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Abstract: This paper addresses the state of charge estimation problem in lithium iron
phosphate (LFP) battery cells. LFP cells are particularly challenging because their flat
open circuit voltage (OCV) curve means OCV-based battery models are weakly observable.
This means standard methods for SOC estimation don’t easily converge to the true SOC.
Additionally, in practice, estimates must be accurate in the face of biased noise on current
input, as well as mean-zero noise on measurements. As such, we aim to create an estimator that
is accurate when facing these types of noise. We accomplish this with a three-layer estimation
technique that uses an adaptive Kalman filter, a Neural Network, and a Kalman Filter to
estimate the state of charge. This method achieves an SOC estimation with an RMSE of
2.248%, even in the presence of a 0.2A current measurement bias and 5mA and 5mV random
measurement noise. Notably, the proposed approach outperforms state-of-the-art methods like
the extended Kalman filter.
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1. INTRODUCTION

the middle SOC ranges. This motivates us to look for new
estimation techniques that are less reliant on the OCV

1.1 Problem setting/motivation

Batteries are a key enabling technology for a number of
systems like electric vehicles, grid energy storage, and per-
sonal devices. One battery chemistry that is gaining grow-
ing attention is lithium iron phosphate (LFP) batteries.
This chemistry has a number of strengths, the foremost of
which are its low cost, safety, and high cycle life. However,
state of charge (SOC) estimation is particularly difficult
with this chemistry. This is because the middle SOC region
has a particularly weak relationship between SOC and
open circuit voltage (OCV). The “flat OCV” curve means
that the SOC has little effect on the measured voltage in
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relationship.

1.2 Literature Review

There is a wide range of techniques for SOC estima-
tion that have been well-studied for Lithium-ion bat-
teries. Waag et al. (2014) and Li et al. (2017) pro-
vide a comprehensive review of state-of-the-art SOC es-
timation algorithms. Of particular interest in this paper
are Kalman filtering techniques and Neural Network ap-
proaches. Kalman filtering techniques are pervasive in bat-
tery modeling due largely to their ease of implementation,
theoretical guarantees in some cases, and reliability. Hos-
sain et al. (2022) provide an overview of these techniques
for SOC estimation.

More recently, neural network based approaches have also
seen success for SOC estimation (Lipu et al. (2022); Liu
et al. (2022)). Because neural networks act as general
function approximators, they are able to capture complex
dynamics present in the data that are difficult to model
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with traditional battery models. The downside of these
approaches is they usually struggle with out-of-sample
performance and sometimes require large amounts of data.
Some approaches like those presented in Charkhgard and
Farrokhi (2010) have combined Kalman filtering with neu-
ral network approaches. Such hybrid estimation methods
have the potential to leverage the strengths of both tech-
niques.

While these state of art SOC estimation techniques per-
form well on chemistries like nickel manganese cobalt
(NMC), they struggle when applied to LFP cells. The key
challenge in LFP cells is the flat OCV curve (see 1), which
makes the system weakly observable. Weak observability
makes LFP SOC estimation vulnerable to sensor and
process noise. Li et al. (2013) compares 3 SOC estimators:
Luenberger observer, extended Kalman filter (EKF), and
sigma-point Kalman filter (SPKF) for an LFP pouch cell.
Different neural network based methods for LFP estima-
tion have also been explored. Chang (2016) uses fuzzy neu-
ral networks and compares the results to backpropagation
NN and Coulomb counting. Huawei et al. (2019) compares
radial basis function NN to backpropagation NN for LFP
SOC estimation in terms of the tradeoff between accuracy
and time efficiency. Chen et al. (2022) uses a deep neural
network (DNN) to obtain a SOC estimate which they then
filter with a Kalman filter. There has also been some work
with hybrid estimation techniques that exploit charging
protocols to train the DNN. The DNN is then used for
estimating accurate initial SOC for Coulomb counting
(Tian et al. (2021); Hu et al. (2022)). While many of
these techniques show promising results, all of these works
are done assuming no current sensor bias. Though they
are able to obtain good results, the results are collected
from laboratory equipment using high-accuracy voltage
and current measurement sensors and with correct initial
conditions on SOC. Such assumptions mean the results
do not generalize to real-world applications, which are
subject to corruption by noise on both voltage and current
measurements.

