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Weaknesses and Improvements of the Extended Kalman Filter for
Battery State-of-Charge and State-of-Health Estimation

Shida Jiang!, Junzhe Shi', Manashita Borah!2, and Scott Moura®

Abstract— Battery management systems (BMS) are essential
for ensuring battery performance and safety. Accurate estima-
tion of the State of Charge (SOC) and State of Health (SOH),
for example, are critical. However, utilizing the conventional
Extended Kalman Filter (EKF) for SOC and SOH co-estimation
is often challenging due to problems such as overconfident
covariance estimation, overly simplistic assumptions about pro-
cess noise and measurement noise covariance matrices, and the
shift of the open circuit voltage (OCV) curve as the cell ages.
To address these issues, this paper introduces an improved
EKF design for co-estimating the SOC and SOH. The pro-
posed approach incorporates innovative strategies to counteract
covariance pitfalls, calculates the optimal covariance matrix
configuration objectively, and incorporates OCYV shifts from ag-
ing. Comparative simulations underscore the superiority of our
method against traditional EKF and Unscented Kalman Filter
(UKF) techniques. The code is available at https://github.
com/Shida-Jiang/EKF_UKF_SOCSOH_estimation.

I. INTRODUCTION
A. Background and Motivation

Battery management systems (BMS) are integral to ensur-
ing battery longevity, reliability, and safe operation across
diverse applications, ranging from electric vehicles to renew-
able energy storage systems [1]. Central to these systems is
estimating the State of Charge (SOC) and State of Health
(SOH) [2], which cannot be directly measured. The SOC
quantifies the battery’s remaining capacity (current energy
level) as a percentage of its current maximum capacity, while
the SOH provides insight into the battery’s aging condi-
tion. The SOH typically expresses the current maximum
capacity as a percentage of the battery’s initial maximum
capacity [3]. Accurate estimations of both SOC and SOH are
paramount. They ensure efficient energy utilization, extend
battery lifespan, and bolster operational safety [4]. With these
considerations in mind, the primary goal of this study is to
design an optimal and robust algorithm for the co-estimation
of SOC and SOH.

B. Literature Review

The Extended Kalman Filter (EKF) has gained prominence
in numerous state estimation applications because of its
proficiency in handling nonlinear systems [5]. Nonetheless, it
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is not free from challenges. A notable limitation of the EKF
is its susceptibility to rapid covariance drops, especially in
scenarios characterized by complex nonlinear dynamics [6].
While a swift decline in covariance can signify high confi-
dence in state estimates, it is a double-edged sword. Such
rapid drops can lead to overconfident estimations, posing
issues, particularly in contexts where exact state predictions
are crucial [7]. Overconfidence in the predictions can render
it less adaptable to new, unforeseen data, ushering in an over-
optimism dilemma. This shortcoming becomes especially
pronounced in BMS, where precise state estimation is pivotal
to operational safety and efficiency.

While the EKF is fundamentally an approximation of the
Bayesian state estimator and lacks universal convergence
guarantees, it has been effectively applied across various
practical applications. Its appeal largely stems from its lower
computational burden compared to other estimators, such
as the Unscented Kalman Filter (UKF) [8] and the Iterated
Extended Kalman filter (IEKF) [9]. Numerous studies have
leveraged the EKF for simultaneous battery SOC and SOH
estimation. For instance, Plett utilized extended Kalman
filters to estimate both the states and parameters of a battery’s
electrical circuit model (ECM) [10]. Similarly, Xu and col-
leagues introduced an adaptive dual EKF approach for SOC
and SOH co-estimation [11]. However, many of these studies
often gloss over the intricate setup of the noise covariance
matrix within the EKF framework specific to co-estimation
and simply assume that the noise covariance matrix is a
constant and diagonal matrix [12]. Neglecting this aspect
can compromise the accuracy and reliability of the resultant
estimates.

Beyond the research gaps mentioned earlier, it is essential
to delve deeper into the nuanced relationship between the
SOH and open circuit voltage (OCV) of a battery, often char-
acterized as the OCV shift. In the literature, many algorithms
tasked with battery state estimation lean heavily on the SOC-
OCYV relationship, assuming that this relationship remains
static [13]. However, this assumption can sometimes lead to
a significant error in SOC and SOH estimation, as changes
in SOH can directly modify the OCV curve, thereby altering
the intrinsic dynamics of the battery [14]. The OCV curve
shift embodies a complex interplay of various chemical and
physical processes inside the battery, such as changes in the
solid electrolyte interphase (SEI) and electrode degradation
[15]. While initial shifts may seem minimal, their aggregated
impact, particularly as they intensify with time, can markedly
affect both the battery’s performance and the precision of its
state estimation [16].
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C. Contributions

This paper extends the existing research by designing
an improved EKF for SOC and SOH co-estimation that
addresses several critical weaknesses. In summary, the con-
tributions and novelties of this study are as follows:

e A new technique to address the inherently inaccurate
covariance estimation in traditional EKF. This technique
ensures a more consistent and reliable confidence inter-
val estimation.

