),
∀x ∈ [0−, 0+]. Moreover, the ionic current density in the
electrolyte phase, i±

e , may be forthrightly determined by the
spatially uniform current density (see, e.g., [18, Fig. 3]).

The output voltage of the cell, V (t), is measured across the
current collectors

V (t) = φ+
s (0+, t) − φ−

s (0−, t)

=
[
φe(0+, t) − φe(0−, t)

]
+ F

[
R+

f j+
n (t) − R−

f j−
n (t)

]

+
[
η+(t) − η−(t)

]
+

[
U+(

c+
ss(t)

)
− U−(

c−
ss(t)

)]
.

(19)

Assuming α = 0.5 [18], [56], [57] and inverting the
Butler–Volmer equation (6) yield the analytic expression for
the overpotentials

η±(t) = RT
αF

sinh−1
[ ∓I (t)

2a±L±i±
0 (t)

]
. (20)

Note that α = 0.5 is a common assumption in the literature
and has been proven to be almost always true in practice [18],
[56], [57]. The electrolyte potential difference across current
collectors, (φe(t) = φe(0+, t) − φe(0−, t), can be computed
by integrating equation (18) across the cell thickness

(φe(t) =
∫ 0+

0−
− i±

e (x, t)
κ

dx

+ 2RT
F

(
1 − t0

c

)
k f

∫ 0+

0−

∂ ln ce

∂x
(x, t) dx

= − L+ + 2Lsep + L−

2κ
I (t) + kc ln

[
c+

e (0+, t)
c−

e (0−, t)

]
(21)

where kc := (2RT /F)(1 − t0
c )k f . Now, we combine (8)

with (19)–(21) to compute cell voltage

V (t) = RT
αF

sinh−1
[ −I (t)

2a+ AL+i+
0 (t)

]

− RT
αF

sinh−1
[

I (t)
2a− AL−i−

0 (t)

]

+ U+(
c+

ss(t)
)
− U−(

c−
ss(t)

)

−
(

R+
f

a+ AL+ +
R−

f

a− AL−

)

I (t)

− L+ + 2Lsep + L−

2κ
I (t)

+ kc
[
ln c+

e (0+, t) − ln c−
e (0−, t)

]
(22)

where U+(·) and U−(·) denote OCPs of two electrodes.
The key differences with respect to the existing SPMe model

in [18] and [60] are underlined here. In [18] and [60], the
values of exchange current density i±

0 , electrolyte conductivity
κ , and electrolyte activity coefficient fc/a are nonlinear func-
tions of volume-averaged electrolyte concentrations in each
cell domain. The model we use, in contrast, assumes that
these quantities are functions of electrolyte concentrations at
the domain boundaries (see the exchange current density equa-
tion (7) for an example). This adjustment produces a voltage
output function, (22), that is only dependent on the boundary
values of solid phase and electrolyte phase dynamics, i.e.,
c+

ss(t), c−
ss(t), c−

e (0−, t), and c+
e (0+, t). As we will demonstrate

in the following, this model enables a state observability
analysis and a provably convergent state observer design in
a feedback fashion. Let us denote SPMe in [18] and [60] as
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Fig. 2. Discharge curves at various C-rates for DFN model [10],
SPMe-A [18], and SPMe-B.

“SPMe-A” (where “A” stands for average) and SPMe used in
this article as “SPMe-B” (in which “B” stands for boundary)
for the ease of presentation.

Remark 1 (Limitations of SPM Family): The assumption
behind the SPM-based models is that the nonuniformity along
the thickness of a battery is neglected. This nonuniformity
can affect the prediction of uneven film growth and lithium
plating [59]. One may choose to model the nonuniformity
to achieve more granular modeling and analysis. However,
in this work, our goal is to quantify lithium concentrations
to a certain point and link it to battery SOH. This objective
contrasts with having a physical insight of nonuniform side
reaction mechanisms, which would require more descriptive
physics-based degradation models and challenge the real-time
applicability of the method.

B. Model Comparison

We numerically compare the open-loop voltage responses
between SPMe-A, SPMe-B, and DFN models. The parameters
of these three models are adopted from [18] and [62] for
a lithium cobalt oxide (LCO) cathode. All three models are
subject to the same set of parameters for consistency. Fig. 2
shows the discharge curves in terms of voltage at various
constant C-rates, ranging from 0.5C to 4C. At low C-rates
(<1C), both SPMe models exhibit accurate voltage predictions
compared to DFN, as the electrolyte concentration gradient is
relatively small across the spatial domain so that the boundary
values of the electrolyte phase concentrations are close to
the volume-averaged ones. Under high C-rates (>2C), as the
electrolyte concentration gradient builds up, although SPMe
model predictions slightly deviate from DFN, they offer decent
approximations. Ultimately, the prediction accuracy in terms
of root-mean-squared errors (RMSEs) between the two SPMe
models and DFN is enumerated in Table II. Notably, SPMe-B
consistently outperforms SPMe-A for current rates less than
4C. These results justify the utilization of boundary values

Fig. 3. Voltage prediction comparison of DFN model [10], SPMe-A [18],
and SPMe-B on an FUDS cycle.

TABLE II

RMSE BETWEEN SPME AND DFN

of electrolyte phase concentration in the SPMe model for
practical applications, even under high-current fast charging
scenarios. Furthermore, voltage responses under a dynamic
charge and discharge cycle, produced from a Federal Urban
Driving Schedule (FUDS) [61], are shown in Fig. 3. The max-
imum C-rate is 3.3C and the mean C-rate is 0.4C. Both SPMe
models predict voltage with a 10-mV RMSE. Consequently,
hereafter, SPMe-B will be regarded as the plant model for state
observability analysis and state/parameter estimation algorithm
design.

III. STATE OBSERVABILITY ANALYSIS

We perform a state observability analysis for the SPMe
model in the linear sense via frequency-domain model reduc-
tion and Kalman decomposition in this section. This section
answers the fundamental question of whether solid phase and
electrolyte phase lithium concentrations can be inferred con-
currently from current and voltage data in an online fashion.

A. Frequency-Domain Model Order Reduction

Since the solid phase diffusion dynamics (1)–(4) are linear
PDEs for both electrodes, the solutions can be analytically
solved. This produces transcendental transfer functions linking
lithium concentrations at any point r along the radius and input
current [62]

C±
s (r, s)
I (s)

=
e

√
s

D±
s
(R±

s −r)
(

e
2
√

s
D±

s
r − 1

)
m±(

R±
s

)2

(
1 + R±

s

√
s

D±
s

+ e
2R±

s
√

s
D±

s

(
R±

s

√
s

D±
s

− 1
))

r

(23)
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where C±
s (r, s) = L[cs(r, t)] and m± = ±1/(D±

s Fa±L±).
L[·] is the Laplace transform operator. However, the most cru-
cial quantities are lithium concentration at surface of electrode
particle c±

ss and volume-averaged lithium concentration c̄±
s

c̄±
s (t) = 1

4/3π
(
R±

s
)3

∫ R±
s

0
c±

s (r, t)
(
4πr 2)dr. (24)

Here, c±
ss has a direct impact on battery output voltage

[see (22)] and also plays a crucial role in the charge transfer
transfer kinetics, and c̄±

s is used to indicate the SOC in the
electrodes [16]. Now, the transfer function for the surface
concentration c±

ss can be obtained by setting r = R±
s in (23)

C±
ss(s)
I (s)

=
sinh

(√
s

D±
s

R±
s

)
m± R±

s

R±
s

√
s

D±
s

cosh
(√

s
D±

s
R±

s

)
− sinh

(√
s

D±
s

R±
s

)

(25)

where C±
ss(s) = L[css(t)]. One can also conveniently obtain

the transfer function of the volume-averaged concentration by
evaluating

C̄±
s (s)
I (s)

= 1

4/3π
(
R±

s
)3

∫ R±
s

0

c±
s (r, s)
U(s)

(
4πr2)dr = q±

s
(26)

where C̄±
s (s) = L[C̄±

s (t)] and q± = 3D±
s m±/R±

s . Note that
the transfer function (26) for the volume-averaged concentra-
tion is an integrator. In the time domain, this corresponds to
the Coulomb counting procedure.

