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Abstract— Lithium-ion batteries are complex systems that require

suitable management strategies to work properly, achieve fast

charging, mitigate ageing mechanisms and guarantee safety. Among

the different model-based charging strategies, the use of predictive

control has shown promising results, due to its ability to deal with

nonlinear systems subject to safety constraints. However, although

many implementations have been proposed in the literature, little

attention has been paid to their practical feasibility, which is limited

by the high computational cost required online. In this paper, we

exploit, for the first time in the batteries field, an approximation of

predictive control obtained through the use of a deep neural network.

The proposed solution is suitable for real-time battery charging, due

to the fact that most of the computational burden is addressed offline.

The results highlight the effectiveness of the presented methodology

in approximating a standard model predictive control solution.

I. INTRODUCTION

The proper management of lithium-ion batteries is a complex
task that involves the design of suitable charging and discharging
current profiles to guarantee safety and mitigate degradation
mechanisms [1]. Battery management systems currently employed
in the industry mainly rely on rule-based charging algorithms,
see e.g. the constant-current/constant-voltage one, which is
heuristically designed to achieve reasonable charging time
while satisfying voltage constraints [2]. However, it has been
shown in the literature that standard charging procedures, which
conservatively rely only on voltage bounds, usually lead to battery
underutilization and possible safety hazards as the battery ages
and its characteristics change [3]. As a possible solution to these
issues, the scientific community has focused on the exploitation of
a mathematical description of the battery for the development of
optimal control methodologies. Among the different model-based
strategies, Model Predictive Control (MPC) [4] has been largely
adopted in the context of battery management due to its ability to
deal with multi-variable nonlinear processes subject to states and
input constraints. In particular, the authors in [5] exploit a one-step
predictive controller to solve the minimum charging problem,
while the works in [6], [7] and [8] aim at finding an optimal
trade-off between charging time and battery state-of-health.
Moreover, the use of nonlinear MPC for the state-of-charge
balancing of series-connected cells is proposed in [9], while the
charge of a whole battery pack is addressed in [10] by using a
sensitivity-based MPC scheme.
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However, although the aforementioned predictive controller
formulations have shown successful results in simulation, their
reliability in a practical scenario is limited due to computational
issues [11]. This is because the core idea of MPC lies on the
on-line solution of a constrained optimal control problem at each
time step, thus making unsuitable models whose computational
cost is not compatible with the sampling time of the control
law. Indeed, most of the practical implementations of model
predictive control rely on simple linear models with a limited
prediction horizon and number of states. As a possible solution
to the computational issues, the concept of explicit MPC has been
proposed to reduce the on-line operation to a simple function
evaluation [12]. In particular, explicit MPC computes the optimal
control action off-line as a piecewise function of the state and
reference vectors, and hence the only real-time computational
cost is to detect in which region the states are located. However,
such computational burden still becomes intractable when the
number of constraints and the prediction horizon increase, since
this corresponds to a high number of regions [13].

To overcome the aforementioned issues, the idea of approximat-
ing the predictive control law has been proposed by several authors
(see [14], [15], [16] for instances). Among the different approxi-
mations, that obtained through deep neural networks have received
a lot of attention due to their high representation capability, giving
birth to the so-called deep model predictive control framework [17].
It is important to highlight the difference between exploiting a
deep neural network as a model for the control within a standard
predictive control scheme and the concept of deep MPC. The
former approach consists in modelling the plant through a deep
neural network (i.e. conducting a black-box identification phase)
and then solving a constrained optimization problem on-line to
retrieve the control action, which appears to be impracticable due
to the strong nonlinearities of the identified model. The latter relies
on a deep learning model to map the states into the optimal action,
after a training process that is conducted off-line on a dataset
generated by applying the predictive controller that the procedure
aims to approximate. With the deep MPC algorithm, only an
evaluation of the neural network is required on-line, thus allowing
for a reasonable computational burden. Among the works which
deal with deep MPC it is worth mentioning the one conducted
by the authors in [18], where a deep MPC robust to input error is
developed, and the ones in [13], where a deep predictive controller
is proven able to exactly represent an explicit MPC control law
with a sufficiently high number of layers and neurons.