¢ A methodology to more accurately model the noise
covariance matrix in the EKF framework specifically
tailored for battery SOC and SOH co-estimation. This
approach seeks to bolster the robustness and accuracy
of the EKF.

o Experimental data on the OCV shift due to SOH varia-
tions is collected. Using these empirical data, we built
the EKF algorithm in a way that enables us to integrate
this OCV shift into the SOC and SOH estimation
process.

D. Structure of the Paper

The structure of this paper is delineated as follows: Section
IT delves into the methodology employed in our study.
Section IIT presents simulation results, utilizing two distinct
current profiles, and offers a comparative analysis between
our proposed method and the traditional EKF and UKF
approaches. Section IV provides a comprehensive summary
and conclusion of our findings.

II. METHODOLOGY

A. Conventional Extended Kalman Filter Algorithm and its
Weaknesses

The conventional EKF algorithm built for the nonlinear
model represented by (1) is summarized in Algorithm 1.
To adapt to the nonlinear state transition function and mea-
surement function, EKF linearizes the two functions at each
step and estimates the covariance based on the linearized
functions.

zp = f(Tp—1,ur)

2 = h(xg, ug)

(D

While linearization (first-order approximation) is a com-
monly used technique when dealing with nonlinear systems,
we found that linearization performed in the EKF, especially
the linearization of the output function, can make the co-
variance estimation inaccurate. To better illustrate this, an
example is shown below.

Consider two simple two-state systems S; (represented
by (2)) and Sy (represented by (3)). The two systems have
the same state-space function and start with the same initial
states [x1,0,¥2,0]7 = [1,0.99]7 and initial covariance matrix
Py = I,«>. Both systems have zero process noise and a
measurement noise of le-8. The measurement at each step
is always z = 2.

X1,k X1, k—1
T2 k-1 (2

2 =21+ a9 — 1

L2k

Algorithm 1 The extended Kalman filter algorithm
Inputs: xq, Py, vk, 2%
k+0
while k& < length(u) do
k+—Fk+1
State prediction gjk—1 < f(Tr—1,ur)
Calculate the state transition matrix Fj, = % |I:mk\k—1
Calculate the process noise @
Covariance prediction Pyx_1 < FpPy_15—1 5 +Qx
Calculate the residual yy, < 2z — h(xg, ug)

Calculate the measurement Jacobian matrix Hj <
Oh
Oz |1T=Tk|k—1 )

Calculate the measurement noise Ry,

. P, HF
alculate the Kalman gain K} ¢ ———12=1"k
C g kN HyPp_ HI +Rr

State update T < Trjp—1 + KrYk
Covariance update Py, < (I — Ky Hy)Ppjp—1
Olltpllt T, Py

end while

X1,k X1, k—1
To o k-1 3)

zk:x%erQ

Neither system is observable in the linear system sense,
and the only difference between them is that the first system
has a linear output function, while the second system has a
nonlinear output function. When a KF is used to estimate the
states (which are actually two parameters since their values
never change) of the first system, the state estimates converge
at [r1,22]7 = [1.004,0.992]7. The covariance matrix will

0.2 -04

—-04 08|
This result is reasonable because the measurement function

only tells us that the actual state lies somewhere on the line
2x1 + x9 — 1 = 2 but does not tell us the exact location.
The nonzero covariance matrix P shows that the KF remains
reliable when the system is unobservable and is aware that
the estimation can be inaccurate under such a condition.

converge to a constant matrix, which is P =

However, things are different for the second system. Since
the system has a nonlinear output function, we use an EKF
to estimate the states. After several iterations, the state esti-
mation will converge at approximately the same point, which

is [1.002,0.996]7. However, the covariance matrix will con-

verge to a very small matrix P = 0.0003 = —0.0006 in
g y = 1-0.0006 0.0013

the second iteration and become even slightly smaller after-
ward, meaning that the EKF is significantly more confident
that its estimation is accurate, which contradicts the fact that
the system is unobservable. In other words, the EKF is not
reliable for unobservable systems and gives an inaccurate
variance estimation.

