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Nonlinear fractional dynamics integrated physics-informed neural
network model for LiFePQ4 batteries in electric vehicles

Manashita Borah, Shida Jiang, Junzhe Shi, Scott Moura

Abstract— This paper addresses the long-standing challenge
of attaining high-precision models for LiFePO4 batteries which
suffer from weakly observable dynamics. We introduce a new
paradigm of integrating a nonlinear fractional-order physics-
based model with a hybrid neural network model. First, a
fractional-order model (FOM) is proposed to capture the physics
of the battery that existing integer-order models (IOMs) fail to
replicate, such as the solid phase diffusion. The FOM parameters
are state dependent as they vary along with the progression of
the state of charge (SOC). Second, the unknown and unmodelled
physics is captured by a hybrid neural network model integrated
with the FOM. The physical states of the FOM are used to guide
the neural network resulting in a state dependent nonlinear
fractional-order physics-informed neural network (FO-PINN)
to predict the terminal voltage of the battery. Validation with
experimental results and comparisons with existing modelling
techniques reveal that the proposed scheme delivers improved
predictive accuracy with decreased computational cost and
enhanced physically meaningful information. The scheme has
potential in applications that demand high propulsive power and
accuracy, such as electric aircraft.

I. INTRODUCTION

Lithium-ion batteries (LIBs) play a pivotal role in
catalysing a zero-carbon future. Electric vehicles, propelled by
LIBs, are revolutionising the automotive industry by
significantly reducing greenhouse gas emissions and urban air
pollution. These batteries may enable effective integration of
renewable sources like solar and wind into our energy mix,
providing a dependable energy supply when the sun does not
shine, and the wind does not blow. However, there are still
bottlenecks in these pursuits of a carbon- neutral, sustainable
future facilitated by LIBs. A crucial challenge is accurate
modelling of batteries. To harness the full potential of LIBs, it
is essential to develop precise and comprehensive models that
can predict their behaviour under various operating conditions;
still a major limitation in battery technology.

A. Literature survey

The existing LIBs used in high-end Electric vehicles
(EVs), such as the Nickel-Manganese-Cobalt batteries, suffer
from technical bottlenecks of safety, reliability, cost, lifespan,
lack of real-time measurements, parametric uncertainties, and
limited supply of raw material. The industry is now actively
looking for alternative LIBs that are cheaper, more reliable,
can be sourced locally and have longer lifespan such as the
Lithium Ferrous Phosphate (LFP) batteries. Recently, the

M. Borah in this work is supported by Fulbright fellowship and industry-
academia project grant from TotalEnergies (Agreement Number 20163367)
at University of California, Berkeley, USA.

M. Borah*, J. Shi, S. Jiang, S. Moura are with the Department of Civil and
Environmental Engineering, University of California, Berkeley, USA
(phone:

979-8-3503-8265-5/$31.00 ©2024 AACC

automotive industry is moving towards utilising LFP for
powering their EVs. [1]. Battery manufacturers are investing
significantly to the production of LFP batteries [2]. Global
production of LFP batteries is forecast to be 770 GWh by
2025, that is about one-third of all battery capacity [3]. These
point towards LFP emerging as the future energy storage
system. However, this transition to LFP battery is
encountering hurdles, primarily due to some of its inherent
limitations. One of them is the scarcity of high accuracy and
economically viable battery models, crucial for their optimised
performance, safety and diagnosis.

Current battery models can be broadly categorised into
physics-based models (PBMs) and machine learning models
(MLMs). PBMs of batteries may be further classified into
electrochemical models and equivalent circuit models [4].
Some of the challenges for battery modelling are pointed out
below:

i. Extensive computational efforts, and complexity of
electrochemical models like Doyle- Fuller-Newman or
single particle models, where they require tens of
parameters to be designed.

ii. MLMs are black box models that generally do not
reflect physically meaningful information, thus
limiting their use for physical state estimation. Besides,
they require large datasets for training.

iii. Though equivalent circuit models have low
computational burden, they fail to represent important
battery phenomena such as charge transfer reaction,
solid phase diffusion and the double layer effect.

iv. Additionally, most of these existing models are defined
by constant parameters that are often unable to capture
nonlinear phenomena in battery dynamics. This
contributes to the weakly observable dynamics of the
LFP battery, making it difficult to estimate SOC.