Within the battery context, explicit MPC based on a piecewise
function for the optimal action computation has been exploited
in [19] to achieve real-time optimal charging, while learning-based
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charging techniques have been proposed for instance by the
authors in [20], [21], where deep reinforcement learning is
employed.However, no contributions related to the use of deep
MPC are present in the literature.

Therefore, in this paper, we propose for the first time in
literature to the authors’ best knowledge, a deep predictive
controller for the optimal management of a lithium-ion cell, here
represented through an electro-thermal model. Suitable neural
network architecture is proposed to intrinsically consider the
bounds on the input. A comparison with a standard MPC approach
is then presented, with a particular focus on the approximation of
the optimal control action. The results highlight that the proposed
deep MPC can achieve similar performance when compared to
the standard approach while reducing the computational burden.

The rest of the paper is organized as follows. In Section II
the battery modelling is discussed, while in Section III the deep
predictive controller formulation is recalled. The results are
presented in Section IV, while Section V concludes the paper.

II. MODEL

The most used models for a lithium-ion cell usually belong
to the following two categories: equivalent circuit models [22]
and electrochemical models [23]. The former, which are simple
and intuitive, are often used in control schemes because their
parameters are easily identifiable and their computational cost is
relatively low. The latter, instead, describe in detail the internal
phenomena of a lithium-ion cell, such ion diffusion as well as
material degradation. However, they exhibit a high computational
burden together with identifiability [24], [25] and observability
issues [26], and therefore they appear to be more suited for
simulation purposes rather than control ones.

In this paper, we adopt the nonlinear equivalent circuit
implemented by [27], which presents two RC blocks and it is
empowered with two states of thermal dynamics, in order to
achieve a reasonable trade-off between a sufficiently realistic
description of the cell and computational complexity. Note that
the electrical parameters of the considered model are time varying,
since they are expressed as a function of the battery states.

A. Equations of the Adopted Model

The battery state of charge is represented by the variable
soc(t)2 [0,1] whose dynamics is described as

dsoc(t)

dt
=

I(t)

3600C
(1)

where I(t) is the applied current, with the convention that a posi-
tive current charges the cell, and C is the cell capacity expressed in
[Ah]. Note that soc(t)=1 represents the condition in which the cell
is fully charged, while soc(t)=0 indicates a complete discharged
status. Considering the equivalent circuit model in Figure 1, the
output voltage of the cell is given by adding the following terms:
the open circuit potential (Vocp(t)), the voltage drop on the series re-
sistance (V0(t)=R0(t)I(t)) and the voltage of the two RC blocks
which represent, respectively, the ions diffusion in the solid phase
(V1(t)) and in the electrolyte (V2(t)). In particular it holds that

V (t)=Vocp(t)+V1(t)+V2(t)+R0(t)I(t) (2)

LOAD

Fig. 1. Circuital scheme of the adopted battery model (also known as Thévenin
model).

where R0(t) is the series resistance and Vocp(t) is a nonlinear
function of the state of charge. The dynamics of the RC blocks
are described by

dV1(t)

dt
=� V1(t)

R1(t)C1(t)
+

I(t)

C1(t)
(3a)

dV2(t)

dt
=� V2(t)

R2(t)C2(t)
+

I(t)

C2(t)
(3b)

where the resistance Ri(t) and the capacitance Ci(t) are
equivalent elements used to approximate the ions diffusion
phenomena for the i-th RC block.