Such an inaccurate variance estimation can happen to all
nonlinear systems. According to the EKF algorithm, the
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updated covariance at step k can be calculated by (4),

Pyji—1 Hil Hy,
Prk = (1= | -
HkPk|k—1Hk + Ry

)Pkk—l 4)

Therefore, the variance of Hyxyy is:

Hy Py Hf Hy Py HE
HyPy—1 HiP + Ry,

Hy, Py HE = Hy Py HY —

B H Py HE Ry,
Hy Py H + Ry,

&)

Since Ry is positive definite and H;CPk‘k,lHkT is positive
semidefinite, the trace of Hy Py ng is smaller than the trace
of the measurement covariance matrix Rjy. However, Hj, is
the Jacobian matrix calculated at 1, which is usually not
equal to the Jacobian matrix calculated at xy,;, and therefore
cannot represent the linearized measurement function at wy, .
Consequently, EKF underestimates the variance of Hyxys,
and mistakenly believes that the correlation of the states
exists in the hyperplanes indicated by the rows of Hj.
Such an error will accumulate as the estimation proceeds,
making the state covariance matrix inaccurate. The specific
error brought by the mismatch between wy);, and Hy is
related to the degree of nonlinearity of the system as well
as the measurement and process noise. Specifically, when
both noises are small, the covariance matrix would collapse
to a matrix close to zero in the second iteration, which was
precisely what happened in the previous EKF example.
The solution to this problem is simple: we can simply
update the measurement Jacobian matrix H according to
Tk, before updating the covariance matrix Py ;. Back to the
previous example, if this extra step is added to the EKF, the
0.2 —-04
—-0.4 0.8 ]
instead of a small matrix, meaning that the EKF becomes

aware of the fact that the system is unobservable and that
its estimation can be inaccurate, just as in the case of KF.
However, we also noticed that in some rare cases, adding this
extra step can make T'7(Pyx) > T7(Pyjx—1) and cause the
estimation to diverge in the long run. Therefore, we proposed
to update H before updating Py, only when this makes Py,
positive semidefinite and T'r(Py) < T7(Ppyjx—1)-

There are also some other existing KF-based algorithms
that can solve the problem of EKF. For example, UKF [17]
avoids the calculation of the measurement Jacobian matrix at
the cost of higher computational complexity. For another ex-
ample, the IEKF recalculates the updated states Tg|k» Kalman
gain K, and measurement Jacobian matrix H}, several times
until convergence in each time step. However, IEKF cannot
guarantee convergence [18], and it also requires a higher
computational complexity proportional to the number of
iterations. Note that IEKF can only solve the problem of EKF
after convergence. When the number of iterations is too small
for IEKF to converge, the mismatch between the updated
state wy); and the measurement Jacobian matrix Hj will
still exist, causing errors in covariance estimation. Therefore,

covariance matrix will then converge to P =

compared with other existing algorithms, the improvement
we proposed solved the problem of EKF with minimal
computational complexity.

B. Battery Model

The ECM used in this paper is presented in Fig. 1. It
consists of a resistor and an RC pair in addition to the OCV
element.

R2
ocv Rl I‘
C
Fig. 1. Equivalent circuit model

In this paper, OCV is considered a function of SOC and
SOH. Namely, OCV = focv(SOC,SOH). As shown in
(6), SOC is defined as the ratio of the cell’s remaining
capacity (denoted as @) to its present maximum capacity
(denoted as Qnaz)-

Qr
Q’mam
The differential form of (6) is shown in (7), which suggests

that the SOC can be estimated by taking the integral of the
current.

SOC =

(6)

Idt
Qmaw

SOH, on the other hand, as shown in (8), is defined as
the ratio of the cell’s present maximum capacity to its initial
maximum capacity (also often referred to as the nominal
capacity, denoted as (),,). Since the maximum capacity
changes very slowly, the SOH can be considered a constant
during a single cycle.

dSOC =

)

Q7TL(L£

no

SOH = (8)

Back to the system model shown in Fig. 1, If we select the
remaining capacity (in As), capacitor voltage (U, in V), and
present maximum capacity (in As) as the states, current ([,
in A) as the input, and terminal voltage (Use,, in V) as the
output, the discrete state-space representation of the system
can be written as (9).

Qr k Qrk—1
U | =F| Uep—1 | +Bly ©)
Qmaz,k Qmaz,k—1
Uter s = focv(Q?n’iL7 %) + Uck + Rl

where B and F are two constant matrices defined by (10), in
which At is the time interval between two steps.

1 0 0 At
F=10 emé¢ 0|,B=|Ry— Ryemst (10)
0 0 1 0
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Notice that (9) follows the general nonlinear system model
represented by (1). By comparing the two equations, the
following correspondence can be found.

Qr.k
T — Uc,k- Uk = Iy
Qmax,k (11)
f(xr—1,ur) = Far + Buyg
2k = Uterk
h(xk,ur) = fOCV(QgZ:’k , ngzk) + Uk + Rily

Therefore, an EKF can be constructed to estimate the states
of the system. According to Algorithm 1, the only missing
pieces are the process noise covariance matrix )y and the
measurement noise covariance matrix R, the calculation of
which will be introduced in the next section.

Finally, it is worth mentioning that the definition of the
system states is not unique. For example, an alternative
definition is to replace the state “remaining capacity” with the
state “SOC”. The reason that we chose the present definition
was to make the state-transition matrix F' constant so that
the nonlinearity only appears in the output function.

