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Abstract: An efficient state of charge (SOC) estimation for LiFePOy batteries in electric vehicles (EVs)
has been an open problem so far, largely due to its non-measurable nature. This paper tackles this problem
by presenting a fractional-order (FO) dynamical framework to unravel and understand the inherent
dynamics of the LiFePOj battery which leads to an improved estimation of SOC. First, a FO model (FOM)
is proposed where the parameters are introduced as nonlinear functionalities of SOC. It has been observed
that the FO defined as a nonlinear function of SOC is crucial in identifying its progression during the weakly
measurable flat, open circuit curve of the battery; a property the integer order models (IOMs) fail to capture.
Second, a fractional order estimator (FOE) is designed incorporating the SOC based nonlinearities of the
model parameters. The FO derivative being a memory-based operator improves estimation as it can store
historical information of the speed profiles of the EV. The proposed framework of nonlinear FOM and FOE
design is validated through both simulation and experimental results. Precise estimation of the battery
parameters using the proposed framework can be applied to protect the battery management system,
mitigate overcharge or discharge, prevent hazardous accidents, and enhance battery life, eventually leading
to an energy-efficient mode of green transportation.
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1. INTRODUCTION

drawbacks in the existing battery parameter estimation

. . . . .. research are as follows:
In this era of developing climate consciousness and devising

new and improved technology solutions to attain a sustainable i. limited capture of battery dynamics through IOMs,
environment, electric vehicles play a promising role. Lithium- - o . .
ion batteries (LIBs) are the leading energy storage technology ii.  utilization of a fully linearized model where the

for the current as well as next generation transportation dependence of the parameters on SOC is ignored,

systems based on clean, green, and sustainable energy
solutions. The existing LIBs however still suffer from
technical challenges of safety, reliability, cost, weight and
lifespan, lack of real-time measurements and parametric
uncertainties (Dey et al., 2015).

iil. failure of conventional methods of observer design
like extended Kalman filter (EKF) to provide an
optimal estimate due to the internal linearization (Dey
et al., 2014), data-driven methods on the other hand
require huge amount of data for training, apart from
being black box models (Liu, et al., 2023; Yao et al.,
2023).

1.1 A brief recent survey

Accurate estimation of SOC of Lithium Ferrous Phosphate

(LFP/ LiFePOs) batteries has long been an open problem. A
recent industrial survey discloses a global trend of
manufacturers of EVs shifting to LFP batteries for standard
range vehicles from the existing Nickel Manganese Cobalt
(NMC) batteries that have been predominantly used in high
end EVs so far (Klender, 2021). The current bottlenecks of
NMC are its safety hazard due to the thermal runaway, scarcity
of raw materials of Nickel and Cobalt, short lifespan, and high
cost (Volta, 2021). Though LFP overcomes these limitations,
however the transition to LFPs in EVs is still in nascent stage
as the long-standing challenge of error-free estimation of SOC,
largely due to its limited observability, is unsolved. The

In practical scenarios, one of the short comings in an 10
equivalent circuit model (ECM) is that the capacitors and
inductors may not mimic the system behaviour at an in-depth
capacity, especially, when the relationship between voltage
and current is not always an integral derivative. These non-
ideal relationships are captured by a FO capacitor or an FO
inductor called a fractor, whose impedance is termed as
fractance, the circuit of which is successfully realized in
(Adhikary et al., 2016). FOM circuits have been found to
deliver improved results in various real life applications as in
secure communication and multistable hypogenetic systems
(Borah et al.,, 2017; Borah et al., 2018). Experiments on
frequency spectrum of LFP cells obtained from
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electrochemical impedance spectroscopy (EIS) reveal that an
FOM can acquire the dynamics of mid-frequency region such
as charge transfer reaction and double layer effects and that of
low frequency region as solid phase diffusion of the battery
better than the corresponding IOMs (Nasser-Eddine et al.,
2019). Fractional-order calculus has been extended to data
driven methods such as FO gradient based recurrent neural
networks for SOC estimation of LIBs in (Wang et al., 2022),
where it has also been reported that FO constraints can
stabilise the output and reduce its noise. Recently, an FO
framework has been developed to co-estimate SOC of a hybrid
energy storage system, resulting in an improved and faster
convergence (Li et al., 2023), however the dependence of the
circuit parameters on the SOC was ignored. An observer for
SOC estimation of LFP battery using fractional calculus is
proposed in (Rao et al, 2021) nevertheless, the FOM
validation is not performed and the proposed observer is a low
gain linear observer that may not guarantee convergence. The
FOMs can closely capture the real dynamics of a physical
system owing to their following extraordinary advantages
(Borah et al., 2022; Chen et al.,2023):