Some work has examined estimation in the presence of
sensor bias. For example, Lin (2018) presents theoretical
estimation bounds of recursive observers with output
error injection to input bias. Other works develop specific
estimation algorithms that explicitly estimate current
bias, in order to obtain more accurate estimates Shen et al.
(2021); Feng et al. (2017); He et al. (2019). These works
focus on NMC chemistries, however, and therefore rely on
the strong OCV relationship to estimate bias.

A clear gap in the LFP SOC estimation literature is ro-
bustness to input bias. Input bias can arise from a number
of different sources, including uncertainty of current dis-
tribution in packs, Coulombic losses, or faulty sensors. As
such, it is important to develop techniques for effectively
estimating SOC in the face of current bias. To address
the challenges of LFP SOC estimation, especially when
dealing with sensor noise and bias, we propose a robust
SOC estimation technique that combines online parameter
identification with a hybrid DNN and KF state estimator.

1.8 Contributions

The key contribution of work are:
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Fig. 1. OCV as function of SOC for an LFP cell. Note that
OCYV is nearly flat from 15% - 95% SOC, increasing
by less than 2mV per 1% SOC change on average.

(1) A novel approach to SOC estimation in LFP battery
cells that trains a neural network on parameter
estimates generated from a Kalman filter.

(2) Accurate SOC estimates in a model to model study
in the face of current bias and voltage noise.

(3) Accurate SOC estimates demonstrated for prolonged
cycling in the flat-OCV region.

(4) Demonstration that this novel estimation algorithm
outperforms other state of art benchmark methods.

2. METHODS

2.1 General Structure of the SOC' Estimator

As shown in Fig. 2, the proposed method consists of two
main parts: offline training and online estimation. In the
offline training, a training set is constructed based on
current and terminal voltage data from selected training
profiles. These profiles provide voltage and current data
with accurate battery SOC values, obtained by simulating
an LFP cell with various current profiles cycles. Using
these profiles, the battery parameters are identified using
a parameter estimation KF. The identified battery param-
eters and SOC data are used to train a DNN that predicts
battery SOC using two selected battery parameters, OCV
and «. The significance of « is elaborated upon in Section
2.2. After training is complete, the DNN is tested on a
validation set, and the estimation variance is calculated.
In the online estimation, real-time terminal voltage and
current data are fed into the parameter estimation KF,
which provides the online identified OCV and « values
to the DNN. These parameter estimates are fed into the
DNN which ouputs an SOC estimate, as shown in Fig. 2.
The final estimation is made by synthesizing the coulomb
counting value and DNN estimation results, using a data
fusion KF that minimizes the variance. The detailed algo-
rithms used in each part are introduced in the following
subsections.

2.2 Kalman Filter for Parameter Estimation

A Kalman filter is comprised of two steps, namely the pre-
diction and the measurement update. The KF equations
are presented below,

Step 1: Prediction:
zp(k) = Ak — D)ay(k— 1)+ B(k—Du(k—1) (1)
Py(k) = Ak = )Pk = DAGk = 1)T + Su(k)  (2)
Step 2: Measurement update:
K(k) = Py (k)H (k)T (H (k) Py(k)H (k)T + 0w (k)™ (3)



Junzhe Shi et al. / IFAC PapersOnLine 56-3 (2023) 127-132 129

SOCrrye

Offl.ine training k

Parameter
Estimation KF

Vr(k) = 0CV (k) + Ry(k)I (k) + V4 (k)
Vi) = a9Vl = 1) 4 fUOIC~ 1)

L e fa e fa s fu e Fu e fo s Fu e Fu e oty Fu by Bo by a b ot Fa by B iy by P i Py

Parameter
Estimation KF

OCV and

Deep NN
training

NN and oy

tadadadedadadaday Sodade e dads tadedededededady todytodydasy tade oty fody]

Online estimation :
Deep NN  RIY&TH -

Prediction

SOC Estimation

Vr
Fig. 3. The battery 1RC equivalent circuit model used in
this paper.
T (k) = p(k) + K(2(k) — H(k)p(k)) (4)
P (k) = (I = K(k)H (k)) Py (k) (5)

where x represents the states of the system, w is the input,
z is the measurement. A is the state-transition matrix,
which describes how the state of the system evolves over
time. B is the input matrix, which relates the input to the
state of the system. H the observation matrix, which maps
the state of the system to the measurements obtained from
the system. P is the covariance matrix of the states, I is
the identity matrix, K is the Kalman gain, ¥, is the
covariance matrix of the process noise, and X, is the
variance of the measurement.

