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Abstract—Deep neural networks are widely used in a range
of commercial services. Many of these services are hosted
on the cloud, requiring users to send their personal data
to the cloud. This, in turn, exposes the user’s private and
sensitive data to several third parties. To address this problem,
Homomorphic Encryption (HE) has been introduced, where
the user encrypts their data before sending it to the cloud; the
cloud performs operations on encrypted data and returns a
ciphertext that the user must then decrypt. While this approach
keeps user data private, it demands orders of magnitude more
computation and data movement. It is, therefore, imperative
to design hardware/software techniques to lower the overheads
when executing Al services under Homomorphic Encryption
schemes.

In this paper, we consider a range of HE implementations
for Al inference and address the key bottlenecks in state-
of-the-art frameworks. We start by making the case for a
hybrid HE and Multi-Party Computation (MPC) scheme that
is more practical than pure Fully HE. This paper introduces
new techniques at various levels: (i) we introduce new data
packing techniques that result in lower data movement, (ii)
we introduce new dataflows that increase reuse and reduce
other costly HE operations (rotations, key switching, NTT
conversion), (iii) we evaluate Hyena on a balanced pipelined
architecture that efficiently handles the above primitives. The
resulting framework, Hyena (new packing + dataflow), achieves
better performance and energy than several packing baselines.
Compared to the widely used Channel-packing, Hyena is 38x
faster and achieves 162x lower energy consumption, with an
overall ResNet20 inference end-to-end latency of 11.4 ms, using
a 163 mm? accelerator dissipating 16.75 W.

1. Introduction

Modern-day services, ranging from medical diagnosis to
facial recognition to assistive services, have become heavily
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dependent on deep learning. When deployed at scale, these
services are typically hosted in large data centers. Users send
their data (often private/sensitive) to these remote servers to
execute deep neural network (DNN) models. The exposure
of private user data to the service provider can lead to
widespread data misuse by the provider, rogue employees,
or malicious agents that breach the data center infrastructure.
This has fueled interest in privacy-preserving deep learning
that allows users to leverage the benefits of AI models and
cloud platforms without exposing raw data.

Homomorphic Encryption (HE) has emerged recently,
leading the charge for providing privacy-preserving deep
learning with varied implementations [1], [2], [3], [4], [5],
[6], [71, [8], [9], [10], [11]. HE schemes allow cloud operators
to perform complex calculations over encrypted user data and
produce encrypted results, without having any knowledge
of the underlying data. The many simple, error-tolerant, and
parallel operations in DNNs make them a perfect fit for
HE. However, HE imposes a significant burden on compute
operations, data movement, complexity, and memory capacity.
State-of-the-art implementations of HE for deep learning
remain orders of magnitude slower than their plaintext
counterparts [1], [3], [4], [12], [13].

Many efforts have been made to execute HE-based
computations efficiently. BTS [12], CraterLake [13], and
ARK [14] employ Fully Homomorphic Encryption (FHE),
i.e., they perform all computations on the server and invoke
Bootstrapping when the HE noise exceeds a threshold. On the
other hand, Cheetah [1], Cheetah-2PC [6], and Gazelle [2]
use frameworks where the client and server exchange data
after every DNN layer via a Secure Multi-Party Computation
(MPC) protocol. While this entails high communication costs,
it avoids Bootstrapping and dramatically reduces the overall
compute burden on the server. Our analysis shows that
Cheetah-2PC is currently the best overall design point. We
also observe that the data encoding scheme in these works
leads to several inefficiencies: large data movement on the



server, compute under-utilization, complex permutations, and
frequent data encoding conversions.

We design a new HE framework called Hyena that
addresses all of the above problems. @) The foundational
modification is a more compact data encoding scheme, aka
packing — the framework is therefore named after a pack
animal. The new data packing has several cascading effects.
It reduces data movement from the server’s external memory.
It also leads to better utilization of compute units. 9 We
then combine the packing with a dataflow (ordering of com-
putations) that increases data reuse and decreases the required
computations. While DNN dataflows are well studied, HE
algorithms introduce new artifacts that must be considered
for each packing and dataflow. To aggregate partial sums,
each partial sum has to be rotated using format conversion,
shift/permute, and key switching. The Hyena packing and
dataflow improve upon previously studied packings on all
these metrics. Finally, we evaluate our proposal on a
hardware accelerator with a custom pipeline that is tailored
to execute all of the above operations efficiently. Note that
while we advocate for a Hybrid HE-MPC setup, Hyena’s
techniques (packing, dataflow) are server-side optimizations
and are applicable to Fully HE works as well.

In brief, the paper makes the following contributions:

o The paper studies the trade-offs between FHE and
hybrid HE+MPC approaches and makes a case for
the latter for practical privacy-preserving inference.

o This work compares several prior HE-packing
schemes - LoLa [15], Channel [2], Cheetah-2PC [6],
CryptoNets [3], and many more. We observe that
high packing density can improve several system
metrics, but it requires a dataflow that keeps rotation
overheads under control.

e We co-design a new data packing scheme and
dataflow. This has several effects: it impacts reuse and
data movement from memory, it improves compute
utilization, and it reduces invocations of expensive
HE primitives (format conversion, shifts, permuta-
tions, key switches).

« We evaluate over a balanced pipelined accelerator
that has tailored resources for each dataflow. We
observe that the combination of packing/dataflow
techniques yields a 38 x speedup and 162X lower
energy relative to baseline Channel-packing, which
is adopted by state-of-the-art implementations [12],
[13], [14]. As a result, we quantify ResNet20 private
inference with an end-to-end latency of 11.4 ms on
a 163 mm? chip.

The paper is organized as follows. Section 2 presents a
brief background about Homomorphic Encryption and its
operations. Section 3 sets up the framework for encrypted
inference using Homomorphic Encryption. Section 4 analyses
the state-of-the-art HE-based CNN work and identifies its
bottlenecks. Section 5 presents our novel Hyena packing
and dataflow that addresses these issues. Section 6 details
the implementation of our architecture. Finally, we evaluate

our contributions in Section 7, compared against several
baselines.

2. Background: HE Preliminaries

Homomorphic encryption enables computation over en-
crypted data, first shown possible by Gentry [16]. Since
then, there have been many efforts to provide additional
functionalities and improve performance [17], [18], [19], [20],
[21], [22], [23]. As a result, popular schemes — like BGV [21],
B/FV [18], [20], GSW [19], FHEW [24], TFHE [25], and
CKKS [22] — have emerged and found adoption in star-
tups [26] and established companies like CryptoExperts [27]
and the Microsoft SEAL [28] library. While the schemes
differ in how they encrypt the data, they all derive their
security from the hardness of the Ring-LWE problem [29]
and provide the same set of operations over ciphertexts,
which are represented as polynomials. We use CKKS as
it allows computations over floats. We now review some
preliminaries for FHE.

2.1. Homomorphic Operations’ Complexity

HE allows addition and multiplication over ciphertexts.
To provide such functionality, HE schemes encrypt plaintext
using lattices, most commonly relying on the Ring-LWE
assumption. The plaintext message, a single integer (m)
modulo ¢, is first encoded as a polynomial pr (specific
encoding strategies described later). The coefficients of the
polynomial form a vector and all operations are performed
over these vectors. The ciphertext (ct) is a pair of polyno-
mials of degree N — 1 with coefficients modulo Q. To form
the ciphertext, a uniformly random polynomial a € Ry is
sampled and multiplied with the secret key s € Ry. Plaintext
is then hidden by adding to the multiplicative result and
obscuring with some error e. The ciphertext is computed as:

ct=(a,b=a-s+pt+e)

All ciphertext computations in HE are performed modulo
0, and polynomial multiplication is modular multiplication,
which keeps the output degree and the coefficient bit-width
constant.

The decryption calculates (b—a-s) mod Q. For correct
decryption, the error e must be small. During multiplication
operations on ciphertext, noise increases multiplicatively,
while addition increases the noise additively. To ensure
correct decryption, the ciphertext has a certain noise budget,
typically a depth factor that bounds the number of homo-
morphic operations, especially multiplications, that can be
performed over the ciphertext. To maintain a reasonable
depth and guarantee security, large HE parameters (N, O,
etc.) are required, which in turn causes orders of magnitude
slowdown compared with unencrypted data computation —
HE based DNN inference is 2-5 orders of magnitude slower
than unencrypted inference accelerators [1], [3], [30], [31],
[32]. The Residue Number System (RNS) representation [33]
is used to reduce the overheads of wide arithmetic and is
assumed throughout this paper.