The above drawbacks clearly signify that neither PBM nor
MLM alone can solve the challenges of battery prediction and
estimation. In Nature Reviews article, a new concept of
physics-informed machine learning (PIML) was reported [5],
so that the tedious training networks involving big data can be
reduced using the information provided by the laws of physics,
even in partially understood, uncertain systems, and scalable
to large problems. Due to its said advantages, PIML has drawn
attention in the battery research community to study dynamics
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such as degradation, state of health [6], thermal runaway and
conductivity [7,8], thrust compensation [9], random-load
discharge and aging prediction [10]. In terms of PIML
application to voltage prediction models of batteries, Li et al.
[11] used PIML to model potentials of electrolyte
concentration, electrode and electrolyte for NMC battery
chemistry. In 2023, Tu et al. [4] designed a PIML composed
of a nonlinear double capacitor PBM to inspire a feedforward
neural network to predict terminal voltage in LIBs. However,
these voltage prediction models are confined to integer-order
models and chemistries other than LFP.

Integer-order equivalent circuit PBMs, defined by ideal
capacitors and inductors may not accurately capture the system
behaviour when the relationship between voltage and current
is not precisely an integral derivative [12]. These “non-ideal”
relationships, such as solid phase diffusion and double layer
effect can be captured by a fractional-order (FO) capacitor or
an FO inductor [13, 14]. Very recently in 2022, fractional
calculus integrated with PIML for estimating states in LIBs is
reported and found to deliver improved convergence speed
[15, 16]. The FOMs used in these works are defined by
fractional-order partial differential equations and the
methodologies are tested on NMC battery. So far, a PIML
framework integrated with a FOM defined by state dependent
fractional order differential equations to predict terminal
voltage of a battery is not found in literature. This paper
addresses that gap.

B. Contribution of this paper
The novel contributions of the paper are:

i. Though FOMs of batteries have been reported in
literature, an SOC dependent nonlinear FOM has not
been reported so far to the best of the authors’
knowledge.

The FOM proposed has been experimentally validated
to effectively capture fractional dynamics, such as solid-
phase diffusion which conventional IOMs struggle to
encompass. Additionally, the FOM utilises state dependent
parameters to capture nonlinearities more accurately.

ii. A physics-informed neural network (PINN) architecture
for modelling batteries that combines a fractional-order
differential equation model with a hybrid neural
network is new.

The integration of the hybrid neural network with the
FOM accounts for the unknown and unmodelled aspects of
the underlying battery physics.

iii. The modelling framework is applied to an LFP battery,
which is challenged by weakly observable dynamics,
and existing PINN strategies in literature are mostly
confined to NMC and LCO battery chemistries.

C. Organisation

The remainder of the paper is organised as follows.
Section II introduces the state dependent nonlinear FOM,
and its parameter identification along with some
preliminaries of FO calculus. Section III describes the
nonlinear FO-PINN architecture. Section IV reports the

II. STATE DEPENDENT NONLINEAR FRACTIONAL-ORDER
MODEL

This section commences with the fundamentals of
fractional calculus, followed by development of the proposed
state dependent nonlinear FOM.

A. Fundamentals of fractional-order calculus

The Caputo fractional derivative of order a of a continuous
function f{?) is defined as in (1) [17].

d%f(t)
DEf(t) =L -

T

1 t ()

S — N oemrdt m—1<a<m meN |
am (1)
dt_mf(t)’ a=m

The Laplace transform of the Caputo fractional derivative
is:

L {d“f(t)} = SEL{f(£)} — XL Sa—k—lf(k) 0) 2)

e
A generalized fractional-order nonlinear system is defined
as in (3),
Dix;(t) = f;(x(2), 1), )
where the FOs lie in 0<a<land x(t) =
[x1, %3, e, x5 ]T, (0 = 1,2,...,7).