i. FO derivative being a non-local operator has the
capacity to store infinite memory of the past values
calculated until the present time, unlike IO derivative
which is a memory less operator,

ii. FO derivative being a non-ideal operator can
incorporate non-integer values, unlike IO derivatives,
iil. the additional FO parameter gives more flexibility and

a larger stability region.
1.2 Novelty and contribution

This paper attempts to address the open problem of SOC
estimation of LFP batteries by presenting a framework of FO
modelling and estimation as in the following.

i. A FO framework is proposed where the FO operator
along with the circuit parameters in the LFP battery
model are defined as nonlinear functions of SOC, and
validated experimentally. The authors claim novelty in
this innovative approach, as it not only improves model
accuracy but also adds mathematical dependencies
between measured voltage and SOC beyond the flat
open circuit curve; a critical and partially understood
dynamics of LFP battery. In a fresh attempt, our work
validates the above nonlinear functionalities of
parameters with SOC with experimental evidence in the
frequency domain; a contribution not made so far in the
existing literature to the best of the authors’ knowledge.
This novelty helps to understand the inter correlation
and progression of the unknown LFP battery physics as
the SOC varies during dynamic operating conditions.
Besides, the FOM also contributes in capturing the
dynamics of solid-phase diffusion and charge transfer
reaction dynamics, which otherwise remain unobserved
in an JOM.

ii. A nonlinear observer is designed using the FO
Lyapunov stability criterion to estimate the SOC
performance, incorporating the SOC  based
nonlinearities of the model parameters. It is found to

generate improved results in comparison to existing FO

estimation techniques for LFP.
The paper is organized as follows. A brief introduction and
contribution of this work is highlighted in Section 1. The first
step of the FO dynamical framework with the proposed FOM
and its parameter identification are stated in Section 2. Section
3 details the nonlinear observer design for SOC estimation.
The results are validated and discussed in Section 4 and the
paper is finally concluded in Section 5.

2. PROPOSED FRACTIONAL-ORDER MODEL

This section presents the fundamentals of fractional calculus
followed by the first step of the proposed framework, i.e.
design of the FOM.

2.1 Preliminaries of fractional calculus

The Caputo fractional derivative of order o of a continuous
function f{z) is defined as in (1) (Monje et al., 2010).

a*f(t)
Dif(t) = =

at®
1t Mo _
— N pemidn m—1<a<m meN |
am (1)
@), a=m

The Laplace transform of the Caputo fractional derivative is:

LELO) = sel{f @) - i s 00 @)

dat®

Theorem 1 (Monje et al., 2010): The equilibrium points of a
commensurate FO nonlinear dynamical system (FONLS) are
asymptotically stable if for all the eigenvalues A;, (i =
1,2,...,n) of the Jacobian matrix | = af/ax, where f =
[fi, f2,++-» fn 17, evaluated at the equilibrium point, satisfy the
condition: larg(eig()| = |larg(A)| > an/2,i =
1,2,...,n.

Lemma 1: (Aguila-Camacho, Duarte-Mermoud & Gallegos,

2014) If x(t) € Ris a continuous and derivable function, then,
for any time instant t > 0,

D2 (t) < x(£)D%x(b), Va € (0,1]

where D%x(t) is the Caputo fractional derivative of x(t) of
FO a. Based on the above preliminaries, the FO dynamical
framework is presented in the following sections

2.2 FO Modelling and Parameter identification
The generalized form of FONLS is presented in (3) and (4),

D%x(t) = A(x)x(t) + g(x,w) 3)
y=Cx “)

where x is the vector containing the unmeasurable states, u and
y are measurable input and output vectors, A(x) represents the
nonlinear function in x and a = {ay, @y, ..., a,} is the FO
parameter vector such that a € (0,1].

The first step of the framework is presented in Fig. 1.
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Fig. 1. Framework of FO modelling and identification

The FOM of a battery is conceptually built from EIS, where
the impedance is calculated from the terminal voltage in
response to a small input alternating current. The Nyquist plot
of the impedance spectrum is then divided in three frequency
regions: low (solid phase diffusion), mid (charge transfer
reaction, double layer effect) and high (ohmic polarization).
The low frequency region in the Nyquist plot obtained from
the EIS experiment is modelled using a FO element called the
constant phase element (CPE). It can attain non-integral values
unlike a conventional capacitor and thus model the fractional
solid phase diffusion dynamics better. The resultant FO-ECM
is depicted in Fig.2, where V,. and V; are open circuit and
terminal voltages of the battery, respectively.