2.2. Efficient PolyMult with NTT

While polynomial addition (PolyAdd) simply requires
coefficient to coefficient addition, multiplying two poly-
nomials (PolyMult) requires convolving their coefficients,
an expensive 0(N2) operation. Similar to the Fast Fourier
Transform for convolution, Number Theoretic Transform
(NTT) [34] is used to perform polynomial multiplication
faster. Degree-(N — 1) polynomials are first transformed
from their original coefficient domain to an evaluation
domain using the O(NlogN) NTT algorithm, followed by
an O(N) coefficient-wise multiplication. Then, the result
is reverted to the coefficient domain using the Inverse-
NTT (O(NlogN)). The evaluation domain is particularly
convenient as it converts O(N?) convolution in PolyMult to
simple element-wise O(N) multiplication. Moreover, element-
wise addition in evaluation domain also results in element-
wise addition in coefficient domain, summarized as:

NTT(ab) = NTT(a)-NTT(b)
NTT(a+b) =NTT(a) +NTT(b).

Polynomials are kept in evaluation domain for as long as
possible to avoid the O(NlogN) cost of converting between
domains. This is also leveraged by previous works [1], [4].

2.3. Packing and Rotation

Given the prohibitive size of a ciphertext polynomial,
it is helpful to pack several integer data elements into
every polynomial. With such packing, every (plaintext and
ciphertext) (N — 1)-degree polynomial represents an N/2-
element vector of plaintext integer slots in CKKS. Packing
more data into one ciphertext reduces the number of ciphers,
and it yields higher throughput by performing batched
computations.

However, packing limits the homomorphic functionality —
for example, two elements packed within the same ciphertext
cannot be added directly (note that a ciphertext has “tangled”
all the plaintext coefficients). To add two elements, they
must be correctly aligned to use the same slot within their
respective plaintext polynomials. If they are not aligned,
the polynomial must be first rofated. Such a rotation can
be performed over ciphertexts but incurs a significant cost
(discussed next). To avoid this cost, prior works like Chee-
tah/Gazelle [1], [2] employ a simple form of packing. While
Hyena attempts more aggressive forms of packing to reap its
benefits, it must also manage the overheads of any resulting
rotations. Our main contribution is to devise a packing and
dataflow that limits this rotation overhead.

2.4. Rotation Overheads

There are two types of allowed rotations - cyclic shifts
and permutations. A shift cyclically rotates all slot values
by a fixed amount and is typically achieved with a single
call to Automorphism. However, there may be applications
that require a non-cyclic permute of slots. This permutation

can be performed by either computing a series of shifts
for each slot change or by permuting coefficients within
the coefficient domain. Typically, the second approach is
chosen since the former requires many KeySwitchings and
is expensive. Our proposals reduce the number of rotations
(specifically permutes), thus also reducing the overall asso-
ciated noise growth. Rotation incurs three major overheads
for permutations and two for cyclic shifts, described below.

The first overhead is that the newly rotated ciphers must
be multiplied with Key Switching Hints (KSH). Whenever
the slots of a ciphertext are rotated, it cannot be decrypted
correctly using secret key s. In fact, the ciphertext is trans-
formed to an encryption of the plaintext but with a different
rotated key. Key-switching [17] is a technique that restores
a ciphertext under s’ to a ciphertext under a key s. This is
done by multiplying the ciphertext with a pair of polynomials
called Key Switching Hints. For N possible rotations, the
server has to store N KSHs. KSHs are large (e.g., 32 MB
[4]), incurring a significant compute and memory cost.

The second overhead is incurred while performing per-
mutations. If the ciphertext is in the evaluation domain (as
required for fast PolyMult), it has to first be converted to
the coefficient domain [2] or perform a series of many shifts.
This back-and-forth O(nlogn) conversion between domains
makes a permutation significantly more expensive. Cyclic
shifts, on the other hand, do not require such a conversion.
In CKKS, Automorphism [4] is a technique that implements
a cyclic shift of r places in the plaintext by applying the
following shuffle o, of coefficient locations i in the evaluation
domain: o, :i+>i-r modN(i=0,1,...,.N—1).

The third overhead is the hardware cost of implementing
the complex wiring needed by rotations. From the equation
above, it is evident that even the simple shift operation
requires each coefficient location to be connected to a range
of coefficient locations to accommodate different r.

3. Private Inference Frameworks

Threat Model: Private inference (PI) refers to a system
where a client uploads an encrypted version of their data to
the cloud, and the cloud server performs the DNN classifica-
tion task over the encrypted inputs. We assume a threat model
where the server is honest but curious, i.e., it follows the
protocol precisely but may try to infer information. Similarly,
the server wants to protect the (potentially proprietary) DNN
model that it executes. The PI framework must, therefore, not
leak information about the DNN model to a curious client.
Since the HE computations happen on the server, the weights
can be processed as plaintexts to simplify computations,
similar to the threat model described in [1], [2], [12], [13].
We assume the above threat model, secured with the CKKS
scheme. Attacks possible here include model extraction
attacks and scenarios where the server does not perform
inference operations in the agreed manner. The former reveals
the model hyper-parameters like the tensor shape but not
the actual data. Any structured packing, similar to the large
body of prior related work described in the paper, reveals
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Figure 1. ResNet20 inference latency for FHE (Setup A) with ARK [35]
(125 ms) and HE-MPC (Setup B) with Cheetah [1] (27 ms). Bootstrapping
consumes 75% of the time. HE-MPC framework is ~ 6.75x faster. Network
assumption: 2 Gbps LAN, similar to MP2ML [36].

TABLE 1. REPORTED ACCURACIES BY PRIOR HE-BASED DNNS WORKS,
FOR CIFAR-10 & -100. [14] 1S USED BY BTS [12] &
CRATERLAKE [13].

MiniONN LoLa DELPHI AESPA
Work [41] [42] [15] 5] [14] [43]
?;;;5 SetupB SetupA SetupA SetupB SetupA SetupB
A €10 81.61% 76.70% | 74.10% 82.5% 92.43% | 94.96%
ccuracy
clo 544 s 6hrs | 730s 40s | 29hrs
Time
AC100 66% - 77.40%
ccuracy
€100 98 s - 029's
Time

such information. Defending against the latter requires Zero-
Knowledge Proof attestation, which is outside the scope of
this work.

To understand the trade-off space, this paper considers
multiple PI framework setups. A key differentiating factor
is the handling of the DNN’s non-linear activation functions
(like ReLU) that are problematic for HE implementations.
Setup A (FHE): Many works [3], [14], [37], [38], [39]
have approximated non-linear layers so that the complete
classification task can be performed at the server. Performing
all operations needs a boundless noise budget. This is
achieved by including periodic bootstrapping operations
that reset the noise. Such Fully Homomorphic Encryption
(FHE) typically employs large parameter sizes (key sizes
of 12-120 MB [35]) that increase the compute+memory
burden. Previous works have demonstrated that bootstrapping
is expensive and contributes ~75% of the overall latency
(~4 ms per bootstrap with a state-of-the-art accelerator [35]).
Bootstrapping is, therefore, the target of recent FHE archi-
tecture papers [4], [11], [12], [13], [35], [40]. Additionally,
approximate activation functions degrade the accuracy of
classification. Prior works have attempted to approximate
ReLU as polynomial functions but only achieved matching
accuracy in small models [14], [37].

Setup B (HE-MPC): Given the drawbacks in Setup A,
many studies [1], [2], [5], [7], [36], [44] have deployed
frameworks that involve the client when performing non-
linear functions. This Setup B solution works well as non-

linear layers usually have less complexity and can be handled
by the client, while the heavy work involving (potentially
proprietary) weights is offloaded to the cloud. Since the client
performs intermediate operations by decrypting the values,
it inherently resets the noise. Thus, such a model needs a
very small noise budget, which keeps the HE parameters
small for the same security level, e.g., 8§ KB for Hyena in
Setup B vs. 56 MB when implementing Setup A [12]. Since
the client resets the noise regularly, expensive bootstrapping
is avoided. Additionally, unlike Setup A, there is no accuracy
drop. One problem here is that model extraction attacks [45],
[46] are possible if the client can observe the linear layer’s
input-output pairs. This is addressed by integrating HE with
Multi-Party Computation (MPC) [2], [5], [36] to prevent
client access to raw intermediate values while still being able
to perform non-linear operations. The one major downside of
Setup B is the additional back-and-forth communication with
the client due to the MPC protocol. Recent works [5], [43]
on HE-MPC private inference have focused on reducing this
communication cost. In Figure 1, we compare the end-to-end
ResNet20 inference latency for the two setups, demonstrated
by their state-of-the-art works. Prior work [1] only presents
server-side results for Cheetah, so we calculate the MPC
costs using AESPA [43] MPC protocol by multiplying the
cost of each transfer with the number of packed output
features (see Section 7.4 for methodology details). We show
that Setup B significantly outperforms Setup A, i.e., the cost
of bootstrapping and larger HE parameters is much higher
(~ 6.75x) than the cost of client-server communication.