According to (9)–(11), the dynamics in the electrolyte phase
is governed by a set of parabolic diffusion PDEs with forced
current inputs. We assume that electrolyte diffusivity D j

e and
electrolyte volume fraction ε j

e are uniform across the spatial
domains. This assumption may generate modeling uncertainty
to a certain level, but it strikes a balance between model accu-
racy and mathematical simplicity. Hereafter, denote De = D j

e

and εe = ε j
e for all j ∈ {+,−, sep}. Under this scenario, the

Laplace transform of electrolyte dynamics (9)–(11) are given
by

d2C j
e (x, s)
dx2

− s
De

C j
e (x, s) ∓ β j I (s) = 0 (27)

where C j
e (x, s) = L[c j

e (x, t)], β± = (1 − t0
c )/(Deεe F AL±),

and βsep = 0. The Laplace transform of the matching boundary
conditions (12)–(16) are not repeated here. For simplicity
of the analytical calculation of the electrolyte phase trans-
fer functions, we assume L− = 1/4L and Lsep = 3/20L,
where L = L− + Lsep + L+ denotes battery thickness [16].
Any other selections of cell geometry do not fundamentally
change the subsequent analysis and application of the trans-
fer functions. Ultimately, solving ordinary differential equa-
tion (ODE) (27) together with the boundary conditions for
positive and negative electrodes yields the analytic transfer
functions between electrolyte concentrations and current at cell

terminals x = 0− and x = 0+

C−
e (0−, s)

I (s)
= γ −

s

−
γ − sinh

(
3
4

L
√

s
De

)
+ γ + sinh

(
3
5

L
√

s
De

)

s · sinh
(

L
√

s
De

)

(28)
C+

e (0+, s)
I (s)

= −γ +

s

+
γ − sinh

(
1
4

L
√

s
De

)
+ γ + sinh

(
2
5

L
√

s
De

)

s · sinh
(

L
√

s
De

)

(29)

with γ ± = (1 − t0
c )/(εe F AL±). It should be noted that,

similar to the solid phase, our focus in the electrolyte phase is
restricted to transfer functions at the domain boundaries. This
occurs because the cell voltage, in particular the electrolyte
concentration overpotential, is a direct function of electrolyte
phase concentration at the cell terminals (see the last term
in (22) for details).

Next, we will employ the Padé approximation to reduce the
orders of the aforementioned nonlinear transcendental transfer
functions (25), (26), (28), and (29) derived from battery PDE
dynamics, so as to produce linearized representations of the
models and investigate the observability of the internal states
from voltage measurement [63]. The Padé approximation tech-
nique has emerged as one of the common strategies to perform
model reduction for the family of SPMs because it conve-
niently approximates any general transcendental transfer func-
tion G(s) as a proper ratio of two power series that naturally
possess poles and zeros depending on system characteristics.
Furthermore, the order of the approximation can be dictated
by the tradeoff between computational burden and desired
model accuracy. Previous work [16] highlighted that the solid
phase diffusion dynamics can be sufficiently approximated by
a third-order truncation in highly transient electric vehicle
applications where 90% of the current signal power for the
drive cycles is within frequencies less than 2.5 Hz. Let

C±
s (r, s)
I (s)

≈ G±
s (s) := b±

s,1s2 + b±
s,2s + b±

s,3

s3 + a±
s,1s2 + a±

s,2s + a±
s,3

. (30)

Note that the linear transfer function G±
s (s) in (30) is strictly

proper since the order of the numerator is less than the order of
the denominator [62]. Given the approximation order, the poly-
nomial coefficients are computed via the method of moment
matching [64]. Another crucial property of the transcendental
transfer functions (25), (26), (28), and (29) is that the solid
and electrolyte phases all contain poles at the origin of the
complex plane. This indicates that the SPMe dynamics are
only marginally stable so that open-loop state observers will
not guarantee proper state estimation convergence. As a result,
the Padé approximations must preserve the zero poles inherited
from the original transfer functions. Hence, we must have
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TABLE III

COEFFICIENTS OF PADÉ APPROXIMATIONS

a±
s,3 = 0, and the values of as’s and bs’s are documented in

Table III.
The Padé-approximated frequency-domain transfer func-

tion (30) can then be realized in time domain by a linear
state-space representation via a third-order controllable canon-
ical form [65] as follows:

ẋ±
s (t) = A±

s x±
s (t) + B±

s I (t) (31)

c±
ss(t) = H ±

ss x±
s (t) (32)

C̄±
s (t) = H̄ ±

s x±
s (t) (33)

where x+
s , x−

s ∈ Rns with ns = 3, and

x±
s =

⎡

⎣
x±

s,1
x±

s,2
x±

s,3

⎤

⎦, A±
s =

⎡

⎣
0 1 0
0 0 1

−a±
s,3 −a±

s,2 −a±
s,1

⎤

⎦, B±
s =

⎡

⎣
0
0
1

⎤

⎦

H ±
ss =

⎡

⎣
b±

s,3
b±

s,2
b±

s,1

⎤

⎦
⊤

, H̄ ±
s =

⎡

⎣
q±a±

s,2
q±a±

s,1
q±

⎤

⎦
⊤

. (34)

It is evident that A±
s has a zero eigenvalue since the transfer

function G±
s (s) has a pole at the origin in each electrode since

a±
s,3 = 0. As a result, an open-loop state observer in the solid

phase will not achieve asymptotic stability.
Next, we examine the electrolyte phase dynamics. Similar

to the solid phase, we now utilize a second-order Padé approx-
imation for the transcendental transfer functions (28) and (29)

C±
e

(
0±, s

)

I (s)
≈ G±

e (s) := b±
e,1s + b±

e,2

s2 + a±
e,1s + a±

e,2
. (35)

As before, to conserve the zero poles in (28) and (29), let
a±

e,2 = 0. Interestingly, the moment matching procedure [64]
produces b±

e,2 = 0, which indicates that G±
e (s) allows common

poles and zeros at the origin in the plant transfer function.
In this scenario, although the integrator mode becomes unob-
servable, c±

e (0, t) will not directly depend on the integrator
mode. This suggests that the zero and pole at the origin can
be canceled to achieve minimal realization, and the remaining

modes are fully observable. Consequently, the Padé approxi-
mation in (35) can be reduced to first order. Hence, by com-
puting the common denominator for G+

e (s) and G−
e (s), the

controllable canonical form for a second-order Padé approxi-
mation of the electrolyte phase transfer functions (28) and (29)
is written as

ẋe(t) = Aexe(t) + Be I (t) (36)

c+
e (0+, t) = H +

e xe(t) (37)

c−
e (0−, t) = H −

e xe(t) (38)

where xe ∈ Rne with ne = 2 and

xe =
[

xe,1

xe,2

]
, Ae =

[
0 1

−a+
e,1a−

e,1 −(
a+

e,1 + a−
e,1

)
]
, Be =

[
0
1

]

H +
e =

[
a−

e,1b+
e,1 b+

e,1

]
, H −

e =
[
a+

e,1b−
e,1 b−

e,1

]
. (39)

The coefficients in (39) can be found in Table III. Ulti-
mately, the composite state-space representation of the solid
phase dynamics with both electrodes, electrolyte phase dynam-
ics, and the cell voltage is given by

ẋ(t) = Ax(t) + B I (t) (40)

y(t) = h(x(t), I (t)) (41)

where x ∈ RN with N = (2ns + ne) and

x =
⎡

⎣
x+

s
x−

s
xe

⎤

⎦, A =
⎡

⎣
A+

s 0 0
0 A−

s 0
0 0 Ae

⎤

⎦, B =
⎡

⎣
B+

s
B−

s
Be

⎤

⎦. (42)

The output function (41) represents cell voltage and is
collectively characterized by (22), (32), (33), (37), and (38).

Remark 2: The zero-pole cancellation at the origin in the
electrolyte phase is a crucial property for SPMe system observ-
ability because it naturally eliminates the unobservable modes.
As a result, the system matrix A in (42) has two zero eigen-
values, one of which originates from the solid phase dynamics
in the negative electrode and the other stems from the solid
phase dynamics in the positive electrode.