As far as the thermal model is concerned, we consider two
states to describe the core and surface temperature of the cell,
Tc(t) and Ts(t), respectively. Specifically, we have that

Cc

dTc(t)

dt
=Q(t)�Tc(t)�Ts(t)

Rc,s

(4a)

Cs

dTs(t)

dt
=
Tc(t)�Ts(t)

Rc,s

�Ts(t)�Tenv

Rs,e

(4b)

where Q(t) is the generated heat, while Cc and Cs are the heat
capacity of the core and the surface of the cell, respectively, Rc,s

is the thermal resistances between the core and the surface, and
Rs,e is the thermal resistance between the surface and the external
environment (whose temperature is Tenv). Although the heat
generation is usually modeled as

Q(t)=|(V (t)�Vocp(t))I(t)| (5)

here we choose the following approximation in order to avoid the
issues related to the use of a control model with a discontinuous
derivative:

Q(t)'Qj(t)+Qe(t) (6)

where the term Qj(t) =
V1(t)

2

R1(t)
+ V2(t)

2

R2(t)
+ R0(t)I(t)2 directly

represents the Joule dissipation, while the term Qe(t)=ReI(t)2

approximates the heat generated by the electrodes overpotential.
The resistance Re, which does not exhibit a physical meaning,
is here identified in order to minimize the approximation error.

B. Model Parameters

The parameters of the equivalent circuit model are chosen
as in [27] where an electro-thermal model for a LiFePo4 cell
A123 26650 is parameterized and validated, with the electrical
parameters dependent on the battery states.
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The open circuit potential is modeled as follows

Vocp(t)=pl,0+pl,1soc(t)�
pa,1soc(t)+pa,2

soc(t)2�pa,3soc(t)�pa,4
+

+
pb,1soc(t)+pb,2

soc(t)2+pb,3soc(t)+pb,4

(7)

with the coefficients fitted from the data depicted in Figure 7 of
[28], where the same cell is considered. In particular, the open
circuit potential is defined by three terms: a linear function and
two hyperbolae, which are able to describe the cell behavior
near the state of charge limits. Although the hyperbolic terms are
discontinuous with respect to the state of charge, this does not
affect the solver operation since such discontinuities are outside
the state of charge limits.

The thermal parameters are chosen equal to the ones used by
the authors in [27], with the exception of the thermal resistance
between surface and external environment which has been here
adapted to the case of a cell in the center of a battery pack,
Rs,e=30KW

�1 (i.e. in a less favorable case in terms of the heat
dissipation). Finally, the identified value for the resistance used
in the approximation of the heat generation is Re=2.5m⌦.

III. METHODOLOGY

In this section, the proposed methodology is described. In
particular, we start by considering the equations of a general
nonlinear model in III-A. Then, in III-B we define the concept
of model predictive control, which is used in this paper both for
the dataset generation and as a benchmark. Finally, the deep MPC
approach is discussed in III-C.

A. General Nonlinear Model

In this paper, the real plant to be controlled is modelled through
the following continuous time nonlinear equations:

dx(t)

dt
=f(x(t),u(t)) (8a)

y(t)=g(x(t),u(t)) (8b)

where t 2 R+ is the time and x(t) 2 Rnx , u(t) 2 Rnu

and y(t) 2 Rny are the states, inputs and outputs vectors,
respectively. Moreover, the functions f :Rnx⇥Rnu !Rnx and
g :Rnx⇥Rnu !Rny map the state and input pairs into the state
derivatives and outputs, respectively.

Since in the following we assume that a digital controller is
adopted, which applies a piecewise constant input at the discrete
times tk,k2N with sample time ts, the nonlinear system in (8)
is discretized accordingly.

Note that in the rest of the paper we consider the generic input
sequence applied in the time interval [tk,tk+H], with H2N, as

u[tk,tk+H ]=
⇥
u(tk)

>u(tk+1)
>···u(tk+H�1)

>⇤>
. (9)

B. Model Predictive Control

Model predictive control has proven effective in the manage-
ment of multi-variable nonlinear processes subject to states and
inputs constraints [4]. In particular, MPC provides a control action
based on the solution of a constrained finite horizon optimal con-
trol problem repeatedly within a receding horizon fashion [29]: at

each time step tk, only the first elementu?(tk) of the resulting opti-
mal input sequence u?