Note that most practical MPC solutions perform a mix
of MPC and non-linear layer approximation, thus affecting
accuracy. The slight inaccuracy introduced by the MPC
protocols is orthogonal to the techniques presented in this
paper; we evaluate our ideas in the context of the state-of-the-
art MPC protocol with the highest accuracy (AESPA [43]).
Table 1 compares the prior HE-based DNN works in terms
of their reported accuracy and inference time, which also
suggests that Setup B has achieved higher accuracy and better
performance across CIFAR datasets. Given the analysis in
Figure 1 (calculated with AESPA) and the clear superiority
of Setup B in terms of performance and accuracy, we focus
our efforts on improving this setup. Our evaluations focus
on the server-side latency to demonstrate the benefits of
our techniques. Improving the communication protocol is
orthogonal to this work - the client can use any non-linear
layer protocols to interface with the server. We demonstrate
11.2 ms communication cost in baseline Setup B in Sec-
tion 7.4 for ResNet-20 inference. Finally, note that while we
advocate for Setup B, Hyena techniques (packing + dataflow)
are server-side optimizations and are also applicable to Setup
A, with minor changes to output feature map handling.

4. Motivation

4.1. Packing Trade-Offs

Gentry et al. [17] introduced a packing mechanism that
allows encoding a vector of values within a ciphertext poly-



nomial, essentially reducing the overheads of polynomials.
However, this limits the functionally complete property of the
HE scheme since individual values from the same ciphertext
cannot be extracted and added/multiplied together. A rotation
operation enables shifting/permuting the plaintext elements
within these packed ciphertexts [17]. Rotation requires non-
trivial data movement, and rotated ciphers must also go
through Key Switching for validity under the decryption key.
Combined, these steps make Rotation expensive. Overall,
packing yields a smaller footprint for the polynomials but
incurs a higher cost for rotations. Many prior works have
leveraged packing for high efficiency [1], [2], [7], [9], [12],
[13].

In the context of DNNSs, there are three data structures
being packed - input feature maps, weights, and partial sums.
Unencrypted weights can also be fetched as scalar values, but
scalar multiplication with an input feature (/F’) polynomial
would result in multiplication with all packed /F slots. Not all
slot multiplications contribute to a valid partial sum (psum),
wasting compute resources with ineffectual computations.
Instead, weights are also encoded as polynomials in most im-
plementations so that only valid slot multiplications happen.
Moreover, fetching weights as scalars and encoding them as
polynomials on the fly doesn’t work either. This is because
the evaluation domain conversion cost using NTT, for a faster
multiplication as described in Section 2.2, ends up slowing
down the critical path latency. Weights are also packed to
reduce the cost of polynomials and exploit SIMD parallelism.
In addition, the computations are being performed by a series
of nested for-loops - the ordering of these for-loops specifies
the dataflow. The dataflow dictates the reuse of operands.
The combination of packing and dataflow also influences
the required rotations and whether they will be shifts or
permutations. To design an efficient accelerator, we must
consider all of these effects. The goal is to pack as much
data as possible into each polynomial and pick a suitable
dataflow (to reduce overall data movement) while keeping
the rotation calls (especially permutations) to a minimum.

We first start by characterizing state-of-the-art packing
techniques: 1) LoLa packing [15], 2) Channel Packing [2],
which is used by state-of-the-art FHE works [12], [13], [14],
and 3) Cheetah-2PC packing [6]. We identify key bottlenecks
in each of these packings and address these bottlenecks by
building a basic activation+weight packing scheme. We then
propose a novel application-specific packing that reduces the
number of permute-type rotations (and the overall rotations)
while reducing the data footprint.

4.2. LoLa Packing (LoLa-Pack)

Figure 2 shows how LoLa (Low-Latency Cryp-
toNets) [15] packs several input feature map values in a
single /F polynomial, but many copies of a single weight
value in the W polynomial. Note that a single ciphertext
PolyMult performs a parallel multiplication of corresponding
elements in two plaintext vectors. A PolyMult with LoLa-
Pack is able to perform a limited number of useful parallel
multiplications but also several ineffectual computations,

e.g., when the input feature and weight belong to different
channels, as is the case for the second half of the example
polynomials in Figure 2. This PolyMult generates a packed
psum polynomial. In the next cycle, a different W polynomial
is fetched and multiplied with the same /F (dataflow depicted
in Figure 2). The generated psum cannot be readily added
to the previous one since they are not aligned. Therefore,
the psum is rotated (entailing expensive format conversion
using NTT, permutation, and KeySwitching). Since the
psum is unstructured, the rotations required to accumulate
are permute-type. This is illustrated in Figure 3 where all
rotations in LoLa-Pack are permutes. As discussed earlier, a
permutation places a much larger burden on the hardware
than a shift. While psums undergo frequent rotation, the
key benefit of LoLa-Pack is that the /F and W poly do not
require any expensive rotations.

Since a single weight value is packed in a polynomial,
LoLa must fetch RSC;K weight polynomials to reuse the
same [F, resulting in a large data footprint. This is depicted
in Figure 3, where LoLa-Pack reports a 20 GB data footprint.
Usually, the reuse distance for weights (RSC;:K KB for 1KB
polynomials) is too large for caching to be effective, and all
the weight fetches end up being memory accesses. The large
footprint also reflects the ineffectual computations performed
in LoLa because of channel constraints and the resulting
padded zeroes.

4.3. Channel Packing (Ch-Pack)

Gazelle [2] employs a packing based on single input
single output (SISO) format, i.e., it uses a structured organi-
zation of input feature values that are all used to calculate
one output neuron. This is shown in the top-right corner of
Figure 4. It converts most permute-type rotations to cyclic
shifts, which can be implemented more efficiently using
Automorphism. Each polynomial tries to include elements
from multiple channels, hence called Channel Pack. We
assume an obvious added optimization where multiple SISO
faces corresponding to different output neurons are also
packed, enjoying the SIMD batched parallelism if slots are
available after channel packing.

Channel packing rotates IFs to create new IF-W pairs,
which is more expensive than rotating W [1]. Hence, the
W polynomial packs a single weight from a few kernels
and channels with many padded zero values. This leads to
many ineffectual computations in the PolyMult, as well as
large footprints and many rotations (as seen in Figure 3).
We were able to validate the number of rotations against
the equation reported by the Gazelle paper. We also note
that while Ch-Pack has a very high data footprint, its reuse
distance is small, which means that Ch-Pack’s dataflow relies
on a secondary cache to capture its data reuse. Overall, we
observe 37x more data movement and 2.5X more rotations
than LoLa-Pack. Recent works accelerating FHE (BTS [12],
CraterLake [13], and [14]) implement Channel Packing and
the corresponding dataflow (details in Figure 5).
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Figure 3. Packing strategies compared in terms of data footprint and rotation
type for ResNet50 inference. Automorphisms (shifts) are significantly
cheaper than Permutations.

4.4. Cheetah-2PC packing (C2PC-Pack)

Cheetah-2PC [6] proposes Polynomial Coefficient Encod-
ing that packs in such a manner that the product of packed
IF and W results in a psum which does not need intra-
slot addition, and hence rotation (as seen from Figure 3).
However, as noted by the authors, this only works if the
combined slot utilization by /F and W is not larger than
the available slots of a single cipher. The slot utilization
of IF, W combined has an upper bound of nearly 50%,
resulting in a sub-optimal design in terms of slot utilization.
To be precise, IF packs inputs for M; output neurons across
C; input channels, resulting in M;C; X RS packed values. A
W polynomial packs RSC; values for K; output channels
such that M,C;RS + RSC,K; < N/2+ RSC;. We implemented
Cheetah-2PC with the most optimal dataflow that tries to
maximize reuse in the cache.

5. New Packing Strategies

To address the inefficiencies in prior packing approaches
in LoLa-, Ch- (used in CraterLake and BTS), and C2PC-
Pack, we consider new packing approaches in this section.
We start with the A+W Pack, which is more aggressive in
packing the weight polynomial. We then introduce the Hyena
Pack, which avoids the psum permutations needed during
aggregation.

5.1. A+W-Pack: Packing Activations and Weights

We start with more aggressive packing in the weight
polynomial in addition to LoLa-pack. We do this in a manner
that reduces ineffectual computations, reduces the overall
data footprint, and reduces permutations.

This new A+W-Pack is shown in Figure 2. Given that
C; channels are packed in the IF ciphertext, and only like-
channels must be convolved, we first start by placing the
weight face (RS) values from the same C; channels in the W
polynomial. Since RS is usually less than X;Y;, there might
exist leftover slots in W that are filled with weight values
from K; different output channels. In short, RSC,K; weight
values are packed in one W polynomial, greatly reducing
the weight footprint reduction relative to LoLa-Pack (and
quantified in Figure 3). An IF can be re-used over K/K;
weight polynomials, which can potentially be cached on-chip.