B. Observability Decomposition

One of the core objectives is to study the state observ-
ability of the SPMe system containing dynamics of solid
phase with both electrodes and electrolyte phase from cur-
rent and voltage measurements, in a mathematically rigor-
ous way. This is accomplished by adopting the concept of
Kalman decomposition [66], [67]. A Kalman decomposition
is a linear transformation that decouples a system based on the
observability and controllability of the subspaces. It separates
the state space into four distinct components: observable and
controllable subspace, observable and uncontrollable subspace,
unobservable and controllable subspace, and unobservable and
uncontrollable subspace. The Kalman decomposition brings a
system into a structure upon which the observable and control-
lable subspaces can be clearly identified. We now introduce
this useful technique to facilitate the observability analysis and
the subsequent observer designs.

Theorem 1 (Observability Decomposition [68]): Consider
an n-dimensional unobservable linear time-invariant (LTI) sys-
tem ẋ = Ax + Bu and y = Cx + Du. Suppose that the rank
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of the observability matrix, rank(O), is d with d < n. Let Po

groups d linearly independent rows of O and P = [Po Puo]⊤,
where Puo consists of randomly constructed rows to produce
an invertible P . Then, the similarity transformation x̄ = Px
brings the LTI system to the following form:

[ ˙̄xo
˙̄xuo

]
=

[
Āo 0
Ā21 Āuo

][
x̄o

x̄uo

]
+

[
B̄o

B̄uo

]
u, x̄o ∈ Rd (43)

y =
[
C̄o 0

][ x̄o

x̄uo

]
+ Du. (44)

Moreover, the pair ( Āo, C̄o) is observable.
Let the state space of x̄ and u be χ and U , respectively.

In (43), x̄o is the observable subspace, whereas x̄uo rep-
resents the unobservable subspace since the pair ( Āo, C̄o)
is observable and x̄uo is not reflected in the output equa-
tion (44). As such, a convergent closed-loop state observer
can be designed to estimate the x̄o subspace. However, if the
matrix Āuo for the unobservable subspace of the system is
Hurwitz (this facilitates a detectable system), then a convergent
open-loop observer for the unobservable state x̄uo may be
constructed, but the convergence speed would be completely
dictated by the eigenvalues of the matrix Āuo. Next, we apply
the observability decomposition to a linearized version of the
nonlinear battery SPMe model (40) and (41).

C. SPMe Model Observability Analysis

This section answers the question of “can we estimate
the entire state space of the SPMe model (40) and (41)
using current and voltage measurements?” We study the local
observability of the nonlinear reduced-order SPMe system via
linearizing the voltage map (41). The Jacobian of function
h(x, I ) with respect to x can be computed via Cp = dh/dx =
[∂h/∂x+

s ∂h/∂x−
s ∂h/∂xe]. The first two terms in Cp

involve ∂U±/∂c±
ss , the slopes of the OCP curves. They play

a crucial role in state observability as the OCP curve for
negative electrode is typically flat in the mid-SOC region [32].
This flatness produces small numeric values for the gradient
∂U−/∂c−

ss , which eventually weakens the local state observ-
ability. However, states in the SPMe model (40) will still not
be locally observable even around regions with high OCP gra-
dients since the pair (A, Cp) is inherently not observable. This
is fundamentally caused by the zero poles in the solid phase
dynamics, which is further stated in the following proposition.

Proposition 1 (Observability of Reduced-Order SPMe
Model): The observability matrix O is rank deficient, i.e.,
rank(O) = N − 1 around any equilibrium points in χ , that
is, states of the SPMe system (40) and (41) are not locally
observable from current and voltage.

The proof of Proposition 1 is straightforward by realizing
a±

3 = 0. At this moment, since the SPMe system is not locally
observable, we are positioned to apply Theorem 1 to decouple
the SPMe system (40) phase out the unobservable subspace.
This procedure requires d = (N−1) linearly independent rows
from the observability matrix Op. An intriguing property to
highlight is that the matrix Āuo ≡ 0 in spite of the choice
of Puo. Thus, the transformed system (43) and (44) based
on the reduced-order SPMe model is not detectable—thus
disallowing an asymptotically convergent open-loop observer

for the unobservable subspace. Our goal is to estimate the
entire state space in the transformed domain and then recon-
struct the critical lithium concentrations in the solid phase and
the electrolyte phase. This cannot be accomplished without
the knowledge of x̄uo. From the preceding discussions, since
x̄uo may be dynamically estimated by neither an open-loop
observer nor a closed-loop observer, we seek to explore the
fundamental properties of an electrochemical battery system to
purposely construct the state x̄uo such that it is known a priori.
We present the following proposition, which elucidates the
physical conservation of lithium inventory in the solid phase.

Proposition 2 (Conservation of Solid Phase Lithium): The
inventory of solid phase lithium is conserved [18], [34]. This
is dnLi,s/dt = 0 with

nLi,s =
∑

j={+,−}

ϵ j
s L j A

4/3π
(

R j
s

)3

∫ R j
s

0
c j

s (r, t)
(
4πr 2)dr

= ε+
s L+ AC̄+

s + ε−
s L− AC̄−

s . (45)

Coincidentally, since C̄±
s = H̄ ±

s x±
s [see (33)], nLi,s may be

alternatively expressed as

nLi,s = ε+
s L+ AH̄ +

s x+
s + ε−

s L− AH̄ −
s x−

s = Mx (46)

where M = [ε+
s L+ AH̄ +

s ε−
s L− AH̄ −

s 0]. Hence, by adopting
the relation in (46), we may mathematically force x̄uo = nLi,s

by making Puo = M. This construction produces a time-
invariant x̄uo as follows:

x̄uo = Puox = Mx = nLi,s . (47)

With an accurate knowledge of lithium inventory in the
solid phase nLi,s , the state x̄uo becomes a constant. There-
fore, despite the fact that x̄uo is not dynamically observable
from system output voltage, its temporal evolution can be
predetermined.

As per Proposition 1, the reason why SPMe model states
are not fully locally observable is the zero columns in matrices
A+

s and A−
s from the solid phase dynamics (31). Namely, this

stems from the poles at the origin in the solid phase surface
concentration transfer functions in (25). Although the transfer
functions for the electrolyte phase (28) and (29) also have
poles at the origin, they are not the key contributing factor for
the loss of observability in SPMe. This occurs because of the
zero-pole cancellation at the origin in the Padé approximation
of the electrolyte phase dynamics, as elucidated by Remark 2.
Eventually, this unique property allows us to compensate for
the observability deficiency using only one algebraic relation
that, by construction, exploits the conservation of lithium
feature in the solid phase.

Remark 3 (Observability Improvement With Thermal
Dynamics): Previous works have demonstrated the
improvement of lithium concentration state observability in
an electrochemical model by exploiting the electrochemical–
thermal coupling [31], [34]. This is because the thermal model
brings additional information about the electrode surface
concentrations and the additional temperature measurements
enhance the awareness of battery status. Although the present
work does not account for battery thermal effects, the
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Fig. 4. Workflow of the SPMe state observer. It consists of the solid and electrolyte phase Padé-based estimator (coral and gray), inverse Kalman decomposition
(green), and solid phase lithium estimator (blue). The observer produces estimates of solid phase and electrolyte phase lithium concentrations, as well as the
inventory of solid phase lithium.

observability of an SPMe-thermal model is expected to be
even stronger.

One practical issue associated with the aforementioned
framework is that the total inventory of lithium in the solid
phase, nLi,s , is not known beforehand and must be determined
from data. It has been previously demonstrated in the liter-
ature that solid-electrolyte interphase (SEI) growth, among
others, consumes cyclable lithium, which eventually causes
cell charge capacity loss [69], [70]. Hence, nLi,s will be slowly
degrading over time as a result of unwanted side reactions.
In Section IV, we will develop a sensitivity-based parameter
estimation scheme to track the changes in solid phase lithium
inventory to: 1) improve state observability and facilitate a
state observer design and 2) quantify battery SOH.

A block diagram of the subsystems in this framework
is shown in Fig. 4. A nonlinear state observer (to be pro-
posed in Section V) based on the Padé-based reduced-order
SPMe model in the transformed domain by the aforemen-
tioned Kalman decomposition produces estimates of solid
phase and electrolyte phase lithium concentrations, enabled
by the knowledge of total moles of solid phase lithium nLi,s .
A sensitivity-based parameter estimation algorithm for iden-
tifying nLi,s runs in parallel relying on battery voltage and
current measurements. It is noteworthy that the estimation
structure in Fig. 4 adopts the hierarchical multitime-scale
strategy [71], [72] since the state estimation algorithms operate
on a faster time scale (i.e., seconds), whereas the parameter
identification scheme pilots on a much slower time scale (i.e.,
cycles). This is because the loss of lithium inventory is slow
across a battery’s life cycle [39] so that the changes in its
values are refreshed less frequently.