The computation of the above fractional-order differential
equation is carried out using Adams-Bashforth-Moulton
method based on the predictor-corrector technique [18]. The
system (3) may be written as a Volterra integral equation as,

1t _
x(8) = x(0) + — [y (¢ =D iy, X, x)dT, (4)
where x;(0) are the initial conditions of x;(t).
The corrector equation obtained by substituting h = %, t, =
nh, for (n = 0,1, ..., N) for a unique solution in [0, T] is (5),
xih(gtn+1) =x;(0) +

h
F(a+2)ﬁ (xfh(tn+1)'x§h(tn+1): ---:xgh(tn+1)) +
T(oat2) Z A jn+1 fl (x]_ (tj), Xy (tj), ey xn(t])) (5)
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{ n®*! — (n—a)(n + 1), ifj=0
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The predicted value x}, (t,41) is determined by
1

X (tni1) = %(0) + 7= o b fi (2 (8)).  ©)
where b;jn.1 = h;((n —j+D*—(n—-)D®,0<j<n
The error estimation is

e= max{max|x1(tj) - xlh(tj)|,max|x2(tj) -
Xon (8], o max|x, (6) = %00 (8)|} = O(RP), N
wherej = (0,1,2,...,N),p = min {2,1 + a}.
Based on the above preliminaries, we propose the FOM of an
LIB in the following subsection.

B. Proposed FOM as the PBM
A nonlinear fractional-order model of an LIB is defined as

results, and the paper is concluded in Section V. D (t) = g(x,u) ®)
y = h(x,u) )
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where x is the vector containing the unmeasurable states,
x = [x,%0,%,],(i=12,...,n), u and 7y are
measurable input and output vectors and the fractional orders
a € (0,1] = [ay, ap, .., an]".

C. System identification

The FOM of a battery is constructed conceptually based on
electrochemical impedance spectroscopy (EIS). EIS involves
measuring the impedance of a battery by applying a small
alternating current and observing the response in terminal
voltage. The impedance spectrum, represented as a Nyquist
plot, is then divided into three distinct frequency regions: low
(associated with solid-phase diffusion), mid (related to charge
transfer reactions and double layer effects), and high
(indicative of ohmic polarization). In the low-frequency region
of the Nyquist plot obtained from the EIS experiment, a
fractional-order circuit element known as the constant phase
element (CPE) is employed for modelling. The key unique
feature of CPE is its ability to take on non-integer values,
which makes it suitable for capturing the dynamics associated
with solid-phase diffusion more accurately compared to an
ideal integral capacitor. The resulting fractional-order
equivalent circuit model is illustrated in Fig. 1.

High frequenc Mid frequency Low frequency
Charge
A transfer
Ohvmlt‘ reaction and
E; resistance dtflrlblﬁ' layer Solid phase
Nr effect diffusion
M
1
MHz ] uilz Z
ult) Re
( L___/\/\/\,—' AN A%
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Cy(x1) Cepe(X :N\
o X3 —| +— X3 —
Figure 1. Proposed FOM to capture the dynamics of the EIS spectrum.

The corresponding equations of the proposed FOM in Fig.1
and from (8) and (9) are represented in (10) and (11),

I
D% = ! 1 10
XZ(t)__me(t)+mu(t) (10)
1 1
Dox ) =~ g ey erEGn Pt R G ePEGey 1P
y=V (11)

where V; = Voo (x1) — x,(8) — x3(t) — Ro(x)u(t).

The fractional orders are @ = {a4, @,, a5} = {1,1, a3}. The
state vector x = [¥1 X2 X3]T is such that x; = SOC, x, is
the voltage across the R, C; pair and x5 is the voltage across
the R,CPE pair. The terms V,. and V; are open circuit and
terminal voltages of the battery, respectively. Parameter Q is
the battery nominal capacity, u is the input current which is

positive for discharging and negative for charging operations.