A+W-Pack addresses some of the under-utilization in
LoLa but does not resolve the unstructured packing issues
that cause permute-type rotations in psum. Rather, to reuse
the multiple values in W, either W or IF must be rotated
along with psum, increasing rotations. Yet, as seen from
Figure 3, A+W-Pack decreases the total number of rotations
by 19% over LoLa-Pack. This is because LoLa-Pack pads
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Figure 4. Hyena Packing + Dataflow. Top right depicts Channel Packing [2], used in BTS [12] and CraterLake [13].

W with zeroes when C; > 1, essentially performing more
outer-loop PolyMults and requiring more psum rotations.
Cheetah [1] demonstrated that it is easier to rotate W than IF
since weights are in plaintext and don’t need KeySwitching.
This is depicted in the A+W Dataflow example shown in
Figure 2.

5.2. Hyena-Pack

LoLa- and A+W-Pack require psum to be rotated after
every IF and W multiplication in order to be accumulated.
This is a more expensive task than rotating unencrypted
W. Furthermore, since the psum values’ order within each
polynomial is unstructured, every rotation is permute-type,
which requires complex operations. In contrast, Ch-Pack
introduces a structured packing but requires every /F input
to be rotated and lacks packing efficiency. Similarly, C2-PC
can only achieve 50% packing efficiency. In this sub-section,
the objective is to pick best practices of both types - pack
IF and W in a structured order such that the resulting psum
requires fewer rotations and mostly shift-type rotations in
order to accumulate while retaining the high slot utilization
of A+W-Pack. The key insight is that if we align IF and
W coefficients in an order that their rotated multiplications
add up to the same psum coefficients, rotation of psum can

be minimized. We label this packing as Hyena-Pack. We
supplement the packing with a dataflow that further reduces
the rotation calls.

Hyena-Pack uses the following strategy, demonstrated in
Figure 4. o Start by packing a single RS-sized matrix of
IF, of C =0, corresponding to one output neuron into the /F
polynomial. This “structured” packing is similar to single
input single output (SISO) packing in Gazelle [2]. 9 Match
the weights by packing RS values (face) of C =0,K =0
in W polynomial, aligned. 9 We then pack as many non-
overlapping IF matrices' as possible in the IF polynomial.
Avoiding overlap is helpful in reducing the /F footprint. 0
The weight polynomial then includes more kernels from the
same input channel. This increases the useful computations
done by each PolyMult. It also increases the output neurons
generated by each PolyMult. A side-effect is that we’ll need
larger on-chip storage to reuse psums. 9 Next, we repeat
this process across channels (C;) to fill up the rest of the IF
and W polynomials. Overall, IF packs (M,C; X RS) values
and W packs (K,C, x RS) values. ) Next, we want to rotate
W and reuse the I/F. Since the channels have to match, we

1. Total number of non-overlapping IF matrices are M = [£] [ 1, out of
total number of /F matrices T = (X —R+1)(Y —S+1). M, non- overlappmg

matrices are placed in one /F polynomial, where M, = mm(%,M)



must essentially interchange the dark weights and the light
weights. The initial organization @ in the polynomial will
require a permute. Instead, we use the organization shown
in @. Step e in the dataflow shows that we can rotate W

by shifting every coefficient by 8.

IF polynomial organized as many non-overlapping
RS-sized matrices; W polynomial organized such
that it can be reused with simple rotations. Benefits:
high packing and compute density, easy W shifts,
and easy aggregation (discussed next).

5.3. Hyena-Dataflow

Here, we describe the Hyena dataflow that increases
polynomial reuse and enables efficient aggregation. A single
IF and W multiplication generates a psum polynomial. As
seen from Step @ of the dataflow in Figure 4, a single
psum polynomial consists of several values that must be
aggregated to generate M; output neurons. This requires
psum rotation after every IF-W multiplication. Instead, we
delay the aggregation step by first rotating (plaintext) W in
Step e Given the structured packing, W requires a RSC;
stride shift-rotate that aligns W with the same /F such that
the next PolyMult generates output neurons for a different
output channel. Therefore, given that K; kernels are packed
in the W polynomial, we can repeat Step @ K; times and
generate K; psums, giving us high reuse of both /F and
W polynomials. In Step {8, we fetch the same IF and W
corresponding to different input channels to generate psums
that can be directly added to the previously generated psums
(since they are correctly aligned). In Step @, we finally
aggregate the values co-resident in one psum polynomial that
contributes to the same output neuron. This is implemented
by performing RSC; 1-stride shift-rotates and adding the
resulting polynomials. This step can also be performed in
the log RSC; step by performing binary tree reduction, but it
requires more parallel resources. Instead, we implement these
steps sequentially. By delaying this accumulation from Step
@ to Step @), we perform psum rotations only after input
channels have been accumulated, essentially reducing the
psum rotations. But this delay requires us to buffer several
psums (about 0.5 MB) on-chip.

Once the targeted output neurons are fully generated,
we calculate the same output neurons for different output
channels by iterating over all K (Step @). The reuse

distance of IF and W here are £ and % which can

be cached on-chip. We further trthto reuse the (possibly)
cached IFs by rotating them (as shown in Step @) by a
stride to generate neighboring output neurons. There are
(R—1)(S—1) possible rotations of IFs that can generate
psums for (R —1)(S—1) new output neurons (some post-
processing is required to handle boundary effects). These IF
rotations are, unfortunately, permute operations. Finally, in

Step @, we repeat this over all M matrices (% iterations).
The details of the Hyena dataflow are also captured with
pseudo-code in Figure 5.

Overall, Hyena-Pack retains the slot utilization efficiency
of A+W-Pack by packing multiple values within both /F and
W, with over 90% lower footprint than C2PC-Pack, as seen
from Figure 3. Along with 67% less rotations over A+W-
Pack, Hyena-Pack could convert almost all permutations to
simple shifts due to its structured packing (Figure 3), which
highly optimizes the implementation costs. Our structured
packing+dataflow works well for both CONV and FC layers.

Hyena Dataflow Summary

The key highlights of the Hyena dataflow are as
follows: (i) There are minimum ineffectual PolyMults,
i.e., every step retains a high degree of packing in IF,
W, and psum polynomials. (ii) /F' and W polynomials
are reused with simple shifts to W, then psums are
reused by iterating over input channels. (iii) After
significant psum reuse and aggregation, psums are
further aggregated with simple shifts. (iv) An outer
loop performs an expensive permute operation to
slide the IF polynomial. (v) 7 MB of buffering
is required to capture reuse in IF, W, and psum
polynomials.

6. Implementation Details

6.1. Architecture Overview

We next describe the hardware accelerator we use to
evaluate the Hyena packing and dataflow. The overall orga-
nization of the chip design is shown in Figure 6. The chip is
composed of a High Bandwidth Memory (HBM) interface
and several tiles that include an L2 and a processing element
(PE). Each L2 has a capacity of 14 MB allocated across IF,
W, and KSH polynomials. Each PE is designed to handle
a polynomial of degree 1K and 32-bit coefficients. Larger
degree polynomials utilize multiple PEs. A range of HE
parameters are supported by breaking down larger bit-widths
using RNS. Each PE consists of a set of registers (for IF, W,
and psums), modular multiply-accumulates (MACs), NTT,
and Rotation units. The Hyena architecture is designed by
borrowing insights from the state-of-the-art FHE architectures
[4], [12], [13], but for smaller HE parameters.

6.2. Dataflow

Figure 5 and Table 2 are a detailed enumeration of pseudo-
code that implements each of the dataflows discussed in
Sections 4.1 & 5. The code handles a single layer of a DNN.
Given a specific packing scheme, each dataflow is designed

2. P denotes number of Output neurons per channel. Non refers to
overlapping IF matrices (See Section 5.2). Note: degree of packing (%)
depends on respective packings.