Ohmi.c ) Charg-e transfer solid phase
polarisation reaction, double diffusion
layer effect
R, R,
Ry T
=
v I | Ve
ac
i CPE

Fig. 2 Proposed FOM of the LFP battery, depicting the dynamics
during low, high and mid frequency ranges

The FO-ECM in Fig. 2 results in an FONLS from (3)-(4) as in
(5) and (6)

« u(t)
D%x, (t) = 0
Dy (t) = — () —u(®) ()
Ry (x1)C1 (1) Cy(x1) )
PO = R GerEen O * RGerEen 1
D% x,(t) = —y{xs(t) — Vi}
output voltage y = Cx = [000 1] x, 6)

where, V; = V,.(x;) — x,(t) — x3(t) — Ro(x)u(t), and

345

a={a,,a, a3,a,} ={1,1,a3,1}. The state vector x =
[x1 x X3 X4]T is such that x; = SOC, x, is the voltage
across the R, C; pair, x5 is the voltage across the R,CPE pair
and x, is the output terminal voltage, V; at equilibrium. x;, x,
and x5 are non-measurable states and x, is a measurable state
at equilibrium. Q is the battery nominal capacity, u is the input
current [ which is positive for discharging and negative for
charging operations.

Once the frequency domain experiment is conducted, the
parameter identification of the above FO-ECM in (5) and (6)
is carried out using global optimization techniques. The LFP
battery is subjected to an Hybrid Pulse Power Characterization
(HPPC) or any pulse load current for each 10% drop of SOC
and allowed to rest for 10 minutes. It is repeated until the lower
cut-off voltage of the battery is achieved. The V; at the resting
period gives the V. and the corresponding relationship of the
V,. — SOC curve, i.e. V,.(x;) is derived. Now the optimization
problem is framed such that the error between the experimental
output terminal voltage and the model output voltage is
minimized as given in (7).

1
mine(8) = > [Zi_, Vigern (&) = Viromy @F ()
In (7), Vitexpy(tx) and Vipoumy(ty) are the experimental
terminal voltage and the FOM terminal voltage obtained at k"
sample and 6 = [Ry, R, R, Cy, CPE, as] represents the set of
parameters to be optimized. The parameters are identified once
the cost function converges and likewise the parameter
identification is performed for varying values of SOC. The
identified parameters are thus nonlinear functions dependent
on SOC. Following the parameter identification, we proceed
to design an estimator/ observer to estimate the unmeasurable
state, SOC in the forthcoming section.

3. DESIGN OF OBSERVER

The second step of the framework is the design of a nonlinear
observer in the FO sense presented in this section.

1 1

1
Let, b= Q ka(x) = Rq(x1)C1(x1)’ ka(3) = Rz(x1)CPE1(x1)’
ks(r) =Voc(x1), P == p(0) = p s

p3(x1) = Ry(x,) so that (5) and (6) simplify to (8) and (9).

D%x; = —bu
{Dazxz = —k;(x)x; + p1(x)u

8

D%x3 = —k,(x1)x3 + p2(x)u ®
D%, = —ylxy = Voo Gor) + 2 + 25 + py ()
Y =X 9)
The general form of FO observed model is given by,
Dex(t) = A(R)x(t) + g(Z,w) + Ly — ) (10)
9 = C2() (1)
where £(t)is the estimation of x(¢), L=[l; I, I3 1] is

the observer gain matrix to be designed.

The observed FO battery model is presented in (12).
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D*2%, = _kf(fl)fz + pf(fl)u + 1 (xy — %y)
D*3%; = _kg(fl)@ + pg(fl)u +13(x, — Xy)
D*%, = V{kg(fl) — X=X - Pg(jf\l)u + 1, (x, — %)}

D%, = —bu+1(x, — %)
{ (12)

Here in (9), k?(+) and p? () are the nominal representations of
k;(-) and p;(*) and are chosen as locally Lipschitz and bounded
defined as follows kP () < —-m;, 1 <i < 3.

The estimation error is defined as, e = x — X and the error
dynamics is defined in (13).

