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Abstract� This paper addresses the long-standing challenge 

of attaining high-precision models for LiFePO4 batteries which 

suffer from weakly observable dynamics. We introduce a new 

paradigm of integrating a nonlinear fractional-order physics-

based model with a hybrid neural network model. First, a 

fractional-order model (FOM) is proposed to capture the physics 

of the battery that existing integer-order models (IOMs) fail to 

replicate, such as the solid phase diffusion. The FOM parameters 

are state dependent as they vary along with the progression of 

the state of charge (SOC). Second, the unknown and unmodelled 

physics is captured by a hybrid neural network model integrated 

with the FOM. The physical states of the FOM are used to guide 

the neural network resulting in a state dependent nonlinear 

fractional-order physics-informed neural network (FO-PINN) 

to predict the terminal voltage of the battery. Validation with 

experimental results and comparisons with existing modelling 

techniques reveal that the proposed scheme delivers improved 

predictive accuracy with decreased computational cost and 

enhanced physically meaningful information. The scheme has 

potential in applications that demand high propulsive power and 

accuracy, such as electric aircraft. 

I. INTRODUCTION 

Lithium-ion batteries (LIBs) play a pivotal role in 
catalysing a zero-carbon future. Electric vehicles, propelled by 
LIBs, are revolutionising the automotive industry by 
significantly reducing greenhouse gas emissions and urban air 
pollution. These batteries may enable effective integration of 
renewable sources like solar and wind into our energy mix, 
providing a dependable energy supply when the sun does not 
shine, and the wind does not blow. However, there are still 
bottlenecks in these pursuits of a carbon- neutral, sustainable 
future facilitated by LIBs. A crucial challenge is accurate 
modelling of batteries. To harness the full potential of LIBs, it 
is essential to develop precise and comprehensive models that 
can predict their behaviour under various operating conditions; 
still a major limitation in battery technology. 

A. Literature survey 

The existing LIBs used in high-end Electric vehicles 
(EVs), such as the Nickel-Manganese-Cobalt batteries, suffer 
from technical bottlenecks of safety, reliability, cost, lifespan, 
lack of real-time measurements, parametric uncertainties, and 
limited supply of raw material. The industry is now actively 
looking for alternative LIBs that are cheaper, more reliable, 
can be sourced locally and have longer lifespan such as the 
Lithium Ferrous Phosphate (LFP) batteries. Recently, the 
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automotive industry is moving towards utilising LFP for 
powering their EVs. [1]. Battery manufacturers are investing 
significantly to the production of LFP batteries [2]. Global 
production of LFP batteries is forecast to be 770 GWh by 
2025, that is about one-third of all battery capacity [3]. These 
point towards LFP emerging as the future energy storage 
system. However, this transition to LFP battery is 
encountering hurdles, primarily due to some of its inherent 
limitations. One of them is the scarcity of high accuracy and 
economically viable battery models, crucial for their optimised 
performance, safety and diagnosis. 

Current battery models can be broadly categorised into 
physics-based models (PBMs) and machine learning models 
(MLMs). PBMs of batteries may be further classified into 
electrochemical models and equivalent circuit models [4]. 
Some of the challenges for battery modelling are pointed out 
below: 

i. Extensive computational efforts, and complexity of 
electrochemical models like Doyle- Fuller-Newman or 
single particle models, where they require tens of 
parameters to be designed. 

ii. MLMs are black box models that generally do not 
reflect physically meaningful information, thus 
limiting their use for physical state estimation. Besides, 
they require large datasets for training. 

iii. Though equivalent circuit models have low 
computational burden, they fail to represent important 
battery phenomena such as charge transfer reaction, 
solid phase diffusion and the double layer effect. 

iv. Additionally, most of these existing models are defined 
by constant parameters that are often unable to capture 
nonlinear phenomena in battery dynamics. This 
contributes to the weakly observable dynamics of the 
LFP battery, making it difficult to estimate SOC. 