Algorithm 1: LoLa-Pack Dataflow Algorithm 2: Ch-Pack Dataflow Algorithm 3: C2PC- Algorithm 4: A+W-Pack Dataflow Algorithm 5: Hyena-Pack Dataflow
// 11F packs X.Y,C, values out of XYC. 1 // 1IF packs RSC,P, values out of XYC. 1 | Pack Dataflow // 11F packs X,Y,C, values out of XYC. 1 W // 11F packs RSM,C, values out of XYC. 1 W packs RSCK; value
W packs 1 value out of RSCK. W packs CK; value out of RSCK // 1IF packs RSC,P, values packs RSCK; value out of RSCK out of RSCK.
1: for xy in XY/X,Y: 1:for pin P/P,: out of XYC. 1 W packs 1: for xy in XY/XY: 1: for min M/My:
2 forkink: 2: forcinC/Cy: ) RSC,K, values out of RSCK 2: fork in_K/K‘: 2: fornon over matin 14— (R71*(5-1)
3: | forc,,inC/Cy: 3: | load IF // loaded from off-chip 1:for pin P/P.: 3: | forcinC/Cy: - stride(X)+stride(Y)
4: | | load (IF[xyl[c,,J) //possibly | 4: | foriterinRS: 2: forkin K/Kg: 4: | | load (IFfxyllc]) // possibly from | 3= | for ko, in K/Ky:
from L2 5. | | INERUFpILC)) 3: | forcinC/Cs L 4: || forcinC/C:
5: | | forc,inCg: 6: | | Permute(/F[pilc]) // 4: | | load(IF) // 5. | | load(W[*I[c][k]) // possibly from | 5: | | | lead(IF[m][c]) // possibly from L2
6: | | | forrsinRS: precompute for SISO possibly from L2 L2 6: | | | load(W[*[c][kou*K]) // possibly from L2
7 11| load(Wrslfe,, * c,JikD) | 7: | | NERUFLpILc]) 5. | | foriterinK,: 6: | | foriterinRSK: 7211 forky, inKe:
// Fetch from off-chip 8: | | load(KSH) // possibly from L2 6: | | | load(W)// 7: | | | psum=VMult(IF * W) // 8: | | | | Automorph(W) // shiftslots to create a new {IF, W}
8 | | | | psum=NMult(/F* W) 9: | | IF=VMult(IF * KSH) // from off-chip generate new psum. Randomly packed 9: | | | | psum=VMult(IF* W) // generate new psum
// generate new psum. Randomly packed | KeySwitch 7: | | | psum= psum. Must permute (not cyclic shift) psum. | 10: | | for iter in RSC,: // accumulate psum values to 1 slot
psum. Must permute (not cyclic shift) 10: | for iter in CK/K,: VMUIt(IF * W) /) generate | 8 | | | INB(psum) // convert to coeff- | 11: | | | Automerph(psum)
psum 11: | | forrsinRS: new psum format 12: | | | load(KSH) // possibly from L2
9 | || | iNE(psum) // convertto | 1. | | | load(IF) // possibly from L2 9: | | | Permute(psum)//random 13: | | | OA+= VMult(psum * KSH)
coeff-format 13: | | | load(W) // possibly from L2 permute of coeff 14: | for cin C/Cy: // generate non-overlapping IF matrices
10: | | | | Permute(psum)// 14: | | | psum += VMult(IF * W) // 10: | || -(psum)//’umwnmoua\ 15: | | load(IF[mJ[c]) // possibly from L2
random permute of coeff generate new psum format 16: | | (1F)
NN (psum) // convertto | 15. | | 1oad(KSH) // possibly from L2 11: | | | load(KSH) // “""*""\v’i’“’” L2 1 17: | | Permute(/F) // random permute of coeff
eval-format 16: | | Autemerph(psum) // align 12: | | | OA+=VMult(psum * KSH)// | 1g. | | NTT(F)
12: | | | | load(KSH) // possibly nput channels Kebewtlchl 19: | | load(KSH)
from L2 . _ % . . 13: Automorph(W) // shift slots to . _
13: | | | | OA+=VMult(psum * ’,1,/7K'e»',3v'”£f“’"‘VM”"("S“’" KSH) Pipelines crete 2 new (F.W] 20: | | IF = VMult(iF * KSH) )
// KeySwi in I X( i *
KSH) // Kc»si itch ] _ 18: OA 4= psum (in square boxes) NTT T _ _ - iNTT — NTT S—
_INTT® _NTT* L1 = O |+ T
weo: [T C I 1] \ ) | e )
Requires 2 VMults + 3 Automorphism + 4 | Requires 1 VMults +3 Requires 1 VMult unit. Requires 2 VMults + 4 Automorphism + 4 K./ K‘*(.CK‘./ G +RSC) c/c't!m(is mdS'de L2 loop,
NTT units. Automorphism +4 NTT units. 18 NTT units. times inside L2 loop not pipelined.
*2D implementation of»NTT decomposes 1 1024- point NTT into {32 32—po}\n! NTTs + ‘ D VMult unit . NTT/iNTT unit D Automorphism unit ‘ Requires (1 .\/Mult+ 1 Auto'mmphism unit) and (1 VMult + 1
1 Transpose + 32 32-point NTTs}. Transpose handled by automorphism unit. Automorphism + 1 NTT unit).

Figure 5. Dataflows and pipeline associated with packing schemes. In order: LoLa-Pack [1], Ch-Pack [2], [12], [13], C2PC-Pack [6], A+W-Pack, Hyena-Pack.
The code to model these has been released as part of the HEPack-Sim tool described in Section 7.1.2.

TABLE 2. OPERATION COUNT AND DATA MOVEMENT DISTRIBUTION
FOR VARIOUS PACKING SCHEMES.

Packing | Operations Off Chip Data Movement
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to reuse polynomials and reduce rotation overheads. Each
dataflow also results in a different execution pipeline on
the accelerator. Table 2 counts the number of times each
operation is called and the resulting data movements per
data structure. This result is a property of each packing
scheme, while Figure 5 highlights the lines of code that
exercise the vector-multiply unit, the NTT/iNTT unit, and the
Automorphism unit. For instance, any cipher rotation would
also call a sub-routine Key-Switch, which is not labeled in
the table but is represented by the functional units used on
the chip. Below each dataflow, we list the sequence in which

these units are invoked, which helps construct a balanced
hardware pipeline for each dataflow.

Each dataflow is designed to create new combinations
of IF and W inputs. The five dataflows also differ in ways
that impact the architecture: (a) Whether to rotate W or
IF or fetch newer versions: A+W-Pack and Hyena-Pack
rotate their packed weights, and Ch-Pack rotates /F, but
require an additional Automorphism/Permute over W /IF to
prepare for the next iteration. LoLa- and C2PC-Pack avoid
Automorphism by fetching a new unpacked weight every
step, most likely from off-chip (this latency can be hidden
by fast HBM2 for LoLa). (b) Partial sum accumulation:
LoLa-Pack and A+W-Pack have unstructured packing, and
hence the psums that contribute to a single output neuron are
scattered across coefficients. Generating an output neuron
requires permutation, which is expensive because it invokes
the NTT unit. Previous works [4], [12], [13] have employed
Ch-Pack. Hyena-Pack also uses a structured packing that
avoids permutations during psum aggregation. Both Ch-Pack
and Hyena-Pack are able to do this because they aggregate
psums across input channels. C2PC does not require any
rotations. (c) The loop orders are designed specifically to
maximize the reuse of expensive ciphertexts, with priority
psum > IF > W. In all five algorithms, RS face values and
then input channels are navigated for a full output neuron.

6.3. Functional Units

We next describe each hardware unit in Hyena.

VMULT, VADD unit: HE operations are modular arith-
metic and need modular multiplications and additions. We
assume a vector of modular multiply/add units (VMULT/-
VADD) within the PE. F1 [4] proposed an optimized modular
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multiplier based on the observation that for a restricted set of
bit-widths (g), a specialized low area/power multiplier can be
designed. Since both Hyena and F1 use 32-bit coefficients,
we utilize their multiplier in our modular MAC unit. A
vector MAC unit performs polynomial multiplications for
both IF x W and * x KSH (for Key Switching operation).

Registers: We dedicate registers for storing one W
polynomial, a pair of IF polynomials, and 64 pairs of psum
polynomials. A+W-Pack and Hyena-Pack pack along output
channels (till K; = 64) for reusing /F and W. Hence, Hyena-
Arch uniquely dedicates 64 psum registers to avoid misses
during accumulation. Similar to CraterLake [13], our FUs
are chained, and the input of one FU is passed to another
through internal latches.

L2 Buffers: A+W-Pack, Ch-Pack, and Hyena-Pack
demonstrate reuse beyond registers. Hyena-Pack reuses psum
within registers by iterating over all input channels (Step
C of Figure 4), which requires different /FF and W. We
capture the re-use distance of these polynomials (C/C; for
IF, KC/K,C; for W) by caching up to 512 IF and 4K W
polynomials in an L2 buffer per PE. KSHs are large (for N
possible cipher rotations, we need N KSH polynomials) and
are often required during cipher rotation. Therefore, KSHs
are fed from a dedicated KSH buffer.

Automorphism unit: Rotation is expensive because
Automorphism and permutation dictate that any register
storing a coefficient value can go to any other register of
the same polynomial. A crossbar provides the non-blocking
behavior where this permutation can happen in O(1), but it
does not scale well (complexity increases by N?).