[tk,tk+H ]=[u?(tk)u?(tk+1)···u?(tk+H�1)]
is applied, while the remaining future optimal moves are discarded.
The optimal input sequence is obtained by solving the following
optimization problem over the horizon H

u?

[tk,tk+H ]= argmin
u[t

k
,t
k+H

]

J(x(tk)) (10a)

subject to

system dynamic in (8)
ulbu(ti)uub

, i=k,k+1,···,k+H�1 (10b)
xlbx(ti)xub

, i=k+1,k+1,···,k+H (10c)
ylby(ti)yub

, i=k+1,k+1,···,k+H (10d)

with ulb
, uub 2 Rnu being the limits for the input vector,

xlb
,xub 2Rnx the ones for the state vector and ylb

,yub 2Rnx

the ones for the output vector. The cost function J(x(tk)) to be
minimized is formulated as follows

J(x(tk))=
k+HX

i=k+1

h
kx(ti)�xrefk2Qx

+ky(ti)�yrefk2Qy

i
+

+
k+H�1X

i=k

ku(ti)�urefk2R

(10e)

where the vectors xref 2 Rnx , yref 2 Rny and uref 2 Rnu

correspond to the reference point that the MPC aims to track and
the matrices Qx 2Rnx⇥nx , Qy 2Rny⇥ny and R2Rnu⇥nu are
design parameters, with Qx,Qy�0 and R>0.

In the following we will define the MPC control law as follows
as

umpc(x(tk))=u(tk)
? (11)

which is computed by solving the problem in (10) for the states
vector x(tk).

C. Deep Model Predictive Control

The core idea behind deep MPC is to approximate the feedback
law through the use of deep neural networks, as a possible alterna-
tive to the use of explicit MPC formulations. These latter rely on
the representation of the control law as a piecewise function, and
the only computational requirement for their on-line application
consists in finding the polytopic region in which the states are
currently located. However, it has been shown that the number
of regions increases with the prediction horizon and the number
of constraints, making explicit MPC reliable only for small linear
systems. Although the use of neural networks as approximators for
the MPC control law was proposed for the first time by [30], only
recently they have become a real opportunity for the development
of fast MPC methodologies, especially due to new advances on
the theoretical description of neural network representation capa-
bilities. In particular, the work in [18] has formulated a deep MPC
framework with guarantees on robustness against inaccurate inputs,
while the authors in [13] have derived bounds for the required size
(width and depth) that a deep neural network should have to exactly
represent a given linear MPC control action. In the following, we
discuss the deep MPC formulation adopted in this work.
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Consider a neural network N =N (x,r,✓) composed by an
input layer with nx neurons, Nh 2 N fully connected layers
with ReLu activation function, each of them constituted of nh,j

number of neurons, with j=1,2,...,Nh, and an output layer with
nu neurons and activation function tanh. The neural network
parameters vector is represented by ✓, while r represents the vector
of the MPC references, i.e. r=[x>

refy
>
refu

>
ref]

>. The training data
are obtained by solving (10) for ntr different states and references
samples, i.e. xtr,i and ri respectively for i=1,2,...,ntr, and storing
the tuples (xtr,i,ri,ūmpc(xtr,i)) in the dataset Btr, where ūmpc(·)
is the MPC control action normalized with respect to the input
bounds such that ūmpc(·) 2 [�1,1]. The neural network N is
then trained off-line on the dataset Btr by solving the following
optimization through the back-propagation method:

✓
?=argmin

✓

1

ntr

ntrX

i=0

kūmpc(xtr,i)�N (xtr,i,ri,✓)k22 (12)

where the loss function is the mean squared error between the
network prediction and the target.

IV. SIMULATIVE RESULTS

In this section, the results of the comparison between standard
and deep MPC is shown for the case of battery charging. In
particular, we first define the concept of optimal charging of
a lithium-ion cell in IV-A, while in IV-B the training phase of
the neural network is presented. Then, in IV-C the results of the
simulation are discussed. Finally, in IV-D details on the software
implementation are provided.