C. Rigorous Calculation of the Process Noise and the Mea-
surement Noise

In the EKF, the process noise and measurement noise
are considered zero-mean Gaussian noise with covariance
matrices () and R, respectively. In battery state estimation,
past literature that uses KF or EKF usually considers ) and
R to be constant matrices and sometimes even fine-tune their
values to get the best estimation result [12]. However, after
a closer look at the state-space representation in (9) and a
careful examination of the error sources, we realized that
a more rigorous and objective way to calculate the process
noise and measurement noise is to make them dynamic and
related to the states and inputs.

The error sources in the state transition function in (9) in-
clude the inaccurate current measurement and the inaccurate
ECM parameters. The latter refers to the parameters Ry and
1/(R2C), which are modeled as constants but are actually
changing during charge and discharge. Additionally, since
the first-order RC model cannot fully capture the dynamics
of a battery, the “actual” value of these ECM parameters can
change even when the current is zero.

The expected error caused by each of these error sources
is derived under the following assumptions:

o [A1]: We assumed that the error caused by each error
source is independent of each other and is independent
of the states.

o [A2]: We used the first-order Taylor series to ap-
proximate the nonlinear functions of random variables.
Specifically, function f of a random variable X is
approximated at the point F(X) as f(X) = f(E(X))+
f(E(X))(X — E(X)), and its variance is therefore
approximated as (f'(E(X)))?0%. For example, if the
random variable a has a mean of ag and a variance of
02, then the random variable e® can be approximated

by €% (14 a — agp), and its variance can be calculated
by e2a0 Ug
e [A3]: We assumed that all the errors have zero mean

and follow the Gaussian distribution.

Denote the standard deviation of current measurement,
Ry, and 1/(R2C) as o7,0r, and 0y /(g,c). respectively.
Based on the three assumptions and the state-space function
in (9), the process noise covariance matrix at step k can
be formulated as (12). Note that the state-space function
for Qe is assumed to be accurate because the SOH is
considered constant during a single cycle.

Qi1 Q12 O
Qr=|Qi2 Q22 0 (12)
0 0 0
where
Ql,l = AtZU%
At
= At(Ry — Rye” 2C)g?
Ql,z ( 2 2€ )01 (13)

_ 24t
Qa2 = At?e” %29 (Ue k-1 — Roly)?07 ) g0
_ At _al

+(R — Roe” 729)%07 + I} (1 — e 729 )%0%,

As for the measurement function in (9), the error sources
are the inaccurate OCV function (because the fitted OCV
function may be different from the actual OCV function), the
voltage measurement noise, the inaccurate internal resistance
R, and the inaccurate current measurement. Denote the
standard deviation of the OCV function and the voltage mea-
surement as ocpcy and oy, respectively. Taking assumptions
[A1] and [A3], the variance of the measurement function can
be formulated as (14).

Ry, = 0bcy + 0 + IR0k, + Rio? (14)

By using (12)-(14) to quantify the process noise and mea-
surement noise, we proposed an improved EKF algorithm
to estimate the battery SOC and SOH, which is shown in
Algorithm 2. The basic architecture of the algorithm is the
same as Algorithm 1, except that we added an extra step to
update the measurement Jacobian matrix H after the state
update for the reasons illustrated in Section II-A.

Once the states and the covariance matrix are estimated,
the final step is calculating the expected value and confidence
interval of SOC and SOH. The former can be calculated by
using (6) and (8) after the states Q- and Q4. are estimated.
As for the variance, SOH is only related to the state Q.nqz,
so its variance can be calculated by (15). However, as for
SOC, its variance cannot be directly calculated because it is
the quotient of two random variables. Therefore, assumptions
[A2]-[A3] are again taken to linearize (6), and the variance
of SOC is approximated by (16).

U§3

2 5

0SOH = A3 (15)

no
1 Q? 2Q
2 _ 2 r 2 T 2

050C = A3 0111t 77 033~ A3 01,3 (16)

max max max

where o; ; is the element in the i*" row and j*" column of
the covariance matrix P.
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Algorithm 2 The proposed SOC + SOH estimation algorithm
Inputs: xq, Po, I;;, User i
k<« 0
while k < length(u) do
kE+—k+1
State prediction Ty < Fxr_1 + Bl (see (10) for
details)
Calculate the process noise () by using (12)
Covariance prediction Pj, FP,_FT +Qy
Calculate the residual yy < Uper — h(xk, Ii) (see
(11) for details)
Calculate the measurement Jacobian matrix Hy,
Calculate the measurement noise Ry, by usTing (14)
Calculate the Kalman gain Kj, #%
State update xg < T + Kryi
Update the measurement Jacobian matrix Hy
Covariance update Py, < (I — K Hy)Py
SOCk + xk(1)/xk(3)
SOH), + =2
Calculate 0%, by using (16)
Calculate 0%, ;; by using (15)
Output SOCy, SOHy,,0%00:0%0n
end while