Recent proposals F1 [4], BTS [12], and CraterLake [13]
are designed for FHE (Setup A), where parameters have
to be larger. Their rotation units are, therefore, overkill for
Hyena, which uses Setup B and can deploy HE with smaller
parameters. Given the smaller value for N, we observe that
a Benes network [47], [48], [49] is enough to efficiently
implement permutation within registers, as depicted in
Figure 6. Benes is a non-blocking N-input N-output multi-
stage network with 2log(N) + 1 levels, each with N 2x2
switches. The non-blocking property and latch-free stage
implementation allow the Benes network to communicate
with any destination without contention and in O(1) delay,
making permutations (or transpose) on N elements O(1).
Furthermore, the cost of O(NlogN) switches is small, in
terms of area and power, for a small N = 1K.

NTT unit: NTT converts polynomials by performing
logN recursive steps of N modular multiplications with
constant multiplicative values (twiddles). Given N MACs,
NTT requires logN cycles. We adopt F1’s implementation
that decomposes NTT into multiple smaller degree NTTs [4],
[50]. Its transpose operation is performed using the Benes
network, and its butterfly is performed using wide vector
mults. This unit also consists of a small register file that
stores twiddles.

6.4. Pipelining of Functional Units

While past works like F1 have developed general-purpose
architectures to support a range of FHE algorithms, our
focus is on PI, which allows us to tailor the architecture and
resources to cater to the needs of the most effective dataflows.
Note that the architecture is still flexible enough to execute a
range of dataflows and workloads. In particular, we observe
that the Hyena dataflow has a specific pipeline of operations
and units that are invoked (see bottom of Figure 5) - we
allocate resources to each of these units so that the pipeline
is balanced and under-utilization is kept to a minimum.

As seen in Figure 5, the Hyena dataflow reads input
operands from its L2 buffers, followed by calls to VMult,
VAdd, and Rotation units in its inner loops (lines 4-13
of Algorithm 5). With a Benes network used for rotation,
our cycle time is typically determined by VMult. Each PE
implements 2 VMults (note that each cipher consists of 2
polynomials), each with 1K 32-bit multipliers, 1 1K-input
Benes network, 32 32-point NTT units, and registers as
described in Section 6.3. All these functional units are fully
pipelined, so they achieve the same throughput (1K 32-bit
elements/cycle) and are chained so that the input of one
unit is passed to the next without the need to read/write
IF /psum/W registers. In addition, as part of the outer for
loop, we must periodically perform permutes (Lines 14-20)
that slide the /F window and prepare for future PolyMults.
As we’ll discuss next, those have a simpler pipeline that
executes off the critical path.

The bottom of Figure 5 elaborates on the pipeline stages
needed for each of the different dataflows on Hyena-Arch.
Due to the simplicity of LoLa-, C2PC-, and A+W-Pack, it
is straightforward to design a pipelined execution for all
IF-W pairs, as shown. However, Ch-Pack involves multiple
loops that cannot be fused because of dependencies. While
Lines 4-9 in Algorithm 2 can be executed in a pipelined
fashion, the next set of operations (Lines 10-18) require
many sequential calls to VMults, resulting in longer latency.
Because this latter phase is dominant, it cannot be pipelined
with the operations in Lines 4-9. This sequential latency is
an impediment to its performance.

The Hyena dataflow includes a similar step (Lines 14-
20 of Algorithm 5) that computes new [F combinations.
However, the Hyena dataflow is designed such that this per-
mutation step is independent of earlier psum computation and
can, therefore, be performed in parallel with the execution of
Lines 3-13, i.e., this permutation is not on the critical path
as long as we dedicate enough NTT/Automorphism units.



TABLE 3. HARDWARE REQUIREMENTS OF DIFFERENT PACKING ON
HYENA-ARCH.

LoLa Ch C2PC A+W Hyena
Number of VMults,
Automorphs, NTTs 234 | (1,34) | (1,0,0) | 244 | 22,1
VMult Area (mm?) 7 3 3 7 7
Automorph Area (mm?) 18 18 0 25 12
NTT Area (mm?) 26 26 0 26 6
Registers and L2 Area (mm?) 114 136
Total Area (mm?) 167 [ 162 [ 117 [ 173 163

TABLE 4. HYENA ARCHITECTURE PARAMETERS FOR HYENA-PACK

Hyena-Arch PE at 200MHz, 163.02 mm?
Component Params Spec Power (W) | Area (mm?)
. count 2x2
MAC unit vector length 256 0.494 7.326
NTT count 2x32
(with Twiddles) vector length 32 0.968 6.743
Rotate (Benes) count, cycles 2x2, 1 2.062 12.65
IF Registers count 2K 0.008 3.1635
W Registers count 1K 0.004 1.5817
PSUM Registers count 2Kx64 0.552 25.308
IF L2 size 2MB 3.801 31.466
W L2 size 4MB 2.793 15.751
KSH L2 size 8SMB 6.066 59.023
Total 16.75 W 163.02 mm?

We do not require a long hardware chain of these units and
we are able to meet the deadline by reusing a few of these
units.

Based on the above pipelines, we create different in-
stances of the Hyena architecture, where resource alloca-
tions are such that they optimize the pipeline for each
packing/dataflow. The corresponding chip area requirements
are summarized in Table 3, along with per-component
breakdowns. We see that the Hyena dataflow requires modest
hardware that is smaller than the hardware needed by LoLa-
Pack and A+W-Pack. C2PC-Pack needs the least hardware
because it only needs a VMult unit. Hyena-Pack has higher
area requirements as it needs a few NTT/Automorphism
units that can be reused.

Hyena Architecture Summary

The use of small HE parameters enables efficient
rotation with a simple Benes network. Each pack/-
dataflow requires a different series of invocations
(Figure 5) of the key hardware units. A custom
architecture for each dataflow implements varying
chained resources to create a balanced pipeline,
notably many psum registers (Table 3). The Hyena
pack/dataflow is amenable to an architecture that has
low area requirements and low latency per inference.

7. Evaluation

7.1. Methodology

7.1.1. Modeling Hyena and Baselines. To model Hyena
and prior works, we develop a simulator, HEPack-Sim, that

models the different aspects of packing, dataflow, and archi-
tecture. We describe HEPack-Sim in Section 7.1.2. We were
able to validate several metrics for our baselines against data
in prior works. The benchmarks selected for the evaluation
include 2 CNNs (ResNet50 [51] and MobileNetV2 [52])
with ImageNet dataset and a Neural machine translation
model (GNMT [53]). We report the latency and energy
results summed across all their layers, including the CONV
and FC layers. Hyena architecture is combined with various
pack+dataflows: LoLa-pack [15], Ch-Pack from Gazelle [2],
C2-PC from Cheetah-2PC [6], A+W-Pack, and Hyena-Pack.
LoLa-Pack can exploit weight sparsity and is evaluated with
50% sparsity. The number of functional units is tailored to
suit the HE parameters and to match the throughput of 1024
elements/cycle for every stage. Each dataflow lends itself to
a different pipeline (Section 6.4), which impacts the resource
counts for each component.

We model the architecture components in Verilog, imple-
mented using industry-standard synthesis (Synopsis DC) and
place-and-route (Synopsis IC Compiler) tools in a 65 nm
CMOS process at 200 MHz frequency. The energy, area,
and access latencies of L2 SRAM caches are derived from
Cacti 6.5 at 65 nm technology. We assume 3.9 pl/bit energy
for HBM2 accesses [54]. Table 4 summarizes all Hyena
architecture parameters. While our work applies to most
HE schemes, we evaluate a popular scheme, CKKS [22], to
obtain parameters (n,log Q) = (1024,32) for depth-1 with
128-bit security that fit within a single PE. As mentioned in
Section 3, the hybrid HE-MPC protocol allows us to keep
the noise budget small and, hence, the HE parameters small.
Our inference model (similar to [1], [2]) can work with small
depth since output neurons after every layer are sent to the
user, who resets the noise.

7.1.2. HEPack-Sim. We build a discrete-event functional
simulator, HEPack-Sim, to benchmark and validate our pro-
posal and compare its benefits to the existing research. Specif-
ically designed for evaluating Homomorphic Encryption-
based Machine Learning inference tasks on an accelerator,
this simulator is configured with the parameters of accelerator
hardware, Homomorphic Encryption (HE) scheme, and the
neural network (NN) layers. It then calculates the number of
execution cycles and accesses to each hardware component
to complete one NN input.