Dalel = _lle4,
{ D%ey = —ky (x1)x; + kY (R1) %2 + {p1(x1) — pY (%) Iu — Lrey

frequency response relative to an IOM. Then, we identify the
FOM parameters from drive cycle data.

The laboratory set up for the EIS experiment consist of a
Gamryl010E instrument which has a maximum applied
current of £1 A, maximum applied potential of £12 V and a
frequency range of 10 pHz - 2 MHz It is interfaced with a
workstation that processes the data. EIS experiments are
conducted on a fresh 18650 LFP cell of 3.3 V nominal voltage,
1.2 Ah capacity. The input to the EIS is an alternating current
of 0.1 A and the frequency spectrum is varied from 0.01 Hz to
100 kHz at 25° C. The Nyquist plot derived from the EIS is
plotted in blue and the fitted model (using the circuit illustrated
previously in Fig. 2), in red in Fig. 3. It is seen that the FOM

D%ey = —ky(x1)x3 + kS(R)%3 + {p(x1) — pI(®)}u — lze, (13)fits the experimental frequency data better by capturing the

tD“4e4 = k3(x1) — k3(®1) + e, + €3 + {p3(x1) — pIRDIu — Luey
Further mathematical calculation reveals
—key (x1)x, + kP (%)%,
= —k{(®)e, + (kD (R1) — k1 (x1)}x,
and
—ky(x1)x3 + kg (X)%5
= —k3(%;)es + (k3 (R1) — ko (x1)}x3
which can be substituted in (13).
The boundedness of the following function in (14) are defined
as,
1€k (%1) — Ky ()2 [l + H{pa (x1) — P2 @D}l < My
1€k (£1) — k() Y]l + {2 (1) — pS (RDJull < M, (14)

llkes Cer) = k@D + 1{ps (x1) — p3 (@) }ull < M,
where M; 1 < i < 3 are all positive bounded constants.

The Lyapunov function is chosen as a positive definite
function as in (15).

V(e) = %(ef +eZ+ei+e?) (15)
The error dynamics in (16) is obtained using Caputo fractional
derivative (1) and lemma 1 in V (e)

D*V(e) < e, D%(e,) + e;D%(e,) + e3D%(e3) + e,D*(e,)

< e (—liey) +ep(—mye; + My — lLyey )
+ 63(—7’71263 + M2 - 1364) + 64_(M3 + 62
+e;—lye,)

S —m1622 - mze32 - 14_642 - 126462 - l3e4e3 +
eye, + esez + Mie,+Myez+Mse, (16)

The observer gains are chosen such that D*V (e) — 0 as time
t - oo,

4. EXPERIMENTAL RESULTS AND DISCUSSIONS

The experimental validations of the simulation results are
discussed in the following two subsections.

4.1 Step 1 of the framework: parameter identification of FOM

This subsection implements the first step of the FO framework
discussed in Section 2.2. First, we utilize EIS experimental
data to demonstrate how an FOM more accurately captures the

solid phase diffusion as shown in Fig. 3b, than that by an IOM,
in Fig. 3a) where the CPE is replaced by an integral capacitor.
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The input current of the EIS experiment in the frequency
domain has a constant profile, whereas the current profiles in
real life scenarios are highly fluctuating. This calls for a
parameter identification in the time domain using current
profiles under actual operating conditions. The experimental
setup is shown in Fig. 4 which displays an Arbin laboratory
battery tester (LBT) with a channel voltage range of 0-10V,
maximum channel current of 10A divided into four ranges of
10A /500 mA/ 20 mA/ ImA and eight number of channels.

‘ Battery testing equipment ‘

Fig.4 Experimental set up of battery tester

An Urban Dynamometer Driving Schedule (UDDS) profile is
taken for the purpose as shown in Fig 5 and the parameters are
identified such that each parameter is a nonlinear function of
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SOC. In order to mitigate the impact of hysteresis on the
battery dynamics, V. is taken as the average of the charging
and discharging current profiles.