IV. SENSITIVITY-BASED PARAMETER ESTIMATION

In this section, we aim to estimate the total moles of lithium
in the solid phase, nLi,s , also identified as the unobservable

state, x̄uo in Section III-C. Given the fact that the nLi,s infor-
mation is unknown, a sensitivity-based parameter estimation
approach can provide the parameter estimates with statis-
tical uncertainty bounds. This approach ultimately provides
the unobservable state information, enabling state estimator
designs.

First, we combine the SPMe model dynamics (1)–(22) with
the algebraic equation (45), which results in an ODE system
as follows:

ẋ = f (x, u), x(t0 | θ) = x0 (48)

y = h(x, u), y(t0 | θ) = y0 (49)

where f (·, ·) encodes the dynamical equations in the SPMe
model and h(·, ·) denotes the output equation defined in (41).
The states and inputs are denoted by x ∈ RN and u ∈ R,
respectively. In this system, we note that the change of
θ = nLi,s (or equivalently θ ) only alters the initialization of
the SPMe system, as shown by (48) and (49).

Next, the sensitivity dynamical system is derived to under-
stand the relationship between output and parameter val-
ues [73]. Here, the local sensitivities of the output with respect
to parameters are given by the first-order derivatives at the
nominal parameter values. We now discuss the steps to derive
the dynamical system of local sensitivity of nLi,s in the SPMe
model. First, let the sensitivity of the states and output with
respect to θ be

Sx = ∂x
∂θ

, Sy = ∂y
∂θ

. (50)

Moreover, si, j is defined as the partial derivative of the i th
state to the j th algebraic variable

si, j (t) = ∂xi(t)
∂θ j

. (51)
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Now, the sensitivity differential equations (SDEs) for the
battery SPMe model (48) and (49) can be formulated as
follows:

Ṡx = ∂ f
∂x

· Sx + ∂ f
∂θ

, Sx(t0) = Sx0 (52)

Sy = ∂h
∂x

· Sx + ∂h
∂θ

, Sy(t0) = Sy0 (53)

where

1 = ∂ f
∂x

· Sx(t0) + ∂ f
∂θ

0 = ∂h
∂x

· Sx(t0) + ∂h
∂θ

. (54)

The first equation in (54) is obtained by computing the
derivative of (46) with respect to nLi,s , and the second equation
in (54) is the initial condition for voltage output equation.
The initial conditions for sensitivity dynamical system are
computed by solving these algebraic equations. It is worth
highlighting that the above sensitivity dynamic equations are
ODEs rather than differential algebraic equations. This can
be attributed to the fact that the algebraic variable (54) only
has an impact on the state initialization in (48). Subsequently,
sensitivity equations will be integrated to minimize the voltage
prediction in a nonlinear least-squares fashion, namely,

min
θ̂

t f∑

t=0

[
y(t) − ŷ

(
t; θ̂

)]2
. (55)

To iteratively solve the optimization problem (55), we adopt
the L-M algorithm [44], [74]. In essence, L-M adaptively
switches the parameter update scheme between the gradient
descent method and the Gauss–Newton method based on

[
J⊤J + λdiag

(
J⊤J

)]
h θ̂ = J⊤(y − ŷ) (56)

where J = ∂ ŷ/∂θ̂ is the local sensitivity of the output
ŷ, which is equivalent to the sensitivity vector computed
from (52) to (54). λ trades off gradient descent update and
Gauss–Newton update. Finally, the parameter estimates can
be updated iteratively according to

θ̂k+1 = θ̂k + h θ̂ . (57)

Remark 4 (Convergence of L-M Algorithm): The L-M algo-
rithm is essentially a numerical optimization algorithm for
solving nonlinear systems, and thus, global convergence is
generally not guaranteed. However, the convergence of L-M
algorithm can be established under sets of specific convex
constraints conditions, and we refer the interested readers
to [78] and [79].

Remark 5 (Significance of nLi,s Knowledge): The knowl-
edge of nLi,s obtained by the sensitivity-based parameter esti-
mation not only facilitates SPMe state observability, as we
have demonstrated in Section III, but also provides one of the
most critical indicators for battery SOH/capacity degradation.
Moreover, one can also estimate other critical aging parame-
ters, e.g., film resistance and diffusion coefficients, using the
L-M algorithm.

V. DESIGN OF NONLINEAR STATE OBSERVER

We now propose an asymptotically convergent state estima-
tor to estimate the observable subspace x̄o within the trans-
formed coordinate by the Kalman decomposition, from only
voltage and current measurements.

First, the plant model of the observable subspace can be
expressed by

˙̄xo(t) = Āox̄o(t) + B̄ou(t) (58)

y(t) = h(x̄o(t), x̄uo, u(t)) (59)

where x̄uo = nLi,s , whose numerical value can be obtained
by the sensitivity-based parameter identification algorithm
described in Section IV. Provided the states from the trans-
formed domain x̄o and x̄uo, the nonlinear output map h in (59)
can then be alternatively expressed by

h = RT
αF

sinh−1
[ −I (t)

2a+ AL+i+
0 (x̄o, x̄uo)

]

− RT
αF

sinh−1
[

I (t)
2a− AL−i−

0 (x̄o, x̄uo)

]

+ U+(x̄o, x̄uo) − U−(x̄o, x̄uo)

−
(

R+
f

a+ AL+ +
R−

f

a− AL−

)

I (t)

− L+ + 2Lsep + L−

2κ
I (t)

+ kc
[
ln

(
H +

e xe
) − ln

(
H −

e xe
)]

. (60)

Remark 6 (Lipschitz Continuity): Given accurate estima-
tion of x̄uo from Section IV, the nonlinear output function
h in (60) is Lipschitz continuous with respect to x̄o since h
is continuously differentiable [77]. Mathematically, one of the
popular strategies to determine a Lipschitz constant, although
conservative, is to calculate the infinity norm of ∂h/∂ x̄o, i.e.,
γ = ∥∂h/∂ x̄o∥∞. With that

∥∥h
(
x̄ i

o, x̄uo, u
)
− h

(
x̄ j

o , x̄uo, u
)∥∥ ≤ γ

∥∥x̄ i
o − x̄ j

o

∥∥ (61)

for all u ∈ U and any x̄ i
o, x̄ j

o ∈ χ .
Now, we adopt a linear output error injection philosophy

to propose a state observer for the nonlinear plant model (58)
and (59) as follows:

˙̄̂xo(t) = Āo ˆ̄xo(t) + B̄ou(t) + p[y(t) − ŷ(t)] (62)

ŷ(t) = h
(

ˆ̄xo(t), x̄uo, u(t)
)
. (63)

Specifically, ˆ̄xo denotes the state estimation. The observer
gain p is a design tuning knob in order to ensure the stability
and convergence of the state observer system. Theorem 2 dic-
tates the sufficient conditions for observer convergence, which
is extended from similar state estimation designs for Lipschitz
nonlinear systems [29], [78].

Theorem 2 (Convergence of State Observer): The state esti-
mation error e(t) = x̄o(t) − ˆ̄xo(t) asymptotically converges
to zero, if there exists feasible solutions to the linear matrix
inequalities

M1 :=
[

Ā⊤
o R + R Āo −R

−R 0

]
≺ 0

M2 :=
[
γ 2 pp⊤ 0

0 −I − K

]
≽ 0 (64)
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where R = R⊤ ≻ 0 and S = S⊤ ≻ 0 symmetric positive
definite matrices.