The above drawbacks clearly signify that neither PBM nor 
MLM alone can solve the challenges of battery prediction and 
estimation. In Nature Reviews article, a new concept of 
physics-informed machine learning (PIML) was reported [5], 
so that the tedious training networks involving big data can be 
reduced using the information provided by the laws of physics, 
even in partially understood, uncertain systems, and scalable 
to large problems. Due to its said advantages, PIML has drawn 
attention in the battery research community to study dynamics 
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such as degradation, state of health [6], thermal runaway and 
conductivity [7,8], thrust compensation [9], random-load 
discharge and aging prediction [10]. In terms of PIML 
application to voltage prediction models of batteries, Li et al. 
[11] used PIML to model potentials of electrolyte 
concentration, electrode and electrolyte for NMC battery 
chemistry. In 2023, Tu et al. [4] designed a PIML composed 
of a nonlinear double capacitor PBM to inspire a feedforward 
neural network to predict terminal voltage in LIBs. However, 
these voltage prediction models are confined to integer-order 
models and chemistries other than LFP. 

Integer-order equivalent circuit PBMs, defined by ideal 
capacitors and inductors may not accurately capture the system 
behaviour when the relationship between voltage and current 
!G�CD+�E)��!G�AL��C�!C+��)�A���)!J�+!J��������� �G��PCDC-!���A5�
relationships, such as solid phase diffusion and double layer 
effect can be captured by a fractional-order (FO) capacitor or 
an FO inductor [13, 14]. Very recently in 2022, fractional 
calculus integrated with PIML for estimating states in LIBs is 
reported and found to deliver improved convergence speed 
[15, 16]. The FOMs used in these works are defined by 
fractional-order partial differential equations and the 
methodologies are tested on NMC battery. So far, a PIML 
framework integrated with a FOM defined by state dependent 
fractional order differential equations to predict terminal 
voltage of a battery is not found in literature. This paper 
addresses that gap. 

B. Contribution of this paper 

The novel contributions of the paper are: 

i. Though FOMs of batteries have been reported in 
literature, an SOC dependent nonlinear FOM has not 
���C� )�ED)+��� GD� ��)� +D� + �� ��G+� D�� + �� �,+ D)GS�
knowledge. 

The FOM proposed has been experimentally validated 
to effectively capture fractional dynamics, such as solid-
phase diffusion which conventional IOMs struggle to 
encompass. Additionally, the FOM utilises state dependent 
parameters to capture nonlinearities more accurately. 

ii. A physics-informed neural network (PINN) architecture 
for modelling batteries that combines a fractional-order 
differential equation model with a hybrid neural 
network is new.  

The integration of the hybrid neural network with the 
FOM accounts for the unknown and unmodelled aspects of 
the underlying battery physics. 

iii. The modelling framework is applied to an LFP battery, 
which is challenged by weakly observable dynamics, 
and existing PINN strategies in literature are mostly 
confined to NMC and LCO battery chemistries. 

C. Organisation 

The remainder of the paper is organised as follows. 
Section II introduces the state dependent nonlinear FOM, 
and its parameter identification along with some 
preliminaries of FO calculus. Section III describes the 
nonlinear FO-PINN architecture. Section IV reports the 
results, and the paper is concluded in Section V. 

II. STATE DEPENDENT NONLINEAR FRACTIONAL-ORDER 

MODEL 

This section commences with the fundamentals of 

fractional calculus, followed by development of the proposed 

state dependent nonlinear FOM. 

A. Fundamentals of fractional-order calculus  

The Caputo fractional derivative of order � of a continuous 

function f(t) is defined as in (1) [17].        

            �b
d.|8} p UmW|b}

Ubm p

�
D

J|]HK} � W|l}|f}
|bHf}mkljg

b
C ,B� 4 o � q > q 4� 4 � ���

Ul

Ubl .|8}�������������> p 4�������������������
        (1)                                                                                      

The Laplace transform of the Caputo fractional derivative 

is: 

   �UmW|b}
Ubm � p 7d ~.|8}� o � 7dH[HD.|[}|
}]HD

[IC            (2)  

A generalized fractional-order nonlinear system is defined 
as in (3), 

           �b
d<Y|8} p .Y|<|8}� 8},                                           (3) 

where the FOs lie in 
 q > q ��and <|8} � p
��<D� <E� 	 � <^�S� |1 p ���� � � � � 5}.  