D. The Shift of the OCV Curve with Respect to SOH

A unique feature of our SOC & SOH estimation algorithm
is that we consider OCV as a function of both SOC and
SOH instead of just SOC. Although some literature found
that the OCV curve is affected by the SOH [19], [20], most
of the existing literature that used EKF to do battery state
estimation didn’t consider such an effect. To study whether
such consideration is necessary, we aged six lithium-ion
batteries with NCM cathode (Model: ICR18650-22F) from
100% SOH to 80% SOH and recorded their OCV throughout
the aging process. For each OCV curve, we performed a
ninth-order polynomial fitting. The OCV curves with respect
to different SOH are shown in Fig. 2. The partial derivative
of the curves with respect to SOC is shown in Fig. 3.

At first glance, according to Fig. 2, the effect of SOH on
the OCYV is not very strong. However, in EKF, the estimation
of the SOH is related to the measurement Jacobian matrix H,
which is almost proportional to gggg. Since the correlation
between gggg and the SOH is very strong, especially at
around 40% SOC and above 85% SOC, ignoring the effect
of SOH can make the estimation result inaccurate, and the
magnitude of such an effect is related to the measurement
noise and the present SOC.

III. SIMULATION AND DISCUSSION
A. Simulation Setup

Two different simulation profiles are used to validate the
effectiveness of the proposed algorithm. The first profile
is a constant-current (CC) charge & discharge profile. In
this profile, the cell starts with 100% SOC and is firstly
discharged at a constant C-rate of 1C to 0% SOC. Then,

4.2r

4 +
387
<36+ ——SOH =80%
iy ———SOH = 82%
o SOH = 84%
O 34 ———SOH = 86%
SOH = 88%
[ SOH = 90%
32 ———SOH = 92%
———SOH = 94%
3| ———SOH = 96%
SOH = 98%
——SOH = 100%
28 . ‘ : : |
0 20 40 60 80 100

SOC (%)

Fig. 2. The experimentally measured open circuit voltage (OCV) curve at
various state-of-health (SOH).

3 -
—— SOH = 80%
SOH = 82%
25¢ SOH = 84%
—— SOH = 86%
SOH = 88%
S ot SOH = 90%
o ——SOH = 92%
@) ——SOH = 94%
7, 51 SOH =96%
g ' SOH = 98%
O —SOH =100%
@) s
o)
0.5r
0 ‘ . ‘ . |
0 0.2 0.4 0.6 0.8 1
SOC (%)
Fig. 3. The partial derivative of the OCV w.r.t. SOC at various SOH.

after a 300-second rest, the cell is charged at a constant C-
rate of 1C to 100% SOC. The C-rate is defined by the cell’s
present maximum capacity, so when @Q,,, = 2.2 Ah and the
SOH is 90%, a 1C C-rate corresponds to 2.2¥0.9 A. The
second profile is an Urban Dynamometer Driving Schedule
(UDDS) profile, which aims to simulate the current of an
EV during a driving cycle. In this profile, the cell starts with
100% SOC and decreases to about 58% SOC at the end of
the profile. In both simulations, the initial states (xg) and
the initial covariance matrix (F) are shown in (17), while
the true SOH is 90%.
[0.85562"0] [o.0025Q$w 0 0
To = 0 , Py = 0 0 0 17)
0.95Qn0 0 0 0.0025Q3,

All the other parameter setups are summarized in Table 1. All
the noise terms (including the noise of the measurement and
the noise of the parameters) are assumed to be independently
and normally distributed in the simulation.
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TABLE I
SIMULATION PARAMETER SETUP

Parameter Qno Ry Ro 1/(R2C) OR1
Value 2.2 Ah 80 m2 50 mQ2 8e-3 Hz 8 m$2

Parameter OR2 01/(RyC) or ococv oy
Value 5 mS2 8e-4 Hz 0.5 mA 4 mV 1 mV

B. Constant-current Discharge & Charge

The simulation result for the CC charge & discharge
profile is shown in Fig. 4 and 5. Because the estimation error
is small compared to the absolute value, only the estimation
error (defined as the difference between the estimated state
and the true state) is plotted in the two figures. In both
figures, the estimation error upper and lower bound are
defined as the difference between the 2-sigma bound (95.4%
confidence interval bound) and the estimated value, repre-
senting the algorithm’s degree of confidence in its estimation.
The standard deviation of the SOC and SOH estimation is
calculated using (15) and (16).