To develop the KF for estimating the parameters we first
define our battery model. The battery model used in the
KF is an equivalent circuit model (ECM), illustrated in
Fig. 3. This model is comprised of a voltage source (OCV),
an internal resistance (Rp), and an RC pair (R; and C).
It is conventional to treat OCV as a function of the SOC.
However, for our method we will treat OCV as a time
varying parameter. Hence we only need to model the
dynamics of the voltage across the RC pair. These are
given by:

Vi(k) = Vi(k = Da(k) + I(k - 1)5(k) (6)

Here, a = exp(—At/(R1C1)), and 8 = Ry(1 — «). The
output of the model is the terminal voltage Vp and is
given by the sum of the open circuit voltage, IR drop, and
capacitor voltage:

Vr(k) = OCV (k) + Ro(k)I(k) + Vi (k) (7)

i m SOCgq,

According to the battery model, the parameters OCV,
Ry, a, and 3, are selected as the KF states. The discrete
state transition function and measurement function of the
model can be written as follows.

oCV (k)
x(h) = | Tofh) Q
5(K)
z(k)=z(k—1)+v (9)

Vr(k) = y(k) = Ha(k) + w (10)
where v and w are the process and measurement noise,
respectively, and

H =1, I(k), Vi(k = 1), I(k —1)] (11)
Using the above x, H, y and the measured voltage as z we
use equations (1)-(5) to estimate x(k). This comes with
one caveat. Since we need Vi(k — 1) to express H we
also compute this value according to equation (6). This
update occurs after the prediction update but before the
measurement update in the Kalman filter.

2.3 Training the DNN for SOC Estimation

The DNN used in this paper is a three-layer, fully con-
nected NN with twenty hidden units in each layer. Recti-
fied linear unit (ReLU) activation functions were used in
the hidden layers of the deep neural network. The inputs of
the DNN are OC'V and «, estimated by the parameter es-
timation KF. Note that only two states (OCV, «) instead
of four states (OC'V, Ry, a, B) are used as the inputs. Equa-
tion (11) indicates that the estimated parameters Ry and
[ are sensitive to current measurement. Excluding them
from the inputs can improve the method’s robustness to
the noise and bias in current measurements, which is a
significant advantage of the proposed method.

For efficient training and evaluation of our machine learn-
ing model, we partitioned our data resources into three
distinct subsets: the training set, the validation set, and
the test set. Data for model training and validation were
sourced from the same collection, which comprised six
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Fig. 4. Learning Curve: Training and Validation Loss over
Iterations.

real-world driving cycles including UDDS, US06, New
York City Cycle, etc., obtained from NREL (2023). We
allocated 70% of this dataset to the training process. The
remaining 30% served as the validation set, playing a cru-
cial role in tuning the model’s parameters and informing
significant decisions throughout the training phase. In con-
trast, to assess our model’s capacity to adapt to new sce-
narios, we employed an independent test set derived from
a separate source: the Orange County Transit Bus Cycle
(US-OCTA). The training, validation, and test datasets
for the proposed method were generated by charging and
discharging an LFP cell model, as described in Lin et al.
(2014). The SOC data were meticulously recorded during
these charging and discharging processes. To bolster the
proposed DNN'’s resilience to current fluctuations and
measurement noise, artificial measurement noises were
integrated into the training and validation data.

Upon estimating the battery parameters OCV and «
using the parameter estimation Kalman filter, these were
utilized in tandem with the true SOC data to train the
DNN, fpnn(OCV, ), to predict battery SOC. It’s worth
noting that the training data and estimation parameters,
particularly OCV, derived from the parameter Estimation
KF, closely align with the actual parameters of the model
used in the simulation. The primary objective is to dis-
cover an optimal method that enables the DNN to balance
the estimation based on the OCV and « values. Hence, the
proposed DNN is designed to estimate the battery SOC
using Equation (12). Furthermore, the mean-square error
of SOC prediction using the validation set, represented by
o3 s was recorded for future use in online estimation.