The computation of the above fractional-order differential 

equation is carried out using Adams-Bashforth-Moulton 

method based on the predictor-corrector technique [18]. The 

system (3) may be written as a Volterra integral equation as,  

<Y|8} p <Y|
} n D
Jd � |8 o B}dHD.Y|<D

b
C � <E� 	 � <^},B,        (4) 

where <Y|
} are the initial conditions of <Y|8}.  

The corrector equation obtained by substituting 0 p S
P

� 8^ p
50, for |5 p 
��� 	 � !} for a unique solution in �
� '� is (5), 

<YX|8^GD} p <Y|
} n
Xm

J|dGE}
.Y �<DX

` |8^GD}� <EX
` |8^GD}� 	 � <^X

` |8^GD}a n
Xm

J|KGE}
� )Y�Z�^GD .Y �<Dw8Zx� <Ew8Zx� 	 � <^w8Zxa                    (5) 

where, 
 )Y�Z�^GD p

�
5dGD o |5 o >}|5 n �}d�������������������������������������������1.�2 p 


|5 o 2 n �}dGD n |5 o 2}dGD o �|5 o 2 n �}dGD� 1.�� r 2 r 5
�������������������������������������������������������������������������������������������������1.��2 p 5 n ��

 

The predicted value <YX
` |8^GD} is determined by  

<YX
` |8^GD} p <Y|
} n D

J|d}
� *Y�Z�^GD.Y �<YXw8Zxa^

ZIC ,            (6) 

where  *Y�Z�^GD p Xm

d
||5 o 2 n �}d o |5 o 2}d}� 
 r 2 r 5� 

The error estimation is 

  - p ���s4)<{<Dw8Zx o <DXw8Zx{� 4)<{<Ew8Zx o
<EXw8Zx{� 	 � 4)<{<^w8Zx o <^Xw8Zx{t p "|0e},                (7) 

where�2 p |
����� 	 � !}� @ p � ��~��� n >�.    
Based on the above preliminaries, we propose the FOM of an 
LIB in the following subsection. 

B. Proposed FOM as the PBM 

A nonlinear fractional-order model of an LIB is defined as  

�d<|8} p /|<� 9}                                                              (8) 

= p 0|<� 9}                                                                        (9) 
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where < is the vector containing the unmeasurable states, 

<� p � �<D� <E� 	 � <^�S� |1 p ���� � � � � 5}, 9 and = are 

measurable input and output vectors and the fractional orders 

> � |
��� p �>D� >E� 	 � >^�S.� 

C. System identification 

The FOM of a battery is constructed conceptually based on 
electrochemical impedance spectroscopy (EIS). EIS involves 
measuring the impedance of a battery by applying a small 
alternating current and observing the response in terminal 
voltage. The impedance spectrum, represented as a Nyquist 
plot, is then divided into three distinct frequency regions: low 
(associated with solid-phase diffusion), mid (related to charge 
transfer reactions and double layer effects), and high 
(indicative of ohmic polarization). In the low-frequency region 
of the Nyquist plot obtained from the EIS experiment, a 
fractional-order circuit element known as the constant phase 
element (CPE) is employed for modelling. The key unique 
feature of CPE is its ability to take on non-integer values, 
which makes it suitable for capturing the dynamics associated 
with solid-phase diffusion more accurately compared to an 
ideal integral capacitor. The resulting fractional-order 
equivalent circuit model is illustrated in Fig. 1. 

 

Figure 1.  Proposed FOM to capture the dynamics of the EIS spectrum. 

The corresponding equations of the proposed FOM in Fig.1 

and from (8) and (9) are represented in (10) and (11), 

�
��
�

��
��dg<D|8} p o
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$ �������������������������������������������������������������������������������

�dh<E|8} p o
�

%D|<D}�D|<D} <E|8} n
�

�D|<D} 9|8}��������������|�
}

�di<F|8} p o
�

%E|<D}�#�|<D} <F|8} n
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���������������������������������������������������������
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  = p (b                                                                              (11) 

where (b p (_T|<D} o <E|8} o <F|8} o %C|<D}9|8}.       

The fractional orders are > p ~>D� >E� >F� p ~���� >F�. The 

state vector < p �<D <E <F�S  is such that <D p &"�, <E is 

the voltage across the %D�D pair and <F is the voltage across 

the %E�#� pair. The terms (_T  and (b are open circuit and 

terminal voltages of the battery, respectively. Parameter $ is 

the battery nominal capacity, 9 is the input current which is 

positive for discharging and negative for charging operations. 