HEPack-Sim operates by handling the different layers of
the NN one at a time. It starts by calculating the packing
parameters based on the shape of the layer. It then triggers
specific events like VMult, NTT, and Automorphism based
on layer operations and employs a batching strategy to
group multiple layer operations. Each event unfolds as
a series of underlying operations; for example, a VMult
event involves reading a vector of IFF and W registers,
performing vector modulo multiplication, and writing the
result to PSUM registers. The simulator keeps track of all
operations happening based on the events executed, allowing
us to analyze the results on all levels - individual operations,
specific events or layers, or the entire NN run as a whole.



LoLa-Pack mmmmm C2PC-Pack mmmm  Hyena-Pack

Ch-Pack mmmm  A+W-Pack mmmm

4
< .
>
2
g3
©
-
32
c
[0
9]
- L_l
S

0

ResNet50 Mobile GNMT Average

Figure 7. Performance comparison of various packing.

L2 Cache ——
Memory mmmm

VMUlt s
Registers pmmm

Automorphism  mm
NTT Unit s

194.71

10

Energy Breakdown (J)
w Y w1

Figure 8. Per-component energy breakdown for various packing.

As described in Section 6.2, each packing has its data
flow (and an associated pipeline), which is implemented in
the simulator (similar to what is presented in Figure 5). The
simulator keeps track of access to the register, multiplier, and
other hardware resources, which are used for estimating the
final energy costs. Because the accelerator implementation
is fully pipelined, each pipeline execution increments the
cycle count, with the slowest functional unit determining the
cycle time. For most packing schemes, regular and sequential
memory requests are prefetched at a rate that is lower than the
available memory bandwidth, i.e., we are not memory band-
width bound. For example, LoLa-Pack has a high memory
bandwidth requirement but fetches a new weight polynomial
only once every 45 ns. As discussed later in Section 7.2,
C2PC-Pack is memory bound; a polynomial is requested
every 5 ns, so the compute throughput is determined by
the rate at which polynomials can be transferred across the
memory channel. Note that if HE parameters are scaled,
other packing schemes may also end up being memory-
bound and will have a performance estimation similar to how
C2PC-Pack is modeled. The simulator assumes energy and
latency numbers for each hardware unit, estimated separately
with the methodology described in Section 7.1.1. HEPack-
Sim is available open-source for reproducibility and for
exploring novel techniques to optimize private inference at
https://github.com/UtahArch/HEPack-Sim.

7.2. Impact of Packing

Figures 7 & 8 show server-side latency and energy for
a range of packing schemes. A+W-Pack addresses the slot

under-utilization in LoLa-Pack and reduces the footprint. The
228x reduction in memory accesses plays a large role in
overall energy savings of 11x. LoLa also pads weights with
zeroes, generating ineffectual computations and, hence, 3.7
slowdown over A+W-Pack. Note that Cheetah [1] reports 200
ms ResNet50 inference latency for LoLa-Pack, but their chip
is 3.6 larger, runs at twice the frequency, and is modeled
at 5 nm technology.

Ch-Pack introduces structured packing but suffers from
poor slot utilization (on average, only 28% of the slots are
filled). While Ch-Pack on ResNet50 performs 1.9x faster
than LoLa-Pack, we observe 9x higher data movement in
Ch-Pack than LoLa, contributing to 1.3x higher energy.
GALA [55] adapts Ch-Pack by delaying the psum rotation
required to aggregate across packed input channels until all
psums across related 01phers are added. This dataflow reduces
the psum rotations by & ke but requires all IFs corresponding
to that psum. This trade-off is not accelerator-friendly, as
IFs can no longer be tiled and served from an on-chip cache.
Hence, while GALA reduces rotations by 10x over Ch-Pack,
it results in 1.5x higher energy consumption.

C2PC-Pack [6] avoids rotations altogether by using a
mathematical trick that aggregates psums across slots during
multiplication itself, which results in a superior design over
prior packings. However, as seen from Section 4.4, this
trick restricts the combined slot utilization of /F and W to
be a maximum of near 50%. Typically, this prioritizes IFs
over W, resulting in low slot utilization of W, leading to
higher memory activity. We noticed that since almost every
PolyMult needs a new W poly and the W reuse distance
is too large to be cached, the performance is bottlenecked
by how fast the memory can provide W polys. Meanwhile,
other packings reuse W using rotations, offsetting the cost
of memory fetch. Also, C2PC is unlikely to scale well with
HE parameters due to larger sizes.

Hyena-Pack’s dense and structured packing, comple-
mented with its dataflow, avoids cipher rotation in the
innermost loop - psum is rotated after aggregation over C/C;
channels (Figure 4). By saving rotation and data movement,
Hyena-Pack outperforms Ch-Pack (A+W-Pack) with 38x
(14x) speedup and 162x (11x) lower energy. Hyena-Pack
is 1.9x faster than C2PC-Pack with Hyena-Arch. This is
because C2PC-Pack requires a new IF-W pair for every
multiplication, resulting in always being memory bound
(low Op/byte ratio), and hence, we observe no effect due to
architecture. Similarly, due to its poor data movement and
cipher reuse, C2PC-Pack consumes 5.3 more energy than
Hyena-Pack. Given that C2PC-Pack is memory-bound, future
accelerator innovations will have no effect on its performance.
Overall, assuming the 7 ms unencrypted inference latency
target mentioned in the Google TPU analysis [32], Hyena is
~5x slower for ResNet50. Server-side latencies for private
inference using Hyena are 32.8 ms, 8.8 ms, and 356.5 ms
for ResNet50, MobileNetV2, and GNMT, respectively.
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7.3. Batching

All five packing schemes, LoLa, Ch, C2PC, A+W, and
Hyena-Pack, support batched inputs by sequentially executing
each input, given fixed resources. An alternate technique,
proposed by CryptoNets [3] and used by nGraph-HE2 [7]
and [56], avoids rotations altogether by performing an IF
batch-wise packing. Similar query-wise batched packing
is also used in the context of HE-based COVID-19 strain
classification [57], [58] using NN. Essentially, a single
IF value across multiple batches is packed in an /F and
multiplied with a single weight value replicated for batch
size in W. This allows multiple inputs to be processed
simultaneously - increasing throughput without sacrificing
total batched latency in some cases. Moreover, as the next set
of IF/W remains aligned, psums can be accumulated without
rotations. We compare the performance and energy of this
batched scheme, termed BatchWise-Pack in Figure 9, for
batch-size of 1, 8, 64, and 512 for the ResNet50 benchmark.
We use a tiled dataflow that reduces the memory fetches by
caching IF, W at steps of RSC; in L2. As the batch size
increases, we see that the latency for Hyena-Pack increases
linearly since Hyena processes batches sequentially while
BatchWise-Pack remains the same till batch 512. As a result,
it outperforms Hyena at the batch of 512. It is important
to note that a larger batch size would also result in linear
time/energy increment for BatchWise-Pack as there are no
slots available in the cipher to parallelize. Furthermore,
Figure 9 represents the total batched latency, a metric of
throughput, and not the per-batch latency. If we update Figure
9 to show response times instead, Hyena would be 512x
better than BatchWise packing (for a batch size of 512) since
Hyena schedules per-batch inference. BatchWise-Pack’s long
response times may not be palatable in real-world latency-
sensitive deployments.

We make an interesting observation from BatchWise- and
Hyena-Pack that there are two degrees of SIMD parallelism
within packing that do not require neighbor slot commu-
nication - batch and output channel. Hyena was designed
at a batch size of 1 to pack multiple channels and hence
significantly outperforms BatchWise at low batches, which
only packs one output channel. Therefore, we first modify
BatchWise to pack output channels if slots are available

TABLE 5. COMPARISON OF WORKS TARGETING RESNET20 PRIVATE

INFERENCE.
Fl+ Crater- BTS ARK H
4y | Lake [13] | [12] [35] yena
. HE=0.2ms

Time 2.9hrs| 2.69s 249.4ms 1.91s 125ms MPC=11.2ms
Tech on 12/14nm 12/14nm Tnm Tnm 65nm
Area | Intel | 000 4723 373.6 4183 163.02
(mm-) Xeon
Power | 8280 3TTW 133.8W | 2813W | 16.75W
On-chip 256MB | 256MB 512MB | 512MB | 15.02MB
storage

and label it as BatchWise-Pack+. As seen from Figure 9,
it achieves high efficiency at low batches as well. In fact,
it performs better than Hyena in layers with low output
channels and low batch size because Hyena has internal
rotations for each output channel. Therefore, we came up
with a Hyena packing scheme (termed Hyena-Pack+) that
includes batches - prioritize packing across batches over
input channels. Hyena+ is faster than Hyena and BatchWise+,
even at large batch sizes. Overall, at a batch size of 512,
Hyena+ is 1.09x faster and consumes 9.25x lower energy
than BatchWise-Pack+.