After conducting the frequency domain experiment, the
parameter identification process for the aforementioned FOM
described in equations (10) and (11) is carried out using global
optimisation technique. In the case of the LFP battery, it is
subjected to a Hybrid Pulse Power Characterization (HPPC)
or any pulse load current for each 10% drop in SOC, followed
by a 10-minute resting period. This cycle is repeated until the
battery reaches its lower cut-off voltage. During the resting
period, the terminal voltage V, is recorded, providing the
open-circuit voltage V,.. From the V,. measurements, a
corresponding relationship of measurements at various SOC
levels, i.e., V,.(x;) is derived. Subsequently, an optimisation
problem is formulated to minimise the error between the
experimental output terminal voltage and the model output
voltage, as defined in equation (12).

min e(é) = i[ZZ:1(Vt(exp) (tk) - Vt(FOM) (tk))z]E

(12)

In (12), Viexp)(tx) and Vigoum)(tx) are the experimental
terminal voltage and the FOM terminal voltage obtained at
k" sample and 6 = [Ry, Ry, R,, Cy, CPE, a3] represents the
set of parameters to be optimised. The identified parameters
are nonlinear functions dependent on SOC. The
implementation details are provided in Section IV-A.

III. NONLINEAR FRACTIONAL-ORDER PHYSICS-INFORMED
NEURAL NETWORK

In the last section, we introduced the state dependent
nonlinear FOM as the PBM that will generate the required
physical states to guide the neural network algorithm. In the
present section we focus on the structure and architecture of
the FO-PINN.

A. Structure of the Neural Network

Unlike traditional feedforward neural networks used to
model batteries in literature [4], recurrent neural networks
(RNNs) use hidden nodes to store information of past inputs,
thereby encoding time dynamics. However, conventional
RNNSs use gradient based training and fail to tackle long term
dependency. Long-short term memory networks (LSTMs) are
a variant of RNN that uses hidden memory instead of hidden
nodes to overcome the above hurdle [19]. They have a memory
cell that can store and retrieve information over long
sequences. This memory capability makes them suitable to
capture the unknown physics of the battery varying
dynamically with time. A structural cell of LSTM is illustrated
in Fig. 2 and described in (13).

Figure 2. Schematic cell structure of LSTM
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(gf,k = o, (Wexy + vehy_q + by)

9ige = o1(Wixy + vihyg_1 + b;)
Yok = 0, (WX + Vohy—q + b,)
My = GrOMy_1 + i kO (Wi Xy + Vyhy—_q1 + byy)
hy = 0,,© 0 (cx)

In (13), grk> Gik> Gox Tepresent the forget, input and
output gates, respectively; m;, is the hidden unit memory; x;
is the unit input; hy, is the unit output, all at instant k; g; is the
logistic sigmoid function, o,, and o, are hyperbolic tangent
functions; © is the Hadamard product; w, v, b are weight
matrices and bias parameters updated during training.

(13)

LSTMs are designed to handle long-range dependencies in
sequences, making them well-suited for tasks involving time
series data. Convolutional neural networks (CNNs), on the
other hand, are designed to capture spatial hierarchies and
local patterns in data. They use convolutional layers to scan
small local regions of the input data and learn features that are
shared across the entire pattern. The activation function for a
1-dimensional CNN layer is described in (14),

hi = OcnnWenn * X + benn) (14)

where, * is the convolution operation between the input signal
x;, and the filter weight w,,,,,; beny, 18 @ bias parameter; 0.y, 1S
the underlying activation function.

We adopt a hybrid neural network model that can leverage
the strengths of both CNNs and LSTMs. To elaborate, by
employing a CNN as the initial layer of the model, the
sophisticated spatial characteristics from the initial data can be
extracted. The output of the CNN layers is then fed as input to
LSTM layers, to provide the LSTM with a more semantically
rich representation of the data, helping the LSTM focus on
temporal dependencies within these features. The LSTM
component is employed to characterise the connections
between the current battery dynamics and past input data. This
innovative network architecture capitalises on the strengths of
both the CNN and LSTM networks, enabling the simultaneous
capture of spatial and temporal features within battery data.
The CNN-LSTM structure of hybrid neural network is
designed to model the unknown battery physics by processing
the hierarchical spatial features extracted from the CNN while
also considering the temporal context from the LSTM.
Furthermore, CNN-LSTM is reported to have improved
prediction capabilities for LIB state estimation when
compared with either CNN or LSTM [20].