Proof: The estimation error e(t) is governed by

ė(t) = Āoe(t)−pỹ(t) (65)

by taking the difference between (58) and (62).
ỹ(t) = y(t) − ŷ(t) represents output error. We now
analyze the stability of the error dynamics (65) by adopting
the Lyapunov function candidate

W (t) = e⊤(t)Re(t), R = R⊤ ≻ 0. (66)

Taking the derivative of W yields

dW
dt

= ė⊤ Re + e⊤ Rė

=
(
Āe − pỹ

)⊤ Re + e⊤ R
(

Āe − pỹ
)

= e⊤(
Ā⊤ R + R Ā

)
e − (pỹ)⊤ Re − e⊤ R(pỹ)

= [
e⊤ z⊤]

M1

[
e
z

]
(67)

in which z := pỹ. If one chooses R such that the M1 ≺ 0, then
Ẇ < 0. Next, according to Remark 6, the Lipschitz continuity
condition on the output function y produces

∥ỹ∥ = ∥y − ŷ∥ ≤ γ ∥e∥. (68)

We now apply the Cauchy–Schwarz inequality [29] to
z = pỹ: ∥z∥ ≤ ∥p∥∥ỹ∥ ≤ γ ∥p∥∥e∥, which can be alter-
natively written in the vector form by squaring both sides

z⊤z ≤ γ 2 pp⊤e⊤e. (69)

A tuning term, K , can be added to (69) to form a linear
matrix inequality (LMI)

z⊤z − e⊤(
γ 2 pp⊤)

e − z⊤K z ≤ 0 (70)

and K ≻ 0 is a freely assigned tuning parameter. Next, (70)
can be rearranged in terms of a LMI

[
e⊤ z⊤]

M2

[
e
z

]
≽ 0. (71)

Hence, Ẇ (t) < 0, or equivalently W (t), converges to zero
asymptotically, if the matrix inequalities in (64) are satisfied
and R = R⊤ ≻ 0, K = K ⊤ ≻ 0.

Remark 7 (Future Work of State Observer): The present
study tackles a state estimation design problem for a nonlinear
reduced-order SPMe model. In particular, we estimate: 1) solid
phase volume-averaged lithium concentration; 2) solid phase
surface lithium concentration; and 3) electrolyte phase concen-
trations at battery terminals, using battery voltage and current
measurements only. For SPMe model with quasi-linear elec-
trolyte PDEs (9)–(11), one can subsequently design another
set of observers to estimate electrolyte phase lithium concen-
tration across battery thickness using the electrolyte concen-
tration information at the terminals provided in this article,
by adopting methods such as PDE backstepping [79]. This is
a topic for future work.

VI. ALGORITHM VALIDATION

This section presents simulation studies and experimental
validations to evaluate the performance of the proposed esti-
mation methodology.

A. Simulation Results

We first present simulation-based algorithm validation to
evaluate the effectiveness of the developed state and parameter
estimators for the reduced-order SPMe model. The battery
chemistry under consideration is the same as those used in
Section II-B. The SPMe model (1)–(22) is regarded as the
plant model and utilized to generate battery voltage and current
data. All state and parameter estimates are randomly initial-
ized at wrong values on purpose. Specifically, the true initial
conditions are c+

ss(0)/c+
s,max = 0.5464, c−

ss(0)/c−
s,max = 0.8263,

c+
e (0+, 0) = c−

e (0−, 0) = 2000 mol/m3, and the corresponding
initial cell voltage is V (0) = 4.0 V. With this, the total
inventory of solid phase lithium is nLi,s = 2.1329 mol. This
parameter will be recursively identified via the sensitivity-
based L-M algorithm from Section IV. The state observer (62)
and (63) is implemented numerically based on the observable
x̄o-system (58) and (59), and the observer gains are selected
according to the LMI condition (64) in Theorem 2. Further-
more, solid phase lithium concentrations are reported by their
normalized values throughout this section, i.e., θ±

ss = c±
ss/c±

s,max
and θ̄±

s = c̄±
s /c±

s,max, and the electrolyte phase lithium con-
centrations are reported by the differences from the initial
conditions, i.e., c̃±

e (0±, t) = c±
e (0±, t) − c±

e (0±, 0).
1) Parameter Identification: From an electrochemical per-

spective, a decrease in total amount of nLi,s is considered as a
way for battery degradation, which results in capacity fading.
This is because many aging mechanisms and unwanted side
reactions consume cyclable lithium. Consequently, over time,
battery voltage responses will deviate from that of a fresh cell.
Fig. 5(c) showcases the impact of nLi,s degradation on the
trajectories of battery voltage, under the Urban Dynamometer
Driving Schedule (UDDS) drive cycle. This input profile is
also leveraged for the identification of parameter nLi,s since
the highly transient profile produces a sufficiently rich signal.
In the simulation validation, suppose that the battery under
consideration has undergone considerable numbers of cycles to
exhibit degradation, and the “true” (aged) value of parameter
nLi,s is set to n∗

Li,s = 2.1329 mol. Furthermore, the initial
guess in the parameter estimator is n̂Li,s(0) = 2.50 mol. The
estimated parameter is updated at the end of each iteration,
which is plotted against the true parameter value in Fig. 5(a).
We also observe from Fig. 5(a) and (b) that there are two
plateaus during the parameter estimation procedure. This is
due to the fact that the nonlinearity of the voltage function
affects the parameter estimation results. To ensure parame-
ter estimation convergence, the algorithm automatically halts
when the voltage RMSE is less than 0.01 mV. Ultimately, the
estimated parameter n̂Li,s = 2.1331 mol has less than 0.01%
error with respect to the true value n∗

Li,s = 2.1329 mol.
2) State Estimation: Given accurate estimation of total

moles of solid phase lithium n̂Li,s from Section VI-A1,
we evaluate the effectiveness of the proposed LMI-based state
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Fig. 5. Parameter identification results for solid phase lithium inventory
nLi,s using a UDDS drive cycle. The voltage RMSE is reduced to less than
0.01 mV via the L-M algorithm. (a) nLi,s estimates. (b) Voltage estimate
RMSE. (c) Effect of nLi,s degradation to voltage.

observer using the Kalman decomposition. Note again that,
nLi,s degrades at a slower time scale, while the state estimation
algorithm operates on a faster time scale. As a sanity check,
we first consider a constant 1C discharge for 20 min, followed
by a 10-min relaxation period. Fig. 6(a) visualizes the input
current profile. The state observer’s initial estimation errors are
10.5%, 20.9%, 5.5%, and 16.9% for ĉ+

ss(t), ĉ−
ss(t), ĉ+

e (0+, t),
and ĉ−

e (0−, t), respectively. As discussed in Section V, the
state observer is designed and implemented in the trans-
formed coordinate by the Kalman decomposition, and con-
sequently, the convergence of lithium concentrations is shown
in Fig. 6(b) and (c). The estimates of lithium concentrations
asymptotically converge to the truth trajectories in less than
5 min with a proper selection of the observer gains. In addition,
generally, the persistency of excitation (PE) for the parameter
nLi,s using a constant rate charging/discharging is not high
enough to generate convergent parameter estimates [25]. This
motivates the use of sufficiently rich UDDS cycle to identify
the parameter in Section VI-A1, as well as testing the state
observer using experimental data in Section VI-B.

B. Experimental Results

In this section, the performance of the proposed state and
parameter estimation framework is evaluated via experimen-
tal data from an aged commercial lithium nickel–cobalt–
aluminum oxide (NCA)—graphite cell. The experiments were
carried out using Panasonic 2.7-Ah 18 650 lithium NCA
battery cells. The experimental setup consists of an Arbin
LBT21084HC series battery tester with 0.02% full-scale

Fig. 6. State estimation results under a 30-min 1C constant discharge and
relaxation. (a) Current profile. (b) Lithium surface concentration in positive
electrode. (c) Lithium surface concentration in negative electrode. (d) Elec-
trolyte lithium concentration at positive electrode terminal. (e) Electrolyte
lithium concentration at negative electrode terminal. (f) Battery voltage.

range (FSR) accuracy. Battery measurements (current, voltage,
and surface temperature) were collected each second. The
experimentally collected current and voltage data, including
OCV test, constant current charge and discharge, and drive
cycles, have been utilized for parameterization of the SPMe
model. For model identification, we adopt particle swarm opti-
mization (PSO) that minimizes the root-mean-squared voltage
error between experimental data and model to achieve the best
model fit [80]. Specifically, we use the UDDS drive cycle data
in Fig. 7(a) and (b) to perform experimental validations since it
generates sufficiently rich information. The PSO-trained SPMe
model generates less than 14-mV RMSE between the UDDS
voltage data and the model output.