3 T T T T

\Input Current
o - N

T
L

L L L L

500 1000 time 1500 2000 2500

N

o

Fig.5 UDDS input current profile

The parameter identification is carried out using chaos based
PSO (Duan et al., 2022), where the cost function is optimized
with respect to three indices: position, speed and fitness. A
peculiar characteristic of chaotic trajectories is that they never
repeat their paths or intersect. This property of chaos
introduces a randomness in the PSO algorithm which
facilitates the particles to explore previously unexplored
regions of the solution space, escape local optima, and thereby
attain global optima in terms of potentially finding better
solutions (Tian, 2017). This is the reason behind using chaos-
based PSO for parameter identification, as opposed to
gradient-based optimizers, for example. The hyperparameters
of PSO are chosen as the dimension of 6 representing the six
parameters to be optimized: Ry, R4, R, C;, CPE and a3,
acceleration factor =0.1, minimum inertia weight 0.5,
maximum inertia weight =1, population size =50 and number
of generations=500. The parameters are optimized using (7)
for each 10% decay between 0 and 100% SOC inclusive
storing 11 values for which parameters are linearly
interpolated between input points. A comparison of the output
voltages from the FOM and IOM with the experimental
terminal voltage in the time domain is given in Fig. 6 where
the zoomed view clearly shows that the FOM mimics the
experimental voltage better than the IOM.

335
33

3.25

Terminal Voltage

= experimental
oM
—===FOM

3.2

3'150 scl)o 1(;00 time 4500 2060 2500
Fig. 6. Comparison of the proposed FOM, IOM and experimental
terminal voltages of the LFP battery

4.2 Step 2 of the framework: Nonlinear observer results

This subsection implements the second step of the FO
framework discussed in Section 3 that involves the nonlinear
observer design. The initial condition of the SOC of the LFP
battery is 70% and the that of the FO nonlinear estimator is
60%. An asymmetric charging discharging current profile as
in Fig. 5 is fed as input to the battery and the estimator. The
actual SOC is obtained by Coulomb counting through high

fidelity measurements of the input current which are integrated
with respect to time. Figure 7 shows that the estimated SOC
despite being initialized from a different value, converges
effectively to the actual SOC obtained from the battery
experiment, thus, successfully estimating it. The steady state
error of 0.6% is obtained between the experimental and
simulated results.

0.7 T T
e 3CtUAL
!\¢\~~.~.~ . .
= —==—=1; (estimated)
0.6 5 7
(@]
O
Dost .
0.4 ! L I |
0 500 1000 1500 2000 2500
time

Fig. 7 Actual and estimated SOC in charging- discharging mode of
the LFP battery

The driving speed profile of an EV is transformed to a demand
power profile which in turn is changed into current by an
energy management module to be fed to the battery. For
comparison with existing literature, derivation of existing
FOMs of LFP in (Rao et al, 2021) is not validated
experimentally and the estimation technique being a low gain
linear observer may not guarantee convergence. In our
proposed work where we take care of nonlinear dependencies
of parameters versus SOC, we obtain an error of 0.6% between
the experimental and estimated results. The error is less than
the 0.8% and 0.91% errors obtained in the FO approaches in
(Li et al., 2023 and Wei et al., 2022), respectively. Thus, our
proposed method being an SOC dependent model can closely
relate to the physical system in a practical scenario and provide
improved estimation results with faster convergence.

Acknowledgement: M. Borah in this work is supported by
Fulbright fellowship.

5. CONCLUSIONS

Efficient operation of an EV depends on high reliability of
accurate estimation of SOC which in turn depends on the
accurate modelling that closely captures the underlying energy
storage dynamics. This paper presents a two-step framework
of fractional order dynamics applied to SOC estimation of
LiFePOy batteries, the first being the proposal of a FO model
of the battery where each circuit element in addition to the FO
operator has nonlinear functionalities dependent on SOC.
Practically, the FO parameter, a captures the dynamics of the
non-integral relationships of voltage and current in the low
frequency region and thereby provides an improved
representation of the battery solid phase diffusion dynamics as
the charge-discharge cylces progress. The second step of the
framework presents the design of the nonlinear observer in the
FO sense to estimate the SOC. The gain matrix is selected such
that the error dynamics satisfy the fractional-order Lyapunov
stability analysis and converge to zero. In practical scenarios,
the proposed nonlinear fractional-order dynamical framework
for precise estimation of SOC can be applied to attain an
improved, sustainable, resilient, and efficient battery
management system in smart cities applications, provide exact
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driving range in electric vehicles, reduce maintenance cost and
safety risks, enable fault diagnosis, and save energy.

The limitation of the proposed model is that the FO operator
captures the dynamics in the low frequency region of the
battery Nyquist curve. The future scope of this work is to use
the FO operator as a function of SOC to model and understand
the dynamics in the mid frequency region as well. Another
direction of future scope is to study the FOM of the battery
under the effects of hysteresis and temperature.
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