B. Architecture of the FO-PINN model

Two broad classifications of PIML architectures are
outlined in [21]: 1) sequentially integrated models and ii)
hybridised PBM and MLMs. We present the architecture of
residual or delta learning which is a type of sequential
integration PIML model. Here, PBM is an integral part of the
prediction pipeline, while the MLM learns the difference or
the residue between the PBM and the experimental output.

As shown in the architecture of Fig.3, the PBM is the state
dependent nonlinear FOM of the LIB detailed in Section II-A.
The MLM is a hybrid neural network of CNN-LSTM neural
network described in Section III-A. The output of the FOM is
Vicromy- The CNN-LSTM learns the residual of the FOM

AV = Viexpy — Vicrom to deliver the final predicted voltage

(15).

Vt(exp) .

as, Vicro—pinwy = Veromy + AV
-
[
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Figure 3. Architecture of FO-PINN based on sequential residual learning.

The implementation of the architecture above to predict
LIB terminal voltage is presented in Section IV.

IV. RESULTS AND DISCUSSIONS

The results are elucidated in the following subsections,
beginning with the parameter identification of the SOC
dependent nonlinear FOM followed by its integration with the
neural network to predict the terminal voltage of the LFP
battery.

A. Model validation with identified parameters

The laboratory setup for experimentation is shown in Fig.
4.

Gamry
EIS

interface

l Workstation

for data

LFP
battery

battery
tester

Figure 4. Experimental set up.

EIS experiments are conducted in a Gamry1010E instrument.
It is interfaced with a workstation that processes the data.
Fresh 18650 LFP cells of 3.3 V nominal voltage, 1.2 Ah
capacity are taken for testing. The input to the EIS is an
alternating current of 0.1 A and the frequency spectrum is
varied from 0.01 Hz to 100 kHz at 25° C. The Nyquist plot
derived from the EIS is plotted in green and the fitted models
in purple in Fig. 5. This validates our first claim of
contribution that the FOM with SOC dependent parameters
captures the solid phase diffusion dynamics at low frequency
better than that by an IOM with constant parameters.
Although it also outperforms IOM with SOC dependent
parameters, we have omitted the detailed presentation due to
limitations in the available space.

The parameter identification detailed in Section II-C is carried
out using chaos-based Particle Swarm optimisation, where the
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cost function is optimised with respect to three indices:
position, speed and fitness.
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Figure 5. Comparison of the proposed FOM with the IOM against
experimental data in frequency spectrum from the EIS experiment

The hyperparameters are chosen as the dimension of six
representing the six parameters to be optimized:
Ry, R1, R,, C;, CPE and a3, acceleration factor =0.1, minimum
inertia weight 0.5, maximum inertia weight =1, population size
=50 and number of generations=500. The parameters are
optimised using (12) for each 10% decay between 0 and 100%
SOC inclusive.

B. Voltage prediction of LFP battery using proposed
scheme

The input to the SOC dependent nonlinear FOM is an
Urban Dynamometer Driving Schedule (UDDS) current
profile u(t), shown in Fig 6 a). The fractional-order
differential equations of (10) are solved using Caputo
derivative (1) with the help of the numerical method described
in (4)-(7). The solutions of the equations are the physical
states: x;,x, and x5 which are then used to compute the
simulated model voltage Vipopy using (11). The physical
states x4, x, and x5 are plotted in Figs. 6 b)- 6 d). They are fed
as input to the first layer of the hybrid neural network, i.e. CNN
using the architecture described in Section I1I-B and I1I-C.

0.6
—
8
2 0.4
0 1000 t 2000 0 1000 t 2000
a) UDDS input current profile b) physical state representing state
u(®) ’ of charge
0.04
0.02
0.01 0.02
N
O el
8 &
-0.01
0 1000 ¢ 2000 0 1000 ¢ 2000
c) physical state representing d) physical state representing
voltage across R, C; (mid voltage across R,CPE (ow

frequency region) frequency region)

Figure 6. Inputs (current and physical states) to the FO-PINN.