A. Optimal Battery Charging

The optimal management of a battery involves the tracking of
a reference state of charge while minimizing the control effort
and satisfying safety constraints on voltage and temperature. First,
we express the battery dynamics (see equations (1)- (7)) through
the model in (8), where the input is chosen as the applied current.
Then, the constrained optimization in 10, which needs to be solved
on-line at each time step tk by the MPC, is adapted as follows:

min
I[t

k
,t
k+H

]

qsoc

k+HX

i=k+1

(soc(tk)�socref)
2+r

k+H�1X

i=k

I(tk)
2 (13a)

that for i=k,k+1,···,k+H�1 are subject to

battery dynamics in (1)-(7)
0I(ti)10A, 0soc(ti)1 (13b)
Tc(ti)313.15K, V (ti)3.6V (13c)

with qsoc =1, r=10�5 and H =5. Moreover, the sample time
is taken as ts=10s. Note that the state of charge reference (socref)
remains symbolic here since its value depends on the specific
charging preferences, unlike the current, temperature and voltage
constraints that are determined by the battery manufacturer.
Furthermore, when generating the dataset for the training of the
deep MPC, the state of charge reference is extracted with uniform
probability within a specific interval to allow the deep predictive
controller to learn how to charge the battery for each state of
charge value in that interval. On the other hand, the current

reference, i.e. the input reference, is always taken as Iref=0 since
the system is marginally stable.

It is important to notice that, although the internal states of
the cell are not measurable in practice, in this paper we draw the
assumption of availability of all the relevant states. Therefore,
in a practical scenario, a suitable observer needs to be developed
and coupled with the presented control scheme. The observer
design, however, goes beyond the scope of this paper and will
be objective of future work.

B. Dataset Generation and Training Phase

One of the crucial points in the development of a suitable
approximation of MPC through deep neural networks is the dataset
generation phase. First, we need to implement an MPC controller
according to the settings specified in IV-A. Then 2000 simulations
are executed to generate the training dataset, in which each sample
is constituted by the tuple ([sociV1,iV2,iTc,iTs,i]>, socref,j, Ī

?

i
),

which fully describes the i-th time step of the j-th simulation. For
each simulation j, an initial condition is randomly extracted, and
then for each step i the normalized optimal current Ī?

i
is computed

by solving the optimization problem in (13) for socref,j, which is
also randomly extracted. Note that, in each simulation, we compute
the evolution of the battery dynamics until 50 steps are executed
or the state of charge achieves a neighborhood of the target, by
applying as input the computed optimal current with an additive
Gaussian noise to enhance exploration. Such noise in particular is
chosen with a zero mean and a standard deviation of 2A.

The considered deep learning model consists of a feed-forward
network with 6 hidden layers (three couples of layers with 100, 50
an 10 neurons, respectively). The optimizer used during training is
the well known Adam optimizer (with learning rate lr=0.0005),
which is a stochastic gradient descent method that is based on
adaptive estimation of first-order and second-order moments

C. Results Discussion

In this section, we describe the results of the performed
simulations. In particular, we graphically show in figures 2-5 the
comparison between the performance of the standard predictive
controller (solid line) and the deep MPC (crossed line) in charging
the battery in two different simulation settings. Specifically, in blue
we indicate the first simulation (sim 1) with socref=0.8 and initial
states given by: soc(t0)=0.3, V1(t0)=V2(t0)=0 and Ts(t0)=
Tc(t0)=301.15K. In red we represent the second simulation (sim
2) with socref =0.95 and initial states given by: soc(t0) = 0.05,
V1(t0)=V2(t0)=0 and Ts(t0)=Tc(t0)=298.15K.

The profiles depicted in figures 2-5 highlight the fact that the
trajectories of the system controlled by the two methodologies
are very similar. In particular, we can see from Figure 2 that
both the controllers can track the state of charge references, while
Figure 3 and Figure 4 show that both the constraints on voltage
and temperature are always satisfied. Moreover, in Figure 5
the applied current is shown, where the constraints are satisfied
by design for the deep MPC, while in the case of the standard
predictive controller they are imposed as bounds on the input.