051
SOC error
04F e Estimated error upper bound
N A Rty Estimated error lower bound
03f
02}
S
S
5}
Q
(@]
%]
03F
-04
05 ‘ . s ! . s . |
0 1000 2000 3000 4000 5000 6000 7000 8000
Time (s)
Fig. 4. SOC estimation error using our algorithm (constant current)

2
SOH error

N S N I B P Estimated error upper bound

= ) PO Estimated error lower bound

=

SOH error (%)
o

-1.5F
’ 0 1000 2000 3000 4000 5000 6000 7000 8000
Time (s)
Fig. 5. SOH estimation error using our algorithm (constant current)

From the results, we can see that the magnitude of
the error is very small (<0.1% for both SOC and SOH
after convergence) and is bounded by the 95.4% confidence
interval most of the time, indicating that the algorithm can
provide not only accurate state estimation but also accurate
variance estimation as well. In other words, the proposed
EKF is self-aware of its performance. Additionally, the error
of both SOC and SOH estimation can decrease from 5% to
1% within 15 minutes, suggesting that the convergence speed
of the algorithm is also high.

C. Urban Dynamometer Driving Schedule

The simulation result for the UDDS profile is shown in
Fig. 6 and 7. The conclusion here is similar - the magnitude
of the error is very small (<0.2% for both SOC and SOH
after convergence) and is bounded by the 95.4% confidence
interval most of the time. The convergence speed is slightly
lower than the CC profile, but the error can still decrease to
1% within 30 minutes.

021
] SOC error
0.15 L """" Estimated error upper bound
’ T Estimated error lower bound
01F Yo
§ 0.05
s
5 0
[©]
o]
» -0.05
-0.1F v
-0.15
0.2 . I 1 | I )
0 2000 4000 6000 8000 10000 12000
Time (s)
Fig. 6. SOC estimation error using our algorithm (UDDS)
2 -
SOH error
w5 ey T Estimated error upper bound
- oMy Estimated error lower bound
1F
’o\? 05
s
5 Of
I
(]
N 05
At
-1.5
-2 H 1 L L 1 1 |
0 2000 4000 6000 8000 10000 12000
Time (s)
Fig. 7. SOH estimation error using our algorithm (UDDS)
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D. Comparison

To test whether the suggested three improvements really
make the estimation better, we did an ablation study to
quantify the contribution of each improvement. Specifically,
we remove one improvement from our algorithm at a time
until the algorithm degrades to the conventional EKF and
compare the results in terms of the computational complexity
(shown in Table II), SOC and SOH estimation accuracy
(also shown in Table II), and the accuracy of the estimated
confidence interval (shown in Fig. 8). All the data in Table II
and Fig. 8 are the average of one thousand simulations, which
guarantees the statistical significance of the results. In Table
IT and Fig. 8, Improvement 1 refers to the extra step we added
to the EKF algorithm introduced in Section II-A, where
output Jacobian Hj, is recalculated after the state update step
(if this guarantees T'r(Py) > T7(Pyx—1) and Py, to be
positive semidefinite). When Improvement 1 is removed, we
remove the extra step. Improvement 2 refers to the rigorous
calculation of process noise and the measurement noise
introduced in Section II-C. When Improvement 2 is removed,
the process noise covariance matrix and the measurement
noise covariance matrix (which are previously calculated by
(12-14)) are replaced by two constant matrices shown in (18),

At2a% 0 0
Qr = 0 (0.11,sR2)? 0| , Ry = 050y + 0%
0 0 0

(18)
where [.,,s is the RMS current in the profile. Improvement
3 refers to the consideration of the shift of the OCV curve
to SOH. When Improvement 3 is removed, the OCV is
considered only related to the SOC, and the OCV function
measured at 100% SOH is used as the measurement function.

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT EKF-BASED METHODS

Algorithms SOC RMS error (%) SOH RMS error (%) Avg. run
CC UDDS CC UDDS time (ms)
EKF + Imp. 142+3 | 0.141 0.101 0.500 0.615 85.5
EKF + Imp. 2+3 0.148 0.114 0.648 0.841 53.0
EKF + Imp. 3 0.238 0.165 1.665 1.464 52.6
EKF 1.079 1.350 3.557 6.752 36.9
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Fig. 8. The accuracy of the confidence interval given by different EKF-
based algorithms

In Table II, “SOC RMS error” and “SOH RMS error”

are the RMS of the estimation error taken from all the time
steps, which represent the accuracy of different algorithms.
In Fig. 8, each bar shows the probability that the actual state
is within the 2-sigma confidence interval. Under ideal con-
ditions, i.e., Gaussian zero-mean noise and linear dynamics,
this probability should be 95.4%, so the closeness of the bars
to 95.4% indicates the accuracy of the confidence interval.
Interestingly, as our new algorithm gradually degrades to the
conventional EKF algorithm, the actual error keeps increas-
ing while the confidence interval inclusion rate shrinks. It
suggests that the proposed algorithm not only has the highest
SOC and SOH estimation accuracy but also gives the most
accurate confidence interval estimation.