The CNN layer is designed with six filters of length three
that extract the spatial hierarchies and local pattern of the input

data i.e. u(t), x4, x, and x5. While increasing the number of
filters enhances the network's capacity to learn complex
relationships, it also introduces computational overhead. The
choice of six filters is thus made to strike a balance between
model complexity and computational efficiency: crucial
considerations in battery state prediction tasks. The output of
the CNN assessed using (14) is then fed to an LSTM layer with
400 hidden nodes to capture the temporal features of battery
dynamics. The CNN-LSTM is trained for 500 epochs with a
batch size of 64 using (13). The root mean square error
(RMSE) used to evaluate the performance of the proposed
scheme in predicting terminal voltage is as in (16),

1
RMSE :\/E Zlk{zl(Vt(exp) - Vt(FO—PINN))Z-

(16)

The ratio of training: validation: testing is set as
0.7:0.05:0.25 from a total sample size of 640000 points. After
training for 70% data, we evaluate the model's performance in
the validation set. We feed the 5% input data (32000 sample
points) through the network, compute the loss in terms of
RMSE, and then use this information to adjust the
hyperparameters. As the validation loss decreases while the
training loss decreases, it indicates that the model does not
suffer from overfitting. The resultant terminal voltages
obtained from (15) are plotted in Fig. 7. The parameters of the
IOM with constant parameters are R, = 0.0112,R, =
0.0059,R, = 0.0349,C; = 0.3379,C, = 444.372. The
RMSEs of IOM with constant parameters, IOM with SOC-
dependent parameters and the FO-PINN in terms of
percentage errors are computed as 0.601%, 0.493% and
0.223%, respectively in the testing region. As the FO-PINN
clearly mimics the experimental terminal voltage of the battery
better than that of the IOMs without PINN, it validates our
second contribution that integration of the FOM with PINN
can capture unmodeled battery dynamics. As the SOC
dependent FO-PINN yields improved voltage predictions, it in
turn will be useful for SOC estimation in LFP batteries, where
understanding the SOC inter-relationship with battery
parameters will help understand the flat region dynamics; our
third claim of contribution.

3.45 : .

experimental > i«
34 |OM (constant parameters) Valid:atic n ]
|OM (SOC-dependent) P>
3.35|=====FO-PINN (SOC dependent) Testing
33h 4N
Sl
3.25
3.2 i
Training -
: 325
3.15 < . ) 2260 2280 2300]
0 500 1000 ¢ 1500 2000 2500

Figure 7. Terminal voltage prediction

C. Comparisons with existing methods

A comparison of the proposed scheme to existing
modelling techniques applied to LFP batteries is provided in
Table 1. The RMSEs are listed as reported in these works [6,
20, 22-25]. Comparison to our work reveals that our proposed
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SOC dependent FO-PINN outperforms the existing methods
for modelling LFP batteries. Specifically, the proposed
modelling scheme achieves an RMSE of less than 0.25% - an
order of magnitude less than most methods.

TABLE L COMPARISON OF THE PROPOSED SCHEME WITH EXISTING
MODELLING TECHNIQUES FOR LFP BATTERIES
Work year | method FO RMSE
[22] 2023 | Pseudo-open-circuit voltage No 3%
modelling
[23] 2023 | Voltage interval at low state of | No 2.67%
charge
[24] 2023 | Partial least squares regression No 1.92%
models
[6] 2023 | PDE based PINN No 0.42%
[25] 2021 | Deep neural network No 2.03%
[20] 2019 | CNN-LSTM No 2%
This 2023 | State dependent, fractional- Yes 0.223%
paper order physics-informed neural
network (FO-PINN)

V. CONCLUSION

A state-of-charge dependent, fractional-order physics-

informed neural network is proposed to predict the terminal
voltage of an LFP battery. The hybrid neural network is a
CNN-LSTM architecture which is informed by the physical
states of the FOM. Through experimental validations, it is
proved that the new SOC dependent FOM can encompass
battery physics better than integer-order models. Also, this
improved FOM guided neural network yields an RMSE of

0.223%

and thus outperforms several other existing

modelling techniques of LFP battery. A future direction of
work is to study a PINN architecture by incorporating a
fractional-order circuit element in the mid frequency region
to capture the battery dynamics and analyse its sensitivity.
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