SOCML(]C) = fDNN(OCV(k),a(k:)) (12)

As shown in Fig. 4, the model demonstrated low loss
values in both the training and validation sets. This low
loss value is indicative of a small difference between the
model’s predicted SOC values and the actual SOC values
in our training and validation data, suggesting accuracy
in SOC prediction without over fitting and under fitting.

2.4 Kalman filter for SOC synthesis

While coulomb counting is a straightforward method
for estimating the SOC by integrating the current over

time, its accuracy can be compromised by an inaccurate
initial guess of SOC and noise and bias in the current
measurement. To address these challenges, this study
proposes a SOC estimation Kalman filter to fuse the
SOC estimations made by both the coulomb counting and
DNN methods. In this approach, the DNN serves as the
measurement source for the SOC estimation KF in the
measurement update step, while the coulomb counting
method acts as the model for updating the SOC in the
prediction step.

The dynamical system we will use for SOC estimation
tracks the state of charge i.e. (k) = SOC(k). We chose
to advance the dynamics of the estimate using coulomb
counting so A = 1 and we have H = 1 so that the output,
vy, is the SOC estimate. The dynamics of the system with
process and measurement noise v and w are then given by
the following equations.

x(k) :x(k—l)+u+v

Qcap

y(k) = z(k) +w

where Qcqp is the capacity of the LFP cell, and At is the
sampling time of the system. Further, we use the output
of the deep neural network as our measurement namely:

z(k) = SOCy (k) = fonn(OCV (k), a(k)) (15)

(13)
(14)

Using the above z, A, H and z we implement (1)-(5).
giving the following equations:

SOC, (k) = SOCom (k — 1) + m@-w (16)
Py(k) = Pp(k — 1) + Xy, (k) (17)
_ Py(k)
Kk = 5 i+ Sun® (18)
SOC (k) = (1 — K (k))SOC, (k) + K (k)(SOCar1. (k)
(19)
Pp(k) = (1 — K(k))Py(k) (20)

This method hybridizes the coulomb counting method
with the estimates from the DNN. Coulomb counting is
prone to inaccuracies in the initial guess of SOC and noise
and bias in the current measurement. DNN estimation
error, as shown in figure 5 is prone to noise ,as seen in the
blue curve. By leveraging the advantages of both coulomb
counting and the DNN, the proposed method provides
a relatively accurate and smooth SOC estimation, even
when the measurement is noisy and biased and the OCV
curve is flat.

3. PERFORMANCE AND DISCUSSION
3.1 Test Overview

The performance of the proposed algorithm was assessed
through a test cycle under a flat OCV range, spanning
from 90% to 20% SOC. To emulate real-world electric
vehicle operation, the test employed the US-OCTA Cycle.
To benchmark the proposed method, pure machine learn-
ing (ML) and EKF methods were used. Additionally, to
demonstrate the algorithm’s robustness, different current
biases, and random measurement noises were introduced
into the current and voltage measurements. These random
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Fig. 5. SOC estimation results of the proposed method
with 0.1A current measurement bias and 5mA and 5
mV random measurement noises.

noises follow normal distributions with standard devia-
tions of 5mA for current and 5mV for voltage measure-
ments. Moreover, the initial guessed SOC of the proposed
method and EKF was set to 50%, corresponding to a 40%
initial error for testing purposes.