1) Parameter Identification: In this work, the total moles of
solid phase lithium, nLi,s , is regarded as the primary battery
aging parameter and will be recursively identified from the
experimental data, that is, we assume that all other elec-
trochemical parameters are known a priori, and the only
parameter varying with battery degradation is nLi,s . Notably,
although the focus of this study is to track nLi,s , the method can
be universally adapted to estimating other degradation-related
electrochemical parameters. We initialize the parameter esti-
mate randomly at n̂Li,s(0) = 0.1638 mol, which intro-
duces an unreasonably high RMSE of 209 mV between
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Fig. 7. Experimental parameter estimation results for a UDDS drive cycle.
(a) Current. (b) Voltage. (c) nLi,s estimation.

experimentally measured voltage and model-simulated voltage
output. We then identify the moles of lithium by using the L-M
algorithm in (56). The algorithm iterates the parameter updates
until the voltage RMSE between the data and model drops
below 14 mV, and the resultant estimation trajectory is shown
in Fig. 7(c). Despite the fact that the nLi,s estimate reaches
the steady-state within 90 iterations, there exists a small bias
(<1%). This uncertainty fundamentally stems from the model
mismatch with experimental data. Note that in the simulation
study in Section VI-A, we managed to achieve a voltage error
less than 0.01 mV with the identified n̂Li,s since the modeling
uncertainty was not present in the model-to-model validation.
However, there inevitably are modeling uncertainties when it
comes to experimental verification for the battery system, but
the selected 14-mV cutoff voltage error is sufficient to produce
a satisfactory nLi,s estimation performance with less than 1%
error.

2) State Estimation: Next, with the knowledge of solid
phase lithium inventory, we perform state estimation with
the same electric vehicle charge/discharge cycle shown in
Fig. 7(a). As discussed before, this dynamic cycle is highly
transient whose mean and maximum C-rates are 0.39C and
3.57C, which are sufficiently significant to generate excitation
to the electrolyte dynamics. In this case, the robustness of the
state estimation algorithm will be challenged due to uncer-
tainties in n̂Li,s estimates, i.e., n̂Li,s ≈ 1.01 · n∗

Li,s , and such
uncertainties will propagate into the results of state estimation
via (47). Besides, unlike simulation studies, we do not pos-
sess the knowledge of the true lithium concentration inside
the battery. Consequently, the “truth” quantities will be pro-
duced via model simulation utilizing the identified parameters.

Fig. 8. Experimental state and voltage estimation results for a UDDS drive
cycle. (a) Lithium surface concentration in the positive electrode. (b) Lithium
surface concentration in the negative electrode. (c) Electrolyte lithium con-
centration at positive electrode terminal. (d) Electrolyte lithium concentration
at negative electrode terminal. (e) Voltage.

The state observers are initialized with wrong values to val-
idate the observer’s convergence property. For the electrolyte
phase concentration estimates in Fig. 8(c) and (d), after the
initial transient (roughly 120 s), the estimates successfully
converge to the “truth” trajectory with negligible disturbances
caused by my model mismatch. As for the solid phase con-
centration estimates in Fig. 8(a) and (b), the estimation tra-
jectories evolve with a slower speed compared with that of
the electrolyte estimates but eventually produce 0.31% and
0.66% root-mean-squared percentage error for positive and
negative electrodes, respectively. Remarkably, we note that the
estimates for lithium concentration in the negative electrode
present a small estimation bias stemming from nLi,s estimation
error, which can be observed in Fig. 8(b). However, note in
Fig. 8(e) that the voltage estimation error is relatively low with
RMSE 13.7 mV after the initial transient period (close to the
identified model RMSE). This is because the state observers
slightly underestimate the solid phase lithium concentrations
in the negative electrode to yield an accurate voltage esti-
mation given perturbed nLi,s estimate. These results empha-
size the importance of having accurate estimation of nLi,s in
order to obtain the correct internal states as battery undergoes
degradation.

3) Practical Considerations: The proposed methodology
can be adopted by applications that require battery monitor-
ing, control, and management, e.g., power electronics, electric
vehicles, and stationary energy storage. Compared with an
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ECM-based BMS, an electrochemical model-based framework
will rigorously monitor lithium concentrations, potentials, and
cyclable lithium inventory in a mathematically guaranteed
fashion. This information is critical to the performance, safety,
and longevity of batteries and can be leveraged as essential
inputs to design battery physics-based fast and safe charg-
ing protocols. One practical universally recognized limita-
tion is the proper parameterization of SPMe. Electrochemical
models are characterized by many parameters, which may
vary according to temperature, SOC, and health, and accu-
rate parameterization of these (potentially weakly identifi-
able) parameters still remains a challenging topic. To mitigate
this issue, prior studies have identified several solutions to
improve parameter identifiability and convergence of identifi-
cation algorithms [73], [81], [82].

VII. CONCLUSION

Typical battery state estimators focus on rough indicators
such as Coulomb counting for SOC and capacity/resistance for
SOH. However, these indicators do not pinpoint the physical
sources of degradation. This article presents a mathematically
elegant way to reconstruct specific battery electrochemical
information, including the electrode-level states, together with
the electrolyte dynamics and amount of cyclable lithium. The
considered SPMe model is approximated in the frequency
domain by the Padé approximation. The locally unobservable
linearized state-space realization is then decomposed by the
Kalman decomposition, which permits us to identify a single
unobservable state. The solid phase lithium inventory then
facilitates a nonlinear state observer design by predefining
the evolution of the unobservable subspace. However, this
assumption is difficult to meet in practice for battery manu-
facturers, and lithium inventory changes with battery aging.
To counteract this, a sensitivity-based parameter estimation
scheme is additionally developed to estimate lithium inventory
as the battery degrades. The electrode-level solid phase and
electrolyte phase states are crucial for battery charge and
health monitoring, and this article rigorously identifies the
unobservable components as well as the strategy to utilize only
the solid phase lithium inventory to achieve mathematically
guaranteed estimation in both solid and electrolyte phases.
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ential equation observer for battery state-of-charge/state-of-health esti-
mation via an electrochemical model,” J. Dyn. Syst., Meas., Control,
vol. 136, no. 1, Jan. 2014, Art. no. 011015.

[27] A. Bartlett, J. Marcicki, S. Onori, G. Rizzoni, X. G. Yang, and T. Miller,
“Electrochemical model-based state of charge and capacity estimation
for a composite electrode lithium-ion battery,” IEEE Trans. Control Syst.
Technol., vol. 24, no. 2, pp. 384–399, Mar. 2016.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 10,2024 at 00:08:39 UTC from IEEE Xplore.  Restrictions apply. 



4860 IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, VOL. 9, NO. 4, DECEMBER 2023

[28] D. Zhang, S. Dey, and S. J. Moura, “Lithium-ion battery state estimation
for a single particle model with intercalation-induced stress,” in Proc.
Annu. Amer. Control Conf. (ACC), Jun. 2018, pp. 2294–2299.

[29] S. Dey, B. Ayalew, and P. Pisu, “Nonlinear robust observers for state-
of-charge estimation of lithium-ion cells based on a reduced electro-
chemical model,” IEEE Trans. Control Syst. Technol., vol. 23, no. 5,
pp. 1935–1942, Sep. 2015.

[30] R. Hausbrand et al., “Fundamental degradation mechanisms of layered
oxide Li-ion battery cathode materials: Methodology, insights and novel
approaches,” Mater. Sci. Eng., B, vol. 192, pp. 3–25, Feb. 2015.

[31] S. Dey and B. Ayalew, “Real-time estimation of lithium-ion con-
centration in both electrodes of a lithium-ion battery cell utiliz-
ing electrochemical–thermal coupling,” J. Dyn. Syst., Meas., Control,
vol. 139, no. 3, pp. 031007–031010, Mar. 2017.

[32] A. Allam and S. Onori, “An interconnected observer for concurrent
estimation of bulk and surface concentration in the cathode and anode
of a lithium-ion battery,” IEEE Trans. Ind. Electron., vol. 65, no. 9,
pp. 7311–7321, Sep. 2018.

[33] S. Sattarzadeh, S. Dey, A. Colclasure, and K. Smith, “Addressing the
observability problem in batteries: Algorithm design for electrode-level
charge and health estimation,” in Proc. Amer. Control Conf. (ACC),
Jul. 2020, pp. 1131–1136.

[34] R. Klein, N. A. Chaturvedi, J. Christensen, J. Ahmed, R. Findeisen,
and A. Kojic, “Electrochemical model based observer design for a
lithium-ion battery,” IEEE Trans. Control Syst. Technol., vol. 21, no. 2,
pp. 289–301, Mar. 2013.