After conducting the frequency domain experiment, the 

parameter identification process for the aforementioned FOM 

described in equations (10) and (11) is carried out using global 

optimisation technique. In the case of the LFP battery, it is 

subjected to a Hybrid Pulse Power Characterization (HPPC) 

or any pulse load current for each 10% drop in SOC, followed 

by a 10-minute resting period. This cycle is repeated until the 

battery reaches its lower cut-off voltage. During the resting 

period, the terminal voltage (b is recorded, providing the 

open-circuit voltage (_T . From the (_T  measurements, a 

corresponding relationship of measurements at various SOC 

levels, i.e., (_T|<D} is derived. Subsequently, an optimisation 

problem is formulated to minimise the error between the 

experimental output terminal voltage and the model output 

voltage, as defined in equation (12). 

� � -|?z} p D
a

u� |(b|Vc`}|8[} o (b|LQO}|8[}}Ea
[ID v

g
h        

(12) 

In (12), (b|Vc`}|8[} and (b|LQO}|8[} are the experimental 

terminal voltage and the FOM terminal voltage obtained at 

3bX sample and ? p �%C� %D� %E� �D� �#�� >F� represents the 

set of parameters to be optimised. The identified parameters 

are nonlinear functions dependent on SOC. The 

implementation details are provided in Section IV-A. 

III. NONLINEAR FRACTIONAL-ORDER PHYSICS-INFORMED 

NEURAL NETWORK 

In the last section, we introduced the state dependent 
nonlinear FOM as the PBM that will generate the required 
physical states to guide the neural network algorithm. In the 
present section we focus on the structure and architecture of 
the FO-PINN. 

A.  Structure of the Neural Network 

Unlike traditional feedforward neural networks used to 
model batteries in literature [4], recurrent neural networks 
(RNNs) use hidden nodes to store information of past inputs, 
thereby encoding time dynamics. However, conventional 
RNNs use gradient based training and fail to tackle long term 
dependency. Long-short term memory networks (LSTMs) are 
a variant of RNN that uses hidden memory instead of hidden 
nodes to overcome the above hurdle [19]. They have a memory 
cell that can store and retrieve information over long 
sequences. This memory capability makes them suitable to 
capture the unknown physics of the battery varying 
dynamically with time. A structural cell of LSTM is illustrated 
in Fig. 2 and described in (13). 

 

Figure 2.  Schematic cell structure of LSTM 
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 (13) 

In (13), /W�[, /Y�[, /_�[ represent the forget, input and 

output gates, respectively; 4[ is the hidden unit memory; <[ 
is the unit input; 0[ is the unit output, all at instant 3; A\ is the 
logistic sigmoid function, A] and AX are hyperbolic tangent 
functions;  � is the Hadamard product; ;� :� * are weight 
matrices and bias parameters updated during training. 

LSTMs are designed to handle long-range dependencies in 
sequences, making them well-suited for tasks involving time 
series data. Convolutional neural networks (CNNs), on the 
other hand, are designed to capture spatial hierarchies and 
local patterns in data. They use convolutional layers to scan 
small local regions of the input data and learn features that are 
shared across the entire pattern. The activation function for a 
1-dimensional CNN layer is described in (14), 

0[ p AT^^|;T^^ � <[ n *T^^}                                     (14) 

where, � is the convolution operation between the input signal 
<[ and the filter weight ;T^^; *T^^ is a bias parameter; AT^^ is 
the underlying activation function.  

We adopt a hybrid neural network model that can leverage 
the strengths of both CNNs and LSTMs. To elaborate, by 
employing a CNN as the initial layer of the model, the 
sophisticated spatial characteristics from the initial data can be 
extracted. The output of the CNN layers is then fed as input to 
LSTM layers, to provide the LSTM with a more semantically 
rich representation of the data, helping the LSTM focus on 
temporal dependencies within these features. The LSTM 
component is employed to characterise the connections 
between the current battery dynamics and past input data. This 
innovative network architecture capitalises on the strengths of 
both the CNN and LSTM networks, enabling the simultaneous 
capture of spatial and temporal features within battery data.  
The CNN-LSTM structure of hybrid neural network is 
designed to model the unknown battery physics by processing 
the hierarchical spatial features extracted from the CNN while 
also considering the temporal context from the LSTM. 
Furthermore, CNN-LSTM is reported to have improved 
prediction capabilities for LIB state estimation when 
compared with either CNN or LSTM [20]. 