Figure 9 also described an important trade-off study -
security v/s performance. As described in the threat model,
model hyper-parameters are revealed in Hyena-Pack (this is
true for all prior works that attempt structured packings). An
alternative way is to pack across batches (BatchWise-Pack),
but such a packing performs poorly at small batch sizes. Note
that small batch size is typical in most inference applications
since large batch sizes incur much higher response latencies.
The performance increases significantly when the packing
scheme is made aware of the hyper-parameters, as seen by
the Batch-Pack+ scheme.

7.4. FHE v/s Hybrid HE-MPC

As discussed in Section 3, the entire DNN can be
executed with FHE on the server (Setup A). Bootstrapping
is the major overhead in this setup, requiring high data
movement and compute (hundreds of Giga integer ops
and hundreds of GB memory accesses with parameters
(N=64K, L=60, logq=28), resulting in slow execution (>300
ms/bootstrap on a NVIDIA Tesla V100 [11]). Moreover,
to reduce the number of bootstrapping calls, FHE typically
employs large parameters (56 MBs per cipher [12]). Most of
this paper focuses on Setup B, where we involve the client
in performing non-linear layers using MPC. Our hybrid
HE-MPC [1], [2], [5], [7], [36] allows us to reduce our
parameters (8 kB ciphers) for the same security level and
avoid bootstrapping, but requires client-server interaction
communication. We use a state-of-the-art MPC solution for
an accuracy preserving low degree polynomial activation
function [43] for non-linear layers in DNNs and consider
LAN of 2 Gbps [36], [59]. We compare the inference latency
of ResNet20 of Hyena with prior works in Table 5, with their
architecture costs. All numbers are taken directly from the
papers. F1+ is an implementation of F1 [4] with a larger area



demonstrated by [13] on ResNet20. We make the following
conclusions: (a) Due to small parameter requirements, Hyena
can achieve orders of magnitude higher performance. (b)
The communication cost observed accounts for 99% of the
overall inference latency after Hyena’s techniques to reduce
server cost but is still lower than performing FHE. (c) Due
to low compute requirements, Hyena needs simpler hardware
and is the smallest chip with lower power and on-chip
storage requirements. (d) Most previous works use FHE-
friendly implementations of ResNet20 on MNIST/CIFAR
datasets [14]; larger DNN models are unlikely to scale well
with FHE in terms of both efficiency and accuracy. (e) Finally,
all Hyena techniques are server-side optimizations and thus
are applicable to FHE workflow as well, with small post-
processing changes after each layer.

8. Related Works

Since its innovation in 2009 by Gentry [16], researchers
have rushed to make Homomorphic Encryption practical.
Encrypted neural network inference algorithms were first
proposed in CryptoNets [3], which demonstrated 5 orders of
magnitude slower inference as compared to unencrypted
inference over CPU. In recent years, the improvements
over CryptoNets can be summarized in two categories: 1)
Techniques for basic computations, such as convolutions [15],
matrix-multiplications [60], and non-linear functions [14],
[38], [61]; 2) Combining different cryptographic primitives
(HE, garbled circuits, oblivious transfer) to achieve better
performance for the evaluations of linear and (approximating)
non-linear functions in the inference process. Below are some
efforts that narrow the gap between mathematical formulation
and practical application.

Combining HE with other cryptographic primitives:
Due to the massive compute burden posed by Fully Ho-
momorphic Encryption, many researchers have explored
combining HE with another cryptographic primitive to trade
off compute costs with communication/security. For instance,
Gazelle [2], DELPHI [5], CrypTFlow2 [62], and Cheetah [1]
use HE to evaluate the linear functions of DNN and turn
to garbled circuits or oblivious transfer to compute the
nonlinear functions of the inference process. Such hybrid
HE-MPC is a widely accepted design choice but comes at the
cost of high communication, as reported by CHOCO [44].
Recent works [5], [43] on HE-MPC PI have focused on
reducing this communication cost. In this work, we build a
fast and practical inference framework based on two-party
computation and HE and demonstrate low communication
latency. Some other works consider the secure inference
problem with more than two parties, mainly using secure
multiparty computation, such as [63], [64], [65].

HE acceleration: Due to the complexity of homomorphic
computation, relying on software optimizations alone cannot
achieve desirable results. Hence, in the past several years,
numerous works have studied hardware acceleration of homo-
morphic encryption in the scenarios of encrypted inference.
Many works have attempted to utilize the high compute
parallelism offered by GPUs [11], [66], [67], [68]. GPUs

are typically bottlenecked by their limited on-chip storage
capacity [68]. Jung et al. [11] propose HE kernel fusion
to reduce this bottleneck and show practical bootstrapping.
FPGA designs have also been gaining attention for HE [40],
[69], [70], but still remain an order of magnitude slower
than the state-of-the-art ASICs. Recently, HE has seen a
growing interest in the architecture community, resulting
in ASIC designs [1], [4], [12], [13], [35]. Cheetah [1] is
the first HE-based ML work and targets a hybrid HE-MPC
design, reporting ResNet50 inference latency of 200 ms with
a 587 mm? chip dissipating 30 W in 5 nm. F1 [4] was the
first ASIC to target CKKS bootstrapping but only performed
unpacked bootstrapping. CraterLake [13] and BTS [12] both
optimize for packed bootstrapping. ARK [35] is the state-
of-the-art FHE ASIC accelerator that eliminates off-chip
data movement bottleneck through runtime data generation
and inter-operation key reuse, resulting in private ResNet20
inference latency of 125 ms, with a 418 mm? chip that has
512 MB of on-chip storage and consumes 281 W power.
Instead, Hyena employs hybrid HE-MPC, which keeps the
parameters and hence the on-chip requirement low (15.02
MB), resulting in a low area (163 mm?) and low power
(16.75 W) design.

Packing techniques: The high cost of HE can be amor-
tized by batching a set of computations in the slots offered by
the CKKS encoding scheme. However, as discussed in Sec-
tion 4, one must be very careful while packing as intra-slot
computations are expensive, requiring complex procedures
and large keys. We discuss many such packing schemes in
detail in Section 4. Early works like CryptoNets [3] focused
on using slots for SIMD parallelism by packing the same
pixel across different batches in the same cipher. Recently,
more nuanced packing schemes have come up that pack
pixels and kernels such that the number of slot rotations
is minimized. One such packing, Channel-Packing [2] has
been widely adopted by many works, like CraterLake [13],
BTS [12], [14]. We demonstrate that Channel-Pack suffers
from poor slot utilization and propose Hyena-Pack, which
offers an order of magnitude improvement in terms of the
number of rotations and data movement, translating directly
to performance and energy improvement. A recent packing
work [71] (used by ARK [35]) noted that a high stridle CONV
layer introduces gaps in the output pixel packing, introducing
a cascading slot under-utilization issue. They address this
with a multiplexed parallel convolution technique. However,
Hyena advocates for a hybrid HE-MPC setup, where such
gaps are filled during the re-encryption process done after
every layer by the client.

9. Conclusion

While prior works have performed a limited amount of
packing to keep rotation overheads in check, we show that
with an appropriate packing and dataflow strategy, dense
packing is practical. We devise a packing and dataflow
that leads to compact data footprints, high reuse, and few
permutations. This is augmented with an architecture where
the pipeline and resources are tailored for the dataflow.



Compared to a range of packing/dataflow baselines, we
show significant improvements in latency and energy, e.g.,
38x speedup and 162x better energy than widely used
Channel packing. We study the trade-offs between FHE
and hybrid HE+MPC approaches and make a case for the
latter for practical privacy-preserving inference. As a result,
we demonstrate end-to-end ResNet20 inference latency of
11.4 ms, using a 163 mm? accelerator dissipating 16.75 W.
While we present a novel packing for Machine Learning
applications, the general principles we introduce to reduce
rotations can be used to extend Hyena to other applications.
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Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.l. Summary

This paper introduces Hyena, a new framework for
encrypted inference. The paper identifies three critical

performance bottlenecks in encrypted inference systems:

packing, reuse, rotations. Hyena overcomes them with new
co-designed packing and dataflow techniques that can achieve
more dense packing, less rotations, and better reuse. The
results show that Hyena provides significant speedups and
improved energy efficiency compared to several baselines.

A.2. Scientific Contributions

o Provides a Valuable Step Forward in an Established
Field
o Creates a New Tool to Enable Future Science

A.3. Reasons for Acceptance

1) The paper provides a comprehensive analysis of
performance bottlenecks in encrypted inference
systems, pinpointing the key contributors. It then
introduces new techniques that better align with
how data is processed and computed on, showing
that dense packing is practical and offers significant
performance improvements over state of the art
approaches.

2) The authors publicly release HEPack-Sim for in-
dependent analysis and reproducibility by other
researchers.
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