[35] B. Suthar et al., “Optimal control and state estimation of lithium-ion
batteries using reformulated models,” in Proc. Amer. Control Conf.,
Jun. 2013, pp. 5350–5355.

[36] R. B. Gopaluni and R. D. Braatz, “State of charge estimation in Li-
ion batteries using an isothermal pseudo two-dimensional model,” IFAC
Proc. Volumes, vol. 46, no. 32, pp. 135–140, Dec. 2013.

[37] A. M. Bizeray, S. Zhao, S. R. Duncan, and D. A. Howey, “Lithium-
ion battery thermal-electrochemical model-based state estimation using
orthogonal collocation and a modified extended Kalman filter,” J. Power
Sources, vol. 296, pp. 400–412, Nov. 2015.

[38] L. D. Couto and M. Kinnaert, “Internal and sensor fault detection and
isolation for Li-ion batteries,” IFAC-PapersOnLine, vol. 51, no. 24,
pp. 1431–1438, 2018.

[39] C. R. Birkl, M. R. Roberts, E. McTurk, P. G. Bruce, and D. A. Howey,
“Degradation diagnostics for lithium ion cells,” J. Power Sources,
vol. 341, pp. 373–386, Feb. 2017.

[40] M. Dubarry, V. Svoboda, R. Hwu, and B. Yann Liaw, “Incremen-
tal capacity analysis and close-to-equilibrium OCV measurements to
quantify capacity fade in commercial rechargeable lithium batteries,”
Electrochem. Solid-State Lett., vol. 9, no. 10, pp. A454–A457, 2006.

[41] I. Bloom, J. Christophersen, and K. Gering, “Differential voltage analy-
ses of high-power lithium-ion cells: 2. Applications,” J. Power Sources,
vol. 139, nos. 1–2, pp. 304–313, Jan. 2005.

[42] X. Zhou, J. L. Stein, and T. Ersal, “Battery state of health monitoring
by estimation of the number of cyclable Li-ions,” Control Eng. Pract.,
vol. 66, pp. 51–63, Sep. 2017.

[43] M. Huang, M. Kumar, C. Yang, and A. Soderlund, Aging Estimation
Lithium-Ion Battery Cell Using Electrochemical Model-Based Extended
Kalman Filter. Reston, VA, USA: American Institute of Aeronautics and
Astronautics, 2019, p. 0785.

[44] S. Park, D. Zhang, R. Klein, and S. Moura, “Estimation of cyclable
lithium for Li-ion battery state-of-health monitoring,” in Proc. Amer.
Control Conf. (ACC), May 2021, pp. 3094–3101.

[45] A. Bartlett, J. Marcicki, S. Onori, G. Rizzoni, X. Guang Yang, and
T. Miller, “Model-based state of charge estimation and observability
analysis of a composite electrode lithium-ion battery,” in Proc. 52nd
IEEE Conf. Decis. Control, Dec. 2013, pp. 7791–7796.

[46] H. Fang, Y. Wang, Z. Sahinoglu, T. Wada, and S. Hara, “State of charge
estimation for lithium-ion batteries: An adaptive approach,” Control Eng.
Pract., vol. 25, pp. 45–54, Apr. 2014.

[47] L. Wu, K. Liu, and H. Pang, “Evaluation and observability analysis of an
improved reduced-order electrochemical model for lithium-ion battery,”
Electrochimica Acta, vol. 368, Feb. 2021, Art. no. 137604.

[48] X. Li et al., “A physics-based fractional order model and state of
energy estimation for lithium ion batteries. Part I: Model development
and observability analysis,” J. Power Sources, vol. 367, pp. 187–201,
Nov. 2017.

[49] D. Zhang, L. D. Couto, and S. J. Moura, “Electrode-level state estimation
in lithium-ion batteries via Kalman decomposition,” IEEE Control Syst.
Lett., vol. 5, no. 5, pp. 1657–1662, Nov. 2021.

[50] K. E. Thomas, J. Newman, and R. M. Darling, “Mathematical model-
ing of lithium batteries,” in Advances in Lithium-Ion Batteries. Cham,
Switzerland: Springer, 2002, pp. 345–392.

[51] E. Prada, D. Di Domenico, Y. Creff, J. Bernard, V. Sauvant-Moynot, and
F. Huet, “Simplified electrochemical and thermal model of LiFePO4-
graphite Li-ion batteries for fast charge applications,” J. Electrochem.
Soc., vol. 159, no. 9, pp. A1508–A1519, 2012.

[52] X. Han, M. Ouyang, L. Lu, and J. Li, “Simplification of physics-based
electrochemical model for lithium ion battery on electric vehicle. Part I:
Diffusion simplification and single particle model,” J. Power Sources,
vol. 278, pp. 802–813, Mar. 2015.

[53] A. Nath, R. Mehta, R. Gupta, S. S. Bahga, A. Gupta, and S. Bhasin,
“Control-oriented physics-based modeling and observer design for state-
of-charge estimation of lithium-ion cells for high current applications,”
IEEE Trans. Control Syst. Technol., early access, Mar. 11, 2022, doi:
10.1109/TCST.2022.3152446.

[54] F. Lantelme, H. Groult, and N. Kumagai, “Study of the concentration-
dependent diffusion in lithium batteries,” Electrochimica Acta, vol. 45,
no. 19, pp. 3171–3180, Jun. 2000.

[55] L. O. Valøen and J. N. Reimers, “Transport properties of LiPF6-based Li-
ion battery electrolytes,” J. Electrochem. Soc., vol. 152, no. 5, p. A882,
2005.

[56] T. R. B. Grandjean, L. Li, M. X. Odio, and W. D. Widanage, “Global
sensitivity analysis of the single particle lithium-ion battery model
with electrolyte,” in Proc. IEEE Vehicle Power Propuls. Conf. (VPPC),
Oct. 2019, pp. 1–7.

[57] X. Hu, D. Cao, and B. Egardt, “Condition monitoring in advanced bat-
tery management systems: Moving horizon estimation using a reduced
electrochemical model,” IEEE/ASME Trans. Mechatronics, vol. 23,
no. 1, pp. 167–178, Feb. 2018.

[58] H. E. Perez, X. Hu, and S. J. Moura, “Optimal charging of batteries via
a single particle model with electrolyte and thermal dynamics,” in Proc.
Amer. Control Conf. (ACC), Jul. 2016, pp. 4000–4005.

[59] X.-G. Yang and C.-Y. Wang, “Understanding the trilemma of fast charg-
ing, energy density and cycle life of lithium-ion batteries,” J. Power
Sources, vol. 402, pp. 489–498, Oct. 2018.

[60] J. S. Newman. (2004). Fortran Programs for Simulation of Electro-
chemical Systems, Dualfoil. F Program for Lithium Battery Simulation.
[Online]. Available: https://www.cchem.berkeley.edu/jsngrp/fortran.html

[61] Y. Xing, W. He, M. Pecht, and K. L. Tsui, “State of charge estimation
of lithium-ion batteries using the open-circuit voltage at various ambient
temperatures,” Appl. Energy, vol. 113, pp. 106–115, Jan. 2014.

[62] J. C. Forman, S. Bashash, J. L. Stein, and H. K. Fathy, “Reduction of
an electrochemistry-based Li-ion battery model via quasi-linearization
and padé approximation,” J. Electrochem. Soc., vol. 158, no. 2, p. A93,
2010.

[63] G. A. Baker, Jr., P. Graves-Morris, and S. S. Baker, Padé Approximants:
Encyclopedia of Mathematics and It’s Applications, vol. 59. Cambridge,
U.K.: Cambridge Univ. Press, 1996.

[64] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems.
Philadelphia, PA, USA: SIAM, 2005.

[65] K. Ogata, Modern Control Engineering. Upper Saddle River, NJ, USA:
Prentice-Hall, 2010.

[66] H. Kimura, Chain-Scattering Approach to H∞-Control. Berlin,
Germany: Springer, 2012.

[67] L. Weiss and R. E. Kalman, “Contributions to linear system theory,” Int.
J. Eng. Sci., vol. 3, no. 2, pp. 141–171, Jul. 1965.