B. Architecture of the FO-PINN model 

Two broad classifications of PIML architectures are 
outlined in [21]: i) sequentially integrated models and ii) 
hybridised PBM and MLMs. We present the architecture of 
residual or delta learning which is a type of sequential 
integration PIML model. Here, PBM is an integral part of the 
prediction pipeline, while the MLM learns the difference or 
the residue between the PBM and the experimental output.  

As shown in the architecture of Fig.3, the PBM is the state 
dependent nonlinear FOM of the LIB detailed in Section II-A. 
The MLM is a hybrid neural network of CNN-LSTM neural 
network described in Section III-A. The output of the FOM is 
(b|LQO}. The CNN-LSTM learns the residual of the FOM 

�( p (b|Vc`} o (b|LQO} to deliver the final predicted voltage 

as, (b|LQHRMPP} p (b|LQO} n �(                                             (15). 

 

Figure 3.  Architecture of FO-PINN based on sequential residual learning. 

The implementation of the architecture above to predict 
LIB terminal voltage is presented in Section IV. 

IV. RESULTS AND DISCUSSIONS 

The results are elucidated in the following subsections, 
beginning with the parameter identification of the SOC 
dependent nonlinear FOM followed by its integration with the 
neural network to predict the terminal voltage of the LFP 
battery. 

A. Model validation with identified parameters 

The laboratory setup for experimentation is shown in Fig. 
4. 

 

Figure 4.  Experimental set up. 

EIS experiments are conducted in a Gamry1010E instrument. 

It is interfaced with a workstation that processes the data. 

Fresh 18650 LFP cells of 3.3 V nominal voltage, 1.2 Ah 

capacity are taken for testing. The input to the EIS is an 

alternating current of 0.1 A and the frequency spectrum is 

varied from 0.01 Hz to 100 kHz at 250 C. The Nyquist plot 

derived from the EIS is plotted in green and the fitted models 

in purple in Fig. 5. This validates our first claim of 

contribution that the FOM with SOC dependent parameters 

captures the solid phase diffusion dynamics at low frequency 

better than that by an IOM with constant parameters. 

Although it also outperforms IOM with SOC dependent 

parameters, we have omitted the detailed presentation due to 

limitations in the available space. 

The parameter identification detailed in Section II-C is carried 

out using chaos-based Particle Swarm optimisation, where the 
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cost function is optimised with respect to three indices: 

position, speed and fitness. 

 

Figure 5.  Comparison of the proposed FOM with the IOM against 

experimental data in frequency spectrum from the EIS experiment 

The hyperparameters are chosen as the dimension of six 
representing the six parameters to be optimized: 
%C� %D� %E� �D� �#��and�>F, acceleration factor =0.1, minimum 
inertia weight 0.5, maximum inertia weight =1, population size 
=50 and number of generations=500. The parameters are 
optimised using (12) for each 10% decay between 0 and 100% 
SOC inclusive. 

B. Voltage prediction of LFP battery using proposed 

scheme 

The input to the SOC dependent nonlinear FOM is an 
Urban Dynamometer Driving Schedule (UDDS) current 
profile 9|8}, shown in Fig 6 a). The fractional-order 
differential equations of (10) are solved using Caputo 
derivative (1) with the help of the numerical method described 
in (4)-(7). The solutions of the equations are the physical 
states: <D� <E and <F which are then used to compute the 
simulated model voltage (b|LQO} using (11). The physical 

states <D� <E and <F are plotted in Figs. 6 b)- 6 d). They are fed 
as input to the first layer of the hybrid neural network, i.e. CNN 
using the architecture described in Section III-B and III-C. 

 
a) UDDS input current profile, 

9|8} 
 

 
b) physical state representing state 
of charge 

 
c) physical state representing 

voltage across %D�D (mid 

frequency region) 
 

 
d) physical state representing 
voltage across %D�#� (ow 
frequency region) 

Figure 6.  Inputs (current and physical states) to the FO-PINN. 