UKEF is another KF-based state estimation algorithm that
can be applied to nonlinear systems. UKF is known to
have a higher accuracy than EKF because it addresses the
approximation issues of the EKF at the cost of a higher
computational complexity. Since this paper is about an im-
proved EKF algorithm, it would be interesting to compare the
results against UKF, which can also be called an improved
EKF algorithm. Since the UKF algorithm does not need
the calculation of the Jacobian matrix of the measurement
function, the proposed Improvement 1 cannot be applied to it.
In contrast, the other two improvements can still be applied
when using the UKF to estimate the battery SOC and SOH.
The average performance of different UKF algorithms in a
thousand simulations is shown in Table III and Fig. 9.

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT UKF-BASED METHODS

Algorithms SOC RMS error (%) SOH RMS error (%) Avg. run
CC UDDS CC UDDS time (ms)
UKF + Imp. 2+3 | 0.140 0.099 0.586 0.530 328.8
UKF + Imp. 2 1.125 1.369 3.197 6.713 329.8
UKF + Imp. 3 4.334 0.697 5.802 2.549 328.8
UKF 3.979 1.408 5.425 5.024 326.4

o
S

[ SOC (constant current)

[ sOC (driving profile) ||
[C"1SOH (constant current)
[ SOH (driving profile)
- = = = 95.4% reference line

90 -

95.4% confidence interval inclusion rate (%)

Improvement 2+3

Conventional UKF

Improvement 2 Improvement 3

Fig. 9. The accuracy of the confidence interval given by different UKF-
based algorithms

From Table III and Fig. 9, we can see that the pro-
posed two improvements can also significantly improve the
performance of the UKF algorithm when used together.
Additionally, by comparing Table III against Table II, we
can see that the UKF algorithm (with Improvements 2 and
3) is indeed better than the conventional EKF algorithm

1447

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 10,2024 at 00:21:31 UTC from IEEE Xplore. Restrictions apply.



(with Improvements 2 and 3), and is almost as good as
than our improved EKF algorithm (with Improvement 1, 2,
and 3). Note that our proposed improvements add minimal
computational complexity to the EKF and have significantly
less computational complexity than the UKF. Namely, the run
time of our improved EKF algorithm (with all three improve-
ments) is 61% longer than the EKF with Improvement 2+3,
while the run time of the UKF algorithm (with Improvements
2+3) is 520% longer than the EKF with Improvements 243.
Therefore, we conclude that Improvement 1 helps EKF to
be as good as, or even better than (in terms of variance
estimation), the UKF algorithm while maintaining EKF’s
advantage of low complexity.

Interestingly, in Fig. 9, the UKF with only Improvement
2 gives the worst confidence interval estimation. This result
is seemingly contradictory to the fact that Improvement 2 is
directly related to the accurate quantification of the process
noise and measurement noise, and it should theoretically
increase the accuracy of the confidence interval estimation.
However, in the simulation, the standard deviation of the
OCV curve ogpcy is assumed to be the same regardless
of whether the OCV curve is related to the SOH. When
Improvement 3 is not implemented, the error of the OCV
curve would be significantly higher than expected because
the relationship between the OCV and SOH is ignored.
Therefore, Improvement 2 can only show its value when
used together with Improvement 3. This again shows the
importance of considering battery aging while estimating the
SOC because otherwise, the error of the OCV curve can
be underestimated, and the algorithm’s performance will be
compromised after the battery ages.
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V. CONCLUSIONS

A new SOC and SOH co-estimation method based on
an improved EKF algorithm is presented in this paper.
Compared with the conventional EKF algorithm, the new
algorithm gives more accurate state estimation and variance
estimation by (1) adding an extra step to the EKF algo-
rithm to prevent over-confident covariance estimation, (2)
considering the variance of process noise and measurement
noise to be changing and estimating their values in real-time,
and (3) considering the OCV curve as a function of both
SOC and SOH. The method is validated in two different
current profiles in the simulation, giving very accurate state
estimations and confidence interval estimation in both cases.
Finally, an ablation study shows that all three suggested
improvements are beneficial for giving an accurate state
and covariance estimation. With all the improvements, the
proposed EKF algorithm can even be slightly better than
the UKF algorithm despite the latter being computationally
more complex. Future work includes experimental validation
on different cells and different current profiles.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

1448
Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on September 10,2024 at 00:21:31 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

J. Shi, M. Tian, S. Han, T.-Y. Wu, and Y. Tang, “Electric vehicle bat-
tery remaining charging time estimation considering charging accuracy
and charging profile prediction,” Journal of Energy Storage, vol. 49,
p. 104132, May 2022, doi: 10.1016/j.est.2022.104132.