3.2 Estimator Performance for an Ertended Drive Cycle

Figure 5 presents the SOC estimation results obtained
using the proposed method, taking into account a 0.1A
current measurement bias and 5mA and 5mV random
measurement noises. The blue dashed line represents the
SOC values obtained from the DNN, while the red line
shows the final estimated SOC results generated by com-
bining the DNN and coulomb counting outcomes using
KF. The yellow line denotes the true SOC data. Note the
true SOC curve generally tracks the average of the DNN
prediction results, indicating the DNN has some robust-
ness to measurement bias. In the SOC estimation KF,
the DNN’s output plays the role of output measurement.
Since the DNN’s estimate is nearly zero-mean (albeit with
some noise), it can be fed into a Kalman filter. In other
words, the SOC),, results correct the Coulomb counting
estimate, which is erroneous due to (i) incorrect initial
SOC, and (ii) biased current measurements. Consequently,
the SOC estimation converges near the true SOC within a
few time steps. Leveraging the coulomb counting method,
the online SOC estimation KF produces smooth SOC esti-
mation results even in the presence of current and voltage
noise. Additionally, the DNN results can promptly correct
the impact of any current bias on the coulomb counting.
As a result, the proposed method shows promising results
against both measurement noise and bias, with an RMSE
of only 2.0825% in the test case.

3.3 Robustness to Different Current Biases
The SOC estimation result obtained using the proposed

method is compared against two benchmarks: the EKF
method and a pure ML method. We compare the true

SOC values with the estimates of each method in Fig.
6. The methods are evaluated with four different current
biases, ranging from -0.2A to 0.2A, and with 5mA and
5mV random measurement noises. The results show that
the proposed method provides more consistent SOC esti-
mation results, and is the least impacted by high current
biases, as demonstrated in the first subplot in Fig. 6.

The second subplot in Fig. 6 shows the EKF results, which
utilizes a two RC equivalent circuit model fitted with true
battery data. Due to the relatively high initial error, the
EKF method employs a larger initial variance. To correct
the estimation, the measurement updates are given more
weight, leading to an initial jump in the estimated SOC
toward the true SOC. However, the EKF method does
not handle measurement noise and bias well, resulting
in poor performance. The method is highly sensitive to
measurement noise in the flat OCV zone due to high
observer gain. Also, the current bias leads to accumulated
model update errors, yielding a divergent drift in the SOC
estimates.

The pure ML method, shown in the third subplot in Fig.
6, utilizes a DNN with 100 sequential voltage and current
data as inputs. Since the current and voltage noise and
current bias are directly fed into the pure ML model,
the method is sensitive to noise and bias. As shown in
Fig. 6, measurement noise leads to noisy SOC estimates.
Meanwhile, biased current measurements cause the SOC
estimates to drift away from the true SOC values.

The RMSE for each method under different current biases
is reported in Table 1. Overall, the simulations demon-
strate the robustness and effectiveness of the proposed
method in dealing with the flat OCV range. Upon ex-
amining the fitted parameters for LFP cells, it becomes
evident that not only does the OCV change with SOC, but
other parameters such as Ry, Ry, and C; also vary with
SOC. Exploiting this parameter-SOC dependence may be
valuable for estimating SOC. In our proposed method,
note that the DNN predicts SOC as a function of both
SOC and o = exp(—At/(R1C1)). Thus, the introduc-
tion of a contributes valuable information regarding SOC,
especially in the flat OCV range. The proposed method
is also robust to current biases by relying on estimated
parameters that are insensitive to current measurements.

3.4 Discussion of drawbacks

Besides the advantages of the proposed method, the
method also has a drawback/limitation in that it requires
an input current profile that provides sufficient excitation.
Because the proposed method utilizes online parameter
estimation to obtain OCV and « values, the proposed
method does not work well when the input current is
constant for an extended period of time. The online
parameter estimation requires a varying input current
to ensure sufficient excitation for accurate parameter
estimation.

4. CONCLUSION

In this study, we proposed a novel hybrid method for
online SOC estimation of LFP batteries, which integrates
machine learning and Kalman filtering techniques. The
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Fig. 6. SOC estimation results using the pure ML and
EKF methods.

method was validated in a model-to-model setting, and
its performance was benchmarked against both a pure
machine learning approach and an extended Kalman fil-
ter. Our findings demonstrate that the proposed method
delivers superior SOC estimation accuracy, even amid
high measurement noise and test case bias. Notably, the
training profiles utilized in the study are used to provide
sufficient excitation, enabling the neural network model
to learn the nonlinear relationship between the battery’s
parameters and its SOC. Tailoring the design of training
profiles could potentially boost the performance of the
proposed method and decrease the volume of training data
required. Therefore, future research could concentrate on
the design of training profiles.
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