The CNN layer is designed with six filters of length three 
that extract the spatial hierarchies and local pattern of the input 

data i.e. 9|8}� <D� <E and <F. While increasing the number of 
filters enhances the network's capacity to learn complex 
relationships, it also introduces computational overhead. The 
choice of six filters is thus made to strike a balance between 
model complexity and computational efficiency: crucial 
considerations in battery state prediction tasks. The output of 
the CNN assessed using (14) is then fed to an LSTM layer with 
400 hidden nodes to capture the temporal features of battery 
dynamics. The CNN-LSTM is trained for 500 epochs with a 
batch size of 64 using (13). The root mean square error 
(RMSE) used to evaluate the performance of the proposed 
scheme in predicting terminal voltage is as in (16), 

RMSE =yD
N

� |(b|Vc`} o (b|LQHRMPP}}EN
[ID .                 (16) 

The ratio of training: validation: testing is set as 
0.7:0.05:0.25 from a total sample size of 640000 points. After 
training for 70% data, we evaluate the model's performance in 
the validation set. We feed the 5% input data (32000 sample 
points) through the network, compute the loss in terms of 
RMSE, and then use this information to adjust the 
hyperparameters. As the validation loss decreases while the 
training loss decreases, it indicates that the model does not 
suffer from overfitting. The resultant terminal voltages 
obtained from (15) are plotted in Fig. 7. The parameters of the 
IOM with constant parameters are %C p 
�
���� %D p

�

��� %E p 
�

��� �D p 
�

��� �E p ����
��. The 
RMSEs of IOM with constant parameters, IOM with SOC- 
dependent parameters and the FO-PINN in terms of 
percentage errors are computed as 0.601%, 0.493% and 
0.223%, respectively in the testing region. As the FO-PINN 
clearly mimics the experimental terminal voltage of the battery 
better than that of the IOMs without PINN, it validates our 
second contribution that integration of the FOM with PINN 
can capture unmodeled battery dynamics. As the SOC 
dependent FO-PINN yields improved voltage predictions, it in 
turn will be useful for SOC estimation in LFP batteries, where 
understanding the SOC inter-relationship with battery 
parameters will help understand the flat region dynamics; our 
third claim of contribution. 

 

Figure 7.  Terminal voltage prediction  

C. Comparisons with existing methods 

A comparison of the proposed scheme to existing 

modelling techniques applied to LFP batteries is provided in 

Table 1. The RMSEs are listed as reported in these works [6, 

20, 22-25]. Comparison to our work reveals that our proposed 
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SOC dependent FO-PINN outperforms the existing methods 

for modelling LFP batteries. Specifically, the proposed 

modelling scheme achieves an RMSE of less than 0.25% - an 

order of magnitude less than most methods. 

TABLE I.  COMPARISON OF THE PROPOSED SCHEME WITH EXISTING 

MODELLING TECHNIQUES FOR LFP BATTERIES 

Work year method FO RMSE 

[22] 2023 Pseudo-open-circuit voltage 
modelling 

No 3% 

[23] 2023 Voltage interval at low state of 

charge 

No 2.67% 

[24] 2023 Partial least squares regression 
models  

No 1.92% 

[6] 2023 PDE based PINN No 0.42% 

[25] 2021 Deep neural network No 2.03% 

[20] 2019 CNN-LSTM No 2% 

This 
paper 

2023 State dependent, fractional-
order physics-informed neural 

network (FO-PINN) 

Yes 0.223% 

V. CONCLUSION 

A state-of-charge dependent, fractional-order physics-

informed neural network is proposed to predict the terminal 

voltage of an LFP battery. The hybrid neural network is a 

CNN-LSTM architecture which is informed by the physical 

states of the FOM. Through experimental validations, it is 

proved that the new SOC dependent FOM can encompass 

battery physics better than integer-order models. Also, this 

improved FOM guided neural network yields an RMSE of 

0.223% and thus outperforms several other existing 

modelling techniques of LFP battery. A future direction of 

work is to study a PINN architecture by incorporating a 

fractional-order circuit element in the mid frequency region 

to capture the battery dynamics and analyse its sensitivity.  
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