It is important to notice that similar performance can be
obtained for all the initial conditions and references which belong
to the intervals considered during the training phase, which can be
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Fig. 2. Comparison of the state of charge profiles when MPC (solid line) and deep
MPC (crossed line) are applied. Two simulations are considered with different
references (dotted line) and initial states. The blue color is used to represent sim

1, while the red is used for sim 2.

made large enough to take into account the whole span of realistic
scenarios. Nevertheless, we expect that satisfying performance of
the deep MPC can be achieved also for unseen situations thanks to
the generalization capability of the neural network. To demonstrate
this statement we compute the mean and standard deviation of
the difference between standard and deep MPC current profiles
over 10 simulations with randomly extracted initial states and
state of charge reference. The results are depicted in Figure 6,
which provides a statistical description of the errors between the
input current applied in closed loop by the two control schemes.
As it can be noticed, the histogram representing the current error
occurrences exhibits a bell shape with mean 6.70mA and standard
deviation 237mA, while the minimum and maximum errors are
�3.94A and 2.34A, which however correspond only to isolated
cases. Specifically, most of the errors that the deep MPC commits
in tracking the standard predictive controller trajectory happen
when the system states are approaching for the first time in a region
which is in proximity of the constraints or near the reference point.
In fact, in these situations the deep MPC algorithm presents small
oscillations before stabilizing around the optimal value. A possible
solution to this issue may be the enrichment of the training dataset
with tuples corresponding to the aforementioned conditions.

Finally, the average on-line computational cost of the two
methodologies is 45.4ms for the deep MPC (with standard
deviation of 5.56ms and maximum value of 60.3ms) and 110ms

for the standard predictive controller (with standard deviation
of 53.0ms and maximum value of 344ms) . This difference
is further accentuated if we consider a longer horizon. In fact
it is known that the computational cost of the MPC exhibits a
superlinear increase as the horizon grows, unlike that required by
the deep algorithm, whose online computational cost depends only
on the structure of the neural network, which is not affected by
variations of the prediction horizon. Specifically, if one considers
a horizon H=10, the average computational cost remains around
45.2ms for the deep MPC, while for the standard predictive
controller becomes 327ms.

D. Implementation Details

The presented framework is implemented in Python 3.7 and
the simulations have been performed on a Windows 10 personal
computer with 16 GB of RAM and a i7-8750H processor. We
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Fig. 3. Comparison of the voltage profiles when MPC (solid line) and deep MPC
(crossed line) are applied.
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Fig. 4. Comparison of state of the core temperature profiles when MPC (solid
line) and deep MPC (crossed line) are applied..
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Fig. 5. Comparison of the applied current profiles when MPC (solid line) and
deep MPC (crossed line) are applied.

rely on CasADi [31] for the integration of the model equations
as well as the solution of the optimization problems. In particular,
the Runge-Kutta method is used to simulate the model, while we
exploit the implementation of the interior-point method provided
by the IPOPT solver for the optimization [32]. As far as the deep
learning model is concerned, we rely on TensorFlow 2.0 [33],
which is a well known framework for large-scale machine learning.

V. CONCLUSIONS

In this paper, the concept of deep model predictive control
has been applied for the first time to the optimal charging of a
lithium-ion battery. The strength of such methodology lies in
its ability to approximate the predictive control, thanks to the
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Fig. 6. Histogram with 100 bins describing the differences between the current
applied in closed loop by the two considered methodologies. Note that the y-axis
in logarithmic scale.

representation capabilities of neural networks, thus reducing the
real-time computational cost. As it is shown by the presented
results, the state and input profiles obtained by applying the deep
MPC approach coincide with those of the standard methodology,
except for an approximation error which is negligible from an
application point of view. It is important to notice that proper
dataset generation is required to enhance the generalization
capabilities of the deep-learning algorithm.
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