[68] R. E. Kalman, “Mathematical description of linear dynamical systems,”
J. Soc. Ind. Appl. Math. A Control, vol. 1, no. 2, pp. 152–192, 1963.

[69] X. Lin, J. Park, L. Liu, Y. Lee, A. M. Sastry, and W. Lu, “A compre-
hensive capacity fade model and analysis for Li-ion batteries,” J. Elec-
trochem. Soc., vol. 160, no. 10, pp. A1701–A1710, 2013.

[70] J. Christensen and J. Newman, “Effect of anode film resistance on the
charge/discharge capacity of a lithium-ion battery,” J. Electrochem. Soc.,
vol. 150, no. 11, p. A1416, 2003.

[71] C. Hu, B. D. Youn, and J. Chung, “A multiscale framework with
extended Kalman filter for lithium-ion battery SOC and capacity esti-
mation,” Appl. Energy, vol. 92, pp. 694–704, Apr. 2012.

[72] Y. Zou, X. Hu, H. Ma, and S. E. Li, “Combined state of charge and
state of health estimation over lithium-ion battery cell cycle lifespan for
electric vehicles,” J. Power Sources, vol. 273, pp. 793–803, Jan. 2015.

[73] S. Park, D. Kato, Z. Gima, R. Klein, and S. Moura, “Optimal experimen-
tal design for parameterization of an electrochemical lithium-ion battery
model,” J. Electrochem. Soc., vol. 165, no. 7, pp. A1309–A1323, 2018.

[74] K. Levenberg, “A method for the solution of certain non-linear problems
in least squares,” Quart. J. Appl. Math., vol. 2, no. 2, pp. 164–168,
Jul. 1944.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 10,2024 at 00:08:39 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TCST.2022.3152446


ZHANG et al.: BEYOND BATTERY SOC ESTIMATION: OBSERVER FOR ELECTRODE-LEVEL STATE AND CYCLABLE LITHIUM 4861

[75] H. Dan, N. Yamashita, and M. Fukushima, “Convergence properties of
the inexact Levenberg–Marquardt method under local error bound con-
ditions,” Optim. Methods Softw., vol. 17, no. 4, pp. 605–626, Jan. 2002.

[76] C. Kanzow, N. Yamashita, and M. Fukushima, “Levenberg–Marquardt
methods with strong local convergence properties for solving nonlinear
equations with convex constraints,” J. Comput. Appl. Math., vol. 172,
no. 2, pp. 375–397, 2004.

[77] H. J. Marquez, Nonlinear Control Systems. Hoboken, NJ, USA: Wiley,
2003.

[78] R. Rajamani, “Observers for Lipschitz nonlinear systems,” IEEE Trans.
Autom. Control, vol. 43, no. 3, pp. 397–401, Mar. 1998.

[79] M. Krstic and A. Smyshlyaev, Boundary Control of PDEs: A Course on
Backstepping Designs. Philadelphia, PA, USA: SIAM, 2008.

[80] S. Ebbesen, P. Kiwitz, and L. Guzzella, “A generic particle swarm
optimization Matlab function,” in Proc. Amer. Control Conf. (ACC),
Jun. 2012, pp. 1519–1524.

[81] A. M. Bizeray, J.-H. Kim, S. R. Duncan, and D. A. Howey, “Iden-
tifiability and parameter estimation of the single particle lithium-ion
battery model,” IEEE Trans. Control Syst. Technol., vol. 27, no. 5,
pp. 1862–1877, Sep. 2019.

[82] H. Pang, L. Mou, L. Guo, and F. Zhang, “Parameter identification and
systematic validation of an enhanced single-particle model with aging
degradation physics for Li-ion batteries,” Electrochimica Acta, vol. 307,
pp. 474–487, Jun. 2019.

Dong Zhang received the B.S. degree in civil and
environmental engineering from the University of
Michigan, Ann Arbor, MI, USA, in 2015, the B.S.
degree in electrical and computer engineering from
Shanghai Jiao Tong University, Shanghai, China,
in 2015, and the M.S. and Ph.D. degrees in sys-
tems and control engineering from the University
of California at Berkeley, Berkeley, CA, USA, in
2016 and 2020, respectively.

He is currently an Assistant Professor in aerospace
and mechanical engineering with The University of

Oklahoma, Norman, OK, USA. His current research interests include dynami-
cal system estimation and controls, optimization, machine learning, renewable
energy systems, energy storage, and advanced lithium-ion battery management
systems.

Dr. Zhang was a recipient of the American Society of Mechanical
Engineers (ASME) Energy System Best Paper Award and the Finalist at
the 2020 American Control Conference (ACC) and the 2020 Dynamic Systems
and Control Conference (DSCC).

Saehong Park received the B.S. and M.S. degrees
in electronic engineering from Sogang University,
Seoul, South Korea, in 2013 and 2015, respectively,
and the Ph.D. degree in civil and environmental
engineering from the University of California at
Berkeley, Berkeley, CA, USA, in 2020.

He is currently a Post-Doctoral Research Asso-
ciate with the University of California at Berkeley.
His current research interests include optimal and
adaptive controls, system identification, energy con-
version systems, smart grid systems, and batteries.

Dr. Park has been nominated for the Best Student Paper Award from the
American Control Conference in 2018.

Luis D. Couto received the bachelor’s degree
in chemical engineering from Simón Bolívar Uni-
versity, Caracas, Venezuela, in 2013, the master’s
degree in renewable energies from the Autonomous
University of Madrid, Madrid, Spain, in 2014,
and the Ph.D. degree from the Free University of
Brussels, Brussels, Belgium, in 2018.

In 2020, he was a Visiting Scholar with the Depart-
ment of Engineering Science, University of Oxford,
Oxford, U.K. He is currently a Post-Doctoral
Researcher with the Department of Control Engi-

neering and System Analysis, Free University of Brussels. His current research
interests include state/parameter estimation, fault diagnosis, and optimal con-
trol in the context of battery management systems.

Venkatasubramanian Viswanathan received the
B.S. degree from IIT Madras, Chennai, India,
in 2008, and the Ph.D. degree from Stanford
University, Stanford, CA, USA, in 2013.

He is currently an Associate Professor with the
Department of Mechanical Engineering, Carnegie
Mellon University, Pittsburgh, PA, USA. His
research focuses on material design for electro-
chemical energy systems with specific applica-
tions, including lithium-ion (Li-ion) and Li-metal
batteries, autonomous experimentation, and battery

electrolytes.
Dr. Viswanathan was a recipient of several awards, including the Office

of Naval Research Young Investigator Award in 2019, the Sloan Research
Fellowship in Chemistry in 2018, the National Science Foundation CAREER
Award in 2016, the American Chemical Society PRF Young Investigator
Award in 2014, and the Electrochemical Society Daniel Cubicciotti Award
in 2010.

Scott J. Moura (Member, IEEE) received the B.S.
degree from the University of California at Berkeley,
Berkeley, CA, USA, in 2006, and the M.S. and
Ph.D. degrees from the University of Michigan, Ann
Arbor, MI, USA, in 2008 and 2011, respectively, all
in mechanical engineering.

From 2011 to 2013, he was a Post-Doctoral Fellow
with the Cymer Center for Control Systems and
Dynamics, University of California at San Diego,
La Jolla, CA, USA. In 2013, he was a Visiting
Researcher with the Centre Automatique et Systems,

MINES ParisTech, Paris, France. He is currently an Assistant Professor and
the Director of the Energy, Controls, and Applications Laboratory (eCAL)
in civil and environmental engineering with the University of California at
Berkeley. He is also an Assistant Professor with the Smart Grid and Renew-
able Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Berkeley. His
current research interests include control, optimization, and machine learning
for batteries, electrified vehicles, and distributed energy resources.

Dr. Moura was a recipient of the National Science Foundation Gradu-
ate Research Fellowship, the UC Presidential Postdoctoral Fellowship, the
O. Hugo Shuck Best Paper Award, the ACC Best Student Paper Award (as
an advisor), the ACC and ASME Dynamic Systems and Control Conference
Best Student Paper Finalist (as a student), the Hellman Fellows Fund, the
University of Michigan Distinguished ProQuest Dissertation Honorable Men-
tion, the University of Michigan Rackham Merit Fellowship, and the College
of Engineering Distinguished Leadership Award.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 10,2024 at 00:08:39 UTC from IEEE Xplore.  Restrictions apply. 