A. Eddahech, O. Briat, and J.-M. Vinassa, “Determination of lithium-
ion battery state-of-health based on constant-voltage charge phase,”
Journal of Power Sources, vol. 258, pp. 218-227, Jul. 2014, doi:
10.1016/j.jpowsour.2014.02.020.

S. Jiang and Z. Song, “A review on the state of health estimation
methods of lead-acid batteries,” Journal of Power Sources, vol. 517,
p. 230710, Jan. 2022, doi: 10.1016/j.jpowsour.2021.230710.

S. Jiang and Z. Song, “Estimating the State of Health of Lithium-Ion
Batteries with a High Discharge Rate through Impedance,” Energies,
vol. 14, no. 16, Art. no. 16, Jan. 2021, doi: 10.3390/en14164833.

A. M. Bizeray, S. Zhao, S. R. Duncan, and D. A. Howey, “Lithium-
ion battery thermal-electrochemical model-based state estimation us-
ing orthogonal collocation and a modified extended Kalman filter,”
Journal of Power Sources, vol. 296, pp. 400412, Nov. 2015, doi:
10.1016/j.jpowsour.2015.07.019.

S. Huang and G. Dissanayake, “Convergence and Consistency Anal-
ysis for Extended Kalman Filter Based SLAM,” IEEE Transac-
tions on Robotics, vol. 23, no. 5, pp. 1036-1049, Oct. 2007, doi:
10.1109/TRO.2007.903811.

Z. Zhu and C. Taylor, “Conservative Uncertainty Estimation in Map-
Based Vision-Aided Navigation,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 53, no. 2, pp. 941-949, Apr. 2017, doi:
10.1109/TAES.2017.2667278.

Y. Wang et al., “A comprehensive review of battery modeling and state
estimation approaches for advanced battery management systems,”’
Renewable and Sustainable Energy Reviews, vol. 131, p. 110015, Oct.
2020, doi: 10.1016/j.rser.2020.110015.

Fang, Huazhen, et al. “State of charge estimation for lithium-ion
batteries: An adaptive approach.” Control Engineering Practice 25
(2014): 45-54.

G. L. Plett, “Extended Kalman filtering for battery management
systems of LiPB-based HEV battery packs: Part 1. Background,”
Journal of Power Sources, vol. 134, no. 2, pp. 252-261, Aug. 2004,
doi: 10.1016/j.jpowsour.2004.02.031.

W. Xu et al, “A novel adaptive dual extended Kalman filtering
algorithm for the Li-ion battery state of charge and state of health
co-estimation,” International Journal of Energy Research, vol. 45, no.
10, pp. 14592-14602, 2021, doi: 10.1002/er.6719.

Maheshwari, A., and S. Nageswari. "Effect of Noise Covariance
Matrices on State of Charge Estimation Using Extended Kalman
Filter.” IETE Journal of Research (2022): 1-12.

M. Einhorn, F. V. Conte, C. Kral, and J. Fleig, “A Method for
Online Capacity Estimation of Lithium Ion Battery Cells Using the
State of Charge and the Transferred Charge,” IEEE Transactions on
Industry Applications, vol. 48, no. 2, pp. 736-741, Mar. 2012, doi:
10.1109/TIA.2011.2180689.

SA. Marongiu, N. Nlandi, Y. Rong, and D. U. Sauer, “On-board
capacity estimation of lithium iron phosphate batteries by means of
half-cell curves,” Journal of Power Sources, vol. 324, pp. 158-169,
Aug. 2016, doi: 10.1016/j.jpowsour.2016.05.041.

C. R. Birkl, M. R. Roberts, E. McTurk, P. G. Bruce, and D.
A. Howey, “Degradation diagnostics for lithium ion cells,” Jour-
nal of Power Sources, vol. 341, pp. 373-386, Feb. 2017, doi:
10.1016/j.jpowsour.2016.12.011.

L. Wang, D. Lu, Q. Liu, L. Liu, and X. Zhao, “State of charge estima-
tion for LiFePO4 battery via dual extended kalman filter and charging
voltage curve,” Electrochimica Acta, vol. 296, pp. 1009-1017, Feb.
2019, doi: 10.1016/j.electacta.2018.11.156.

S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear
estimation,” in Proceedings of the IEEE, vol. 92, no. 3, pp. 401-422,
March 2004, doi: 10.1109/JPROC.2003.823141.

Havlik, Jindfich, and Ondfej Straka. “Performance evaluation of
iterated extended Kalman filter with variable step-length.” Journal of
Physics: Conference Series. Vol. 659. No. 1. IOP Publishing, 2015.
Lavigne, Loic, et al. “Lithium-ion Open Circuit Voltage (OCV) curve
modelling and its ageing adjustment.” Journal of Power Sources 324
(2016): 694-703.

Birkl, Christoph R., et al. “Degradation diagnostics for lithium ion
cells.” Journal of Power Sources 341 (2017): 373-386.



